搜档网
当前位置:搜档网 › 三角形(知识点+题型分类练习)

三角形(知识点+题型分类练习)

三角形(知识点+题型分类练习)
三角形(知识点+题型分类练习)

三角形章节复习

全章知识点梳理:

一.三角形基本槪念

L三角形的概念

由不在同一条直线上的三条线段首尾依次相接所组成的图形叫做三角形。

2.三角形按边分类

3.三角形三边的关系(重点)

三角形的任意两边之和大于第三边。

三角形的任意两边之差小于第三边。(这两个条件满足其中一个I!卩可)用数学表达式表达就是:记三角形三边长分别是a. b, c,则3+?(或c-b

已知三角形两边的长度分别为a. b,求第三边长度的范帀:a-b|VcVa+b

解题方法:

①数三角形的个数方法:分类,不要重复或者多余。

②给出三条线段的长度或者三条线段的比值,要求判断这三条线段能否组成三角形方法:最小边+较小边>最大边不用比较三遍,只需比较一遍即可

③给出多条线段的长度,要求从中选择三条线段能够组成三角形方法:从所给线段的最大边入手,依次寻找较小边和最小边:直到找完为止,注意不要找重,也不要漏

④已知三角形两边的长度分别为a, b.求第三边长度的范用

方法J第三边长度的范围J a—b!

⑤给出等腰三角形的两边长度,要求等腰三角形的底边和腰的长

方法:因为不知逍这两边哪条边是底边,哪条边是腰,所以要分类讨论,讨论完后要写“综上",将上 而讨论的结果做个总结。

二. 三角形的髙、中线与角平分线

L 三角形的高

从△ABC 的顶点向它的对边BC 所在的直线画垂线,垂足为D.那么线段AD 叫做△ABC 的边BC 上的离。

三角形的三条高的交于一点,这一点叫做“三角形的垂心”.

2.三角形的中线

连接△ABC 的顶点A 和它所对的对边BC 的中点D,所得的线段AD 叫做△ABC 的边BC 匕的中线。

三角形三条中线的交于一点,这一点叫做“三角形的重心”。

三角形的中线可以将三角形分为而积相等的两个小三角形。

3.三角形的角平分线

ZA 的平分线打对边BC 交于点D,那么线段AD 叫做三角形的角平分线。

要区分三角形的“角平分线"与“角的平分线",其区别是:三角形的角平分线是条线段:角的平分线 是条射线。 三角形三条角平分线的交于一点,这一点叫做“三角形的内心” O

要求会的题型:

① 已知三角形中两条高和其所对的底边中的三个长度,求幷中未知的高或者底边的长度

三、三角形的稳定性

方法是将多边形分成多个三角形,这样多边形就具有稳;性了。

四、与三角形有关的角 L 三角形的内角

①三角形的内角和宦理三角形的内角和为180° ,与三角形的形状无关。

② 直角三角形的两个锐角互余(相加为90° ) O 有两个角互余的三角形是直角三角形。

方法:利用“等积法",

将三角形的面积用两种方式表达,求出未知量。

1.三角形具有稳泄性

2.四边形及多边形不具有稳世性

要使多边形具有稳定性,

2.三角形的外角

①三角形外角的意义三角形的一边与另一边的延长线组成的角叫做三角形的外角。

②三角形外角的性质三角形的一个外角等于与它不相邻的两个内角之和。

三角形的一个外角大于与它不柑邻的任何一个内角。

③ 五个基本图形

三角形的复习题型分类讲解

考点一:三角形三边关系的考査:

【基本应用】

1.(2013-宜昌〉下列每组数分别表示三根木棒的长度,将它们首尾连接后,能摆成三角形的一组是( 2, 6 2?图中共有(

【能力提高】

5.等腰三角形两边长分别为4和8,则这个等腰三角形的周长为.

3.

6?若三条线段中a=3, b=5, c 为奇数.那么由/ b, C 为边组成的三角形共有(

7. (2012 -义乌中考)如果三角形的两边长分别为3和5,第三边长是偶数,则第三边长可以是 8?已知a. b 、c 是三角形的三边,化简a+b-c-a ?b-c ?

2.长为11. 8, 6, 4的四根木条,选英中三根组成三角形有

种选法,它们分别是

2. C ?无数多个

D.无法确定

7. 9.

10?若a, b, c分别为三角形的三边,化简;|a—b—c| + |b — c — a| + |c — a + b|.

考点.三角形角的考査

【基本应用】

1?一个三角形中最多有个内角是钝角,最多可有个角是锐角.

2.若ZA : ZB : ZC=1 : 2 : 3,则ZA=

3. (2010山东济宁)若一个三角形三个内角度数的比为2: 3 : 4,那么这个三角形是(

A.直角三角形

B.锐角三角形

C.钝角三角形

D.等边三角形

4?在Rt^ABC 中,ZC=90° , ZA=5ZB.则ZA=

5?在△ABC中.ZA=55° , ZB比ZC大25° ,则ZB的度数为

6■如图,在△ABC 中,ZA=36° , ZC=72° , BD 平分ZABC,求ZDBC 的度数.

