搜档网
当前位置:搜档网 › 2021届高考数学压轴题系列训练含答案

2021届高考数学压轴题系列训练含答案

2021届高考数学压轴题系列训练含答案
2021届高考数学压轴题系列训练含答案

2021届高考数学压轴题系列训练含答案

1.(12分)已知抛物线、椭圆和双曲线都经过点()1,2M ,它们在x 轴上有共同焦点,椭圆和双曲线的对称轴是坐标轴,抛物线的顶点为坐标原点.

(Ⅰ)求这三条曲线的方程;

(Ⅱ)已知动直线l 过点()3,0P ,交抛物线于,A B 两点,是否存在垂直于x 轴的直线l '被以AP 为直径的圆截得的弦长为定值?若存在,求出l '的方程;若不存在,说明理由.

解:(Ⅰ)设抛物线方程为()220y px p =>,将()1,2M 代入方程得2p =

24y x ∴= 抛物线方程为: ………………………………………………(1分)

由题意知椭圆、双曲线的焦点为()()211,0,1,0,F F -∴ c=1…………………(2分) 对于椭圆,

1222a MF MF =+

+

(

2

22222211321

a a

b a

c ∴=+∴=+=+∴=-=+∴= 椭圆方程为:………………………………(4分)

对于双曲线,1222a MF MF '=-=

2222221321

a a

b

c a '∴'∴=-'''∴=-=∴= 双曲线方程为:………………………………(6分)

(Ⅱ)设AP 的中点为C ,l '的方程为:x a =,以AP 为直径的圆交l '于,D E 两点,DE 中点为H

令()11113,,,22x y A x y +??

∴ ??

? C ………………………………………………(7分)

()111231

23

22

DC AP x CH a x a ∴=

=+=-=-+

()()(

)22

2

2

2

2111212

1132344-23246222

DH DC CH x y x a a x a a

a DH DE DH l x ????∴=-=

-+--+???

?=-+==-+=∴=='= 当时,为定值; 此时的方程为: …………(12分)

2.(14分)已知正项数列{}n a 中,16a =

,点(n n A a 在抛物线21y x =+上;数列{}n b 中,点(),n n B n b 在过点()0,1,以方向向量为()1,2的直线上.

(Ⅰ)求数列{}{},n n a b 的通项公式;

(Ⅱ)若()()()

n n a f n b ??=???, n 为奇数, n 为偶数,问是否存在k N ∈,使()()274f k f k +=成立,若存在,求出k 值;若

不存在,说明理由;

(Ⅲ)对任意正整数n

,不等式

1

120111111n n n a

b b b +-

≤??????

+++ ? ???????

??

成立,求正数a 的取值范围.

解:(Ⅰ)将点(n n A a 代入21y x =+中得

()11111115:21,21

n n n n n n a a a a d a a n n l y x b n ++=+∴-==∴=+-?=+=+∴=+ 直线 …………………………………………(4分)

(Ⅱ)()()()521n f n n ?+?=?+??, n 为奇数, n 为偶数………………………………(5分)

()()

()()()()27274275421,4

2735

227145,2

4k k f k f k k k k k k k k k k ++=∴++=+∴=+∴

++=+∴==当为偶数时,为奇数, 当为奇数时,为偶数, 舍去综上,存在唯一的符合条件。

……………………(8分)

(Ⅲ)由

1

120111111n n n a b b b +-

≤??????

+++ ? ???????

??

()()()()

12121211111111231111112311111111125123123241232525n n n n n a b b b n f n b b b n f n b b b b n f n n n n f n b n n n ++?????

?≤

+++ ? ???+??????

?????=+++ ?

???+??????

???

????

?∴+=++++

???

???+????????

+?

?+++∴=

?+=?= ?

+++??

即记 ()()()()()22

min 252341616

1

41615

1,445

1,35450n n n n n n f n f n f n f n f a +?+++=

>++∴+>∴==?

=∴<≤

即递增, ………………………………(14分)

3.(本小题满分12分)将圆O: 4y x 2

2

=+上各点的纵坐标变为原来的一半 (横坐标不变), 得到曲线C. (1) 求C 的方程;

(2) 设O 为坐标原点, 过点)0,3(F 的直线l 与C 交于A 、B 两点, N 为线段AB 的中点, 延长线段ON 交C 于点E.

求证: ON 2OE =的充要条件是3|AB |= .

解: (1)设点)y ,x (P '' , 点M 的坐标为)y ,x ( ,由题意可知??

?='=',

y 2y ,

x x ………………(2分)

又,4y x 2

2

='+'∴1y 4

x 4y 4x 22

2

2=+?=+. 所以, 点M 的轨迹C 的方程为1y 4

x 22

=+.………………(4分) (2)设点)y ,x (A 11 , )y ,x (B 22 , 点N 的坐标为)y ,x (00 , ㈠当直线l 与x 轴重合时, 线段AB 的中点N 就是原点O, 不合题意,舍去; ………………(5分)

㈡设直线l: ,3my x +=

由?????=++=4

y 4x 3my x 22消去x,

得01my 32y )4m (2

2=-++………………①

∴,4

m m

3y 2

0+-

=………………(6分) ∴4

m 3

44m 34m 34m m 33my x 2222200+=++++-=+=,

∴点N 的坐标为)4

m m 3,4m 34(

2

2+-+ .………………(8分) ①若2=, 坐标为, 则点E 的为)4

m m

32,4m 38(

22+-+ , 由点E 在曲线C 上,

得1)

4m (m 12)4m (482

22

22=+++, 即,032m 4m 24=-- ∴4m (8m 22-== 舍去). 由方程①得,14

m 1

m 44m 16m 4m 12|y y |2

222221=++=+++=- 又|,)y y (m ||m y m y ||x x |212121-=-=-

∴3|y y |1m |AB |212=-+= .………………(10分)

②若3|AB |= , 由①得,34

m )

1m (42

2=++∴ .8m 2= ∴点N 的坐标为)66,33(

± , 射线ON 方程为: )0x (x 2

2y >±= , 由?????=+>±=4y 4x )0x (x 22y 22 解得???

???

?±==36

y 332x ∴点E 的坐标为),36,332(± ∴2=.

综上, OE ON 2=的充要条件是3|AB |= .………………(12分)

4.(本小题满分14分)已知函数241

)x (f x +=

)R x (∈.

(1) 试证函数)x (f 的图象关于点)4

1

,21( 对称;

(2) 若数列}a {n 的通项公式为)m ,,2,1n ,N m ()m

n

(f a n =∈=+, 求数列}a {n 的前m 项和;S m

(3) 设数列}b {n 满足: 3

1b 1=

, n 2

n 1n b b b +=+. 设1b 11b 11b 1T n 21n ++++++= . 若(2)中的n S 满足对任意不小于2的正整数n, n n T S <恒成立, 试求m 的最大值.

解: (1)设点)y ,x (P 000 是函数)x (f 的图象上任意一点, 其关于点)4

1,21

( 的对称点为)y ,x (P .

由???????=+=+412

y y 2

1

2x x 00 得?????-=-=.y 21

y ,x 1x 00 所以, 点P 的坐标为P )y 2

1

,x 1(00-- .………………(2分) 由点)y ,x (P 000 在函数)x (f 的图象上, 得2

41

y 0x 0+=.

∵,)

24(244244241)x 1(f 0

000

x x x x x 10+=?+=+=

-- =+-=-24121y 210x 0,)24(2400

x x + ∴点P )y 2

1,x 1(00

-- 在函数)x (f 的图象上. ∴函数)x (f 的图象关于点)41

,2

1

( 对称. ………………(4分) (2)由(1)可知, 21)x 1(f )x (f =-+, 所以)1m k 1(2

1

)m k 1(f )m k (f -≤≤=-+ ,

即,2

1a a , 21)m k m (f )m k (f k m k =+∴=-+- ………………(6分)

由m 1m 321m a a a a a S +++++=- , ……………… ① 得,a a a a a S m 13m 2m 1m m +++++=--- ………………② 由①+②, 得,6

12m 61221m a 221)1m (S 2m m -=?+-=+?-= ∴).1m 3(121

S m -=

………………(8分) (3) ∵,3

1b 1=)1b (b b b b n n n 2

n 1n +=+=+, ………………③

∴对任意的0b ,N n n >∈+ . ………………④ 由③、④, 得

,1b 1b 1)1b (b 1b 1n n n n 1

n +-=+=

+即1

n n n b 1

b 11b 1+-=+.

