搜档网
当前位置:搜档网 › 固体物理基础_课后答案_曹全喜编

固体物理基础_课后答案_曹全喜编

固体物理基础_课后答案_曹全喜编
固体物理基础_课后答案_曹全喜编

固体物理课后答案

1.1 如果将等体积球分别排列成下列结构,设x 表示钢球所占体积与总体积之比,证明结构x简单立方π/ 6 ≈0.52体心立方3π/ 8 ≈0.68面心立方2π/ 6 ≈0.74六方密 排2π/ 6 ≈0.74金刚石3π/16 ≈0.34 解:设钢球半径为r ,根据不同晶体结构原子球的排列,晶格常数a 与r 的关系不同,分别为:简单立方:a = 2r 金刚石:根据金刚石结构的特点,因为体对角线四分之一处的原子与角上的原子紧贴,因此有 1.3 证明:体心立方晶格的倒格子是面心立方;面心立方晶格的倒格子是体心立方。 证明:体心立方格子的基矢可以写为

面心立方格子的基矢可以写为 根据定义,体心立方晶格的倒格子基矢为 同理 与面心立方晶格基矢对比,正是晶格常数为4π/ a的面心立方的基矢,说明体心立方晶格的倒格子确实是面心立方。注意,倒格子不是真实空间的几何分布,因此该面心立方只是形式上的,或者说是倒格子空间中的布拉菲格子。根据定义,面心立方的倒格子基矢为 同理 而把以上结果与体心立方基矢比较,这正是晶格常数为4πa的体心立方晶格的基矢。 证明:根据定义,密勒指数为的晶面系中距离原点最近的平面ABC 交于基矢的截距分别为 即为平面的法线

根据定义,倒格子基矢为 则倒格子原胞的体积为 1.6 对于简单立方晶格,证明密勒指数为(h, k,l)的晶面系,面间距d 满足 其中a 为立方边长。 解:根据倒格子的特点,倒格子 与晶面族(h, k,l)的面间距有如下关系 因此只要先求出倒格,求出其大小即可。 因为倒格子基矢互相正交,因此其大小为 则带入前边的关系式,即得晶面族的面间距。 1.7 写出体心立方和面心立方晶格结构的金属中,最近邻和次近邻的原子数。若立方边长为a ,写出最近邻和次近邻的原子间距。 答:体心立方晶格的最近邻原子数(配位数)为8,最近邻原子间距等于 次近邻原子数为6,次近邻原子间距为a ;

固体物理基础课后1到10题答案

一.本章习题 P272习题 1.试证理想六方密堆结构中c/a=. 一. 说明: C 是上下底面距离,a 是六边形边长。 二. 分析: 首先看是怎样密堆的。 如图(书图(a),P8),六方密堆结构每个格点有12个近邻。 (同一面上有6个,上下各有3个) 上下底面中间各有一个球,共有六个球与之相切,每个球直径为a 。 中间层的三个球相切,又分别与上下底面的各七个球相切。球心之间距离为a 。 所以球心之间即格点之间距离均为a (不管是同层还是上下层之间)。 三. 证明: 如图OA=a ,OO ’=C/2(中间层是上下面层的一半),AB=a O ’是ΔABC 的三垂线交点 3 3 'a AB AO = = ∴ (由余弦定理 ) 330cos 2,30cos 230cos 2222a a x x a ax x a x ===-+=οο ο 633.13 22384132)2()2()3 ()2(2 22 222 22 2 2' '≈===∴+=+=+ =a c c a a c a a c OA AO OO

2.若晶胞基矢c b a ρ ρρ,,互相垂直,试求晶面族(hkl )的面间距。 一、分析: 我们想到倒格矢与面间距的关系G d ρπ 2=。 倒格矢与晶面族 (hkl )的关系321b l b k b h G ρρρρ ++= 写出)(321b b b ρρρ与正格子基矢 )(c b a ρ ρρ的关系。即可得与晶面族(hkl ) 垂直的倒格矢G ρ。进而求 得此面间距d 。 二、解: c b a ρρρΘ,,互相垂直,可令k c c j b b i a a ρρρρρρ ===,, 晶胞体积abc c b a v =??=)(ρ ρρ 倒格子基矢: k c j b i a abc b a v b j b i a k c abc a c v b i a k c j b ab c c b v b ρρρρρρρρρρρρρρρρρρπππππππππ2)(2)(22)(2)(22)(2)(2321=?=?==?=?==?=?= 而与 (hkl )晶面族垂直的倒格矢 2 22321)()()(2) (2c l b k a h G k c l j b k i a h b l b k b h G ++=∴++=++=ππρρρρρρρρ 故(hkl ) 晶面族的面间距 2222 22)()()(1)()()(222c l b k a h c l b k a h G d ++= ++= =ππ π ρ

