搜档网
当前位置:搜档网 › 三角函数的图像和性质题型归纳总结

三角函数的图像和性质题型归纳总结

三角函数的图像和性质题型归纳总结
三角函数的图像和性质题型归纳总结

三角函数的图像与性质题型归纳总结

题型归纳及思路提示

题型1 已知函数解析式确定函数性质

【思路提示】一般所给函数为y =A sin(ω x +φ)或y =A cos(ω x +φ),A>0,ω>0,要根

y =sin x ,y =cos x 的整体性质求解。 一、函数的奇偶性

例1 f (x )=sin ()x ?+(0≤?<π)是R 上的偶函数,则?等于( )

B .

4π C .2

π

D .π 【评注】由sin y x =是奇函数,cos y x =是偶函数可拓展得到关于三角函数奇偶性的重要结论:sin()();

y A x k k Z ??π=+=∈(1)若是奇函数,则

sin()+

();

2

y A x k k Z π

??π=+=∈(2)若是偶函数,则 cos()();

2

y A x k k Z π

??π=+=+

∈(3)若是奇函数,则

cos()();

y A x k k Z ??π=+=∈(4)若是偶函数,则

tan()().2k y A x k Z π

??=+=

∈(5)若是奇函数,则

.()sin ||a R f x x a a ∈=-变式1已知,函数为奇函数,则等于( )

B .1

C .1-

D .1

±

2.0()cos()()R f x x x R ???∈==+∈变式设,则“”是“为偶函数”的( )

A 充分不必要条件

B .必要不充分条

C .充要条件

D .无关条件

3.()sin()0()f x x f x ω?ω=+>变式设,其中,则是偶函数的充要条件是( )

A.(0)1f = B .(0)0f = C .'(0)1f = D .'(0)0

f =

2.()sin(2)()()2f x x x R f x π

=-∈例设,则是( )

A.π最小正周期为的奇函数 B .π最小正周期为的偶函数 C .2π

最小正周期为

的奇函数 D .2π

最小正周期为的偶函数

2()sin 1()()f x x x R f x =-∈变式1.若,则是( )

A.π最小正周期为的奇函数 B .π最小正周期为的偶函数 C .π最小正周期为2的奇函数 D .π最小正周期为2的偶函数

2.(0,)2π

π变式下列函数中,既在递增,又是以为周期的偶函数的是( )

A.cos 2y x = B .|sin 2|y x = C .|cos 2|y x = D .|sin |y x =

二、函数的周期性

3.sin(2)cos(2)66y x x ππ

=++例函数的最小正周期为( )

A.

2π B .4π

C .2π

D .π

【评注】关于三角函数周期的几个重要结论:

sin()b,cos()b,tan()b 22,,.||||||

y A x y A x y A x ω?ω?ω?πππ

ωωω=++=++=++(1)函数的周期分别为

|sin()|,|cos()|,|tan()|.||y A x y A x y A x πω?ω?ω?ω=+=+=+(2)函数的周期均为

2|sin()b |(b 0),|cos()b |(b 0).||y A x y A x π

ω?ω?ω=++≠=++≠(3)函数的周期均为

1.sin(2)cos(2)63y x x ππ

=+++变式函数的最小正周期和最大值分别为( )

A.,1π B

.π.2,1π D

.2π()sin (sin cos ),()f x x x x f x =-变式2.若则的最小正周期是________.

()sin 3|sin 3|()f x x x f x =+变式3.若则是( )

A.3

π

最小正周期为

的周期函数 B .23

π

最小正周期为

的周期函数 C .π最小正周期为2的周期函数 D .非周期函数

三、函数的单调性

.sin(2)([0,])6y x x π

π=-∈例4函数的递增区间是( )

A.[0,]3π B .7[,]1212ππ C .5[,]36ππ

D .5[,]6ππ

【评注】求三角函数的单调区间:

sin()(0,0)y A x A ω?ω=+>>若函数则

22()2

2

322()22

(3)sin()0,0sin()

sin()(4)cos()tan()k x k k Z k x k k Z y A x A y A x y A x y A x y A x π

π

πω?πππ

πω?πω?ωω?ω?ω?ω?-

≤+≤+

∈+≤+≤+∈=+><=---=--=+=+(1)函数的递增区间由决定;(2)函数的递减区间由决定;

若函数中,可将函数变为则的增区间为原函数的减区间,减区间为原函数的增区间;

对于函数和单调性的讨论同上。

31.sin ()[()44y x f x f x ππ

=+-变式函数在,]内单调递增,则可以是( )

A.1 B .cos x C .sin x D .cos x

-

()sin()(0)(42f x x ππ

ωωπω=+>变式2.若在,)上单调递增,则的取值范围是( )

A.15[,]24 B .13[,]24 C .1

(0,]2 D .(0,2]

3.()cos()cos()(0)

33

(1)()(2)(),[0,]()22

f x x x x f x f x x f x ππ

ωωωωππ

=+++->∈变式已知函数求的值域;若的最小正周期为,的单调递减区间.

四、函数的对称性(对称轴、对称中心)

.sin(2)3y x π

=+例5函数图象的对称轴方程可能是( )

A.6x π=- B .12x π=- C .6x π= D .12x π

=

【评注】关于三角函数对称性的几个重要结论:

sin (),(,0)();

2

cos (),(,0)();

2

tan (

,0)();2

2

sin()(),=

();

2

:y x x k k Z k k Z y x x k k Z k k Z k y x k Z k y A x b x k k Z x k Z x k π

πππ

πππ

π

π?

π

ω?ω?πω

ω?π==+

∈∈==∈+∈=∈+

-=+++=+∈∈+=(1)函数的对称轴为对称中心(2)函数的对称轴为对称中心(3)函数无对称轴,对称中心(4)函数的对称轴的求法:令得对称中心的求法令()=

(),(,)()cos()(),=();

22:()=(),(,)()

2k k k Z x k Z b k Z k y A x b x k k Z x k Z k k x k k Z x k Z b k Z π?

π?

ω

ω

π?

ω?ω?πω

πππ?π?πω?πωω

--∈∈∈-=+++=∈∈+-+-+=+∈∈∈得对称中心为;

(5)函数的对称轴的求法:令得对称中心的求法令得对称中心为1.sin()(0)()3y x f x π

ωωπ=+>变式已知函数的最小正周期为,则的图象( )

A.(,0)3π关于点对称 B .4x π

=关于直线对称

C .(,0)4π关于点对称

D .3x π

=关于直线对称

.sin()4y x π

=-变式2函数的图象的一个对称中心是( )

A.(,0)π- B .3(,0)4π- C .3(,0)4π D .(,0)2π 223.()sin cos .

55

x x

f x =+变式函数的图象中,相邻两条对称轴之间的距离是

__________.sin 0x x a a a =>变式4若函数y 的图象向右平移个单位()后的图象关于y 轴对称,则的最小值是( )

A.