∴1

n 1n 11n n 3221n b 1

3b 1b 1)b 1b 1()b 1b 1()b 1b 1(

T +++-=-=-++-+-= .……………(10分) ∵,b b ,0b b b n 1n 2

n n 1n >∴>=-++ ∴数列}b {n 是单调递增数列. ∴n T 关于n 递增. 当2n ≥, 且+∈N n 时, 2n T T ≥. ∵,81

52)194(94b ,94)131(31b ,31b 321=+==+==

∴.52

75

b 13T T 12n =-=≥………………(12分) ∴,5275S m <

即,5275)1m 3(121<-∴,39

4639238m =< ∴m 的最大值为6. ……………(14分) 5.(12分)E 、F 是椭圆2

2

24x y +=的左、右焦点,l 是椭圆的右准线,点P l ∈,过点E 的直线交椭圆于A 、

B 两点.

(1) 当AE AF ⊥时,求AEF ?的面积; (2) 当3AB =时,求AF BF +的大小; (3) 求EPF ∠的最大值.

解:(1)22

41

28

2AEF m n S mn m n ?+=??==?+=? (2)因4

84AE AF AB AF BF BE BF ?+=??++=?

+=??

, 则 5.AF BF +=

(1)

设)(0)P t t > ()tan EPF tan EPM FPM ∠=∠-∠

221(

(166t t t t t t -=-÷+==≤++,

当t =

30tan EPF EPF ∠=

?∠

=

6.(14分)已知数列{}n a 中,11

3a =,当2n ≥时,其前n 项和n S 满足2221

n n n S a S =-,

(2) 求n S 的表达式及2

lim

n

n n

a S →∞的值;

(3) 求数列{}n a 的通项公式; (4)

设n b =

n N ∈且2n ≥时,n n a b <.

解:(1)21111

211

22(2)21n n n n n n n n n n n S a S S S S S S n S S S ----=-=?-=?-=≥-

所以1n S ???

???

是等差数列.则1

21n

S n =+. 222

lim

lim 2212lim 1n n n n n n

n a S S S →∞→∞→∞

===---.

(2)当2n ≥时,12112

212141

n n n a S S n n n --=-=

-=+--, 综上,()()21

13

2214n n a n n

?=??=??≥?-?.

(3

)令a b =

=2n ≥

时,有0b a <<≤ (1) 法1:等价于求证

1

1

21

21

n n >

--+.

当2n

时,0<

令()23,0f x x x x =-<≤ (

)233232(1)2(12(10222f x x x x x x x '=-=-≥-=->,

则()f

x 在递增

.

又0<

<≤

所以33(

)(),2121

g g n n <+-即n n a b <.

法(2)223333

11()()2121(21)(21)n n a b b a b a n n n n -=

---=---+-+- 22()()a b a b ab a b =-++-- (2)

22()[()()]22ab ab a b a a b b =-+

-++- ()[(1)(1)]22

b a a b a a b b =-+-++- (3) 因33

11111022223

a b a b a +

-<+-<-<-=-<,所以(1)(1)022b a a a b b +-++-<

由(1)(3)(4)知n n a b <.

法3:令()22g b a b ab a b =++--,则()12102

a

g b b a b -'=+-=?= 所以()()(){}{}

220,,32g b max g g a max a a a a ≤=-- 因0,3

a <≤

则()210a a a a -=-<,2214323()3(

)0339a a a a a -=-≤-< 所以()2

2

0g b a b ab a b =++--< (5) 由(1)(2)(5)知n n a b < 7. (本小题满分14分)

设双曲线22

22b

y a x -=1( a > 0, b > 0 )的右顶点为A ,P

是双曲线上异于顶点的一个动点,从A 引双曲线的两条渐近线的平行线与直线OP 分别交于Q 和R 两点.

(1) 证明:无论P 点在什么位置,总有|→

--OP |2 = |→

-OQ ·→

--OR | ( O 为坐标原点);

(2) 若以OP 为边长的正方形面积等于双曲线实、虚轴围成的矩形面积,求双曲线离心率的取值范围;

解:(1) 设OP :y = k x, 又条件可设AR: y =

a

b

(x – a ), 解得:→--OR = (b ak ab --,b ak kab --), 同理可得→-OQ = (b ak ab +,b

ak kab

+),

∴|→

-OQ ·→

--OR | =|b ak ab --b ak ab ++b ak kab --b ak kab

+| =|

b k a |)k 1(b a 2

22222-+. 4分 设→

--OP = ( m, n ) , 则由双曲线方程与OP 方程联立解得:

m 2 =

22222k a b b a -, n 2

= 2

22222k

a b b a k -, ∴ |→

--OP

|2 = :m 2 + n 2 =

22222k a b b a -+ 2222

22k a b b a k -=2

22222k a b )k 1(b a -+ ,

∵点P 在双曲线上,∴b 2 – a 2k 2 > 0 .

∴无论P 点在什么位置,总有|→

--OP |2

= |→-OQ ·→

--OR | . 4分

(2)由条件得:2

22222k a b )

k 1(b a -+= 4ab, 2分

即k 2 =

2

2a

4ab ab

b 4+-> 0 , ∴ 4b > a, 得e > 4

17

2分

2021届高考数学压轴题系列训练含答案

1. (本小题满分12分)

已知常数a > 0, n 为正整数,f n ( x ) = x n – ( x + a)n ( x > 0 )是关于x 的函数. (1) 判定函数f n ( x )的单调性,并证明你的结论. (2) 对任意n ≥ a , 证明f `n + 1 ( n + 1 ) < ( n + 1 )f n `(n) 解: (1) f n `( x ) = nx n – 1 – n ( x + a)n – 1 = n [x n – 1 – ( x + a)n – 1 ] ,

∵a > 0 , x > 0, ∴ f n `( x ) < 0 , ∴ f n ( x )在(0,+∞)单调递减. 4分 (2)由上知:当x > a>0时, f n ( x ) = x n – ( x + a)n 是关于x 的减函数,

∴ 当n ≥ a 时, 有:(n + 1 )n – ( n + 1 + a)n ≤ n n – ( n + a)n . 2分

又 ∴f `n + 1 (x ) = ( n + 1 ) [x n –( x+ a )n ] ,

∴f `n + 1 ( n + 1 ) = ( n + 1 ) [(n + 1 )n –( n + 1 + a )n ] < ( n + 1 )[ n n – ( n + a)n ] = ( n + 1 )[ n n – ( n + a )( n + a)n – 1 ] 2分

( n + 1 )f n `(n) = ( n + 1 )n[n n – 1 – ( n + a)n – 1 ] = ( n + 1 )[n n – n( n + a)n – 1 ], 2分 ∵( n + a ) > n ,

∴f `n + 1 ( n + 1 ) < ( n + 1 )f n `(n) . 2分 2. (本小题满分12分)

已知:y = f (x) 定义域为[–1,1],且满足:f (–1) = f (1) = 0 ,对任意u ,v ∈[–1,1],都有|f (u) – f (v) | ≤ | u –v | .

(1) 判断函数p ( x ) = x 2 – 1 是否满足题设条件? (2) 判断函数g(x)=1,[1,0]

1,[0,1]

x x x x +∈-??

-∈?,是否满足题设条件?

解: (1) 若u ,v ∈ [–1,1], |p(u) – p (v)| = | u 2 – v 2 |=| (u + v )(u – v) |,

取u =

43∈[–1,1],v = 2

1

∈[–1,1], 则 |p (u) – p (v)| = | (u + v )(u – v) | = 4

5

| u – v | > | u – v |, 所以p( x)不满足题设条件. (2)分三种情况讨论:

10. 若u ,v ∈ [–1,0],则|g(u) – g (v)| = |(1+u) – (1 + v)|=|u – v |,满足题设条件; 20. 若u ,v ∈ [0,1], 则|g(u) – g(v)| = |(1 – u) – (1 – v)|= |v –u|,满足题设条件; 30. 若u ∈[–1,0],v ∈[0,1],则:

|g (u) –g(v)|=|(1 – u) – (1 + v)| = | –u – v| = |v + u | ≤| v – u| = | u –v|,满足题设条件; 40 若u ∈[0,1],v ∈[–1,0], 同理可证满足题设条件.

综合上述得g(x)满足条件. 3. (本小题满分14分)

已知点P ( t , y )在函数f ( x ) = 1

x x

+(x ≠ –1)的图象上,且有t 2 – c 2at + 4c 2 = 0 ( c ≠ 0 ). (1) 求证:| ac | ≥ 4;

(2) 求证:在(–1,+∞)上f ( x )单调递增. (3) (仅理科做)求证:f ( | a | ) + f ( | c | ) > 1. 证:(1) ∵ t ∈R, t ≠ –1,

∴ ⊿ = (–c 2a)2 – 16c 2 = c 4a 2 – 16c 2 ≥ 0 , ∵ c ≠ 0, ∴c 2a 2 ≥ 16 , ∴| ac | ≥ 4. (2) 由 f ( x ) = 1 –

1

x 1+, 法1. 设–1 < x 1 < x 2, 则f (x 2) – f ( x 1) = 1–

1x 12+–1 + 1x 1

1+= )

1x )(1x (x x 1221++-. ∵ –1 < x 1 < x 2, ∴ x 1 – x 2 < 0, x 1 + 1 > 0, x 2 + 1 > 0 ,

∴f (x 2) – f ( x 1) < 0 , 即f (x 2) < f ( x 1) , ∴x ≥ 0时,f ( x )单调递增. 法2. 由f ` ( x ) =

2

)

1x (1

+> 0 得x ≠ –1, ∴x > –1时,f ( x )单调递增.