固体物理习题解答

《固体物理学》习题解答 ( 仅供参考) 参加编辑学生 柯宏伟(第一章),李琴(第二章),王雯(第三章),陈志心(第四章),朱燕(第五章),肖骁(第六章),秦丽丽(第七章) 指导教师 黄新堂 华中师范大学物理科学与技术学院2003级

2006年6月 第一章 晶体结构 1. 氯化钠与金刚石型结构是复式格子还是布拉维格子,各自的基元为何?写出 这两种结构的原胞与晶胞基矢,设晶格常数为a 。 解: 氯化钠与金刚石型结构都是复式格子。氯化钠的基元为一个Na +和一个Cl - 组成的正负离子对。金刚石的基元是一个面心立方上的C原子和一个体对角线上的C原子组成的C原子对。 由于NaCl 和金刚石都由面心立方结构套构而成,所以,其元胞基矢都为: 12 3()2()2()2a a a ? =+?? ?=+?? ?=+?? a j k a k i a i j 相应的晶胞基矢都为: ,,.a a a =?? =??=? a i b j c k 2. 六角密集结构可取四个原胞基矢 123,,a a a 与4a ,如图所示。试写出13O A A '、1331A A B B 、2255A B B A 、123456A A A A A A 这四个晶面所属晶面族的 晶面指数()h k l m 。 解: (1).对于13O A A '面,其在四个原胞基矢 上的截矩分别为:1,1,1 2 -,1。所以, 其晶面指数为()1121。

(2).对于1331A A B B 面,其在四个原胞基矢上的截矩分别为:1,1,1 2-,∞。 所以,其晶面指数为()1120。 (3).对于2255A B B A 面,其在四个原胞基矢上的截矩分别为:1,1-,∞,∞。所以,其晶面指数为()1100。 (4).对于123456A A A A A A 面,其在四个原胞基矢上的截矩分别为:∞,∞,∞,1。所以,其晶面指数为()0001。 3. 如将等体积的硬球堆成下列结构,求证球体可能占据的最大体积与总体积的 比为: 简立方: 6 π ;六角密集:6;金刚石: 。 证明: 由于晶格常数为a ,所以: (1).构成简立方时,最大球半径为2 m a R = ,每个原胞中占有一个原子, 3 34326m a V a π π??∴== ??? 36 m V a π∴ = (2).构成体心立方时,体对角线等于4倍的最大球半径,即:4m R ,每个晶胞中占有两个原子, 3 3 422348m V a π??∴=?= ? ??? 32m V a ∴ = (3).构成面心立方时,面对角线等于4倍的最大球半径,即:4m R ,每个晶胞占有4个原子, 3 3 444346 m V a a π??∴=?= ? ???

固体物理答案

(1) 共价键结合的特点?共价结合为什么有“饱和性”和“方向性”? 饱和性和方向性 饱和性:由于共价键只能由为配对的电子形成,故一个原子能与其他原子形成共价键的数目是有限制的。N<4,有n 个共价键;n>=4,有(8-n )个共价键。其中n 为电子数目。方向性:一个院子与其他原子形成的各个共价键之间有确定的相对取向。 (2) 如何理解电负性可用电离能加亲和能来表征? 电离能:使原子失去一个电子所必须的能量其中A 为第一电离能,电离能可表征原子对价电子束缚的强弱;亲和势能:中性原子获得电子成为-1价离子时放出的能量,其中B 为释放的能量,也可以表明原子束缚价电子的能力,而电负性是用来表示原子得失电子能力的物理量。故电负性可用电离能加亲和势能来表征。 (3) 引入玻恩-卡门条件的理由是什么? 在求解原子运动方程是,将一维单原子晶格看做无限长来处理的。这样所有的原子的位置都是等价的,每个原子的振动形式都是一样的。而实际的晶体都是有限的,形成的键不是无穷长的,这样的链两头原子就不能用中间的原子的运动方程来描述。波恩—卡门条件解决上述困难。 (4) 温度一定,一个光学波的声子数目多呢,还是一个声学波的声子数目多? 对同一振动模式,温度高时的声子数目多呢,还是温度低的声子数目多? 温度一定,一个声学波的声子数目多。 对于同一个振动模式,温度高的声子数目多。 (5) 长声学格波能否导致离子晶体的宏观极化? 不能。长声学波代表的是原胞的运动,正负离子相对位移为零。 (6)晶格比热理论中德拜(Debye )模型在低温下与实验符合的很好,物理原因 是什么?爱因斯坦模型在低温下与实验存在偏差的根源是什么? 在甚低温下,不仅光学波得不到激发,而且声子能量较大的短声学波也未被激发,得到激发的只是声子能量较小的长声学格波。长声学格波即弹性波。德拜模型只考虑弹性波对热容德贡献。因此,在甚低温下,德拜模型与事实相符,自然与实验相符。 爱因斯坦模型过于简单,假设晶体中各原子都以相同的频率做振动,忽略了各格波对热容贡献的差异,按照爱因斯坦温度的定义可估计出爱因斯坦频率为光学支格波。在低温主要对热容贡献的是长声学支格波。 (7)试解释在晶体中的电子等效为经典粒子时,它的有效质量为什么有正、有负、无穷大值?带顶和带底的电子与晶格的作用各有什么特点? m F m m l +=* m F m v F m v F l ?+?=??* ])()[(1 ])()[(1电子给予晶格德外力给予电子德晶格给予电子德外力给予电子德-=+p p m p p m m p ????=?* 当电子从外场获得的动量大于电子传递给晶格的动量时,有效质量为正; 当电子从外场获得的动量小于电子传递给晶格的动量时,有效质量为负; 当电子从外场获得的动量等于电子传递给晶格的动量时,有效质量为无穷。 (8)为什么温度升高,费米能级反而降低?体积膨胀时,费米能级的变化? 在温度升高时,费米面以内能量离约范围的能级上的电子被激发到之上约范围的能级。故费米球体积V 增大,又电子总数N 不变,则电子浓度减小,又,则费米半径变小,费米能级也减小。当体积膨胀时,V 增大,同理费米能级减小。 (9)什么是p 型、N 型半导体?试用能带结构解释。

