搜档网
当前位置:搜档网 › 认知无线电论文

认知无线电论文

认知无线电论文
认知无线电论文

摘要在认知无线网络中,当主用户的频带当前没有使用时,副用户允许利用主用户的频带。为了支持这种频谱再利用的功能,副用户需要感知无线电的频率环境,并且一旦主用户使用了这个频段,副用户在一定的时间内必须让出该信道。因此,在认知无线电中频谱感知是很重要的。在频谱感知中有两个参数:监测概率和假报警概率。监测概率越高,主用户受到的保护越好。而对于副用户来说,假报警概率越低,可以再利用的空闲信道越多,因此副网络可利用的吞吐量越高。这篇文章中,我们要学习当主用户充分的受到保护时,怎样确定感知时间使得副网络获得最大的吞吐量。我们要精确地计算出权衡感知吞吐量这个问题,并且利用能量检测来说明这个问题有一个最佳的检测时间,它可以使得副网络获得最高的吞吐量。协同感知运用多重小时隙,多重副用户同样学习使用了本文章中提出的方法。通过电脑仿真,我们知道对于一个6MHz的信道,当帧长度是100ms,且副用户收到主用户的信噪比是20dB,当保持了90%的检测概率时,能获得最高吞吐量的感知时间是14.2ms。当利用了分布式的频谱感知时,最佳感知时间会降低。

关键词认知无线电,感知吞吐量,频谱复用,频谱感知,吞吐量最大值。

1引言

过去的十年里,我们看到了无线服务越来越流行。根据频谱固定分配的方法,在很多国家,大部分可利用的频谱都分配给了固定的设备。另一方面,频谱再利用地方式缓解了固定频谱分配所造成的没有充分利用的问题。事实上,在美国,FCC目前的做法表明70%的固定频段没有利用。而且,其频段占用的时间短至毫秒,长则数小时。所以推动了频谱重复利用的思想,它允许当主用户或主网络不使用其频段时,副用户或者副网络使用该频段。

频谱再利用的核心技术是认知无线电,它包括三部分:(1)频谱感知阶段:副用户需要去感知并且检测无线环境来检测空白频谱。(2)动态频谱管理:为了通信认知无线电网络需要去选择最佳的可利用频段。(3)适用通信:认知无线电设备要能够辨别出它的传输参数(载频,带宽,传输功率等等),这可以更好的利用一直在变化的频谱。

2003年12月,FCC发布了通知表明,认知无线电对于设备的频谱共享很有帮助。之后,成立了IEEE802.22工作组,为无线区域网络(WRAN)设定标准,它利用了电视广播的VHF/UHF频段。这样做之后,还需要对于主用户来说没有有害干扰,因为在VHF/UHF频段包括了电视用户和FCC部分74个无线麦克风。

图1说明了WRAN系统的拓扑结构,主用户包括电视用户和无线麦克风,副用户包括WRAN基站(BS)和WRAN客户前置设配(CPEs)WRAN体系对用农村和城郊区域都提供无线带宽,其半径可达33千米。WRAN的使用是依靠接入了临时没有使用的电视频段。当主用户没有使用TV信道时,对于WRAN 体系来说最基本的目标就是最大限度的利用该频谱。为了保护主用户,当主用户需要使用时,WRAN系统在一定时间内(802.22小组规定的时间为2s)需要撤离该信道。所以对于认知无线电系统频谱感知是很重要的。在802.22WRAN,MAC帧包括一个感知时隙和一个数据传输时隙,这是的周期频谱感知传输可以实现。第一个要学习的问题就是降低平均搜索时间,其主要对象就是提高副用户在短时间内能够找到至少一个可利用的空闲信道的机会。一旦找到这个最佳搜索时间,就要使之最优化,以获得最高的吞吐量。

图1 对IEEE802.22WRAN的发展描述:主用户为TV接受者和无线麦克风

这篇文章的分布如下,第二部分描述了频谱感知的一般模式及能量检测技术。检测概率和假报警概率的关系在本部分也会讲解。在第三部分,我们要学习感知吞吐量权衡问题,并且说明利用能量检测技术确定最佳感知时间。第四部分学习通过感知计划,它依靠于能获得时间多样性的多重时隙。第五部分学习对于多个副用户的频谱分配。第六部分学习性能评估和比较。最后在第七部分总结。