【能力提高】

1-如图,ZA=40" ,Z1+Z2+ Z3+Z4 =

2.在一个三角形中, 有一个角等于另外两个角的和,则这个三角形一企是(

A.锐角三角形B-直角三角形C?钝角三角形D?等腰三角形

Z2的大小关系是(

4?如图,AABC中,ZA=5(r ?点D?E分別在AB, AC上,则Zl+Z2的大小为(

9?已知等腰三角形的一个外角为150° ,则它的底角为.

13?如图,在△ABC中,ZACB=90° , CD是边AB上的高。那么图中与ZA相等的角是()

考点二.三角形中线、角平线.高的考査

【基本应用】

1?对下面每个三角形, 过顶点A画出中线,角平分线和高?

C B C

A- ZA>Z1>Z2 B? Z2>Z1>ZA C? ZA>Z2>Z1 D. Z2>ZA>Z1

A. 130° B?230° C. 180° D. 310°

5?已知等腰三角形的一个外角是120° ,则它是()

A.等腰宜角三角形B?一般的等腰三角形 C.等边三角形

7.已知三角形的三个外角的度数比为2 : 3 : 4,则它的最大内角的度数

A. 90°

B. 110"

C. 100"

【等腰钝角三角形

A. ZB

B. ZACD

C. ZBCD

D.

ZBDC

B

8

K U. 1ZO'

X

第13题

2?下列说法错误的是(

A.三角形的三条高一世在三角形内部交于一点

B.三角形的三条中线一圧在三角形内部交于一点

C.三角形的三条角平分线一定在三角形内部交于一点

D.三角形的三条高可能柑交于外部一点

【能力提高】

1.三角形的下列线段中能将三角形的面积分成相等的两部分是()

A.中线

B.角平分线 D.中位线

2?如图,已知在△ABC中,ZABC与ZACB的平分线相交于点0,若ZB0C=140° ,求ZA的度数.

3.如图,在△ABC 中,AD 是ZBAC 的平分线,ZB=54° , ZC=76°

⑴求ZADB和ZADC的度数.

⑵若DE丄AC,求ZEDC的度数.

解三角形题型总结

解三角形题型分类解析 类型一:正弦定理 1、计算问题: 例1、(2013?北京)在△ ABC 中,a=3, b=5 , sinA=2,贝U sinB= ________ 3 a + b + c = sin A sin B sin C 例2、已知.'ABC中,.A =60 , 例3、在锐角△ ABC中,内角A, B, C的对边分别为a, b, c,且2asinB= 7b. 求角A的大小; 2、三角形形状问题 例3、在ABC中,已知a,b,c分别为角A, B, C的对边, a cos A 1)试确定-ABC形状。 b cosB 2)若—=c°s B,试确定=ABC形状。b cos A 4 )在.ABC中,已知a2 ta nB=b2ta nA,试判断三角形的形状。 5)已知在-ABC中,bsinB=csinC,且sin2 A =sin2 B sin2 C ,试判断三角形的形状。 例4、(2016年上海)已知MBC的三边长分别为3,5,7,则该三角形的外接圆半径等于 __________ 类型二:余弦定理 1、判断三角形形状:锐角、直角、钝角 在厶ABC中, 若a2b2c2,则角C是直角; 若a2b2 ::: c2,则角C是钝角; 若a2b2c2,则角C是锐角. 例1、在厶ABC中,若a=9,bT0,c=12,则厶ABC的形状是______________ , 2、求角或者边 例2、(2016 年天津高考)在△ABC 中,若AB= 13 ,BC=3, Z C =120’ 则AC=. 例3、在△ ABC中,已知三边长a=3 , b=4 , c=—37 ,求三角形的最大内角.

例4、在厶ABC中,已知a=7,b=3,c=5,求最大的角和sinC? 3、余弦公式直接应用 例5、:在也ABC中,若a2=b2+c2+bc ,求角A 例6、:(2013重庆理20)在厶ABC中,内角A B, C的对边分别是a,b,c, 且a2+ b2+、、2 ab= c2. (1)求C 例7、设厶ABC的内角A , B , C所对的边分别为 a , b , c .若(a- c)(a ? b ? c) =ab , 则角C二例8 (2016年北京高考) 在ABC中,a2c^b^ . 2ac (1)求/ B的大小; (2 )求、、.2 cosA - cosC 的最大值. 类型三:正弦、余弦定理基本应用 例1.【2015高考广东,理11】设ABC的内角A , B , C的对边分别为a , b , c ,若a = <::'3 , 1 n sin B = —,C = 一,则b =. 2 6 例 2. (a c) J=1,贝q B等于。 ac 例3.【2015高考天津,理13】在厶ABC中,内角A,B,C所对的边分别为a,b,c,已知 MBC 的面积为3、'15 , b—c =2,cos A =-1,则a 的值为. 4 1 例 4.在厶ABC中,sin(C-A)=1 , sinB= ,求sinA=。 3 例5.【2015高考北京,理12】在厶ABC 中, c=6,则sin2A = sin C