固体物理基础解答吴代鸣

固体物理基础解答吴代鸣

————————————————————————————————作者: ————————————————————————————————日期:

1.试证理想六方密堆结构中c/a =1.633. 证明: 如图所示,六方密堆结构的两个晶格常数为a 和c 。右边为底面的俯视图。而三个正三角形构成的立体结构,其高度为 2.若晶胞基矢c b a ,,互相垂直,试求晶面族(hkl )的面间距。 解: c b a ,,互相垂直,可令k c c j b b i a a ===,, 晶胞体积abc c b a v =??=)( 倒格子基矢: k c j b i a abc b a v b j b i a k c abc a c v b i a k c j b ab c c b v b πππππππππ2)(2)(22)(2)(22)(2)(2321=?=?==?=?==?=?= 而与 (h kl )晶面族垂直的倒格矢 2 22321)()()(2) (2c l b k a h G k c l j b k i a h b l b k b h G ++=∴++=++=ππ 故(hkl ) 晶面族的面间距 2222 22)()()(1)()()(222c l b k a h c l b k a h G d ++= ++= =ππ π

3.若在体心立方晶胞的每个面中心处加一个同类原子,试说明这种晶体的原胞应如何选择?每个原胞含有几个原子? 答: 通过分析我们知道,原胞可选为简单立方,每个原胞中含有5个原子。 体心,八个顶点中取一个,对面面心各取一个原子(即三个)作为基元。布拉菲晶格是简单立方格子。 4.试求面心立方结构的(111)和(110)面的原子面密度。 解: (111)面 平均每个(111)面有22 1 3613=?+?个原子。 (111)面面积 ()222232 322)2 2( )2(22 1 a a a a a a =?= -? 所以原子面密度2 2)111(34 2 32a a = = σ (110)面 平均每个(110)面有22 1 2414=?+? 个原子。 (110)面面积2 22a a a =? 所以(110)面原子面密度22 )110(2 22a a ==σ 5.设二维矩形格子的基矢为j a a i a a 2,21==,试画出第一、二、三、布里渊区。 解: 倒格子基矢: j b j a j a j ax x a a a a v b k x a i a x i a x a a a a v b 113233212 12212222)(2) (2222)(2===??=?===??=?=πππππππ 所以倒格子也是二维矩形格子。2b 方向短一半。 最近邻;,22b b - 次近邻;2,2,,2211b b b b -- 再次近邻;,,,12122121b b b b b b b b ---+- 再再次近邻;3,322b b - 做所有这些点与原点间连线的垂直平分线,围成布里渊区。再按各布里渊区的判断原则进行判断,得: 第一布里渊区是一个扁长方形; 第二布里渊区是2块梯形和2块三角形组成; 第三布里渊区是2对对角三角和4个小三角以及2个等腰梯形组成。

固体物理基础答案解析吴代鸣

1.试证理想六方密堆结构中c/a=1.633. 证明: 如图所示,六方密堆结构的两个晶格常数为a 和c 。右边为底面的俯视图。而三个正三角形构成的立体结构,其高度为 2.若晶胞基矢c b a ,,互相垂直,试求晶面族(hkl )的面间距。 解: c b a ,,互相垂直,可令k c c j b b i a a ,, 晶胞体积abc c b a v )( 倒格子基矢: k c j b i a abc b a v b j b i a k c abc a c v b i a k c j b ab c c b v b 2)(2)(22)(2)(22)(2)(2321 而与 (hkl )晶面族垂直的倒格矢 2 22321)()()(2) (2c l b k a h G k c l j b k i a h b l b k b h G 故(hkl ) 晶面族的面间距 2222 22)()()(1)()()(222c l b k a h c l b k a h G d 3.若在体心立方晶胞的每个面中心处加一个同类原子,试说明这种晶体的原胞应如何选择?每个原胞含有几个原子? 答: 通过分析我们知道,原胞可选为简单立方,每个原胞中含有5个原子。 体心,八个顶点中取一个,对面面心各取一个原子(即三个)作为基元。布拉菲晶格是简单立