2频谱感知

在这部分,我们先学习频谱感知的一般模式,之后浏览能量检测技术和分析检测概率和假报警概率间的关系。

A 频谱感知的一般模式

假设我们现在感兴趣的是频带是,载频为c f ,带宽为W ,接收信号的采样频率为s f 。当主用户活跃时,在副用户获得的接受信号可以表示为

y(n)=s(n)+u(n) (1)

这是在1H 假设下的输出, 主用户休眠时,接收信号变为

y(n)=u(n) (2)

这是在假设0H 时的输出,我们做以下假设.

(AS1)高斯噪声u(n),是独立同分布,该随机过程的均方为0,并且方差为2

2[()]u E u n σ=。

(AS2)原始信号s(n)是一个均方为零0 ,方差为2

2[()]s E s n σ=的随机过程。 (AS3)原始信号s(n)和噪声u(n)相互独立。 用22

s

u

σγσ=

表示在假设1H 情况下,第二接受者接受到的主用户的信噪比

(SNR ),我们同时考虑高斯噪声和CSCG 噪声。对于原始信号s(n),我们考虑4种可能:(1)BPSK 调制信号;(2)多进制PSK 调制信号;(3)实值的高斯信号;(4)CSCG 信号。

频谱感知相关的两个概率:在假设1H 情况系监测概率,运算法则正确的可能性表明主信号是否存在;在假设0H 情况下,假报警的概率表明运算法则错误的认为主用户存在。对于主用户来说监测概率越高,主用户受到的保护越好。而对于副用户来说,假报警概率越低,可以再利用的空闲信道越多。很明显,对于一个良好的监测法则,监测概率越高越好,假报警概率越低越好。

B 能量监测

能量监测是频谱感知中最流行的技术。令τ为有效感知时间,N 为采

样频率(N 为比s f τ小得最大整数,为了使之简化,我们假设N=s f τ)。能量监测公式为

2

1

1()()

N

n T y y n N

==

(3)

在假设0H 情况下,T (y )是随机变化的,概率密度函数(PDF )0()p x 是对于多值情况自由度为2N 和对于实值情况自由度为N 的卡方分布。如果我们选择监测门限为∈,假报警概率公式为

00

(,)(())()f r P P T y H p

d dx

τε∞

∈=>=

? (4)

运用中心极限定理(CLT ),我们有以下结论。

结论1:对于较大的N 值,在假设0H 的情况下,T (y )的PDF 值可以近似的看做高斯分布,其均值为20u μσ=,方差为4

24

01[()]u u n N

σσ=

E -。

并且

如果u(n)为实值高斯变量,则4

3()3u u n σE =,这样24

02u N

σσ=。

如果u(n)为CSCG ,,则4

4()2u u n σE =,这样24

01u N

σσ=

下面,我们关注CSCG 噪声情况,假报警概率公式为

2

(,)((

f u

P Q εετσ

=-

(5)

在这里Q( )是标准高斯余弦分布函数,

2

()exp()2

x

t

Q x dt ∞

=

-

? (6)

在假设1H 情况下,T (y )的PDF 为1()p x ,对于选择的门限值ε,监测概率为

11

(,)(())()d r P P T y H p x dx ε

ετε∞

=>=

? (7)

结论2:对于较大的N 值,在假设1H 的情况下,T (y )的PDF 值可以近似看做高斯分布,其均值为21(1)u μγσ=+方差为

44

2

2

2

2

11[()()()]s u s n u n N

σσσ=

E +E --

(8)

如果s(n)和u(n)都为圆对称并且为多值,则

44

2

2

2

2

2

2

11[()()()2]s u s u s n u n N

σσσσσ=

E +E --+

(9)

若果s(n)和u(n)都为实值,则

如果s(n)为多进制PSK 调制且u(n)为CSCG ,则24

11(21)u

N

σγσ=+;

如果s(n)为BPSK 调制且u(n)为实值高斯,则24

12(21)u

N

σγσ=

+;