(完整版)解三角形专题题型归纳

《解三角形》知识点、题型与方法归纳 一、知识点归纳(★☆注重细节,熟记考点☆★) 1.正弦定理及其变形 2(sin sin sin a b c R R A B C ===为三角形外接圆半径) 变式:12sin ,2sin ,2sin a R A b R B c R C ===()(边化角公式) 2sin ,sin ,sin 222a b c A B C R R R ===()(角化边公式) 3::sin :sin :sin a b c A B C =() sin sin sin (4),,sin sin sin a A a A b B b B c C c C === 2.正弦定理适用情况: (1)已知两角及任一边; (2)已知两边和一边的对角(需要判断三角形解的情况). 3.余弦定理及其推论 2222222222cos 2cos 2cos a b c bc A b a c ac B c a b ab C =+-=+-=+- 222 222 222 cos 2cos 2cos 2b c a A bc a c b B ac a b c C ab +-= +-=+-= 4.余弦定理适用情况: (1)已知两边及夹角; (2)已知三边. 注.解三角形或判定三角形形状时,可利用正余弦定理实现边角转化(这也是正余弦定理的作用),统一成边的形式或角的形式. 5.常用的三角形面积公式 (1)高底??= ?2 1ABC S ; (2)()111=sin sin sin 2224abc S ab C ac B bc A R ABC R ===?为外接圆半径 (两边夹一角); 6.三角形中常用结论 (1),,(a b c b c a a c b +>+>+>即两边之和大于第三边,两边之差小于第三边) (2)sin sin (ABC A B a b A B ?>?>?>在中,即大边对大角,大角对大边) (3)在ABC ?中,A B C π++=,所以 ①()sin sin A B C +=;②()cos cos A B C +=-; ③()tan tan A B C +=-;④sin cos ,22A B C +=⑤cos sin 22 A B C += 7.实际问题中的常用角 (1)仰角和俯角

高中解三角形题型大汇总

解三角形题型总结 题型一:正选定理的应用 1. ABC ?的三内角A 、B 、C 的对边边长分别为a b c 、、,若,2a A B ==, 则cos _____B = B. C. D. 2. 如果111A B C ?的三个内角的余弦值分别等于222A B C ?的三个内角的正弦值,则( ) A .111A B C ?和222A B C ?都是锐角三角形 B .111A B C ?和222A B C ?都是钝角三角形 C .111A B C ?是钝角三角形,222A B C ?是锐角三角形 D .111A B C ?是锐角三角形,222A B C ?是钝角三角形 3. 在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若 ( ) C a A c b cos cos 3=-,则 =A cos _________________。 4.△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A =a 2,则=a b A . B . C D 5.ABC ?中,3 π = A ,BC =3,则ABC ?的周长为( ) A . 33sin 34+??? ? ?+πB B . 36sin 34+??? ??+πB C .33sin 6+??? ??+πB D .36sin 6+??? ? ? +πB 6. 在ABC ?中,已知3,1,60===?ABC S b A o ,则=++++C B A c b a sin sin sin 7.设ABC ?的内角,,A B C 的对边分别为,,a b c ,且35 cos ,cos ,3,513 A B b = ==则c =______

解三角形题型总结原创

解三角形题型总结 ABC ?中的常见结论和定理: 一、 内角和定理及诱导公式: 1.因为A B C π++=, 所以sin()sin ,cos()cos , tan()tan A B C A B C A B C +=+=-+=-; sin()sin ,cos()cos ,tan()tan A C B A C B A C B +=+=-+=-; sin()sin ,cos()cos ,tan()tan B C A B C A B C A +=+=-+=- 因为,22A B C π++= 所以sin cos 22A B C +=,cos sin 22 A B C +=,………… 2.大边对大角 3.在△ABC 中,熟记并会证明tanA+tanB+tanC=tanA·tanB·tanC; (2)A 、B 、C 成等差数列的充要条件是B=60°; (3)△ABC 是正三角形的充要条件是A 、B 、C 成等差数列且a 、b 、c 成等比数列.

四、面积公式: (1)12a S ah = (2)1()2 S r a b c =++(其中r 为三角形内切圆半径) (3)111sin sin sin 222 S ab C bc A ac B === 五、 常见三角形的基本类型及解法: (1)已知两角和一边(如已知,,A B 边c ) 解法:根据内角和求出角)(B A C +-=π; 根据正弦定理 R C c B b A a 2sin sin sin ===求出其余两边,a b (2)已知两边和夹角(如已知C b a ,,) 解法:根据余弦定理2 2 2 2cos c a b ab C =+-求出边c ; 根据余弦定理的变形bc a c b A 2cos 2 22-+=求A ; 根据内角和定理求角)(C A B +-=π. (3)已知三边(如:c b a ,,) 解法:根据余弦定理的变形bc a c b A 2cos 2 22-+=求A ; 根据余弦定理的变形ac b c a B 2cos 2 22-+=求角B ; 根据内角和定理求角)(B A C +-=π (4)已知两边和其中一边对角(如:A b a ,,)(注意讨论解的情况) 解法1:若只求第三边,用余弦定理:222 2cos c a b ab C =+-; 解法2:若不是只求第三边,先用正弦定理R C c B b A a 2sin sin sin ===求B (可能出现一解,两解或无解的情况,见题型一); 再根据内角和定理求角)(B A C +-=π;. 先看一道例题: 例:在ABC ?中,已知0 30,32,6===B c b ,求角C 。(答案:045=C 或0135)