76

π B .2π C .6π D .

五、三角函数性质的综合

【思路提示】三角函数的性质(奇偶性、周期性、单调性、对称性)中,对称性尤为重要;

121()()()()(2)22

4

(3)()()sin(),00()[,]f x y f x f x f x T T T

f x f x A x A f x ωωθθ???=>>()对称性奇偶性:若函数的图象关于轴对称,则是偶函数;若函数的图象关于原点对称,则是奇函数;

对称性周期性:相邻两条对称轴之间的距离为;相邻两个对称中心的距离为;

相邻的对称中心与对称轴之间的距离为;

对称性单调性:在相邻的对称轴之间,函数单调;

特殊的,若,函数在上单调12120[,]{||,}4

T

max θθθθθθ∈=≥,且设,则

。6.()sin 2cos 2,0,()(),6117(1)()0;(2)()();(3)()12105

2()[,]()63

(5)(,)().

f x a x b x ab f x f x R f f f f x f x k k k Z a b f x π

πππππ

ππ=+≠≤∈=<++∈例设若对任成立则

不具奇偶性;

(4)的单调递增区间是;

存在经过点的直线与函数的图象不相交.以上结论中正确的是__________________

7.()4cos()sin cos(2)(0)

6

3(1)()(2)()[,].22

f x x x x f x f x π

ωωωπωππ

ω=--+>-例已知函数求的值域;若在区间为增函数,求的最大值

21.()2sin (0),()[,].

43

f x x f x ππ

ωωω=>-

变式已知函数若在上递增,求的取值范围

8.()sin()(0),()()(,)=______.

36363

f x x f f πππππ

ωωω=+>=例若且在上有最小值无最大值,则

题型2 根据条件确定解析式

方向一:“知图求式”,即已知三角函数的部分图象,求函数解析式。 【思路提示】

由图象求得y =A sin(ω x +φ) (A >0,ω>0)的解析式一般不唯一,只有限定φ的取值范围,才能得到唯一解。依据五点法原理,点的序号与式子的关系是:第一点(即图象上升时与横轴的交点)为0x ω?+=,第二点(即图象最高点)为2

x π

ω?+=

,第三点(即图象

下降时与横轴的交点)为x ω?π+=,第四点(即图象最低点)为32

x π

ω?+=,第五点(即图象上升时与横轴的交点)为2.x ω?π+=。

.()sin(2)(,)(0)f x A x A R f ??=+∈=例9函数部分图象如下图所示,则( )

A.1

2-

B .1-

C .32-

D .3

1.()sin()(0,0)(0)________.

f x A x A f ω?ω=+>>=变式函数部分图象如下图所示,则

2

.()cos()()(0)________.

23f x A x f f πω?=+=-=变式2部分图象如下图所示,,则

.()sin()(0,0,||)()f x A x A f x ω?ω?π=+>><例10已知函数部分图象如下图所示,求的解析式。

变式1.已知)(cos )(2

?ω+=x x f (ω,?为常数),如果存在正整数ω和实数?使得函

数()f x 的图象如图所示(图象经过点(1,0)),求ω的值.

方向二:知性质(如奇偶性、单调性、对称性、最值)求函数解析式。

3.()sin()(0,0)R 4

]()2

f x x f x π

ω?ω?ππ

=+>≤<例11已知函数为上的偶函数,点(,0)是其一对称中心,且函数在[0,上单调,求函数的解析式。

.()4sin()(0,0)23

()f x x f x π

π

ω?ω?=+><<变式1已知函数图象的相邻两条对称轴的距离为,且经过点(0,2),求函数的解析式。

题型3:函数的值域(最值)

【思路提示】求三角函数的最值,通常要利用正、余弦函数的有界性,一般是通过三角变换化归为下列基本类型处理:

22222(1)sin ,sin [1,1];

(2)sin cos ),tan ;

(3)sin sin ,sin [1,1];cos sin (),sin [1,1];cos 2sin 2(),sin y a x b at b x t b

y a x b x c x c a

y a x b x c at bt c x t y a x b x c at bt a c x t y a x b x c at bt a c x ??=+=+=∈-=++=++==++=++=∈-=++=-+++=∈-=++=-+++

=22

[1,1];

1

(4)cos sin (sin cos )(),sin cos [21cos sin (sin cos )(),sin cos [2

sin sin (5)csin ccos t t y a x x b x x c a bt a c x x t t y a x x b x x c a bt a c x x t a x b a x b y y x d x d

∈--=+++=++++=∈-=+-+=+++-=∈++==++与根据正、余弦函数的有界性,既可用分析法求最值,也可

用不等sin cos x x 式法求最值,更可用数形结合法求最值,但都必须要注意、的范围。

12.()sin cos 11

.1 (122)

f x x x A B C D =--例函数的最小值是( )

.()sin cos()3

.[2,2].[.[1,1].[f x x x A B C D π

=-+--变式1函数的值域为( )

2.()sin cos []42

3.1

..12

f x x x x A B C D ππ

=+-+变式2函数在区间,上的最大值为( )

.()4sin()3sin()36

3.7.5.42

f x x x A B C D ππ

=++-例13函数的最大值为( )

22.()cos()2cos 32

x

f x x π=+

+变式1求函数的值域.

.()cos(2)2sin()sin()([,])344122

f x x x x x πππππ

=-++-∈-变式2求函数的值域.

2.()2cos 2sin 4cos f x x x x =+-例14求函数的最值.

2.()cos sin (||4

f x x x x π

=+≤

变式1求函数)的最小值.

253.()sin cos (0822

f x x a x a x π

=++-≤≤变式2求函数)的最大值.

2

变式3若有实数解,试确定的取值范围.

++=

x x a a

.sin cos0

2.cos sin 0(0,25

5.(,]

.(1,1].[1,1]

.(1,]

4

4

x x x a a A B C D π

-+=-∞----变式4若关于的方程在]上有解,则的取值范围是( )

2.cos sin 0(0,2

x x x a a π

-+≥变式5若关于的不等式在]上恒成立,求的取值范围.

sin 1

.()(0)sin ....x f x x x

A B C D π+=

<<例15对于函数,下列结论中正确的是( )有最大值无最小值有最小值无最大值有最大值和最小值

无最值

.2sin x

y x =

+变式1求函数的值域.

3.tan 2tan 4

2

x y x x π

π

<<

=变式2若

,求函数的最大值.

题型4:三角函数图象变换 【思路提示】

sin sin()(,0)y x y A x b A ω?ω==++>由函数的图象变换为函数的图象.

途径一:先平移变换再周期变换(伸缩变换)

1

sin

sin()sin()sin()sin()x y A b y x y x y x y A x y A x b ?ω

?ω?ω?ω?=??????→=+?????→=+?????→=+??????→=++变为原来的

向左平移个单位

变为原来的倍向上平移个单位;

途径二:先周期变换(伸缩变换)再平移变换。

1

sin sin sin()sin()sin().

x y A b y x x y x y A x y A x b b ?