方格子。 4.试求面心立方结构的(111)和(110)面的原子面密度。 解: (111)面 平均每个(111)面有22 1 3613 个原子。 (111)面面积 222232 322)2 2( )2(22 1 a a a a a a 所以原子面密度2 2)111(34 2 32a a (110)面 平均每个(110)面有22 1 2414 个原子。 (110)面面积2 22a a a 所以(110)面原子面密度22 )110(2 22a a 5.设二维矩形格子的基矢为j a a i a a 2,21 ,试画出第一、二、三、布里渊区。 解: 倒格子基矢: j b j a j a j ax x a a a a v b k x a i a x i a x a a a a v b 113233212 12212222)(2) (2222)(2 所以倒格子也是二维矩形格子。2b 方向短一半。 最近邻;,22b b 次近邻;2,2,,2211b b b b 再次近邻;,,,12122121b b b b b b b b 再再次近邻;3,322b b 做所有这些点与原点间连线的垂直平分线,围成布里渊区。再按各布里渊区的判断原则进行判断,得: 第一布里渊区是一个扁长方形; 第二布里渊区是2块梯形和2块三角形组成; 第三布里渊区是2对对角三角和4个小三角以及2个等腰梯形组成。 6.六方密堆结构的原胞基矢为:

黄昆版固体物理学课后答案解析答案

《固体物理学》习题解答 黄昆 原著 韩汝琦改编 (陈志远解答,仅供参考) 第一章 晶体结构 1.1、 解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, Vc nV x = (1)对于简立方结构:(见教材P2图1-1) a=2r , V= 3 r 3 4π,Vc=a 3,n=1 ∴52.06r 8r 34a r 34x 3 333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 3 3 4a r 4a 3=?= n=2, Vc=a 3 ∴68.083)r 3 34(r 342a r 342x 3 3 33≈π=π?=π?= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=?= n=4,Vc=a 3 74.062) r 22(r 344a r 344x 3 3 33≈π=π?=π?= (4)对于六角密排:a=2r 晶胞面积:S=62 60sin a a 6S ABO ??=??=2 a 233 晶胞的体积:V=332r 224a 23a 3 8 a 233C S ==?= ? n=1232 1 26112+?+? =6个 74.062r 224r 346x 3 3 ≈π=π?= (5)对于金刚石结构,晶胞的体对角线BG=3 r 8a r 24a 3= ??= n=8, Vc=a 3

固体物理答案

(1) (2) 共价键结合的特点?共价结合为什么有“饱和性”和“方向性”? 饱和性和方向性 饱和性:由于共价键只能由为配对的电子形成,故一个原子能与其他原子形成共价键的数目是有限制的。N<4,有n 个共价键;n>=4,有(8-n )个共价键。其中n 为电子数目。方向性:一个院子与其他原子形成的各个共价键之间有确定的相对取向。 (3) 如何理解电负性可用电离能加亲和能来表征? 电离能:使原子失去一个电子所必须的能量其中A 为第一电离能,电离能可表征原子对价电子束缚的强弱;亲和势能:中性原子获得电子成为-1价离子时放出的能量,其中B 为释放的能量,也可以表明原子束缚价电子的能力,而电负性是用来表示原子得失电子能力的物理量。故电负性可用电离能加亲和势能来表征。 (4) 引入玻恩-卡门条件的理由是什么? 在求解原子运动方程是,将一维单原子晶格看做无限长来处理的。这样所有的原子的位置都是等价的,每个原子的振动形式都是一样的。而实际的晶体都是有限的,形成的键不是无穷长的,这样的链两头原子就不能用中间的原子的运动方程来描述。波恩—卡门条件解决上述困难。 (5) 温度一定,一个光学波的声子数目多呢,还是一个声学波的声子数目多? 对同一振动模式,温度高时的声子数目多呢,还是温度低的声子数目多? 温度一定,一个声学波的声子数目多。 对于同一个振动模式,温度高的声子数目多。 (6) 长声学格波能否导致离子晶体的宏观极化? 不能。长声学波代表的是原胞的运动,正负离子相对位移为零。 (6)晶格比热理论中德拜(Debye )模型在低温下与实验符合的很好,物理原因是什么?爱因斯坦模型在低温下与实验存在偏差的根源是什么? 在甚低温下,不仅光学波得不到激发,而且声子能量较大的短声学波也未被激发,得到激发的只是声子能量较小的长声学格波。长声学格波即弹性波。德拜模型只考虑弹性波对热容德贡献。因此,在甚低温下,德拜模型与事实相符,自然与实验相符。 爱因斯坦模型过于简单,假设晶体中各原子都以相同的频率做振动,忽略了各格波对热容贡献的差异,按照爱因斯坦温度的定义可估计出爱因斯坦频率为光学支格波。在低温主要对热容贡献的是长声学支格波。 (7)试解释在晶体中的电子等效为经典粒子时,它的有效质量为什么有正、有负、无穷大值?带顶和带底的电子与晶格的作用各有什么特点? m F m F m F l +=* m F m m l ?+?=??* ])()[(1])()[(1电子给予晶格德外力给予电子德晶格给予电子德外力给予电子德-=+p p m p p m m p ????=?*当电子从外场获得的动量大于电子传递给晶格的动量时,有效质量为正; 当电子从外场获得的动量小于电子传递给晶格的动量时,有效质量为负; 当电子从外场获得的动量等于电子传递给晶格的动量时,有效质量为无穷。 (8)为什么温度升高,费米能级反而降低?体积膨胀时,费米能级的变化? 在温度升高时,费米面以内能量离约范围的能级上的电子被激发到之上约范围的能级。故费米球体积V 增大,又电子总数N 不变,则电子浓度减小,