(3)(仅理科做)∵f ( x )在x > –1时单调递增,| c | ≥

|

a |4

> 0 , ∴f (| c | ) ≥ f (|a |4) = 1|

a |4|

a |4

+= 4|a |4+

f ( | a | ) + f ( | c | ) =

1|a ||a |++ 4|a |4+> 4|a ||a |++4

|a |4

+=1. 即f ( | a | ) + f ( | c | ) > 1. 4.(本小题满分15分)

设定义在R 上的函数432

01234()f x a x a x a x a x a =++++(其中i a ∈R ,i=0,1,2,3,4),当

x= -1时,f (x)取得极大值2

3

,并且函数y=f (x+1)的图象关于点(-1,0)对称. (1) 求f (x)的表达式;

(2) 试在函数 f (x)的图象上求两点,使这两点为切点的切线互相垂直,且切点的横坐标都在区间

??上;

(3) 若+21,N )2n n n n x y n -==∈,求证:4

()().3

n n f x f y -< 解:(1)3

1().3

f x x x =

-…………………………5分

(2)()0,0,?或()0,0,.? ?

?…………10分

(3)用导数求最值,可证得4

()()(1)(1).3

n n f x f y f f -<--<……15分 5.(本小题满分13分)

设M 是椭圆22

:

1124

x y C +=上的一点,P 、Q 、T 分别为M 关于y 轴、原点、x 轴的对称点,N 为椭圆C 上异于M 的另一点,且MN ⊥MQ ,QN 与PT 的交点为E ,当M 沿椭圆C 运动时,求动点E 的轨迹方程.

解:设点的坐标112211(,),(,)(0),(,),M x y N x y x y E x y ≠

则111111(,),(,),(,),P x y Q x y T x y ----……1分

2

2

112

222

1,(1)

12

4 1.(2)

124

x y x y ?+=????+=??………………………………………………………3分

由(1)-(2)可得1.3

MN QN k k ?=-………………………………6分 又MN ⊥MQ ,111,,MN MQ MN x k k k y ?=-=-

所以11

.3QN y k x = 直线QN 的方程为1111()3y y x x y x =

+-,又直线PT 的方程为11

.x

y x y =-……10分 从而得1111

,.22

x x y y =

=-所以112,2.x x y y ==- 代入(1)可得2

21(0),3

x y xy +=≠此即为所求的轨迹方程.………………13分 6.(本小题满分12分)

过抛物线y x 42

=上不同两点A 、B 分别作抛物线的切线相交于P 点,.0=?

(1)求点P 的轨迹方程;

(2)已知点F (0,1),是否存在实数λ使得0)(2=+?λ?若存在,求出λ的值,若不存在,请说明理由.

解法(一):(1)设)(),4

,(),4,(212

2

2211x x x x B x x A ≠

由,42

y x =得:2

'

x y =

2

,221x k x k PB PA ==

∴ 4,,021-=∴⊥∴=?x x PB PA ………………………………3分

直线PA 的方程是:)(241121x x x x y -=-即4

22

11x x x y -= ① 同理,直线PB 的方程是:4

22

2

2x x x y -= ② 由①②得:??

??

?

∈-==+=),(,

142212

121R x x x x y x x x ∴点P 的轨迹方程是).(1R x y ∈-=……………………………………6分

(2)由(1)得:),14,(211-=x x ),14,(2

22-=x x )1,2

(21-+x

x P 4),2,2

(

212

1-=-+=x x x x FP 42)14)(14(2

2

21222121x x x x x x FB FA +--=--+=? …………………………10分

24

44)()(2

2

212212

++=++=x x x x

所以0)(2=+?

故存在λ=1使得0)(2=+?λ…………………………………………12分 解法(二):(1)∵直线PA 、PB 与抛物线相切,且,0=? ∴直线PA 、PB 的斜率均存在且不为0,且,PB PA ⊥ 设PA 的直线方程是)0,,(≠∈+=k R m k m kx y

由???=+=y

x m kx y 42得:0442

=--m kx x 016162=+=?∴m k 即2k m -=…………………………3分

即直线PA 的方程是:2

k kx y -=

同理可得直线PB 的方程是:211k

x k y --

= 由??

???--=-=2211k x k y k kx y 得:?????

-=∈-=11y R k k x 故点P 的轨迹方程是).(1R x y ∈-=……………………………………6分 (2)由(1)得:)1,1

(),1,2(),,2(22

---

k

k P k k B k k A )11

,2(),1,2(22--=-=k

k FB k k FA

)2,1

(--=k

k FP

)1

(2)11)(1(42222k

k k k +--=--+-=?………………………………10分

)1

(24)1()(2222k

k k k ++=+-=

故存在λ=1使得0)(2=+?λ…………………………………………12分 7.(本小题满分14分)

设函数x ax

x

x f ln 1)(+-=

在),1[+∞上是增函数. (1) 求正实数a 的取值范围;

(2) 设1,0>>a b ,求证:.ln 1b

b

a b b a b a +<+<+ 解:(1)01

)(2

'

≥-=

ax ax x f 对),1[+∞∈x 恒成立, x

a 1

∴对),1[+∞∈x 恒成立 又

11

≤x

1≥∴a 为所求.…………………………4分 (2)取b b a x +=,1,0,1>+∴>>b

b

a b a ,

一方面,由(1)知x ax

x

x f ln 1)(+-=在),1[+∞上是增函数, 0)1()(=>+∴f b b a f

0ln 1>+++?+-

b b a b

b a a b b a

即b

a b b a +>

+1

ln

……………………………………8分 另一方面,设函数)1(ln )(>-=x x x x G

)1(01

11)('>>-=-

=x x

x x x G ∴)(x G 在),1(+∞上是增函数且在0x x =处连续,又01)1(>=G ∴当1>x 时,0)1()(>>G x G

∴x x ln > 即b

b

a b b a +>+ln

综上所述,.ln 1b

b

a b b a b a +<+<+………………………………………………14分

8.(本小题满分12分)

如图,直角坐标系xOy 中,一直角三角形ABC ,90C ∠=,B 、

C 在x 轴上且关于原点O 对称,

D 在边BC 上,3BD DC =,ABC 的周

长为12.若一双曲线E 以B 、C 为焦点,且经过A 、D 两点.

(1) 求双曲线E 的方程;

相交(2) 若一过点(,0)P m (m 为非零常数)的直线l 与双曲线E

于不同于双曲线顶点的两点M 、N ,且MP PN λ=,

问在

x 轴上是否存在定点G ,使()BC GM GN λ⊥-?若存在,求出所有这样定点G 的坐标;若不存在,请

说明理由.

解:(1) 设双曲线E 的方程为22

221(0,0)x y a b a b

-=>>,

则(,0),(,0),(,0)B c D a C c -.

由3BD DC =,得3()c a c a +=-,即2c a =.

∴222

||||16,

||||124,||||2.AB AC a AB AC a AB AC a ?-=?

+=-??-=?

(3分)

解之得1a =

,∴2,c b ==

∴双曲线E 的方程为2

2

13

y x -=.

(5分)

(2) 设在x 轴上存在定点(,0)G t ,使()BC GM GN λ⊥-.

x

x

设直线l 的方程为x m ky -=,1122(,),(,)M x y N x y . 由MP PN λ=,得120y y λ+=. 即12

y

y λ=-

① (6分)

∵(4,0)BC =,

1212(,)GM GN x t x t y y λλλλ-=--+-,

∴()BC GM GN λ⊥-12()x t x t λ?-=-. 即12()ky m t ky m t λ+-=+-. ② (8分)

把①代入②,得

12122()()0ky y m t y y +-+=

③ (9分)

把x m ky -=代入2

2

13y x -=并整理得

222(31)63(1)0k y kmy m -++-=

其中2310k -≠且0?>,即21

3

k ≠

且2231k m +>. 212122263(1)

,3131

km m y y y y k k --+==

--.

(10分)

代入③,得

2226(1)6()

03131

k m km m t k k ---=--,

化简得 kmt k =. 当1

t m

=

时,上式恒成立. 因此,在x 轴上存在定点1

(,0)G m

,使()BC GM GN λ⊥-.