ω

ω

ωω?ω?ω?ω?=?????→??????→=+?????→

=+??????→=++变为原来的

向左平移个单位

变为原来的倍向上平移个单位

平移口诀:左加右减,上加下减(不要管、、的正负,注意先弄清楚由谁平移到谁)。

例16.把函数y =cos2x +1的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移1个单位长度,得到的图像是( )

.y cos(2y sin 23

55..121255..66

2.()sin(),()cos(),()22

.().()y .()2

.x x A B C D f x x g x x f x A g x B g x C g x D g π

π

π

π

π

ππ

π

=+==+=-变式1为得到函数)的图象,只需将函数的图象( )

向左平移

个单位向右平移

个单位向左平移个单位

向右平移个单位

变式已知则的图象( )

与的图象相同与的图象关于轴对称是由的图象向左平移个单位得到的是由()2

x π

的图象向右平移

个单位得到的

2111

.()sin 2sin cos cos sin()(0),(,).

22262

(1);

1

(2)()()2()[0,]4

f x x x f x y

g x g x ππ????π?π

=+-+<<=例17函数求的值将的图象上各点的横坐标缩短为原来的,纵坐标不变,得到函数的图象,

求函数在上的最大值和最小值.

变式1.已知向量(

)()=sin ,1,=cos ,cos 2>02A m x n x x A ?

??

u r r ,函数()=f x m n u r u u r g 的最大

值为6,(1)求A (2)将函数()=y f x 的图像向左平移12

π

个单位,再将所得图像上各点的横坐标缩短为原来的

12倍,纵坐标不变,得到函数()=y g x 的图像,求()g x 在50,24π??????

上的值域.

三角函数知识点及题型归纳

三角函数高考题型分类总结 一.求值 1.若4sin ,tan 05 θθ=->,则cos θ= . 2.α是第三象限角,2 1)sin(= -πα,则αcos = )25cos(απ+= 3.若角α的终边经过点(12)P -,,则αcos = tan 2α= 4.下列各式中,值为 2 3 的是 ( ) (A )2sin15cos15?? (B )?-?15sin 15cos 22(C )115sin 22-?(D )?+?15cos 15sin 22 5.若02,sin 3cos απαα≤≤> ,则α的取值范围是: ( ) (A),32ππ?? ??? (B),3ππ?? ??? (C)4,33ππ?? ??? (D)3,32 ππ ?? ??? 二.最值 1.函数()sin cos f x x x =最小值是 。 2.若函数()(13tan )cos f x x x =+,02 x π ≤< ,则()f x 的最大值为 3.函数()cos 22sin f x x x =+的最小值为 最大值为 。 4.已知函数()2sin (0)f x x ωω=>在区间,34ππ?? - ??? ?上的最小值是2-,则ω的最小值等于 5.设02x π?? ∈ ??? ,,则函数22sin 1sin 2x y x +=的最小值为 . 6.将函数x x y cos 3sin -=的图像向右平移了n 个单位,所得图像关于y 轴对称,则n 的最小正值是 A . 6π7 B .3π C .6π D .2 π 7.若动直线x a =与函数()sin f x x =和()cos g x x =的图像分别交于M N ,两点,则MN 的最大值为( ) A .1 B .2 C .3 D .2 8.函数2 ()sin 3sin cos f x x x x =+在区间,42ππ?? ? ??? 上的最大值是 ( ) A.1 B. 13 2 + C. 3 2 D.1+3 三.单调性 1.函数]),0[()26 sin(2ππ ∈-=x x y 为增函数的区间是 ( ).

三角函数图像与性质知识点总结和经典题型

三角函数图像与性质经典题型 题型1:三角函数的图象 例1.(2000全国,5)函数y =-xc os x 的部分图象是( ) 解析:因为函数y =-xc os x 是奇函数,它的图象关于原点对称,所 以排除A 、C ,当x ∈(0, 2 π )时,y =-xc os x <0。 题型2:三角函数图象的变换 例2.试述如何由y =31sin (2x +3 π )的图象得到y =sin x 的图象。 解析:y =31sin (2x +3π))(纵坐标不变倍 横坐标扩大为原来的3 πsin 312+=?????????→?x y x y sin 313 π =????????→?纵坐标不变个单位图象向右平移 x y sin 3=?????????→?横坐标不变 倍 纵坐标扩大到原来的 例3.(2003上海春,15)把曲线yc os x +2y -1=0先沿x 轴向右平移 2 π 个单位,再沿y 轴向下平移1个单位,得到的曲 线方程是( )A .(1-y )sin x +2y -3=0B .(y -1)sin x +2y -3=0C .(y +1)sin x +2y +1=0 D .-(y +1)sin x +2y +1=0 解析:将原方程整理为:y = x cos 21+,因为要将原曲线向右、向下分别移动2π 个单位和1个单位,因此可得 y = ) 2 cos(21π -+x -1为所求方程.整理得(y +1)sin x +2y +1=0. 题型3:三角函数图象的应用 例4.(2003上海春,18)已知函数f (x )=A sin (ωx +?)(A >0,ω>0,x ∈R )在一个周期内的图象如图所示,求直线 y =3与函数f (x )图象的所有交点的坐标。 解析:根据图象得A =2,T = 27π-(-2π)=4π,∴ω=21,∴y =2sin (2 x +?),又由图象可得相位移为-2π,∴-2 1? = - 2 π,∴?= 4π.即y =2sin (21x +4π)。根据条件3=2sin (4 21π+x ),∴421π+x =2k π+ 3π(k ∈Z )或 4 21π+x =2k π+32 π(k ∈Z ),∴x =4k π+ 6 π (k ∈Z )或x =4k π+ 65π(k ∈Z )。∴所有交点坐标为(4k π+3,6 π)或(4k π+3,65π )(k ∈Z )。点评:本题主要考查三角函数的基本知识,考查逻辑思维能力、分析和解决问题的能力。 题型4:三角函数的定义域、值域 例5.(1)已知f (x )的定义域为[0,1],求f (c os x )的定义域;(2)求函数y =lgsin (c os x )的定义域; 分析:求函数的定义域:(1)要使0≤c os x ≤1,(2)要使sin (c os x )>0,这里的c os x 以它的值充当角。 解析:(1)0≤c os x <1?2k π- 2π≤x ≤2k π+2π,且x ≠2k π(k ∈Z )∴所求函数的定义域为{x |x ∈[2k π-2 π ,2 k

三角函数的图像与性质

三角函数的图像与性质 1.三角函数中的值域及最值问题 a .正弦(余弦、正切)型函数在给定区间上的最值问题 (1)(经典题,5分)函数f (x )=sin ????2x -π4在区间????0,π 2上的最小值为( ) A .-1 B .- 22 C.22 D .0 答案:B 解析:∵x ∈????0,π2,∴-π4≤2x -π4≤3π 4,∴函数f (x )=sin ????2x -π4在区间????0,π2上先增后减.∵f (0)=sin ????-π4=-22, f ????π2=sin ????3π4=2 2, f (0)