(完整版)东南大学固体物理基础考试样卷

东南大学考试卷(A 卷) 固体物理基础 课程名称 适用专业电子科学与技术(类) 考试形式 考试学期 得分 闭卷 考试时间长度 120分钟 一.填空题(41分) 1 ?波函数的统计解释是波函数在空间某一点的强度(波函数绝对值的平方) _______ 。 氢原子”模型均属束缚态问题,它们的定态薛定谔方程的解 。 :2 ?无限深势阱”谐振子”和 其能量特性具有这样一些共性: 自 觉 遵 守 考 场 纪 律 如 考 试 作 弊 此 答 卷 无 效 3.质量为m 的粒子处于能量为 势场为 。 I --------------------------------------------------------------------- 4?固体物理学原胞体积相同的简立方、体心立方和面心立方其晶格常数之比 为 ;第一布里渊区的体积之比为 ________________ ;第二布里渊区的体积之 比又为 。 i| ------------------------------------------------------------- 5 ?按三种统计法,现将两个粒子分配在三个不同格子中。对于麦克斯韦 -玻尔兹曼分布有 线 线 ______ 种安排方法;对于费米-狄拉克分布有 ___________ 种安排方法;对于玻色-爱因斯坦分布有 ______ 种安排方法。 E 的本征态,波函数为 6 ?在一维双原子晶格中,两种原子的质量分别为 为a ,那么色散关系曲线中,格波波矢 q 封 ;又格波波矢q ,那么粒子所处的 g 和口 2 (口 m 2),若同种原子间的间距 时,光学波频率取最大值,且 时,声学波频率取最大值,且 A m ax o m ax : 3 7 ?在晶格常数为a 的一维单原子晶格中,波长为 a ; 4 长为 __________________ 的格波,它们的振动状态相同。 密&对晶体热阻起主要作用的声子碰撞过程是 ___________________ ________________________________ ,动量守衡条件为 _ 的格波与处于第一布里渊区的波 过程,该过程能量守衡条件为 9 ?氢原子中的电子运动状态用四个量子数来描述,其波函数记为 子的运动状态用四个量子数来描述,其波函数可记为 个,它们分别记为 nlmg s (r,,),其氢原 nlm l m s , 若 n 2,对应的运动状态有 (用 nlm i m s 形式表示出来)。 10?限制在一个长度为L 的一维金属线中的N 个自由电子。电子能量E (k )上,那么 2m 电子的状态密度(考虑自旋)为 ;一维系统在绝对零度的费米能量

东南大学固体物理基础课后习题解答

《电子工程物理基础》课后习题参考答案 第一章 微观粒子的状态 1-一维运动的粒子处在下面状态 (0,0)() (0) x Axe x x x λλψ-?≥>=? =??==?