(12分)

9.(本小题满分14分)

已知数列{}n a 各项均不为0,其前n 项和为n S ,且对任意*n ∈N 都有(1)n n p S p pa -=-(p 为大于1的常数),

记12

121C C C ()2n n n n n

n n

a a a f n S ++++=

(1) 求n a ;

x

(2) 试比较(1)f n +与

1

()2p f n p

+的大小(*n ∈N )

; (3) 求证:21

11(21)()

(1)(2)(21)

112n p p n f n f f f n p p -??

??++-++

+--?? ?-??????

(*n ∈N ). 解:(1) ∵(1)n n p S p pa -=-,

① ∴11(1)n n p S p pa ++-=-.

②-①,得

11(1)n n n p a pa pa ++-=-+,

即1n n a pa +=.

(3分)

在①中令1n =,可得1a p =.

∴{}n a 是首项为1a p =,公比为p 的等比数列,n n a p =. (4分)

(2) 由(1)可得(1)(1)

11

n n n p p p p S p p --==

--. 12

121C C C n n n n n a a a +++

+122

1C C C (1)(1)n n

n n n n n p p p p p =+++

+=+=+.

∴12

121C C C ()2n n n n n

n n

a a a f n S ++++=

1(1)2(1)

n

n n p p p p -+=?-,

(5分)

(1)f n +1

111(1)2(1)

n n n p p p p +++-+=

?-. 而1

()2p f n p

+1111(1)2()n n n p p p p p +++-+=

?-,且1p >, ∴1110n n p p p ++->->,10p ->. ∴(1)f n +<

1

()2p f n p

+,

(*n ∈N ). (8分)

(3) 由(2)知 1(1)2p f p +=

,(1)f n +<1

()2p f n p

+,(*n ∈N ). ∴当2n

时,2

11111()(1)()(2)(

)(1)()2222n n

p p p p f n f n f n f p p

p p

-++++<-<-<<=. ∴2

21

111(1)(2)(21)

222n p p p f f f n p p p -??

??

++++++-+++ ? ???

??

21

11112n p p p p -????++=-?? ?-??????

, (10分)

(当且仅当1n =时取等号).

另一方面,当2n ,1,2,,21k n =-时,

2221(1)(1)()(2)2(1)2(1)k n k k k n k n k p p p f k f n k p p p ---??

-+++-=+??--??

2221(1)(1)22(1)2(1)

k n k

k k n k n k p p p p p p ----++??--212(1)1

2(1)(1)

n

n k

n k p p p p p --+=--

2212(1)1

21

n n

n k n k p p p p p p --+=--+

∵22k n k n p p p -+,∴2222121(1)n k n k n n n p p p p p p ---+-+=-.

∴12(1)()(2)2()2(1)

n

n n p p f k f n k f n p p -++-?=-,

(当且仅当k n =时取等号).(13分) ∴21

21

2111

1

1()[()(2)]

()(21)()2n n n k k k f k f k f n k f n n f n ---====+-=-∑

∑∑.

(当且仅当1n =时取等号). 综上所述,21

211

11(21)()

()

112n n k p p n f n f k p p --=??

??++--??∑ ?-??????

(*n ∈N ).(14分)

1.(本小题满分14分)

已知椭圆)0(122

22>>=+b a b

y a x 的左、右焦点分别是F 1(-c ,0)、F 2(c ,0),Q 是椭圆外的动点,满

足.2||1a F =点P 是线段F 1Q 与该椭圆的交点,点T 在线段F 2Q 上,并且满足.0||,022≠=?TF TF (Ⅰ)设x 为点P 的横坐标,证明x a

c

a F +=||1; (Ⅱ)求点T 的轨迹C 的方程;

(Ⅲ)试问:在点T 的轨迹C 上,是否存在点M , 使△F 1MF 2的面积S=.2b 若存在,求∠F 1MF 2

的正切值;若不存在,请说明理由.

本小题主要考查平面向量的概率,椭圆的定义、标准方程和有关性质,轨迹的求法和应用,以及综合运用数学知识解决问题的能力.满分14分.

(Ⅰ)证法一:设点P 的坐标为).,(y x

由P ),(y x 在椭圆上,得

.

)()()(||22

222

2

2

2

1x a

c

a x

a b b c x y c x F +=-++=++=

由0,>+-≥+

≥a c x a c a a x 知,所以 .||1x a

c

a P F +=………………………3分 证法二:设点P 的坐标为).,(y x 记,||,||2211r P F r P F ==

则.)(,)(222221y c x r y c x r ++=++=

由.||,4,211222121x a c

a r F cx r r a r r +===-=+得 证法三:设点P 的坐标为).,(y x 椭圆的左准线方程为.0=+x a

c

a

由椭圆第二定义得a c c

a x F =+|

|||2

1,即.||||||2

1x a c a c a x a c F +=+=

由0,>+-≥+

-≥a c x a c a a x 知,所以.||1x a

c

a F +=…………………………3分 (Ⅱ)解法一:设点T 的坐标为).,(y x

当0||=时,点(a ,0)和点(-a ,0)在轨迹上.

当|0||0|2≠≠TF PT 且时,由0||||2=?TF PT ,得2TF PT ⊥. 又||||2PF =,所以T 为线段F 2Q 的中点. 在△QF 1F 2中,a F ==

||2

1

||1,所以有.222a y x =+ 综上所述,点T 的轨迹C 的方程是.2

2

2

a y x =+…………………………7分 解法二:设点T 的坐标为).,(y x 当0||=时,点(a ,0)和点(-a ,0)在轨迹上. 当|0||0|2≠≠TF PT 且时,由02=?TF PT ,得2TF PT ⊥.

又||||2PF =,所以T 为线段F 2Q 的中点.

设点Q 的坐标为(y x '',),则???

????'=+'=.2

,2y y c

x x

因此??

?='-='.

2,

2y y c x x ①

由a F 2||1=得.4)(2

2

2

a y c x ='++' ② 将①代入②,可得.2

2

2

a y x =+

综上所述,点T 的轨迹C 的方程是.2

2

2

a y x =+……………………7分

(Ⅲ)解法一:C 上存在点M (00,y x )使S=2b 的充要条件是

?????=?=+.||22

1,

2

022020b y c a y x 由③得a y ≤||0,由④得.||20c b y ≤

所以,当c

b a 2≥时,存在点M ,使S=2b ; 当c

b a 2

<时,不存在满足条件的点M.………………………11分

当c

b a 2

≥时,),(),,(002001y x c MF y x c MF --=---=,

由2

222022021b c a y c x MF =-=+-=?,

212121cos ||||MF F MF MF MF MF ∠?=?,

22121sin ||||2

1

b MF F MF MF S =∠?=

,得.2tan 21=∠MF F 解法二:C 上存在点M (00,y x )使S=2b 的充要条件是

?????=?=+.||22

1,2

022020b y c a y x

由④得.||20c b y ≤ 上式代入③得.0))((22242

20≥+-=-=c b a c b a c

b a x 于是,当c

b a 2≥时,存在点M ,使S=2b ;

当c

b a 2

<时,不存在满足条件的点M.………………………11分

当c

b a 2

≥时,记c x y k k c x y k k M F M F -==+==00200121,, ③ ④

③ ④

2017年高考全国1卷理科数学试题和答案解析

绝密★启用前 2017年普通高等学校招生全国统一考试 理科数学 本试卷5页,23小题,满分150分。考试用时120分钟。 注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。用2B 铅笔将 试卷类型(B )填涂在答题卡相应位置上。将条形码横贴在答题卡右上角“条形码粘贴处”。 2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试卷上。 3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。 4.考生必须保证答题卡的整洁。考试结束后,将试卷和答题卡一并交回。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目 要求的。 1.已知集合A ={x |x <1},B ={x |31x <},则 A .{|0}A B x x =U D .A B =?I 2.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是 A .14 B .π8 C . 12 D . π4 3.设有下面四个命题 1p :若复数z 满足1 z ∈R ,则z ∈R ; 2p :若复数z 满足2z ∈R ,则z ∈R ; 3p :若复数12,z z 满足12z z ∈R ,则12z z =;

[数学]数学高考压轴题大全

1、(本小题满分14分) 已知函数. (1)当时,如果函数仅有一个零点,求实数的取值范围; (2)当时,试比较与的大小; (3)求证:(). 2、设函数,其中为常数. (Ⅰ)当时,判断函数在定义域上的单调性; (Ⅱ)若函数的有极值点,求的取值范围及的极值点; (Ⅲ)当且时,求证:. 3、在平面直角坐标系中,已知椭圆.如图所示,斜率为且不过原 点的直线交椭圆于,两点,线段的中点为,射线交椭圆于点,交直 线于点. (Ⅰ)求的最小值; (Ⅱ)若?,(i)求证:直线过定点;

(ii )试问点,能否关于轴对称?若能,求出 此时 的外接圆方程;若不能,请说明理由. 二、计算题 (每空? 分,共? 分) 4 、设函数 的图象在点处的切线的斜率 为 ,且函数为偶函数.若函数 满足下列条件:①;② 对一切实数 ,不等式恒成立. (Ⅰ)求函数的表达式; (Ⅱ)求证: . 5 、已知函数: (1 )讨论函数的单调性; (2) 若函数 的图像在点 处的切线的倾斜角为,问:在什么范围取值 时,函数 在区间上总存在极值? (3)求证:.