三角函数图像与性质知识点总结

三角函数图像与性质知识 点总结 The Standardization Office was revised on the afternoon of December 13, 2020

函数图像与性质知识点总结 一、三角函数图象的性质 1.“五点法”描图 (1)y =sin x 的图象在[0,2π]上的五个关键点的坐标为 (0,0) ? ?? ?? ?π2,1 (π,0) ? ?? ??? 32π,-1 (2π,0) (2)y =cos x 的图象在[0,2π]上的五个关键点的坐标为 (0,1),? ?????π2,0,(π,-1),? ???? ? 3π2,0,(2π,1) 2.三角函数的图象和性质 函数 性质 y =sin x y =cos x y =tan x 定义域 R R {x |x ≠k π+π 2 ,k ∈Z} 图象 值域 [-1,1] [-1,1] R 对称性 对称轴: x =k π+ π2(k ∈Z); 对称轴: x =k π(k ∈Z) 对称中心: 对称中心:? ?? ?? ?k π2,0 (k ∈Z)

3.一般地对于函数(),如果存在一个非零的常数,使得当取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数,非零常数T 叫做这个函数的周期,把所有周期中存在的最小正数,叫做最小正周期(函数的周期一般指最小正周期) 4.求三角函数值域(最值)的方法: (1)利用sin x、cos x的有界性; 关于正、余弦函数的有界性 由于正余弦函数的值域都是[-1,1],因此对于?x∈R,恒有-1≤sin x≤1,-1≤cos x≤1,所以1叫做y=sin x,y=cos x的上确界,-1叫做y=sin x,y=cos x的下确界.

高一三角函数题型总结

1.已知角范围和其中一个角的三角函数值求任意角三角函数值 方法:①画直角三角形 ②利用勾股定理先算大小后看正负 例题:1.已知α∠为第二象限角,13 5 sin =α求αcos 、αtan 、αcot 的值 2.已知α∠为第四象限角,3tan -=α求αcos 、αsin 、αcot 的值 2. 2. 3. 4.利用“加减πk 2”大角化小角,负角化正角,求三角函数值 例题:求值:sin(-236π)+cos 137π·tan4π -cos 133 π= ;

1.已知sin α=4 5 ,且α为第二象限角,那么tan α的值等于 ( ) (A)3 4 (B)43 - (C)43 (D)4 3 - 2.已知sin αcos α=8 1,且4π<α<2π ,则cos α-sin α的值为 ( ) 33 (D)± 3 3.) 4. ) 5.) * 6.)

三角函数诱导公式 诱导公式可概括为把 απ ±?k 2 的三角函数值转化成角α的三角函数值。(k 指奇数或者偶数, α相当锐角) 口诀“奇变偶不变,符号看象限。”其中奇偶是指2 π 的奇数倍还是偶数倍,变与不变指函数名称的变化。 公式一:=+)2sin(απk =+)2c o s (απk =+)2t a n (απk

三角函数诱导公式练习题 1.若(),2,5 3 cos παππα<≤= +则()πα2sin --的值是 ( ) A . 53 B . 53- C . 54 D . 5 4 - 2.sin (-6 π 19)的值是( ) A 3 6 )= . 10.α是第四象限角,,则αsin 等于________. 13 12 cos =α

三角函数的图像与性质练习题

. 三角函数的图像与性质练习题 正弦函数、余弦函数的图象 A组 1.下列函数图象相同的是() A. y= sin x 与 y=sin(x+ π) B.y= cos x 与 y= sin - C.y= sin x 与 y=sin( -x) D.y=- sin(2π+x )与 y= sin x 解析 :由诱导公式易知 y= sin- = cos x,故选 B . 答案 :B 2.y= 1+ sin x,x∈[0,2π]的图象与直线y= 2 交点的个数是 () A.0 B.1 C.2 D.3 解析 :作出 y= 1+ sin x 在 [0,2 π]上的图象 ,可知只有一个交点. 答案 :B 3.函数y= sin(-x),x∈[0,2π]的简图是() 解析 :y=sin( -x)=- sin x,x∈ [0,2 π]的图象可看作是由y= sin x,x∈ [0,2 π]的图象关于 x 轴对称得到的 ,故选B. 答案 :B 4.已知cos x=- ,且x∈[0,2π],则角x等于() A. 或 B.或 C.或 D.或 解析 :如图 :

由图象可知 ,x=或. 答案 :A 5.当x∈[0,2π]时,满足sin-≥ -的x的取值范围是() A. B. C. D. 解析 :由 sin -≥ - ,得cos x≥ - . 画出 y=cos x,x∈ [0,2 π],y=- 的图象 ,如图所示 . ∵cos = cos =- ,∴当 x∈ [0,2 π]时 ,由 cos x≥- ,可得 x∈. 答案 :C 6.函数y= 2sin x与函数y=x图象的交点有个. 解析 :在同一坐标系中作出函数 y= 2sin x与 y=x 的图象可见有3个交点. 答案 :3 7.利用余弦曲线,写出满足cos x>0,x∈ [0,2 π]的 x 的区间是. 解析 :画出 y= cos x,x∈ [0,2 π]上的图象如图所示 . cos x>0 的区间为 答案 : 8.下列函数的图象:①y= sin x-1;② y=| sin x|;③y=- cos x;④ y=;⑤y=-.其中与函数y= sin x 图象形状完全相同的是.(填序号 )

三角函数题型学霸总结(含答案)-

三角函数题型学霸总结(含答案) 阳光老师:祝你学业有成 一、选择题(本大题共30小题,共150.0分) 1.点在函数的图象上,则m等于 A. 0 B. 1 C. D. 2 【答案】C 【解析】 【分析】本题主要考查了正弦函数的性质,属于基础题由题意知,求得m 的值. 【解答】解:由题意知, 所以, 所以. 2.用五点法画,的图象时,下列哪个点不是关键点 A. B. C. D. 【答案】A 【解析】 【分析】 本题考查三角函数图象的作法,属于基础题. 熟练掌握五点法作图即可. 【解答】 解:用“五点法”画,的简图时, 横坐标分别为, 纵坐标分别为0,1,0,,0, 故选A. 3.函数y x,x的大致图象是

A. B. C. D. 【答案】B 【解析】 【分析】 本题主要考查三角函数的图像,属于基础题利用“五点法”画出函数图像即可得出答案. 【解答】 解:“五点法”作图: x0 0100 10121 故选B. 4.用“五点法”作出函数的图象,下列点中不属于五点作图中的五个关 键点的是 A. B. C. D. 【答案】A 【解析】 【分析】 本题考查三角函数图象的画法以及余弦函数的性质,属于基础题. 分别令,,,,得,3,4,3,2,即可得到五点,再对照选项,即可得到答案. 【解答】 解:,分别令,,,,得,3,4,3,2,