解三角形专题题型归纳

解三角形专题题型归纳

《解三角形》知识点、题型与方法归纳 一、知识点归纳(★☆注重细节,熟记考点☆★) 1.正弦定理及其变形 2(sin sin sin a b c R R A B C ===为三角形外接圆半径) 变式:12sin ,2sin ,2sin a R A b R B c R C ===()(边化角公式) 2sin ,sin ,sin 222a b c A B C R R R ===()(角化边公式) 3::sin :sin :sin a b c A B C =() sin sin sin (4),,sin sin sin a A a A b B b B c C c C === 2.正弦定理适用情况: (1)已知两角及任一边; (2)已知两边和一边的对角(需要判断三角形解的情况). 3.余弦定理及其推论 2222222222cos 2cos 2cos a b c bc A b a c ac B c a b ab C =+-=+-=+- 222 222222 cos 2cos 2cos 2b c a A bc a c b B ac a b c C ab +-=+-=+-= 4.余弦定理适用情况: (1)已知两边及夹角; (2)已知三边. 注.解三角形或判定三角形形状时,可利用正余弦定理实现边角转化(这也是正余弦定理的作用),统一成边的形式或角的形式. 5.常用的三角形面积公式 (1)高底??=?2 1ABC S ; (2)()111=sin sin sin 2224abc S ab C ac B bc A R ABC R ===?为外接圆半径 (两边夹一角); 6.三角形中常用结论 (1),,(a b c b c a a c b +>+>+>即两边之和大于第三边,两边之差小于第三边) (2)sin sin (ABC A B a b A B ?>?>?>在中,即大边对大角,大角对大边) (3)在ABC ?中,A B C π++=,所以 ①()sin sin A B C +=;②()cos cos A B C +=-; ③()tan tan A B C +=-;④sin cos ,22A B C +=⑤cos sin 22 A B C += 7.实际问题中的常用角 (1)仰角和俯角

高中数学解三角形题型完整归纳

高中数学解三角形题型目录一.正弦定理 1.角角边 2.边边角 3.与三角公式结合 4.正弦定理与三角形增解的应对措施 5.边化角 6.正弦角化边 二.余弦定理 1.边边边 2.边角边 3.边边角 4.与三角公式结合 5.比例问题 6.余弦角化边 7.边化余弦角 三.三角形的面积公式 1.面积公式的选用 2.面积的计算 3.正、余弦定理与三角形面积的综合应用 四.射影定理 五.正弦定理与余弦定理综合应用 1.边角互化与三角公式结合 2.与平面向量结合 3.利用正弦或余弦定理判断三角形形状 4.三角形中的最值问题 (1)最大(小)角 (2)最长(短)边 (3)边长或周长的最值

(4)面积的最值 (5)有关正弦或余弦或正切角等的最值 (6)基本不等式与余弦定理交汇 (7)与二次函数交汇 六.图形问题 1.三角形内角之和和外角问题 2.三角形角平分线问题 3.三角形中线问题 4.三角形中多次使用正、余弦定理 5.四边形对角互补与余弦定理的多次使用 6.四边形与正、余弦定理 六.解三角形的实际应用 1.利用正弦定理求解实际应用问题 2.利用余弦定理求解实际应用问题 3.利用正弦和余弦定理求解实际应用问题 一.正弦定理 1.角角边 ?=?=?= 例.在中,解三角形 ABC A B a 30,45,2,. ?=?=?== 练习1.在中则 ABC A B a c ,30,45, . 练习2.在中,已知45,,求 ?=?=?= 30. ABC C A a b 2.边边角 例中,解这个三角形?===? ABC a .45,. 练习1中,则 ?==+== . 1,2,sin ABC a b A C B C 练习2.中则 ?===?= ,3,60,_____ ABC c b C A

解三角形专题题型归纳

《解三角形》知识点、题型与方法归纳 1.正弦定理及其变形 2(sin sin sin a b c R R A B C ===为三角形外接圆半径) 变式:12sin ,2sin ,2sin a R A b R B c R C ===()(边化角公式) 2sin ,sin ,sin 222a b c A B C R R R ===()(角化边公式) 3::sin :sin :sin a b c A B C =() sin sin sin (4),,sin sin sin a A a A b B b B c C c C === 2.正弦定理适用情况: (1)已知两角及任一边; (2)已知两边和一边的对角(需要判断三角形解的情况). 3.余弦定理及其推论 2222222222cos 2cos 2cos a b c bc A b a c ac B c a b ab C =+-=+-=+- 222 222 222 cos 2cos 2cos 2b c a A bc a c b B ac a b c C ab +-= +-=+-= 4.余弦定理适用情况: (1)已知两边及夹角; (2)已知三边. 注.解三角形或判定三角形形状时,可利用正余弦定理实现边角转化(这也是正余弦定理的作用),统一成边的形式或角的形式. 5.常用的三角形面积公式 (1)高底??= ?2 1ABC S ; (2)()111=sin sin sin 2224abc S ab C ac B bc A R ABC R ===?为外接圆半径 (两边夹一角); 6.三角形中常用结论 (1),,(a b c b c a a c b +>+>+>即两边之和大于第三边,两边之差小于第三边) (2)sin sin (ABC A B a b A B ?>?>?>在中,即大边对大角,大角对大边) (3)在ABC ?中,A B C π++=,所以 ①()sin sin A B C +=;②()cos cos A B C +=-; ③()tan tan A B C +=-;④sin cos ,22A B C +=⑤cos sin 22A B C += 解三角形有用的结论