6、已知函数=,. (Ⅰ)求函数在区间上的值域; (Ⅱ)是否存在实数,对任意给定的,在区间上都存在两个不同的, 使得成立.若存在,求出的取值范围;若不存在,请说明理由; (Ⅲ)给出如下定义:对于函数图象上任意不同的两点,如果对 于函数图象上的点(其中总能使得 成立,则称函数具备性质“”,试判断函数是不是具 备性质“”,并说明理由. 7、已知函数 (Ⅰ)若函数是定义域上的单调函数,求实数的最小值; (Ⅱ)方程有两个不同的实数解,求实数的取值范围; (Ⅲ)在函数的图象上是否存在不同两点,线段的中点的横坐标 为,有成立?若存在,请求出的值;若不存在,请说明理由. 8、已知函数: ⑴讨论函数的单调性;

高考数学压轴题含答案

高考数学压轴题含答案 RUSER redacted on the night of December 17,2020

【例 1】已知12,F F 为椭圆 2 2 221(0)x y a b a b +=>>的左、右焦点,以原点O 为圆心,半焦距为半径的圆与椭圆相交于四个点,设位于y 轴右侧的两个交点为B A ,,若1ABF ?为等边三角形,则椭圆的离心率为( ) 1 1 C. 1 2 【课堂笔记】 【规律总结】 ............................................................................................................................................................................................................ 【例2】已知函数 x x x x ax x f ln ln )(2 -- +=有三个不同的零点321,,x x x (其中321x x x <<),则 211)ln 1(x x -)ln 1)(ln 1(3 322 x x x x --的值为 ( ) A .a -1 B .1-a C .1- D .1 【课堂笔记】 【规律总结】 【例3】已知函数()2h x x ax b =++在 ()0,1上有两个不同的零点,记 {}()( )min ,m m n m n n m n ≤??=?>??,则 ()(){}min 0,1h h 的取值范围 为 . 【课堂笔记】 【规律总结】 ........................................................................................................................................................................................................... 【例4】下表是一个由2n 个正数组成的数 表,用ij a 表示第i 行第j 个数(),,i j N ∈已知数表中第一列各数从上到下依次构成等差数列,每一行各数从左到右依次构成等比数列,且公比都相等.已知 113161351,9,48.a a a a =+== (1)求1n a 和4n a ; (2)设 ()() ()() 4144121n n n n n n a b a n N a a += +-∈--,求数列{}n b 的前n 项和n S . 【例5】在平面直角坐标系中动点() ,P x y 到圆()2 2 :11F x y +-=的圆心F 的距离比 它到直线2y =-的距离小1. (1)求动点P 的轨迹方程;

最新高考数学压轴题专题训练(共20题)[1]

1.已知点)1,0(F ,一动圆过点F 且与圆8)1(2 2 =++y x 内切. (1)求动圆圆心的轨迹C 的方程; (2)设点)0,(a A ,点P 为曲线C 上任一点,求点A 到点P 距离的最大值)(a d ; (3)在10<

3.已知点A (-1,0),B (1,0),C (- 5712,0),D (5712 ,0),动点P (x , y )满足AP →·BP → =0,动点Q (x , y )满足|QC →|+|QD →|=10 3 ⑴求动点P 的轨迹方程C 0和动点Q 的轨迹方程C 1; ⑵是否存在与曲线C 0外切且与曲线C 1内接的平行四边形,若存在,请求出一个这样的平行四边形,若不存在,请说明理由; ⑶固定曲线C 0,在⑵的基础上提出一个一般性问题,使⑵成为⑶的特例,探究能得出相应结论(或加强结论)需满足的条件,并说明理由。 4.已知函数f (x )=m x 2+(m -3)x +1的图像与x 轴的交点至少有一个在原点右侧, ⑴求实数m 的取值范围; ⑵令t =-m +2,求[1 t ];(其中[t ]表示不超过t 的最大整数,例如:[1]=1, [2.5]=2, [-2.5]=-3) ⑶对⑵中的t ,求函数g (t )=t +1t [t ][1t ]+[t ]+[1t ]+1的值域。

高考理科数学压轴题及答案汇编

高考理科数学压轴题 (21)(本小题满分 12 分)已知椭圆 C 的中心在坐标原点 ,焦点在 x 轴上,椭圆 C 上的点到焦点 的距离的最大值为 3,最小值为 1. (I) 求椭圆 C 的标准方程 ; (II) 若直线l : y kx m 与椭圆 C 相交于 A,B 两点(A,B 不是左右顶点 ),且以 AB 为直径的圆 过椭 圆 C 的右顶点 .求证 :直线 l 过定点 ,并求出该定点的坐标 . (22)(本小题满分 14分)设函数 f(x) x 2 bln(x 1),其中 b 0. 1 (I) 当 b 时 ,判断函数 f (x) 在定义域上的单调性 ; 2 (II)求函数 f (x)的极值点 ; 1 1 1 (III) 证明对任意的正整数 n ,不等式 ln( 1) 2 3 都成立 . n n n 22 xy (21)解: (I) 由题意设椭圆的标准方程为 2 2 1(a b 0) ab 2 a c 3,a c 1,a 2,c 1, b 2 3 22 x 2 y 2 1. 43 Q 以AB 为直径的圆过椭圆的右顶点 D(2,0), k AD k BD 1, y kx m (II)设 A(x 1, y 1),B(x 2,y 2), 由 2 x 2 y 得 1 4 3 2 2 2 (3 4k 2 )x 2 8mkx 4(m 2 3) 2 2 2 64m 2 k 2 16( 3 4k 2)( 2 m 3) 0, 22 3 4k 2 m 2 0 8mk 2 ,x 1 x 2 2 4(m 2 3) 3 4k 2 y 1 y 2 2 (kx 1 m) (kx 2 m) k x 1x 2 mk(x 1 x 2) m 2 3(m 2 4k 2) 3 4k 2

高考数学压轴题专题训练20道

高考压轴题专题训练 1. 已知点)1,0(F ,一动圆过点F 且与圆8)1(2 2 =++y x 内切. (1)求动圆圆心的轨迹C 的方程; (2)设点)0,(a A ,点P 为曲线C 上任一点,求点A 到点P 距离的最大值)(a d ; (3)在10<

2018高考理科数学选填压轴题专练32题(含详细答案)

学校 年级 姓名 装 装 订 线 一.选择题(共26小题) 1.设实数x ,y 满足 ,则z= +的取值范围是( ) A .[4,] B .[,] C .[4,] D .[,] 2.已知三棱锥P ﹣ABC 中,PA ⊥平面ABC ,且,AC=2AB ,PA=1,BC=3, 则该三棱锥的外接球的体积等于( ) A . B . C . D . 3.三棱锥P ﹣ABC 中,PA ⊥平面ABC 且PA=2,△ABC 是边长为的等边三角形, 则该三棱锥外接球的表面积为( ) A . B .4π C .8π D .20π 4.已知函数f (x +1)是偶函数,且x >1时,f ′(x )<0恒成立,又f (4)=0,则(x +3)f (x +4)<0的解集为( ) A .(﹣∞,﹣2)∪(4,+∞) B .(﹣6,﹣3)∪(0,4) C .(﹣∞,﹣6)∪(4,+∞) D .(﹣6,﹣3)∪(0,+∞) 5.当a >0时,函数f (x )=(x 2﹣2ax )e x 的图象大致是( ) A . B . C D . 6.抛物线y 2=4x 的焦点为F ,M 为抛物线上的动点,又已知点N (﹣1,0),则 的取值范围是( ) A .[1,2 ] B . [ , ] C .[ ,2] D .[1, ] 7.《张丘建算经》卷上第22题为“今有女善织,日益功疾,初日织五尺,今一月日织九匹三丈.”其意思为:现有一善于织布的女子,从第2天开始,每天比前一天多 织相同量的布,第1天织了5尺布,现在一月(按30天计算)共织390尺布,记该女子一月中的第n 天所织布的尺数为a n ,则a 14+a 15+a 16+a 17的值为( ) A .55 B .52 C .39 D .26 8.已知定义在R 上的奇函数f (x )满足:当x ≥0时,f (x )=x 3+x 2,若不等式f (﹣4t )>f (2m +mt 2)对任意实数t 恒成立,则实数m 的取值范围是( ) A . B . C . D . 9.将函数 的图象向左平移 个单位得到y=g (x )的图象,若对满足|f (x 1)﹣g (x 2)|=2的x 1、x 2,|x 1﹣x 2|min = ,则φ的值是( ) A . B . C . D . 10.在平面直角坐标系xOy 中,点P 为椭圆C :+=1(a >b >0)的下顶点, M ,N 在椭圆上,若四边形OPMN 为平行四边形,α为直线ON 的倾斜角,若α∈ (,],则椭圆C 的离心率的取值范围为( ) A .(0, ] B .(0 , ] C .[ , ] D .[ , ]