所以五个关键点为,,,,, 可知A不属于. 故选A. 5.已知函数的图象与直线 恰有四个公共点,,,,其中,则 A. B. 0 C. 1 D. 【答案】A 【解析】 【分析】 本题考查了三角函数图象的作法及利用导数求函数图象的切线方程,属于较难题. 由三角函数图象及利用导数求函数图象的切线方程可得:切点坐标为,切线方程为:,又切线过点,则,即,得解. 【解答】 解:由 得 其图象如图所示,

三角函数图象和性质(总结的很全面_不看后悔)

三角函数专题辅导 课程安排 制作者:程国辉

专题辅导一 三角函数的基本性质及解题思路 课时:4-5学时 学习目标: 1. 掌握常用公式的变换。 2. 明确一般三角函数化简求值的思路。 第一部分 三角函数公式 1、两角和与差的三角函数: cos(α+β)=cos α·cos β-sin α·sin β cos(α-β)=cos α·cos β+sin α·sin β sin(α±β)=sin α·cos β±cos α·sin β tan(α+β)=(tan α+tan β)/(1-tan α·tan β) tan(α-β)=(tan α-tan β)/(1+tan α·tan β 2、倍角公式: sin(2α)=2sin α·cos α=2/(tan α+cot α) cos(2α)=(cos α)^2-(sin α)^2=2(cos α)^2-1=1-2(sin α)^2 tan(2α)=2tan α/(1-tan^2α) cot(2α)=(cot^2α-1)/(2cot α) 3、两角和与差的正弦、余弦、正切公式及倍角公式: ()sin sin cos cos sin sin 22sin cos 令αβ αβαβαβααα=±=±???→= ()()2222222cos cos cos sin sin cos 2cos sin 2cos 112sin tan tan 1+cos2tan cos 1tan tan 2 1cos2sin 2 2tan tan 21tan 令 = = αβαβαβαβααα αααβα αβααβα αα αα=±=???→=-↓=-=-±±=?-↓= - 4、同角三角函数的基本关系式: (1)平方关系:2 2 2 2 2 2 sin cos 1,1tan sec ,1cot csc αααααα+=+=+= (2)倒数关系:sin αcsc α=1,cos αsec α=1,tan αcot α=1, (3)商数关系:sin cos tan ,cot cos sin αα αααα = =

高一三角函数题型总结

1.已知角围和其中一个角的三角函数值求任意角三角函数值 方法:?画直角三角形 ?利用勾股定理先算大小后看正负 例题:1.已知α∠为第二象限角,13 5 sin =α求αcos 、αtan 、αcot 的值 2.已知α∠为第四象限角,3tan -=α求αcos 、αsin 、αcot 的值 2.一个式子如果满足关于αsin 和αcos 的?分式 ?齐次式 可以实现αtan 之间的转化 例题:1.已知sin 2cos 5,tan 3sin 5cos αα ααα-=-+那么的值为_____________. 2.已知2tan =α,则1.α αα αcos sin cos sin -+=_____________. 2. α αα α2 2cos sin cos sin -=_____________. 3.1cos sin +αα=_____________.(“1”的代换) 3.已知三角函数αsin 和αcos 的和或差的形式求αsin .αcos 方法:等式两边完全平方(注意三角函数中判断正负利用角的围进行取舍) 例题:已知πα<∠<0,αsin +αcos =2 1 ,求?αsin .αcos ?αcos -αsin 4.利用“加减πk 2”大角化小角,负角化正角,求三角函数值 例题:求值:sin(-23 6π)+cos 137π·tan4π -cos 133 π= ;

1.已知sin α=4 5 ,且α为第二象限角,那么tan α的值等于 ( ) (A)3 4 (B)43 - (C)4 3 (D)4 3- 2.已知sin αcos α=8 1,且4π<α<2π ,则cos α-sin α的值为 ( ) (A)2 3 (B)4 3 (C) (D)± 2 3 3.设是第二象限角,则 sin cos αα ( ) (A) 1 (B)tan 2α (C) - tan 2α (D) 1- 4.若tan θ= 3 1,π<θ<3 2π,则sin θ·cos θ的值为 ( ) (A)±3 10 (B) 3 10 5.已知 sin cos 2sin 3cos αααα-+=5 1 ,则tan α的值是 ( ) (A)±83 (B)83 (C)83 - (D)无法确定 * 6.若α是三角形的一个角,且sin α+cos α= 3 2 ,则三角形为 ( ) (A)钝角三角形 (B)锐角三角形 (C)直角三角形 (D)等腰三角形

三角函数图像与性质知识点总结和经典题型

函数图像及性质知识点总结和经典题型 1.正弦函数、余弦函数、正切函数的图像 2.三角函数的单调区间: 求三角函数的单调区间:一般先将函数式化为基本三角函数的标准式,要特别注意A 、ω的正负利用单调性三角函数大小一般要化为同名函数,并且在同一单调区间; x y sin =的递增区间是)(Z k ∈,递减区间是)(Z k ∈; x y cos =的递增区间是[]πππk k 22, -)(Z k ∈,递减区间是[]πππ+k k 22,)(Z k ∈, x y tan =的递增区间是)(Z k ∈, 3.对称轴及对称中心: sin y x =的对称轴为2x k ππ=+,对称中心为(,0) k k Z π∈; cos y x =的对称轴为x k π=,对称中心为2(,0)k ππ+; tan y x =无对称轴,对称中心为k 2 (,0)π ; 对于sin()y A x ωφ=+和cos()y A x ωφ=+来说,对称中心及零点相联系,对称轴及最值点联系。 4.函数B x A y ++=)sin(?ω),(其中00>>ωA

最大值是B A +,最小值是A B -,周期是,频率是,相位是?ω+x ,初 相是?;其图象的对称轴是直线)(2 Z k k x ∈+ =+π π?ω,凡是该图象及直线 B y =的交点都是该图象的对称中心。 y =A sin(ωx +φ)+B 的图象求其解析式的问题,主要从以下四个方面来考虑: ①A 的确定:根据图象的最高点和最低点,即A =最高点-最低点 2 ; ②B 的确定:根据图象的最高点和最低点,即B =最高点+最低点 2 ; ③ω的确定:结合图象,先求出周期,然后由T =2π ω (ω>0)来确定ω; ④φ的确定:把图像上的点的坐标带入解析式y =A sin(ωx +φ)+B ,然后根据φ的范围确定 φ即可,例如由函数y =A sin(ωx +φ)+K 最开始及x 轴的交点(最靠近原点)的横坐标为-φ ω (即 令ωx +φ=0,x =-φ ω )确定φ. 5.三角函数的伸缩变化 先平移后伸缩 sin y x =的图象???0)或向右(0) 平移个单位长度 得sin()y x ?=+的图象() ωωω ?????????→横坐标伸长(0<<1)或缩短(>1) 1 到原来的纵坐标不变 得sin()y x ω?=+的图象()A A A >?????????→纵坐标伸长(1)或缩短(0<<1) 为原来的倍横坐标不变 得sin()y A x ω?=+的图象(0)(0) k k k ><?????????→横坐标伸长或缩短到原来的纵坐标不变 得sin()y A x ω=的图象 (0)(0)???ω >