三角函数解三角形题型归类

三角函数解三角形题型归类 一知识归纳: (一)任意角、弧度制及任意角的三角函数 1.角的概念 (1)任意角:①定义:角可以看成平面内 绕着端点从一个位置旋转到另一个位置所成的 ;②分类:角按旋转方向分为 、 和 . (2)所有与角α终边相同的角,连同角α在内,构成的角的集合是S = . (3)象限角:使角的顶点与 重合,角的始边与 ,那么,角的终边在第几象限,就说这个角是第几象限角;如果角的终边在坐标轴上,就认为这个角不属于任何一个象限. 2.弧度制 (1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,用符号rad 表示,读作弧度.正角的弧度数是一个 ,负角的弧度数是一个负数 ,零角的弧度数是 . (2)角度制和弧度制的互化:180°=π rad,1°=π180 rad , 1 rad =? ?? ?? ? 180π°. (3)扇形的弧长公式:l =|α|·r ,扇形的面积公式:S =12 lr

=12 |α|·r 2. 3.任意角的三角函数 (1)定义:设α是一个任意角,它的终边与单位圆交于点 P (x ,y ),那么sin α= ,cos α= ,tan α = . (2)任意角α的终边与单位圆交于点P (x ,y )时,sin α =y ,cos α=x ,tan α=y x (x ≠0) 4.三角函数值在各象限的符号规律:一全正、二正弦、三正切、四余弦. (二)公式概念 1.三角函数诱导公式? ?? ???k 2π+α(k ∈Z)的本质 奇变偶不变(对k 而言,指k 取奇数或偶数),符号看象限(看原函数,同时把α看成是锐角). 2.两角和与差的三角函数公式 (1)sin(α±β)=sin αcos β±cos αsin β; (2)cos(α±β)=cos αcos β?sin αsin β; (3)tan(α±β)=tan α±tan β1?tan αtan β. 3.二倍角公式 (1)sin 2α=2sin αcos α; (2)cos 2α=cos 2 α-sin 2 α=2cos 2 α-1=1-2sin 2 α,

高考中《解三角形》题型归纳

1 《解三角形》题型归纳 【题型归纳】 题型一正弦定理、余弦定理的直接应用 例1ABC ?的内角A ,B ,C 的对边分别为a ,b ,c ,已知2sin()8sin 2B A C +=. (1)求cos B (2)若6a c +=,ABC ?面积为2,求b . 【答案】(1)15 cos 17B =(2)2b =. 【解析】由题设及A B C π++=得2sin 8sin 2B B =,故sin 4(1cos )B B =-. 上式两边平方,整理得217cos 32cos 150B B -+=, 解得cos 1B =(舍去),15 cos 17B =. (2)由15cos 17B =得8sin 17B =,故1 4 sin 217ABC S ac B ac ?==. 又2ABC S ?=,则17 2ac =. 由余弦定理及6a c +=得22222cos ()2(1cos ) b a c ac B a c ac B =+-=+-+17 15 362(14217=-??+=. 所以2b =. 【易错点】二倍角公式的应用不熟练,正余弦定理不确定何时运用 【思维点拨】利用正弦定理列出等式直接求出 例2ABC △的内角,,A B C 的对边分别为,,a b c ,若2cos cos cos b B a C c A =+,则B =.【答案】π3【解析】1 π 2sin cos sin cos sin cos sin()sin cos 23B B A C C A A C B B B =+=+=?=?= .

2【易错点】不会把边角互换,尤其三角恒等变化时,注意符号。 【思维点拨】边角互换时,一般遵循求角时,把边换成角;求边时,把角转换成边。 例3在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若b =1,c =3,C =23 π,则S △ABC =________.【答案】34 【解析】因为c >b ,所以B <C ,所以由正弦定理得b sin B =c sin C ,即1sin B =3sin 2π3=2,即sin B =12,所以B =π6,所以A =π-π6-2π3=π6.所以S △ABC =12bc sin A =12×3×12=34 .【易错点】大边对大角,应注意角的取值范围 【思维点拨】求面积选取公式时注意,一般选取已知角的公式,然后再求取边长。题型二利用正弦定理、余弦定理判定三角形的形状 例1在ABC ?中,角,,A B C 的对边分别为,,a b c ,且,,A B C 成等差数列 (1)若2b c ==,求ABC ?的面积 (2)若sin ,sin ,sin A B C 成等比数列,试判断ABC ?的形状 【答案】(1)32(2)等边三角形 【解析】(1)由A ,B ,C 成等差数列,有2B =A +C (1) 因为A ,B ,C 为△ABC 的内角,所以A +B +C =π.(2) 得B =3π, b 2=a 2+ c 2-2accosB (3)所以3 cos 44)32(22πa a -+=解得4=a 或2-=a (舍去)所以323 sin 2421sin 21=??==?πB ac s ABC (2)由a ,b ,c 成等比数列,有b 2=ac (4) 由余弦定理及(3),可得b 2=a 2+c 2-2accosB =a 2+c 2-ac 再由(4),得a 2+c 2-ac =ac ,即(a -c )2=0。因此a =c 从而A =C (5) 由(2)(3)(5),得A =B = C =3 π