历年高考数学压轴题集锦

高考数学压轴题集锦 1.椭圆的中心是原点O ,它的短轴长为(,)0F c (0>c )的准线l 与x 轴相交于点A ,2OF FA =,过点A 的直线与椭圆相交于P 、Q 两点。 (1)求椭圆的方程及离心率; (2)若0OP OQ ?=,求直线PQ 的方程; (3)设AP AQ λ=(1λ>),过点P 且平行于准线l 的直线与椭圆相交于另一点M ,证 明FM FQ λ=-. (14分) 2. 已知函数)(x f 对任意实数x 都有1)()1(=++x f x f ,且当]2,0[∈x 时,|1|)(-=x x f 。 (1) )](22,2[Z k k k x ∈+∈时,求)(x f 的表达式。 (2) 证明)(x f 是偶函数。 (3) 试问方程01 log )(4=+x x f 是否有实数根?若有实数根,指出实数根的个数;若没有实数根,请说明理由。 3.(本题满分12分)如图,已知点F (0,1),直线L :y=-2,及圆C :1)3(2 2 =-+y x 。 (1) 若动点M 到点F 的距离比它到直线L 的距离小1,求动点M 的轨迹E 的方程; (2) 过点F 的直线g (3) 过轨迹E 上一点P 点P 的坐标及S

4.以椭圆2 22y a x +=1(a >1)短轴一端点为直角顶点,作椭圆内接等腰直角三角形,试 判断并推证能作出多少个符合条件的三角形. 5 已知,二次函数f (x )=ax 2 +bx +c 及一次函数g (x )=-bx ,其中a 、b 、c ∈R ,a >b >c ,a +b +c =0. (Ⅰ)求证:f (x )及g (x )两函数图象相交于相异两点; (Ⅱ)设f (x )、g (x )两图象交于A 、B 两点,当AB 线段在x 轴上射影为A 1B 1时,试求|A 1B 1|的取值范围. 6 已知过函数f (x )=12 3++ax x 的图象上一点B (1,b )的切线的斜率为-3。 (1) 求a 、b 的值; (2) 求A 的取值范围,使不等式f (x )≤A -1987对于x ∈[-1,4]恒成立; (3) 令()()132 ++--=tx x x f x g 。是否存在一个实数t ,使得当]1,0(∈x 时,g (x )有 最大值1? 7 已知两点M (-2,0),N (2,0),动点P 在y 轴上的射影为H ,︱PH ︱是2和→ → ?PN PM 的等比中项。 (1) 求动点P 的轨迹方程,并指出方程所表示的曲线; (2) 若以点M 、N 为焦点的双曲线C 过直线x+y=1上的点Q ,求实轴最长的双曲线C 的方程。 8.已知数列{a n }满足a a a a b a a a a a a a n n n n n n +-=+=>=+设,2),0(322 11 (1)求数列{b n }的通项公式; (2)设数列{b n }的前项和为S n ,试比较S n 与 8 7 的大小,并证明你的结论. 9.已知焦点在x 轴上的双曲线C 的两条渐近线过坐标原点,且两条渐近线与以点)2,0(A 为圆心,1为半径的圆相切,又知C 的一个焦点与A 关于直线x y =对称. (Ⅰ)求双曲线C 的方程; (Ⅱ)设直线1+=mx y 与双曲线C 的左支交于A ,B 两点,另一直线l 经过M (-2,0)及AB 的中点,求直线l 在y 轴上的截距b 的取值范围; (Ⅲ)若Q 是双曲线C 上的任一点,21F F 为双曲线C 的左,右两个焦点,从1F 引21QF F ∠的平分线的垂线,垂足为N ,试求点N 的轨迹方程. 10. )(x f 对任意R x ∈都有.2 1)1()(= -+x f x f

北京市高考数学压轴题汇编51题(含答案)

1.如图,正方体1111ABCD A B C D -中,E ,F 分别为 棱1DD ,AB 上的点. 已知下列判断: ①1 AC ^平面1B EF ;②1B EF D 在侧面11BCC B 上 的正投影是面积为定值的三角形;③在平面 1111A B C D 内总存在与平面1B EF 平行的直线;④平 面1B EF 与平面ABCD 所成的二面角(锐角)的大小与点E 的位置有关,与点F 的位 置无关. 其中正确判断的个数有 (A )1个 (B )2个 (C )3个 (D )4个(B ) 2.如图所示,在正方体ABCD -A 1B 1C 1D 1中,E 是棱DD 1的中点,F 是侧面CDD 1C 1上的动点,且B 1F//面A 1BE ,则B 1F 与平面CDD 1C 1 所成角的正切值构成的集合是 C A. {}2 B. 255?? ? ??? C. {|222}t t ≤≤ D. 2 {|52}5 t t ≤≤ 3. 如图,四面体OABC 的三条棱OC OB OA ,,两两垂直,2==OB OA ,3=OC ,D 为四 面体OABC 外一点.给出下列命题. ①不存在点D ,使四面体ABCD 有三个面是直角三角形 ②不存在点D ,使四面体ABCD 是正三棱锥 ③存在点D ,使CD 与AB 垂直并且相等 ④存在无数个点D ,使点O 在四面体ABCD 的外接球面上 其中真命题的序号是D (A )①② (B )②③ (C )③ (D )③④ 4. 在一个正方体1111ABCD A B C D -中,P 为正方形 1111A B C D 四边上的动点,O 为底面正方形ABCD 的中心, ,M N 分别为,AB BC 中点,点Q 为平面ABCD 内一点,线段1D Q 与OP 互相平分,则满足MQ MN λ=u u u u r u u u u r 的实数λ的值 有 C A. 0个 B. 1个 C. 2个 D. 3个 5. 空间点到平面的距离定义如下:过空间一点作平面的垂线,这点和垂足之间的距离叫做 A B C D E 1A 1 D 1 B 1 C O A B D C A 1 D 1 A 1 C 1 B D C B O P N M Q

历届高考数学压轴题汇总及答案

历届高考数学压轴题汇总及答案 一、2019年高考数学上海卷:(本题满分18分) 已知等差数列{}n a 的公差(0,]d π∈,数列{}n b 满足()sin n n b a =,集合 {}*|,n S x x b n N ==∈. (1)若120,3 a d π ==,求集合S ; (2)若12 a π = ,求d 使得集合S 恰好有两个元素; (3)若集合S 恰好有三个元素:n T n b b +=,T 是不超过7的正整数,求T 的所有可能的 值. 二、2019年高考数学浙江卷:(本小题满分15分) 已知实数0a ≠,设函数()=ln 0.f x a x x +> (Ⅰ)当34 a =-时,求函数()f x 的单调区间; (Ⅱ)对任意21[ ,)e x ∈+∞均有()2f x a ≤ 求a 的取值范围. 注: 2.71828e =为自然对数的底数.

设2 *012(1),4,n n n x a a x a x a x n n +=+++ +∈N .已知2 3242a a a =. (1)求n 的值; (2)设(1n a =+*,a b ∈N ,求223a b -的值. 四、2018年高考数学上海卷:(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分) 给定无穷数列{}n a ,若无穷数列{}n b 满足:对任意*n N ∈,都有1n n b a -≤,则称{}n b 与{}n a “接近”。 (1)设{}n a 是首项为1,公比为1 2 的等比数列,11n n b a +=+,*n N ∈,判断数列{}n b 是否与{}n a 接近,并说明理由; (2)设数列{}n a 的前四项为:12341,248a a a a ====,,,{}n b 是一个与{}n a 接近的数列,记集合1,2,|,4{3,}i M x x b i ===,求M 中元素的个数m ; (3)已知{}n a 是公差为d 的等差数列,若存在数列{}n b 满足:{}n b 与{}n a 接近,且在 2132201200,,,b b b b b b ﹣﹣﹣中至少有100个为正数,求d 的取值范围.