(推荐)高一三角函数题型总结

题型总结 1.已知角范围和其中一个角的三角函数值求任意角三角函数值 方法:画直角三角形 利用勾股定理先算大小后看正负 例题:1.已知α∠为第二象限角,13 5 sin =α求αcos 、αtan 、αcot 的值 2.已知α∠为第四象限角,3tan -=α求αcos 、αsin 、αcot 的值 2.一个式子如果满足关于αsin 和αcos 的分式 齐次式 可以实现αtan 之间的转化 例题:1.已知 sin 2cos 5,tan 3sin 5cos ααααα -=-+那么的值为_____________. 2.已知2tan =α,则1.α αα αcos sin cos sin -+=_____________. 2.α αα α22cos sin cos sin -=_____________. 3.1cos sin +αα=_____________.(“1”的代换)

3.已知三角函数αsin 和αcos 的和或差的形式求αsin .αcos 方法:等式两边完全平方(注意三角函数中判断正负利用角的范围进行取舍) 例题:已知πα<∠<0,αsin +αcos =2 1 ,求αsin .αcos αcos -αsin 4.利用“加减πk 2”大角化小角,负角化正角,求三角函数值 例题:求值:sin(-236π)+cos 137π·tan4π -cos 13 3 π= ; 练习题 1.已知sin α=4 5 ,且α为第二象限角,那么tan α的值等于 ( ) (A)3 4 (B)43 - (C)43 (D)4 3 - 2.已知sin αcos α= 8 1,且4π<α< 2π ,则cos α-sin α的值为 ( ) (A) 2 3 (B)4 3 (C)3 (D)± 2 3

必修4三角函数的图像和性质专题练习

三角函数图像及性质练习题 1.已知4k <-,则函数cos 2(cos 1)y x k x =+-的最小值是( ) A.1 B.1- C.21k + D.21k -+ 2.已知f (x )的图象关于y 轴对称,且它在[0,+∞)上是减函数,若f (lg x )>f (1),则x 的取值范围是( ) A.( 10 1 ,1) B.(0, 101)∪(1,+∞) C.( 10 1,10) D.(0,1)∪(10,+∞) 3.定义在R 上的函数f (x )既是偶函数又是周期函数.若f (x )的最小正周期是π,且当x ∈[0,2π ] 时,f (x )=sin x ,则f ( 3 π 5)的值为( ) A.- 21 B.2 1 C.-23 D.23 4.定义在R 上的函数f (x )满足f (x )=f (x +2),当x ∈[3,5]时,f (x )=2-|x -4|,则( ) A.f (sin 6π)<f (cos 6π ) B.f (sin1)>f (cos1) C.f (cos 3π2)<f (sin 3 π2) D.f (cos2)>f (sin2) 5.关于函数f (x )=sin 2x -( 32)|x |+21 ,有下面四个结论,其中正确结论的个数为 ( ) . ①()f x 是奇函数 ②当x >2003时,1 ()2 f x > 恒成立 ③()f x 的最大值是23 ④f (x )的最小值是12- A.1 B.2 C.3 D.4 6.使)tan lg(cos θθ?有意义的角θ是( ) A.第一象限的角 B.第二象限的角 C.第一、二象限的角 D.第一、二象限或y 轴的非负半轴上的角 7 函数lg(2cos y x =的单调递增区间为 ( ) . A .(2,22)()k k k Z ππππ++∈ B .11 (2,2)()6 k k k Z ππππ++ ∈ C .(2,2)()6 k k k Z π ππ- ∈ D .(2,2)()6 k k k Z π ππ+∈ 8.已知函数()sin()(0,)f x x x R ωφω=+>∈,对定义域内任意的x ,都满足条件(6)()f x f x +=,若 sin(3),sin(3)A x B x ωφωωφω=++=+-,则有 ( ) . A. A>B B. A=B C.A

三角函数的图像与性质题型归纳总结

三角函数的图像与性质题型归纳总结 题型归纳及思路提示 题型1 已知函数解析式确定函数性质 【思路提示】一般所给函数为y =A sin(ωx +φ)或y =A cos(ωx +φ),A>0,ω>0,要根据 y =sin x ,y =cos x 的整体性质求解。 一、函数的奇偶性 例1 f (x )=sin ()x ?+(0≤?<π)是R 上的偶函数,则?等于( ) A.0 B . 4πC .2 π D .π 【评注】由sin y x =是奇函数,cos y x =是偶函数可拓展得到关于三角函数奇偶性的重要结论:sin()(); y A x k k Z ??π=+=∈(1)若是奇函数,则 sin()+ (); 2 y A x k k Z π ??π=+=∈(2)若是偶函数,则 cos()(); 2 y A x k k Z π ??π=+=+ ∈(3)若是奇函数,则 cos()(); y A x k k Z ??π=+=∈(4)若是偶函数,则 tan()().2k y A x k Z π ??=+= ∈(5)若是奇函数,则 .()sin ||a R f x x a a ∈=-变式1已知,函数为奇函数,则等于( ) A.0 B .1 C .1-D .1 ± 2.0()cos()()R f x x x R ???∈==+∈变式设,则“”是“为偶函数”的( ) A 充分不必要条件 B .必要不充分条 C .充要条件 D .无关条件 3.()sin()0()f x x f x ω?ω=+>变式设,其中,则是偶函数的充要条件是( ) A.(0)1f =B .(0)0f =C .'(0)1f =D .'(0)0 f = 2.()sin(2)()()2f x x x R f x π =-∈例设,则是( ) A.π最小正周期为的奇函数B .π最小正周期为的偶函数 C .2π 最小正周期为 的奇函数D .2π 最小正周期为的偶函数 2()sin 1()()f x x x R f x =-∈变式1.若,则是( ) A.π最小正周期为的奇函数 B .π最小正周期为的偶函数 C .π最小正周期为2的奇函数D .π最小正周期为2的偶函数