固体物理课后习题与答案

第一章 金属自由电子气体模型习题及答案 1. 你是如何理解绝对零度时和常温下电子的平均动能十分相近这一点的? [解答] 自由电子论只考虑电子的动能。在绝对零度时,金属中的自由(价)电子,分布在费米能级及其以下的能级上,即分布在一个费米球内。在常温下,费米球内部离费米面远的状态全被电子占据,这些电子从格波获取的能量不足以使其跃迁到费米面附近或以外的空状态上,能够发生能态跃迁的仅是费米面附近的少数电子,而绝大多数电子的能态不会改变。也就是说,常温下电子的平均动能与绝对零度时的平均动能十分相近。 2. 晶体膨胀时,费米能级如何变化? [解答] 费米能级 3/222 )3(2πn m E o F = , 其中n 单位体积内的价电子数目。晶体膨胀时,体积变大,电子数目不变,n 变小,费密能级降低。 3. 为什么温度升高,费米能反而降低? [解答] 当K T 0≠时,有一半量子态被电子所占据的能级即是费米能级。除了晶体膨胀引起费米能级降低外,温度升高,费米面附近的电子从格波获取的能量就越大,跃迁到费米面以外的电子就越多,原来有一半量子态被电子所占据的能级上的电子就少于一半,有一半量子态被电子所占据的能级必定降低,也就是说,温度生高,费米能反而降低。 4. 为什么价电子的浓度越大,价电子的平均动能就越大? [解答] 由于绝对零度时和常温下电子的平均动能十分相近,我们讨论绝对零度时电子的平均动能与电子的浓度的关系。 价电子的浓度越大,价电子的平均动能就越大,这是金属中的价电子遵从费米—狄拉克统计分布的必 然结果。在绝对零度时,电子不可能都处于最低能级上,而是在费米球中均匀分布。由式 3/120)3(πn k F =可知,价电子的浓度越大费米球的半径就越大,高能量的电子就越多,价电子的平均动能 就越大。这一点从3 /2220)3(2πn m E F =和3/222)3(10353πn m E E o F ==式看得更清楚。电子的平均动能E 正比于费米能o F E ,而费米能又正比于电子浓度3 2l n 。所以价电子的浓度越大,价电子的平均动能就越大。 5. 两块同种金属,温度不同,接触后,温度未达到相等前,是否存在电势差?为什么? [解答] 两块同种金属,温度分别为1T 和2T ,且21T T >。在这种情况下,温度为1T 的金属高于费米能o F E 的电子数目,多于温度为2T 的金属高于费米能o F E 的电子数目。两块同种金属接触后,系统的能量要取最小值,温度为1T 的金属高于o F E 的部分电子将流向温度为2T 的金属。温度未达到相等前,这种流动一直持续,期间,温度为1T 的金属失去电子,带正电;温度为2T 的金属得到电子,带负电,两者出现电势差。

固体物理学答案(朱建国版)

固体物理学·习题指导配合《固体物理学(朱建国等编著)》使用 2019年9月25日

第1章晶体结构 (1) 第2章晶体的结合 (12) 第3章晶格振动和晶体的热学性质 (20) 第4章晶体缺陷 (33) 第5章金属电子论 (37)

第1章 晶体结构 1.1 有许多金属即可形成体心立方结构,也可以形成面心立方结构。从一种结构转变为另一种结构时体积变化很小.设体积的变化可以忽略,并以R f 和R b 代表面心立方和体心立方结构中最近邻原子间的距离,试问R f /R b 等于 多少? 答:由题意已知,面心、体心立方结构同一棱边相邻原子的距离相等,都设为a : 对于面心立方,处于 面心的原子与顶角原子的距离为:R f = 22 a 对于体心立方,处于体心的原子与顶角原子的距离为:R b = 32 a 那么, Rf Rb =23a a =63 1.2 晶面指数为(123)的晶面ABC 是离原点O 最近的晶面,OA 、OB 和OC 分别与基失a 1, a 2和a 3重合,除O 点外,OA ,OB 和OC 上是否有格点?若ABC 面的指数为(234),情况又如何? 答:晶面族(123)截a 1,a 2,a 3分别为1,2,3等份,ABC 面是离原点O 最近的晶面,OA 的长度等于a 1的长度,OB 的长度等于a 2长度的1/2,OC 的长度等于a 3长度的1/3,所以只有A 点是格点。若ABC 面的指数为(234)的晶面族,则A 、B 和C 都不是格点。 1.3 二维布拉维点阵只有5种,试列举并画图表示之。 答:二维布拉维点阵只有五种类型,两晶轴b a 、,夹角?,如下表所示。 序号 晶系 基矢长度与夹角 关系 布拉维晶胞类型 所属点群 1 斜方 任意2 ,π ?≠ b a 、 简单斜方(图中1所示) 1,2 2 正方 2,π ?= =b a 简单正方(图中2所示) 4,4mm 3 六角 32,π ?==b a 简单六角(图中3所示) 3,3m ,6,6mm 4 长方 2 ,π ?= ≠b a 简单长方(图中4所示) 有心长方(图中5所示) 1mm ,2mm 1 简单斜方 2 简单正方 3 简单六角