高考理科数学压轴题及答案汇编

高考理科数学压轴题 (21)(本小题满分12分)已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点的距离的最大值为3,最小值为1. (I)求椭圆C 的标准方程; (II)若直线:l y kx m =+与椭圆C 相交于A,B 两点(A,B 不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点.求证:直线l 过定点,并求出该定点的坐标. (22)(本小题满分14分)设函数2 ()ln(1)f x x b x =++,其中0b ≠. (I)当1 2 b > 时,判断函数()f x 在定义域上的单调性; (II)求函数()f x 的极值点; (III)证明对任意的正整数n ,不等式2 3111 ln(1)n n n +>-都成立. (21)解:(I)由题意设椭圆的标准方程为22 221(0)x y a b a b +=>> 3,1a c a c +=-=,22,1,3a c b === 22 1.43 x y ∴+= (II)设1122(,),(,)A x y B x y ,由2214 3y kx m x y =+?? ?+=??得 222(34)84(3)0k x mkx m +++-=, 22226416(34)(3)0m k k m ?=-+->,22340k m +->. 2121222 84(3) ,.3434mk m x x x x k k -+=-?=++ 222 2 121212122 3(4) ()()().34m k y y kx m kx m k x x mk x x m k -?=+?+=+++=+ Q 以AB 为直径的圆过椭圆的右顶点(2,0),D 1AD BD k k ?=-,

高考数学压轴题秒杀

秒杀压轴题第五章关于秒杀法的最难掌握的一层,便是对于高考数很多朋友留言说想掌握秒杀的最后一层。压轴题,各省的难度不一致,但毫无疑问,尤其是理科的,会难倒很多学压轴题的把握。很多很多人。出题人很怕很怕全省没多少做出来的,相反,压轴题并不是那般神秘难解,不过,明白么?他很怕。那种思想,在群里面我也说过,在这里就不多啰嗦了。想领悟、把握压轴题的思路,给大家推荐几道题目。08的除的外我都没做过,所以不在推荐围)。09全是数学压轴题,且是理科(全国一07,08,07全国二,08全国一,可脉络依然清晰。虽然一年过去了,做过之后,但这几道题,很多题目都忘了,一年过去了,都是一些可以秒杀的典型压轴题,望冲击清华北大的同学细细研究。记住,压轴题是出题人在微笑着和你对话。会在以后的视频里面讲以及怎么发挥和压榨一道经典题目的最大价值,,”精“具体的题目的解的很清楚。 \ 不过,我还是要说一下数列压轴题这块大家应该会什么(难度以及要求依次增高)尤其推荐通项公式的求法(不甚解的去看一下以前的教案,或者问老师,这里必考。:1 )我押题的第一道数列解答题。裂项相消(各种形式的都要会)、迭加、迭乘、错位相减求和(这几个是最基本和简:2. 单的数列考察方式,一般会在第二问考)数学归纳法、不等式缩放:3 基本所有题目都是这几个的组合了,要做到每一类在脑中都至少有一道经典题想对应才行哦。开始

解答题了哦,先来一道最简单的。貌似的大多挺简单的。意义在只能说不大。这道题意义在什么呢?对于这道题在高考中出现的可能性我不做解释,于,提醒大家四个字,必须必须必须谨记的四个字:分类讨论!!!!!!!年高考的这道导数题,对分类讨论的考察尤为经典,很具参考性,类似的题目07下面年高考题中见了很多。10、09、08在) 分14本小题满分(22)(2≠0.b其中+1),x ln(b+x)=x(f设函数在定义域上的单调性;)x(f时,判断函数> b当)Ⅰ( 的极值点;)x(f(Ⅱ)求函数n(Ⅲ)证明对任意的正整数. 都成立ln( )不等式, ~ 有点鸡肋了..这道题我觉得重点在于前两问,最后一问这道题,太明显了对吧? 1 第三问其实就是直接看出来么?想想我之前关于压轴题思路的讲解,,看压轴问的形式这道题就出来了。x 为1/n 很明显的令利用第一问和第二问的结论,绝大多数压轴题都是这样的。当然这只是例子之一了,这也证明了我之前对压轴题的评述吧。重点来了。下面,下面,下面,你可以利用导数去证明这个不等式的正确性, ln X<= X--1 大家是否眼熟这个不等式呢?但我想说的是,这个小小的不等式,太有用了。多么漂亮的一这样简单的线性函数,X--1 将一个对数形式的函数转化为一个什么用?个式子!可以说,导数不等式证明中,见到自然对数,我第一个想的就会是这个不等式,看能否利用这个不等式将题目转化为特别容易做的一道

2020年高考数学压轴题系列训练含答案及解析详解4

第 1 页 共 16 页 第 1 页 共 2020年高考数学压轴题系列训练含答案及解析详解4 1.(本小题满分14分) 已知f(x)= 2 22 +-x a x (x ∈R)在区间[-1,1]上是增函数. (Ⅰ)求实数a 的值组成的集合A ; (Ⅱ)设关于x 的方程f(x)= x 1 的两个非零实根为x 1、x 2.试问:是否存在实数m ,使得不等式m 2+tm+1≥|x 1-x 2|对任意a ∈A 及t ∈[-1,1]恒成立?若存在,求m 的取值范 围;若不存在,请说明理由. 本小题主要考查函数的单调性,导数的应用和不等式等有关知识,考查数形结合及分类讨 论思想和灵活运用数学知识分析问题和解决问题的能力.满分14分. 解:(Ⅰ)f '(x)=222)2(224+-+x x ax = 2 22) 2() 2(2+---x ax x , ∵f(x)在[-1,1]上是增函数, ∴f '(x)≥0对x ∈[-1,1]恒成立, 即x 2-ax -2≤0对x ∈[-1,1]恒成立. ① 设?(x)=x 2-ax -2, 方法一: ?(1)=1-a -2≤0,

— 2 — ① ? ?-1≤a ≤1, ?(-1)=1+a -2≤0. ∵对x ∈[-1,1],f(x)是连续函数,且只有当a=1时,f '(-1)=0以及当a=-1时,f ' (1)=0 ∴A={a|-1≤a ≤1}. 方法二: 2a ≥0, 2 a <0, ①? 或 ?(-1)=1+a -2≤0 ?(1)=1-a -2≤0 ? 0≤a ≤1 或 -1≤a ≤0 ? -1≤a ≤1. ∵对x ∈[-1,1],f(x)是连续函数,且只有当a=1时,f '(-1)=0以及当a=-1时,f ' (1)=0 ∴A={a|-1≤a ≤1}. (Ⅱ)由 2 22 +-x a x =x 1,得x 2-ax -2=0, ∵△=a 2 +8>0 ∴x 1,x 2是方程x 2-ax -2=0的两非零实根, x 1+x 2=a ,

2019-2020年高考数学压轴题集锦——导数与其应用(五)

2019-2020 年高考数学压轴题集锦——导数及其应用(五) 46.已知函数f ( x)x2ax 4 ( aR)的两个零点为x1, x2 , 设 x1 x2. (Ⅰ)当 a0 时,证明:2x1 0. (Ⅱ)若函数g (x)x2| f ( x) |在区间 (, 2)和(2,) 上均单调递增,求 a 的取值范围. 47.设函数 f ( x)2 R ).x ax ln x (a (Ⅰ)若 a 1时,求函数 f (x)的单调区间; (Ⅱ)设函数 f ( x) 在[1 , ] 有两个零点,求实数 a 的取值范围. e e 48.已知函数 f ( x) ln( ax b) x ,g (x)x2ax ln x . (Ⅰ)若 b 1,F ( x) f ( x) g (x) ,问:是否存在这样的负实数 a ,使得 F ( x) 在x1处存在切线且该切线与直线y 1 x 1平行,若存在,求a的值;若不存在,请说明理 23 由. (Ⅱ)已知 a 0 ,若在定义域内恒有 f (x) ln( ax b) x 0 ,求 a(a b) 的最大值.