三角函数所有公式及基本性质

三角函数所有公式及基本性质整理

————————————————————————————————作者:————————————————————————————————日期: 2

一、任意角的三角比 (一)诱导公式 ααπsin )2sin(=+k ααπcos )2cos(=+k ααπtg k tg =+)2( ααπctg k ctg =+)2( ααsin )sin(-=- ααcos )cos(=- ααtg tg -=-)( ααctg ctg -=-)( ααπsin )sin(-=+ ααπcos )cos(-=+ ααπtg tg =+)( ααπctg ctg =+)( ααπsin )sin(=- ααπcos )cos(-=- ααπtg tg -=-)( ααπctg ctg -=-)( ααπsin )2sin(-=- ααπcos )2cos(=- ααπtg tg -=-)2( ααπctg ctg -=-)2( ααπ cos )2 sin( =- ααπ sin )2 cos(=- ααπ ctg tg =-)2 ( ααπ tg ctg =-)2 ( ααπ cos )2sin( =+ ααπsin )2cos(-=+ ααπctg tg -=+)2( ααπ tg ctg -=+)2( ααπcos )23sin( -=- ααπsin )23cos(-=- ααπctg tg =-)23( ααπ tg ctg =-)23( ααπcos )2 3sin( -=+ ααπsin )23cos(=+ ααπctg tg -=+)23( ααπ tg ctg -=+)2 3( (二)关系结构图 (三)三角比符号 αsin α sec α tg α ctg αcos α csc 1 + + _ _ cos α&sec α sin α&csc α + + _ _ + + _ _ tg α&ctg α

三角函数总结经典例题

第三章 三角函数 3.1任意角三角函数 一、知识导学 1.角:角可以看成由一条射线绕着端点从一个位置旋转到另一个位置所形成的几何图形.角的三要素是:顶点、始边、终边.角可以任意大小,按旋转的方向分类有正角、负角、零角. 2.弧度制:任一已知角α的弧度数的绝对值r l = α,其中l 是以α作为圆心角时所对圆弧的长,r 为圆的半径.规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零.用“弧度”做单位来度量角的制度叫做弧度制. 3.弧度与角度的换算:rad π2360=ο ;rad 1745.01801≈=π ο ;1ο ο 30.57180≈?? ? ??=πrad .用弧度为单位表示角的 大小时,弧度(rad )可以省略不写.度()ο 不可省略. 4.弧长公式、扇形面积公式:,r l α= 2||2 1 21r lr S α= =扇形,其中l 为弧长,r 为圆的半径.圆的周长、面积公式是弧长公式和扇形面积公式中当πα2=时的情形. 5.任意角的三角函数定义:设α是一个任意大小的角,角α终边上任意一点P 的坐标是()y x ,,它与原点的距离是 )0(>r r ,那么角α的正弦、余弦、正切、余切、正割、余割分别是 y r x r y x x y r x r y ====== ααααααcsc ,sec ,cot ,tan ,cos ,sin .这六个函数统称为三角函数. 三角函数 定义域 x y sin = R x y cos = R x y tan = ? ?????∈+≠Z k k x x ,2π π x y cot = {}Z k k x x ∈≠,π x y sec = ? ?????∈+≠Z k k x x ,2π π x y csc = {}Z k k x x ∈≠,π 7.三角函数值的符号:各三角函数值在第个象限的符号如图所示(各象限注明的函数为正,其余为负值) 可以简记为“一全、二正、三切、四余”为正. 二、疑难知识导析

三角函数的图像与性质知识点及题型归纳总结

三角函数的图像与性质知识点及题型归纳总结 知识点讲解 1.“五点法”作图原理 在确定正弦函数])2,0[(sin π∈=x x y 的图像时,起关键作用的5个点是 )0,2(),1,2 3(),0,(),1,2(),0,0(ππ ππ-. 在确定余弦函数])2,0[(cos π∈=x x y 的图像时,起关键作用的5个点是 )1,2(),0,2 3(),1,(),0,2(),1,0(ππ ππ-. 2.

3.)sin(?+=wx A y 与)0,0)(cos(>>+=w A wx A y ?的图像与性质 (1)最小正周期:w T π2= . (2)定义域与值域:)sin(?+=wx A y ,)?+=wx A y cos(的定义域为R ,值域为[-A ,A ]. (3)最值 假设00>>w A ,. ①对于)sin(?+=wx A y , ?? ???-∈+-=+∈+=+; )(22;)Z (22A Z k k wx A k k wx 时,函数取得最小值当时,函数取得最大值当ππ ?ππ? ②对于)?+=wx A y cos(, ? ? ?-∈+=+∈=+;)(2;)Z (2A Z k k wx A k k wx 时,函数取得最小值当时,函数取得最大值 当ππ?π? (4)对称轴与对称中心. 假设00>>w A ,. ①对于)sin(?+=wx A y ,

? ????? ? +==+∈=+=+=±=+∈+=+).0,()sin(0)sin()()sin(1)sin()(2 000000x wx y wx Z k k wx x x wx y wx Z k k wx 的对称中心为 时,,即当的对称轴为时,,即当??π???ππ? ②对于)?+=wx A y cos(, ??? ?? ? ?+==+∈+=+=+=±=+∈=+).0,()cos(0)cos()(2)cos(1 )cos()(0000 00x wx y wx Z k k wx x x wx y wx Z k k wx 的对称中心为时,,即当的对称轴为时,,即当??ππ???π? 正、余弦曲线的对称轴是相应函数取最大(小)值的位置.正、余弦的对称中心是相应函数与x 轴交点的位置. (5)单调性. 假设00>>w A ,. ①对于)sin(?+=wx A y , ?? ??? ?∈++∈+?∈++-∈+. )](223,22[)](22,22[减区间增区间;Z k k k wx Z k k k wx ππππ?ππππ? ②对于)?+=wx A y cos(, ? ? ??∈+∈+?∈+-∈+.)](2,2[)](2,2[减区间增区间; Z k k k wx Z k k k wx πππ?πππ? (6)平移与伸缩 由函数x y sin =的图像变换为函数3)3 2sin(2++=π x y 的图像的步骤; 方法一:)3 22 (π π + →+ →x x x .先相位变换,后周期变换,再振幅变换,不妨采用谐音记忆:我们“想 欺负”(相一期一幅)三角函数图像,使之变形. ?????→?=个单位 向左平移的图像3 sin π x y 的图像)3 sin(π + =x y 12 ????????→所有点的横坐标变为原来的 纵坐标不变 的图像)3 2sin(π + =x y 2?????????→所有点的纵坐标变为原来的倍 横坐标不变 的图像)3 2sin(2π +=x y ?????→?个单位 向上平移33)3 2sin(2++=πx y 方法二:)3 22(π π+→+→x x x .先周期变换,后相位变换,再振幅变换. 的图像x y sin =1 2 ????????→所有点的横坐标变为原来的 纵坐标不变 ?????→?=个单位 向左平移的图像6 2sin π x y