固体物理概念答案

1. 基元,点阵,原胞,晶胞,布拉菲格子,简单格子,复式格子。 基元:在具体的晶体中,每个粒子都是在空间重复排列的最小单元; 点阵:晶体结构的显著特征就是粒子排列的周期性,这种周期性的阵列称为点阵; 原胞:只考虑点阵周期性的最小重复性单元; 晶胞:同时计及周期性与对称性的尽可能小的重复单元; 布拉菲格子:是矢量Rn=mA1+nA2+lA3全部端点的集合,A1,A2,A3分别为格点到邻近三个不共面格点的矢量; 简单格子:每个基元中只有一个原子或离子的晶体; 复式格子:每个基元中包含一个以上的原子或离子的晶体; 2. 晶体的宏观基本对称操作,点群,螺旋轴,滑移面,空间群。 宏观基本对称操作:1、2、3、4、6、i 、m 、4, 点群:元素为宏观对称操作的群 螺旋轴:n 度螺旋轴是绕轴旋转2/n π与沿转轴方向平移T t j n =的复合操作 滑移面:对某一平面作镜像反映后再沿平行于镜面的某方向平移该方向周期的一半的复合操作 空间群:保持晶体不变的所有对称操作 3. 晶向指数,晶面指数,密勒指数,面间距,配位数,密堆积。 晶向(列)指数:布拉菲格子中所有格点均可看作分列在一系列平行直线族上,取一个格点沿晶向到邻近格点的位移基失由互质的(l1/l2/l3)表示; 晶面指数:布拉菲格子中所有格点均可看作分列在一系列平行平面族上,取原胞基失为坐标轴取离原点最近晶面与三个基失上的截距的倒数由互质的(h1/h2/h3)表示; 密勒指数:晶胞基失的坐标系下的晶面指数; 配位数:晶体中每个原子(离子)周围的最近邻离子数称之为该晶体的配位数; 面间距:晶面族中相邻平面的间距; 密堆积:空间内最大密度将原子球堆砌起来仍有周期性的堆砌结构; 4. 倒易点阵,倒格子原胞,布里渊区。 倒易点阵:有一系列在倒空间周期性排列的点-倒格点构成。倒格点的位置可由倒格子基矢表示,倒格子基矢由…确定 倒格子原胞:倒空间的周期性重复单元(区域),每个单元包含一个倒格点 布里渊区:在倒格子中如以某个倒格点作为原点,画出所有倒格矢的垂直平分面,可得到倒格子的魏格纳塞茨原胞,即第一布里渊区 5. 布拉格方程,劳厄方程,几何结构因子。 劳厄方程0(s s )m m R S λ?-= 布拉格方程2sin hkl d m θλ=

固体物理基础答案解析吴代鸣复习课程

固体物理基础答案解 析吴代鸣

1.试证理想六方密堆结构中c/a=1.633. 证明: 如图所示,六方密堆结构的两个晶格常数为a 和c 。右边为底面的俯视图。而三个正三角形构成的立体结构,其高度为 2.若晶胞基矢c b a ,,互相垂直,试求晶面族(hkl )的面间距。 解: c b a ,,互相垂直,可令k c c j b b i a a ===,, 晶胞体积abc c b a v =??=)( 倒格子基矢: k c j b i a abc b a v b j b i a k c abc a c v b i a k c j b ab c c b v b πππππππππ2)(2)(22)(2)(22)(2)(2321=?=?==?=?==?=?= 而与 (hkl )晶面族垂直的倒格矢 2 22321)()()(2) (2c l b k a h G k c l j b k i a h b l b k b h G ++=∴++=++=ππ 故(hkl ) 晶面族的面间距

2222 22)()()(1)()()(222c l b k a h c l b k a h G d ++= ++= =ππ π 3.若在体心立方晶胞的每个面中心处加一个同类原子,试说明这种晶体的原胞应如何选择?每个原胞含有几个原子? 答: 通过分析我们知道,原胞可选为简单立方,每个原胞中含有5个原子。 体心,八个顶点中取一个,对面面心各取一个原子(即三个)作为基元。布拉菲晶格是简单立方格子。 4.试求面心立方结构的(111)和(110)面的原子面密度。 解: (111)面 平均每个(111)面有22 1 3613=?+?个原子。 (111)面面积( )222232 322)2 2( )2(221 a a a a a a =?= -? 所以原子面密度2 2)111(34 2 32a a = = σ (110)面 平均每个(110)面有22 1 2414=?+? 个原子。 (110)面面积222a a a =? 所以(110)面原子面密度2 2 )110(222a a = = σ 5.设二维矩形格子的基矢为j a a i a a 2,21==,试画出第一、二、三、布里渊区。 解: 倒格子基矢: j b j a j a j ax x a a a a v b k x a i a x i a x a a a a v b 113233212 12212222)(2) (2222)(2===??=?===??=?=πππ ππππ 所以倒格子也是二维矩形格子。2b 方向短一半。