49.设函数 f ( x) x ln x b(x 1 )2(b R),曲线y f x在1,0处的切线与直线 2 y3x 平行.证明: (Ⅰ)函数 f ( x) 在 [1,) 上单调递增; (Ⅱ)当 0 x 1 时, f x1. 50.已知 f( x) =a( x-ln x)+2 x 1 , a∈ R. x 2(I )讨论 f( x)的单调性; (II )当 a=1 时,证明f( x)> f’( x) + 3 对于任意的x∈ [1,2] 恒成立。 2 2 51.已知函数f(x) =x +ax﹣ lnx, a∈ R. (1)若函数f(x)在 [1, 2]上是减函数,求实数 a 的取值范围; (2)令 g( x) =f( x)﹣ x2,是否存在实数a,当 x∈( 0, e] ( e 是自然常数)时,函数g (x)的最小值是 3,若存在,求出 a 的值;若不存在,说明理由; (3)当 x∈( 0, e]时,证明: e2x2-5 x> (x+1)ln x.2

高考数学压轴题系列训(共六套)(含答案及解析详解)

高考数学压轴题系列训练一(含答案及解析详解) 1.(12分)已知抛物线、椭圆和双曲线都经过点()1,2M ,它们在x 轴上有共同焦点,椭圆和双曲线的对称轴是坐标轴,抛物线的顶点为坐标原点. (Ⅰ)求这三条曲线的方程; (Ⅱ)已知动直线l 过点()3,0P ,交抛物线于,A B 两点,是否存在垂直于x 轴的直线l '被以AP 为直径的圆截得的弦长为定值?若存在,求出l '的方程;若不存在,说明理由. 解:(Ⅰ)设抛物线方程为()220y px p =>,将()1,2M 代入方程得2p = 24y x ∴= 抛物线方程为: ………………………………………………(1分) 由题意知椭圆、双曲线的焦点为()()211,0,1,0,F F -∴ c=1…………………(2分) 对于椭圆, 1222a MF MF =+ + ( 2 2 2222211321 a a b a c ∴=∴=+=+∴=-=+∴= 椭圆方程为:………………………………(4分) 对于双曲线,1222a MF MF '=- = 2222221321 a a b c a '∴=-'∴=-'''∴=-=∴= 双曲线方程为:………………………………(6分) (Ⅱ)设AP 的中点为C ,l '的方程为:x a =,以AP 为直径的圆交l '于,D E 两点,DE 中点为H 令()11113,,,22x y A x y +?? ∴ ?? ? C ………………………………………………(7分) ()111231 23 22 DC AP x CH a x a ∴= =+=-=-+

()()( )22 2 2 2 2111212 1132344-23246222 DH DC CH x y x a a x a a a DH DE DH l x ????∴=-= -+--+??? ?=-+==-+=∴=='= 当时,为定值; 此时的方程为: …………(12分) 2.(14分)已知正项数列{}n a 中,16a = ,点(n n A a 在抛物线21y x =+上;数列{}n b 中,点(),n n B n b 在过点()0,1,以方向向量为()1,2的直线上. (Ⅰ)求数列{}{},n n a b 的通项公式; (Ⅱ)若()()() n n a f n b ??=???, n 为奇数, n 为偶数,问是否存在k N ∈,使()()274f k f k +=成立,若存在,求出k 值;若不存在,说明理由; (Ⅲ)对任意正整数n , 不等式 1 120111111n n n a b b b +≤?? ???? +++ ? ???? ????? L 成立,求正数a 的 取值范围. 解:(Ⅰ)将点(n n A a 代入21y x =+中得 ()11111115:21,21 n n n n n n a a a a d a a n n l y x b n ++=+∴-==∴=+-?=+=+∴=+ 直线 …………………………………………(4分) (Ⅱ)()()()521n f n n ?+?=?+??, n 为奇数, n 为偶数………………………………(5分) ()()()()()()27274275421,42735 227145,2 4k k f k f k k k k k k k k k k ++=∴++=+∴=+∴++=+∴==Q 当为偶数时,为奇数, 当为奇数时,为偶数, 舍去综上,存在唯一的符合条件。 ……………………(8分) (Ⅲ)由 1 120111111n n n a b b b +- ≤?? ???? +++ ? ???? ????? L

2007——2014高考数学新课标卷(理)函数与导数压轴题汇总

2007——2014高考数学新课标卷(理)函数与导数综合大题 【2007新课标卷(海南宁夏卷)】 21.(本小题满分12分) 设函数2()ln()f x x a x =++ (I )若当1x =-时,()f x 取得极值,求a 的值,并讨论()f x 的单调性; (II )若()f x 存在极值,求a 的取值范围,并证明所有极值之和大于e ln 2 . 【解析】(Ⅰ)1()2f x x x a '= ++,依题意有(1)0f '-=,故32a =. 从而2231(21)(1) ()3322 x x x x f x x x ++++'==++. ()f x 的定义域为32?? -+ ??? ,∞,当312x -<<-时,()0f x '>; 当1 12 x -<<-时,()0f x '<; 当1 2 x >- 时,()0f x '>. 从而,()f x 分别在区间3 1122????---+ ? ?????,,, ∞单调增加,在区间112?? -- ??? ,单调减少. (Ⅱ)()f x 的定义域为()a -+,∞,2221 ()x ax f x x a ++'=+. 方程2 2210x ax ++=的判别式2 48a ?=-. (ⅰ)若0?< ,即a << ()f x 的定义域内()0f x '>,故()f x 的极值. (ⅱ)若0?= ,则a a = 若a = ()x ∈+ ,2 ()f x '= . 当x =时,()0f x '=,

当2 x ? ??∈-+ ? ????? ,∞时, ()0f x '>,所以()f x 无极值. 若a =)x ∈+,()0f x '= >,()f x 也无极值. (ⅲ)若0?>,即a > a <22210x ax ++=有两个不同的实根 1x = 2x = 当a <12x a x a <-<-,,从而()f x '有()f x 的定义域内没有零点, 故()f x 无极值. 当a > 1x a >-,2x a >-,()f x '在()f x 的定义域内有两个不同的零点, 由根值判别方法知()f x 在12x x x x ==,取得极值. 综上,()f x 存在极值时,a 的取值范围为)+. ()f x 的极值之和为 2221211221()()ln()ln()ln 11ln 2ln 22 e f x f x x a x x a x a +=+++++=+->-=. 【2008新课标卷(海南宁夏卷)】 21.(本小题满分12分) 设函数1 ()()f x ax a b x b =+ ∈+Z ,,曲线()y f x =在点(2(2))f ,处的切线方程为y =3. (Ⅰ)求()f x 的解析式: (Ⅱ)证明:函数()y f x =的图像是一个中心对称图形,并求其对称中心; (Ⅲ)证明:曲线()y f x =上任一点的切线与直线x =1和直线y =x 所围三角形的面积为定值,并求出此定值. 21.解:(Ⅰ)2 1 ()() f x a x b '=- +,

2018年高考数学压轴题小题

2018年高考数学压轴题小题 一.选择题(共6小题) 1.(2018?新课标Ⅱ)已知f(x)是定义域为(﹣∞,+∞)的奇函数,满足f(1﹣x)=f(1+x),若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)=() A.﹣50 B.0 C.2 D.50 2.(2018?新课标Ⅱ)已知F1,F2是椭圆C:=1(a>b>0)的左、右焦点,A是C的左顶点,点P在过A且斜率为的直线上,△PF1F2为等腰三角形,∠F1F2P=120°,则C的离心率为() A.B.C.D. 3.(2018?上海)设D是函数1的有限实数集,f(x)是定义在D上的函数,若f(x)的图象绕原点逆时针旋转后与原图象重合,则在以下各项中,f(1)的可能取值只能是() A. B.C.D.0 4.(2018?浙江)已知,,是平面向量,是单位向量.若非零向量与的夹角为,向量满足﹣4?+3=0,则|﹣|的最小值是() A.﹣1 B.+1 C.2 D.2﹣

5.(2018?浙江)已知四棱锥S﹣ABCD的底面是正方形,侧棱长均相等,E是线段AB上的点(不含端点).设SE与BC所成的角为θ1,SE与平面ABCD所成的角为θ2,二面角S﹣AB﹣C的平面角为θ3,则() A.θ1≤θ2≤θ3B.θ3≤θ2≤θ1C.θ1≤θ3≤θ2D.θ2≤θ3≤θ1 6.(2018?浙江)函数y=2|x|sin2x的图象可能是() A.B.C. D. 7.(2018?江苏)在平面直角坐标系xOy中,若双曲线﹣=1(a>0,b>0)的右焦点F(c,0)到一条渐近线的距离为c,则其离心率的值为.

8.(2018?江苏)若函数f(x)=2x3﹣ax2+1(a∈R)在(0,+∞)内有且只有一个零点,则f(x)在[﹣1,1]上的最大值与最小值的和为. 9.(2018?天津)已知a>0,函数f(x)=.若关于x的方程f(x)=ax恰有2个互异的实数解,则a的取值范围是. 10.(2018?北京)已知椭圆M:+=1(a>b>0),双曲线N:﹣=1.若双曲线N的两 条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,则椭圆M的离心率为;双曲线N的离心率为. 11.(2018?上海)已知实数x1、x2、y1、y2满足:x12+y12=1,x22+y22=1,x1x2+y1y2=,则+的最大值为. 12.(2018?上海)已知常数a>0,函数f(x)=的图象经过点P(p,),Q(q,).若2p+q=36pq,则a=.

相关主题