【高中数学】解三角形的知识总结和题型归纳

解三角形的知识总结和题型归纳 一、知识必备: 1.直角三角形中各元素间的关系: 在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。(1)三边之间的关系:a 2+b 2=c 2。(勾股定理)(2)锐角之间的关系:A +B =90°;(3)边角之间的关系:(锐角三角函数定义) sin A =cos B =c a ,cos A =sin B =c b ,tan A =b a 。 2.斜三角形中各元素间的关系: 在△ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示A 、B 、C 的对边。(1)三角形内角和:A +B +C =π。 (2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等 R C c B b A a 2sin sin sin ===(R 为外接圆半径)(3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍a 2=b 2+c 2-2bc cos A ;b 2=c 2+a 2-2ca cos B ;c 2=a 2+b 2-2ab cos C 。 3.三角形的面积公式: (1)?S = 21ah a =21bh b =21 ch c (h a 、h b 、h c 分别表示a 、b 、c 上的高);(2)?S =21ab sin C =21bc sin A =2 1 ac sin B ; 4.解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)求其他未知元素的问题叫做解三角形.广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面 【高中数学】

必修五解三角形题型归纳

一. 构成三角形个数问题 1在ABC中,已知a x,b 2,B 45°,如果三角形有两解,则x的取值范围是( ) A. 2 x 2 2 B. x 2,2 C . 2 x 2 D. 0x2 2 ?如果满足ABC 60 , AC 12 , BC k的厶ABC恰有一个,那么k的取值范围是 3.在ABC中,根据下列条件解三角形,其中有两个解的是() A* CJ =S J =J = 45=B. a = 60 ;b -= 81; B = = 60°+J C” a —7 > b —5j八眇 D ?。二14 , b - 20, "4亍二. 求边长问题 4.在ABC 中,角A, B,C所对边a,b,c,若a 3,C1200,ABC的面积S 15血4 则c() A. 5 B .6 C . V39D7 5.在△ ABC 中,a1,B 450,S ABC 2,则b = 三. 求夹角冋题 6.在ABC中,ABC -,AB4V2, BC 3,则sin BAC( ) v'10V103^10<5 A. 10 B5 C . 10D5

7 .在厶ABC 中,角A , B , C 所对的边分别a,b,C,S 为表示△ ABC 的面积,若 1 2 2 2 bcosA csinC, S (b c a ),则/ B=( 4 B . 60° C . 45° D . 30° 四. 求面积问题 &已知△ ABC 中,内角A , B, C 所对的边长分别为 a,b,c .若 a ZbcosAB -, c 1 ,则 △ ABC 的面积等于 ( ) g 6 4 2 9.锐角 ABC 中,角A 、B 、C 的对边分别是a 、b 、 1 c ,已知 cos2C - 4 ([)求 sinC 的值; (□)当 a 2, 2si nA si nC 时,求 b 的长及 ABC 的面积. 10?如图,在四边形 ABCD 中,AB 3,BC 7.3,CD 14, BD 7, BAD 120 a cosB A. 90° (1 )求AD 边的长; (2)求ABC 的面积.

《解三角形》常见题型总结

《解三角形》常见题型总结 1、1正弦定理和余弦定理 1、1、1正弦定理 【典型题剖析】 考察点1:利用正弦定理解三角形例1 在ABC中,已知 A:B:C=1:2:3,求a :b :c、 【点拨】 本题考查利用正弦定理实现三角形中边与角的互化,利用三角形内角和定理及正弦定理的变形形式 a :b :c=sinA: sinB: sinC 求解。解: 【解题策略】 要牢记正弦定理极其变形形式,要做到灵活应用。例2在ABC 中,已知c=+,C=30,求a+b的取值范围。 【点拨】 此题可先运用正弦定理将a+b表示为某个角的三角函数,然后再求解。解:∵C=30,c=+,∴由正弦定理得:∴ a=2(+)sinA,b=2(+)sinB=2(+)sin(150-A)、 ∴a+b=2(+)[sinA+sin(150-A)]=2(+)2sin75cos(75-A)= cos(75-A)① 当75-A=0,即A=75时,a+b取得最大值=8+4;② ∵A=180-(C+B)=150-B,∴A<150,∴0<A<150,∴-75<75-A<75, ∴cos75<cos(75-A)≤1,∴> cos75==+、综合①②可得a+b的