如果s(n) 和均为u(n)CSCG ,且4

4()2s s n σE =,4

4()2u u n σE =则

2

24

11(1)u

N

σγσ=

+;

如果s(n)和u(n)为实高斯,且4

4()3s s n σE =,4

4()3u u n σE =则

2

24

12(1)u

N

σγσ=

+;

证明:这是根据中心极限定理(CLT )得出的结论,详细的证明在附录A. 评论:对于四种主用户信号和附加噪声,实值情况的方差是多进制情况下的两倍。我们可以通过考虑到多进制情况的采样是实值采样的两倍来理解。

我们考虑多值PSK 信号和CSCG 噪声情况,根据检测数据的PDF ,监测概率可以近似看做

2

(,)((

d u

P Q εετγσ=-- (10)

对于检测概率 d P ,其门限∈可由下式决定

1

2

(

()d u

Q P ε

γσ---= (11)

从(5)另一方面,这个门限值与假报警概率的关系如下:

1

2

()(

f u

Q

P ε

σ-=- (12)

因此,对于检测概率

d P ,假报警概率与目标检测概率的关系如下:

1

()f d P Q P -=+ (13)

另一方面,对于假报警概率,监测概率如下:

1

()

d f P Q P -=- (14)

最终,对于目标概率(,)d f P P ,为了获得这些目标采样点数可以由公式(11)和(12)通过约去门限变量ε给出,最小采样点为

112

min 2

1

[()(f d N Q P Q P γ

--=

- (15)

3感知吞吐量权衡

在前面的部分,监测概率与假报警概率之间的关系已经建立。在这一部分,我们学习吞吐量的基本法则,即感知能力与副网络获得的吞吐量间的关系。利用能量监测计划,我们将证明当副网络获得最高的吞吐量的同时主用户受到充足的保护情况下存在最佳感知时间。

图2周期频谱感知的认知无线电的帧结构(:感知时隙长度; 数据传输时隙长度)

A 问题

图2表明对于运用周期频谱感知的认知无线但网络中的帧结构包括一个感知时隙和一个数据传输时隙,假设感知时间为τ,数据传输时间为T 。用0C 表示当无用户不使用时副网络的吞吐量,用1C 表示当主用户存在时副网络的吞吐量。例如,如果在副网络中存在点对点传输,并且其SNR 为0/s s SN R P N =,在这里s P 是副用户的接受功率,且0N 为噪声功率。令p P 为在副用户接收端收到的主用户的能量干扰,并且假设主用户和副用户的信号为白高斯信号并相互独立。这样

02log (1)

s C SN R =+以及122

l o g (1

)l o g (1)

1s

s

p p

P

SN R C P N SN R =+=

+++,这里

0/p p SN R P N =。很明显有01C C >

。如果主用户的信号不为高斯信号,上述对于

1C 的公式可以看做是当主用户活跃时??

对于给定的带宽,我们定义1()P H 为当主用户活跃时的概率,且0()P H 为当主用户空闲时的概率,这样01()()1P H P H +=。

当副网络工作在主用户的带宽上时,这里有两个说明。

说明1:当主用户不存在且对于副用户没有假报警产生的情况下,副网络获得的吞吐量为

0T C T

τ-.

说明2:当主用户活跃时,但是没有被副用户发现时,副网络获得的吞吐量为

1T C T

τ-。

说明1和说明2发生的概率为0(1(,))()f P P H ετ-和1(1(,))()d P P H ετ-。

如果我们定义

000(,)(1(,))()f T R C P P H T

τετετ-=

-

(16)

以及

111(,)(1(,))()d T R C P P H T

τετετ-=

-

(17)

这样对于副网络来说其平均吞吐量为

01(,)(,)R R R τετετ=+

(18)

很明显,对于给定的帧长度T ,感知时间τ越长,有用数据传输的时间()T τ-越短.