(完整版)固体物理答案2

固体物理部分题目答案 注:这些题目可能与课本上有出入,大家抄题时以课本为主。还有其它题目请大家自己解决。 (本题可能与5.3题有关)6.3若将银看成具有球形费米面的单价金属,计算以下各量 1)费密能量和费密温度 2)费米球半径 3)费米速度 4) 费米球面的横截面积 5) 在室温以及低温时电子的平均自由程 解 1)费密能量2 022/3(3)2F E n m π=h 210/3(3)F k n π= 6293 313410.5100.58610/107.87 9.11101.0510A n N m m kg J s --=??=?=?=??h 0198.8210 5.5F E J eV -=?= 费密温度046.410F F B E T K k ==? 2) 费密球半径 020()2F F k E m =h 0F k =0198.8210F E J -=? 01011.210F k m -=? 3) 费密速度0F F k v m =h 61.3810F v m s =? 4) 费密球面的横截面积02022(sin )sin F F S k k πθπθ== ――θ是F k u u r 与z 轴间夹角 21/3(3)F k n π= 2223 (3)sin S n ππθ= 5) 在室温以及低温时电子的平均自由程 电导率1σρ = 20()1 F nq E m τρ= 驰豫时间02()F m E nq τρ=平均自由程0()F F l v E τ= 2F mv l nq ρ=2F k nq ρ =h 0 K 到室温之间的费密半径变化很小01011.210F F k k m -==? 平均自由程02F k l nq ρ=h 将 19293 34010162956201.6100.58610/1.05101.2101.61100.03810F T K T K q C n m J s k m cm cm ρρ----=-==?=?=??=?=?Ω?=?Ω?h 代入 8295 5.241052.4T K l m nm -==?= 6320 2.210 2.210T K l m nm -==?=? 6.2已知一维晶体的电子能带可写成)2cos cos ()(818722 ka ka ma k E +-=η式中a 为晶格常数, 试求:(i)能带宽度 )2cos cos ()(818722 ka ka ma k E +-=η (ii)电子在波矢k 时的速度 (iii)能带底和顶的有效质量 解:(i) 0=dk dE 可解得:

固体物理(严守胜编著) 课后答案 第1章

1.1对于体积V 内N 个电子的自由电子气体,证明 (1)电子气体的压强 ()() V p 032ξ?=,其中 0ξ为电子气体的基态能量。 (2)体弹性模量()V p V K ??-=为V 100ξ 解:(1) () 3 2 352225 223101101-==V N m h V m k h F πππξ (1.1.1) () () () ()() V V N m h V N m h V N m h V V p 035 352223535222323522223101323231013101ξππππππξ?==??? ? ??--=??? ? ????=??-=--- (1.1.2) (2) ()() () () V V N m h V N m h V V N m h V V V p V K 1031019103531013231013203 8 35222 383 52 22 353522 2ξππππππ==??? ? ??--=??? ? ????-=??-=--- (1.1.3) 1.2 He 3 原子是具有自旋1/2的费米子。在绝对零度附近,液体He 3 的密度为0.081g ?cm -3。 计算费米能量F ε和费米温度F T 。He 3 原子的质量为g m 24105-?≈。 解:把 He 3 原子当作负电背景下的正电费米子气体. Z=1. 3 2832224 1062.11062.1105081 .01m cm m Z n m ?=?=??== --ρ (1.2.1) ( ) 19173 1 2 108279.7108279.73--?=?==m cm n k F π (1.2.2) () eV J m k F F 42327 2 9 3422102626.41080174.6100.52108279.710055.12----?=?=?????= =ηε (1.2.3) K k T B F F 92.410381.1106.801742323=??==--ε (1.2.4)

13级固体物理题库

一、填空 1. 固体按其微结构的有序程度可分为_______、_______和准晶体。 2. 组成粒子在空间中周期性排列,具有长程有序的固体称为_______;组成粒子在空间中的分布完全无序或仅仅具有短程有序的固体称为_________。 3. 在晶体结构中,所有原子完全等价的晶格称为______________;而晶体结构中,存在两种或两种以上不等价的原子或离子的晶格称为____________。 4晶体结构的最大配位数是____;具有最大配位数的晶体结构包括______________晶体结构和______________晶体结构。 5. 简单立方结构原子的配位数为______;体心立方结构原子的配位数为______。 6.NaCl 结构中存在_____个不等价原子,因此它是_______晶格,它是由氯离子和钠离子各自构成的______________格子套构而成的。 7. 金刚石结构中存在______个不等价原子,因此它是_________晶格,由两个_____________结构的布拉维格子沿空间对角线位移1/4的长度套构而成,晶胞中有_____个碳原子。 8. 以结晶学元胞(单胞)的基矢为坐标轴来表示的晶面指数称为________指数。 9. 满足2,2,1,2,3)0i j ij i j a b i j i j ππδ=??===?≠?r r 当时 (,当时 关系的123,,b b b r r r 为基矢,由112233h K hb h b h b =++r r r r 构成的点阵,称为_______。 10. 晶格常数为a 的一维单原子链,倒格子基矢的大小为________。 11. 晶格常数为a 的面心立方点阵初基元胞的体积为_______;其第一布里渊区的体积为_______。 12. 晶格常数为a 的体心立方点阵初基元胞的体积为_______;其第一布里渊区的体积为_______。 13. 晶格常数为a 的简立方晶格的(010)面间距为________ 14. 体心立方的倒点阵是________________点阵,面心立方的倒点阵是________________点阵,简单立方的倒点阵是________________。 15. 一个二维正方晶格的第一布里渊区形状是________________。 16. 若简单立方晶格的晶格常数由a 增大为2a ,则第一布里渊区的体积变为原来的___________倍。

相关主题