取值范围为(+,8+4>考察点2:利用正弦定理判断三角形形状例3在△ABC中,tanB=tanA,判断三角形ABC的形状。 【点拨】 通过正弦定理把边的关系转化为角的关系,利用角的关系判断△ABC的形状。解:由正弦定理变式a=2RsinA,b=2RsinB得:,即,,、∴为等腰三角形或直角三角形。 【解题策略】 “在△ABC中,由得∠A=∠B”是常犯的错误,应认真体会上述解答过程中“∠A=∠B或∠A+∠B=”的导出过程。例4在△ABC 中,如果,并且B为锐角,试判断此三角形的形状。 【点拨】 通过正弦定理把边的形式转化为角的形式,利用两角差的正弦公式来判断△ABC的形状。解:、又∵B为锐角,∴B= 45、由由正弦定理,得,∵代入上式得:考察点3:利用正弦定理证明三角恒等式例5在△ABC中,求证、 【点拨】 观察等式的特点,有边有角要把边角统一,为此利用正弦定理将转化为、证明:由正弦定理的变式得:同理 【解题策略】 在三角形中,解决含边角关系的问题时,常运用正弦定理进行边角互化,然后利用三角知识去解决,要注意体会其中的转化

解三角形常见题型归纳

解三角形常见题型归纳 正弦定理和余弦定理是解斜三角形和判定三角形类型的重要工具,其主要作用是将已知条件中的边、角关系转化为角的关系或边的关系。 题型之一:求解斜三角形中的基本元素 指已知两边一角(或二角一边或三边),求其它三个元素问题,进而求出三角形的三线(高线、角平分线、中线)及周长等基本问题. 1. 在ABC ?中,AB=3,AC=2,BC=10,则AB AC ?=u u u r u u u r ( ) A .23- B .32- C .32 D .2 3 【答案】D 2.(1)在?ABC 中,已知032.0=A ,081.8=B ,42.9=a cm ,解三角形; (2)在?ABC 中,已知20=a cm ,28=b cm ,040=A ,解三角形(角度精确到01,边长精确到1cm )。 3.(1)在?ABC 中,已知=a c 060=B ,求b 及A ; (2)在?ABC 中,已知134.6=a cm ,87.8=b cm ,161.7=c cm ,解三角形 4(2005年全国高考江苏卷) ABC ?中,3 π = A ,BC =3,则ABC ?的周长为( ) A .33sin 34+??? ? ? + πB B .36sin 34+??? ? ? +πB C .33sin 6+??? ? ? + πB D .36sin 6+??? ? ? +πB 分析:由正弦定理,求出b 及c ,或整体求出b +c ,则周长为3+b +c 而得到结果.选(D). 5 (2005年全国高考湖北卷) 在ΔABC 中,已知6 6 cos ,364== B AB ,A C 边上的中线B D =5,求sin A 的值. 分析:本题关键是利用余弦定理,求出AC 及BC ,再由正弦定理,即得sin A . 解:设E 为BC 的中点,连接DE ,则DE //AB ,且3 6221== AB DE ,设BE =x 在ΔBDE 中利用余弦定理可得:BED ED BE ED BE BD cos 22 2 2 ?-+=, x x 6636223852??++ =,解得1=x ,3 7 -=x (舍去) 故BC =2,从而3 28 cos 2222= ?-+=B BC AB BC AB AC ,即3212=AC 又630sin =B ,

解三角形常用知识点归纳与题型总结-解三角形题型归纳总结

解三角形常用知识点归纳与题型总结 1、①三角形三角关系:A+B+C=180°;C=180°—(A+B); ②.角平分线性质定理:角平分线分对边所得两段线段的比等于角两边之比. ③.锐角三角形性质:若A>B>C 则6090,060A C ?≤c; a-b

高三第一轮复习解三角形题型总结

2018高三第一轮复习解三角形题型总结 题型一:正选定理的应用 1. ABC ?的三内角A 、B 、C 的对边边长分别为a b c 、、,若,2a A B ==, 则cos _____B = B. C. D. 2. 如果111A B C ?的三个内角的余弦值分别等于222A B C ?的三个内角的正弦值,则( ) A .111A B C ?和222A B C ?都是锐角三角形 B .111A B C ?和222A B C ?都是钝角三角形 C .111A B C ?是钝角三角形,222A B C ?是锐角三角形 D .111A B C ?是锐角三角形,222A B C ?是钝角三角形 3. 在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若 ( ) C a A c b cos cos 3=-,则 =A cos _________________。 4.△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A =a 2,则=a b A . B . C D 5.ABC ?中,3 π = A ,BC =3,则ABC ?的周长为( ) A . 33sin 34+??? ? ?+πB B . 36sin 34+??? ??+πB C .33sin 6+??? ??+πB D .36sin 6+??? ? ? +πB 6. 在ABC ?中,已知3,1,60===?ABC S b A o ,则 =++++C B A c b a sin sin sin