三角函数的图象与性质练习题及答案

三角函数的图象与性质练习题 一、选择题 1.函数f (x )=sin x cos x 的最小值是 ( ) A .-1 B .-12 C.12 D .1 2.如果函数y =3cos(2x +φ)的图象关于点? ?? ?? 4π3,0中心对称,那么|φ|的最小值为 ( ) A.π6 B.π4 C.π3 D.π2 3.已知函数y =sin πx 3在区间[0,t ]上至少取得2次最大值,则正整数t 的最小值是 ( ) A .6 B .7 C .8 D .9 4.已知在函数f (x )=3sin πx R 图象上,相邻的一个最大值点与一个最小值点恰好在x 2+y 2=R 2上,则f (x ) 的最小正周期为 ( ) A .1 B .2 C .3 D .4 5.已知a 是实数,则函数f (x )=1+a sin ax 的图象不可能是 `( D ) 6.给出下列命题: ①函数y =cos ? ???? 23x +π2是奇函数; ②存在实数α,使得sin α+cos α=32; ③若α、β是第一象限角且α<β,则tan α

π4) D.y=cos 2x =2cos2x B.y=2sin2x C.y=1+sin(2x+

三角函数图像及其性质

【本讲教育信息】 一.教学内容: 三角函数的图象与性质 二.教学目的: 了解三角函数的周期性,知道三角函数y=A sin(ωx+φ),y=A cos(ωx +φ)的周期为。 能画出y=sin x,y=cos x,y=tan x的图象,并能根据图象理解正弦函 数、余弦函数在[0,2π],正切函数在(-,)上的性质(如单调性、最大值和最小值、图象与x轴的交点等)。 了解三角函数y=A sin(ωx+φ)的实际意义及其参数A,ω,φ对函数图象变化的影响;会画出y=A sin(ωx+φ)的简图,能由正弦曲线y=sin x通过平移、伸缩变换得到y=A sin(ωx+φ)的图象。 会用三角函数解决一些简单的实际问题,体会三角函数是描述周期变化现象的重要函数模型。 三.教学重点:三角函数的性质与运用 教学难点:三角函数的性质与运用。 四.知识归纳 1.正弦函数、余弦函数、正切函数的图像 2.三角函数的单调区间: 的递增区间是, 递减区间是; 的递增区间是,

递减区间是, 的递增区间是, 3.函数 最大值是,最小值是,周期是,频率是,相位是,初相是;其图象的对称轴是直线,凡是该图象 与直线的交点都是该图象的对称中心。 4.由y=sinx的图象变换出y=sin(ωx+)的图象一般有两个途径,只有区别开这两个途径,才能灵活进行图象变换 利用图象的变换作图象时,提倡先平移后伸缩,但先伸缩后平移也经常出现.无论哪种变形,请切记每一个变换总是对字母x而言,即图象变换要看“变量”起多大变化,而不是“角变化”多少. 途径一:先平移变换再周期变换(伸缩变换) 先将y=sinx的图象向左(>0)或向右(<0=平移||个单位,再将图象上各点的横坐标变为原来的倍(ω>0),便得y=sin(ωx+)的图象。 途径二:先周期变换(伸缩变换)再平移变换。 先将y=sinx的图象上各点的横坐标变为原来的倍(ω>0),再沿x轴向左(>0)或向右(<0=平移个单位,便得y=sin(ωx+)的图象。 5.由y=Asin(ωx+)的图象求其函数式: 给出图象确定解析式y=Asin(ωx+)的题型,有时从寻找“五点”中的第一零点(-,0)作为突破口,要从图象的升降情况找准第一个零点的位置. 6.对称轴与对称中心: 的对称轴为,对称中心为; 的对称轴为,对称中心为; 对于和来说,对称中心与零点相联系,对称轴与最值点联系。 7.求三角函数的单调区间:一般先将函数式化为基本三角函数的标准式,要特别注意A、的正负。利用单调性三角函数大小一般要化为同名函数,并且在同一单调区间; 8.求三角函数周期的常用方法: 经过恒等变形化成“、”的形式,再利用周期公式,另外还有图像法和定义法。 9.五点法作y=Asin(ωx+)的简图: 五点取法是设x=ωx+,由x取0、、π、、2π来求相应的x值及对应的y值,再描点作图。

三角函数的概念及性质

一、球与正方体的切与接 命题1 棱长为a的正方体的内切球、棱切球、外接球的半径依次为r1,r2,r3,则r1= a r2= a r3= a 正方体的内切球、棱切球是与正方体的六个面、十二条棱都相切的球,外接球是过正方体的八个顶点的球,它们是同一个正方体的球心相同的球。如图1所示,过正方体的对角面可作含各球基本量的截面图,不难发现,三类球的直径依次增大,分别是正方体的棱长,面对角线长,体对角线长,从而得r1= a,r2= a,r3= a。 题1 (2006年,福建)已知正方体外接球的体积是,那么正方体的棱长等于() 题2 (2007年,湖南)棱长为1的正方体ABCD-A1B1C1D1的8个顶点都在球O 的表面上,E、F分别是棱AA1、DD1的中点,则直线EF被球截得的线段长为() 解析:根据命题1,球O的半径为,如图2所示,作过E、F、O的球的截面图,直线EF分别交圆O于M、N两点,过O作OH⊥EF于点H,则OH= ,H是MN的中点,连结OM,由勾股定理易得MH= ,故MN=2MH= ,故选D。 二、球与正四面体的切与接 命题2 棱长为a的正四面体的内切球、棱切球、外接球的半径依次为r1、r2、r3,则r1= a r2= a r3= a 正四面体的内切球、棱切球是指与正四面体的四个面、六条棱都相切的球,外接球是指过正四面体的四个顶点的球。同一个正四面体的三类球的球心相同。如图3所示,过正四面体的任一条棱AB及对棱的中点E作一截面,可得包含各球基本量的截面图,不难得出r1= a,r2= a,r3= a。

另:如果把正四面体补成一个正方体,如图4所示,那么正四面体的棱切球也是正方体的内切球,正四面体的外接球也是正方体的外接球。 题3 (2006年,山东)在等腰梯形ABCD中,AB=2CD=2,∠DAB=60°,E为AB 的中点,将△ADE与△BEC分别沿ED、EC向上折起,使A、B重合于点P,如图5所示,则三棱锥P-DEC的外接球的体积为() 解析:根据题意,三棱锥P-DEC是棱长为1的正四面体,则外接球半径为,故V= ,选C。 题4 (2007年,安徽)半径为1的球面上的四点A、B、C、D是正四面体的顶点,则A、B两点的球面距离为()。 A、arcos(- ) B、arcos(- ) C、arcos(- ) D、arcos(- ) 解析:根据命题2,正四面体的棱长为,设球心为O,则在△AOB中由余弦定理cos ∠AOB=- ,即∠AOB=arcos(- ),所以,A、B的球面距离为arcos(- ),选C。 三、球与直角四面体的切与接 命题3 共点的互相垂直的三条棱长分别为a、b、c的直角四面体的外接球半径r1= ,内切球半径r2= = ,其中V为体积,S为表面积。 同一个顶点上的三条棱两两垂直的四面体叫直角四面体,如图6所示,四面体S-ABC 中,SA⊥SB⊥SC,则称为直角四面体。将其补成一个长方体,则其外接球就是长方体的

相关主题