7.设ABC ?的内角,,A B C 的对边分别为,,a b c ,且35 cos ,cos ,3,513 A B b = ==则c =______ 8.(2017全国卷2文16)ABC ?的内角C B A ,,的对边分别为c b a ,,,若 A c C a B b cos cos cos 2+=,则=B ________. 9.在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB 的取值范围是________. 题型二:三角形解的个数的判断 1. 在ABC △中,根据下列条件解三角形,则其中有二个解的是 A 、10,45,70b A C === B 、60,48,60a c B === C 、7,5,80a b A === D 、14,16,45a b A === 2. 在ABC ?中,若30,4A a b ∠===,则满足条件的ABC ? A .不存在 B .有一个 C .有两个 D 不能确定 3.△ABC 中,∠A=60°, a= 6 , b=4, 那么满足条件的△ABC ( ) A 有 一个解 B 有两个解 C 无解 D 不能确定 4.符合下列条件的三角形有且只有一个的是 ( ) A .a=1,b=2 ,c=3 B .a=1,b=2 ,∠A=30°

高考数学题型全归纳解三角形考点归纳

【考题回放】 1.设,,a b c 分别是ABC ?的三个内角,,A B C 所对的边,则()2a b b c =+是2A B =的( ) (A )充分条件 (B )充分而不必要条件 (C )必要而充分条件 (D )既不充分又不必要条件 2.在ABC ?中,已知C B A sin 2tan =+,给出以下四个论断: ① 1cot tan =?B A ② 2sin sin 0≤ +

解三角形题型总结很全面

解三角形 要点一、正弦定理和余弦定理的概念 ①正弦定理公式: 2sin sin sin a b c R A B C ===(其中R 表示三角形的外接圆半径) ②余弦定理公式: 第一形式: 2222222222cos 2cos 2cos a b c bc A b a c ac B c a b ab C =+-=+-=+- 第二形式: 222 222 222 cos 2cos 2cos 2b c a A bc a c b B ac a b c C ab +-= +-= +-= 要点二、三角形的面积公式 ① 111 222ABC a b c S a h b h c h ?=?=?=?; ②111 sin sin sin 222 ABC S bc A ab C ac B ?===; 要点三、利用正、余弦定理解三角形 已知两边和一边的对角或已知两角及一边时,通常选择正弦定理来解三角形;已知两边及夹角或已知三边时,通常选择余弦定理来解三角形.特别是求角时尽量用余弦定理来求,尽量避免分类讨论. 在ABC ?中,已知,a b 和A 时,解的情况主要有以下几类: ①若A 为锐角时:a bsin A a bsin A ()bsin A a b ()a b ()

一解 一解 b a A b <? 无解 一解锐角 要点四、三角形的形状的判定 特殊三角形的判定: (1)直角三角形 勾股定理:2 2 2 a b c +=, 互余关系:0 90A B +=,cos 0C =,sin 1C =; (2)等腰三角形 a b =,A B =; 用余弦定理判定三角形的形状(最大角A 的余弦值的符号) (1)在ABC ?中,222 222090cos 02b c a A A b c a bc +-<?+>; (2)在ABC ?中,222 22290cos 02b c a A A b c a bc +-=?= =?+=; (3)在ABC ?中,222 22290cos 02b c a A A b c a bc +-?>?>?< (2)互补关系:0 sin(A+B)=sin(180)sinC C -=, 0cos(A+B) cos (180)cosC C =-=-, 0tan(A+B) tan(180)tan C C =-=-;

解三角形高考真题汇总

2017高考真题解三角形汇编 1.(2017北京高考题)在△ABC 中,A ∠ =60°,c =3 7 a . (Ⅰ)求sin C 的值; (Ⅱ)若a =7,求△ABC 的面积. 2.(2017全国卷1理科)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为 2 3sin a A (1)求sin B sin C ; (2)若6cos B cos C =1,a =3,求△ABC 的周长. 3.(2017全国卷1文科)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c 。已知 sin sin (sin cos )0B A C C +-=,a =2,c C =B A . π 12 B . π6 C . π4 D . π3 4.(2016全国卷2理科)ABC ?的内角,,A B C 的对边分别为,,a b c ,已知 2 sin()8sin 2 B A C +=. (1)求cos B (2)若6a c += , ABC ?面积为2,求.b 5.(2017全国卷2文科16)△ABC 的内角A,B,C 的对边分别为a,b,c,若 2b cosB=a cosC+c cosA,则B= 6.(2017全国卷3理科)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin A cos A =0,a ,b =2. (1)求c ;(2)设D 为BC 边上一点,且AD ⊥ AC,求△ABD 的面积. 7.(2017全国卷3文科)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c 。已知C =60°,b ,c =3,则A =_________。 8.(2017山东高考题理科)在C ?AB 中,角A ,B ,C 的对边分别为a ,b ,c .若 C ?AB 为锐角三角形,且满足()sin 12cosC 2sin cosC cos sinC B +=A +A , 则下列等式成立的是( ) (A )2a b = (B )2b a = (C )2A =B (D )2B =A 9.(2017山东高考题文科)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知 b =3,6AB AC ?=-u u u r u u u r ,S △ABC =3,求A 和a . 10.(2017天津高考题理科)在ABC △中,内角,,A B C 所对的边分别为,,a b c .已

相关主题