另一方面,由(13)知,因为Q(x)对于x 是单调递减的,对于给定的目标监

测概率

d P ,感知时间越长,假报警概率越低,这与副网络用到信道的几率更高相一致。感知吞吐量劝和的目标就是定出对每一帧来说最合适的感知时间τ,这样副网络获得的吞吐量是最大的同时主用户给与了充足的保护。这个问题可以在数学上看作为

01max (,)(,)

R R R ττ

ετετ=+ (19)

..(,)d d s t R P ετ≥ (20)

在这里,当主用户受到足够的保护时,d P 是监测的目标概率。实际中,目标检测概率d P 趋近于1但小于1,尤其对于低SNR 情况。例如,在IEEE802.22WRAN 中,我们选择0.9d P =

SNR 为-20dB 。这说明,如果主用户要求对其频带100%保护,这样对于副用户来说将不能使用该频带。同时我们假设主用户的活跃概率1()H 不高,低于0.3。这样对于副用户使用该频带是有经济价值的。因为01C C >,公式(18)里右半部分的第一项即为获得的吞吐率,因此这个问题可以近似看做

m ax ()(,)R R τ

τετ= (21)

..(,)d d s t R P ετ≥ (22)

对于给定的感知时间τ,由公式(10)我们可以选择一个监测门限0ε,这样

0(,)d d R P ετ=。我们同样可以选择监测门限10εε<,这样0(,)d d R P ετ>。很明显

10(,)(,)

f f P P ετετ>。这样从(16)(17),我们得到0101(,)(,)R R ετετ<以及

1110(,)(,)R R ετετ<。因此,对于(21)(22)的最佳解决的取得同(22)中的限

制相同,最终01110010(,)(,)(,)(,)R R R R ετετετετ+<+,这样当(20)中的限制满足时,才能最好的解决(19)(20)的问题。

B 能量监测计划

当应用能量监测,利用(13)式,并且选择d d P P =,我们得到

00

()()(1)(1(R C P H Q T

ττα=--+ (23)

当1()d P α-=,这样,从(23)式可以看出副网络获得的吞吐量是监测时间τ 的函数。

定理1:在(AS1)-(AS3)的假设下,如果原始信号是多值PSK 信号且噪声为CSCG ,对于任意目标监测概率,存在最佳感知时间,同时对于副网络来说获得最大的吞吐量。

证明:这可以通过(23)式证明

2

00)'()11()()

2

R Q C P H T

T

τ

γ

τα-=

-

-

+

+

(24)

很明显

00

011lim '()()(())0R C P H Q T T

ττα→<-+< (25)

lim '()R

ττ→=+∞ (26)

为获得(25)我们利用了Q (x )是增函数且最大上限为1.。同理(25)(26)

表明当τ很小且降低时 ()R

τ增加。当τ接近T ,这时 ()R τ在区间(0,T )中存在最大的点。

而且,通过(18)我们得到

111'()'()()(1)d

R R C P H P T

ττ=-- (27)

这样

lim '()lim '()0T

T

R

R ττττ→→<< (28)

11001lim '()lim '()()(1)d

R R C P H P T

ττττ→→=--=∞ (29)

因此在区间(0,T )存在最大值()R τ。

在附录B ,我们进一步表明()R τ是在τ区间的的凹函数。这使得()R τ的最大值在该区间是惟一的。对于大部分服用频率的情况,如果最佳感知时间落到该区间,则存在有效搜索法则。否则,为了获得最佳感知时间将要全面的进行搜索。最后,定理1说明了假设信号为多值PSK 信号,噪声为CSCG ,在区间(0,T )间则存在最佳感知时间,这对于其他情况(实值信号或CSCG 信号)同样适用。

4多时隙频谱感知

在这一部分,我们感兴趣的是当在每一帧中的感知时隙划分为许多不连续的小时隙。令M 为小时隙的数目,1τ为每一小时隙的感知时间,T 为每帧的时间。我们把每帧的感知时间全部放在一起得到1M ττ=,并且每一小帧的采样数为(没有 损失,我们假设1N 为整数。)

让我们考虑对于第i 个小时隙的假设:

1:()()()

i i i i H y n h s n u n =+ (30)

0:()()i i H y n u n = (31)

并作以下假设:

信道因数i h 为0均值,单位方差为多高斯随机变量; 对于M 个小时隙其噪声是独立的。

M 个小时隙中信号功率和噪声功率是常量,例如,对于所有的i ,

2

2

[()]i s

E s n σ=且2

2[()]i u E u n σ=。

对于所有M 个小时隙,主用户或者活跃或者空闲。

多时隙频谱感知的目的是,利用M 个小时隙中数据测量,决定主用户是否活跃。

这个决定可以通过两:数据融合和决策融合。

数据融合:从所有的小时隙中找到测量方法,之后根据计算的数据获得最终决定。

决策融合:让每一个小时隙单独运行,获得单个的决定。根据混合单个的决定作出最终决定。

对于时间变化的信道,多时隙频谱感知方法获得了时间多样性,这对于感知到主用户的存在甚至于对于单个副用户有所帮助。

A 数据融合

令()i T y 为对于第i 个小时隙的测试统计量:

1

2

1

1

1()()

N i i n T y y n N ==

(32)

运用数据融合,对于最终决策的测试统计量可以表述为

1

()()M

i i

i T y g T y ==

∑ (33)

这里0i g ≥是第i 个小时隙的权重因数。不失一般性,我们假设211M

i i g ==∑。 观点3:对于较大的N 值,在假设0H 的先顶下T(y)的PDF 可以近似看做高斯分布,其均值为∑==M

i i u g 120σμ,方差为])

([14

4

1

2

1

20u M i i n u g n σσ-E =

=。

观点4:对于较大的N 值,在假设1H 的先顶下T(y)的PDF 可以近似看做高斯分布,其均值为4

211(1)M u i i i g h μσγ==+∑,方差为

4

22

2

2

222

1

1

1

1[()()]M

i i

i s u i g h u n h N σ

σσ==

E --∑

(34)

如果主信号和噪声都为圆对称且为多值,则

4

222

2

22

222

22

1

1

1

1[()()()2]M

i i

i s u i s u i g h s n u n h h N σ

σσσσ==

E +E --+∑

(35)

如果主信号和噪声都为实值。

让我们考虑多PSK 调制信号和CSCG 噪声,我们有

4

20

1

u

N σσ

=

(36)

4

2

22

1

1

(12)

M

u

i i i g h N σσ

γ

==

+∑

(37)

仿照得到(13)和(14)的过程,我们有

d

P 和

f

P 的关系:

11((,...,;))

f M d P Q f

g g P = (38) 21((,...,;))d M f P Q f g g P =

(39)

这里

2

1

1111

(,...,;)()M

M d d i i

i f g g P Q P g h βγ

-==+ (40)

2

1

211

1

1

(,...,;)(())M

M f f i i f g g P Q P g h γ

β-==

+ (41)

这里1β=Q (x )为x 的减函数,对于假报警概率的目标概率f P 我们想要获得当检测概率最大时最佳的i g 值,这样:

2

1121,..,: 1.

m in (,..,;)M M i

i M f g g g f g g P ==∑ (42) 根据感知吞吐量权衡的观点,我们希望对于每一帧都能获得检测目标概率

d P ,这样最佳的i g 可以获得假最小的假报警概率:

2

1111,..,: 1.

m ax (,..,;)M M i

i M d g g g f g g P ==∑ (43)

我们现在感兴趣的是在第SNR 情况下当0γ→,这样0β→。这种情况下,同理(40)和(41)可以近似看做

2

1

111(,...,;)()M

M d d i i

f g g P Q

P g h γ

-=≈+ (44)

2

1

211

(,...,;)()M

M f f i i

f g g P Q P g h γ

-=≈+ (45)

定理2:对于第SNR 情况,对于目标监测概率 ,最佳的 可以获得最低的假报警概率,其公式为

i g =

(46)

证明:对于低SNR 情况,对于下述最佳方程(43)式与其意思相同。

2

112

,..,: 1.1

m ax M M i

i M

i i g g g i g h ===∑∑ (47)

运用不等式性质,我们遵循(46)式给出的最佳联合因数。 另一方面,下面定理描述了了对于主用户来说的最佳权重因数。

定理3:假设第SNR ,对于假报警的目标概率f P ,合适的i g 可以使监测概率最大,其表达式为(46)。

担心到参数未知时,对于数据融合一个简单的方法就是使i g =。这样,

我们遵循了:

2

1

21

(())M

f d i P Q Q

P h βγ

-==+

(48)

2

1

1

2

1

(

())M

f f i i P Q Q P h γ

β-==+ (49)

这里2β=。

最终,让我们考虑一个特殊的情况,当1i h =时,对于所有的i 和i g

选择

i g =

38)式,对于目标d P ,假报警概率的表达式为:

1

()f d P Q P γ

-=+ (50)

因为1M N N =,对于不变信道这样的情况,当运用数据融合时,利用M 个小时隙的方法不能使性能变好。

通过(38)式,对于一个衰落信道环境,对于每一帧来说为了获得相同的监测概率,监测门限对于不同的帧将会发生变化,这样使得假报警概率发生变化。

对于一个给定的感知时间τ,我们定义()f

P τ 为全部帧的平均假报警概率。之后,我们定义获得的吞吐量为

()(1())f

T B P T

τττ-=

- (51)

B 决策融合

单独定义()i d P 和()

i f P 为第i 个小时隙的监测概率和假报警概率。通过选择监测门限 ,第i 个的时间空隙的监测概率为

2

()

02((

i d

i

u

P Q h εγσ

=-- (52)

并且第i 个时隙的假报警概率为

()

02

((

i f

u

P Q εσ=-

(53)

一旦对于每一个时隙做出了决策,那么当主用户存在时为了获得最终决策需要遵循一些不同的法则。

1)最佳决策融合法则:令i I 为第i 个时隙的决策,这里{0,1}i I ∈且i=1,…M 。最佳决策融合法则即为 融合法则,它为下述数据的门限检测。

()

()

10()()

1

01()[log

(1)log

]log 1()

i i M

d d i

i i i i f

f

P P P H I

I P

P P H =-Λ=

+-+-∑ (54)

如果00Λ≥,则主用户存在,否组不存在主用主用户。

2)LO 法则:LO 法则即为:当一个决策认为存在主用户,这样最终决策认为存在主用户。从数学上说,定义1

M i i I =Λ=∑

,如果1Λ≥,则主用户存在,否则主

用户不存在。

假设所有的决策都是独立的,最终决策的监测概率和假报警概率不相关,

()

111M

i d d

i P P ==--∏ (55)

()

1

11M

i f f

i P P ==--∏ (56)

3)LA 法则:LA 法则描述如下:当所有的决策认为存在主用户,这样最终决策认为存在主用户。从数学上说,定义1M

i i I =Λ= ,如果1Λ=,则主用户存在,否则主用户不存在。假设所有的决策都是独立的,最终决策的监测概率和假报警概率不相关,

()

1M

i d d

i P P ==

∏ (57)

()1

M

i f f

i P P ==

∏ (58)

4)Majority 法则:另一种法则的根据是单一决策中的大部分。当一半或更多的决策认为存在主用户,这样最终决策认为存在主用户。从数学上说,定义

1M

i i I =Λ=

∏,如果2M ??

Λ≥??

??

,这里x ????定义了大于等于x 的最小整数值,这样主用户存在,否则主用户不存在。假设所有的决策都是独立的,并假设

(1)

()

,0...M d

d

d P P P ==并且(1)

()

,0...M f

f

f P P P ==,最终决策的监测概率和假报警概率为:

222,0,0

0()(1)2M M M M M j

j d d d j M

P P P

M j ??-??

??

????

--+??????

??==

-??+????

(59)

222,0,0

()(1)2M M M M M j

j f f f j M

P P P

M j ??-??

??

????

--+??????

??==

-??+????

(60)

这里!()!()!

c

c k

k c k =

-。

软件无线电技术论文

软件无线电技术 摘要:现行的面向具体用途来设计不同频段、不同制式的无线电通信电台及组网的思想已经远远不能满足现代无线电通信的实际需要,因此软件无线电系统及其技术,这种革新的通信理念与体制应运而生。文章对软件无线电技术的概念、功能和关键技术等进行了介绍,并阐述了软件无线电的应用和发展前景。 一.引言 软件无线电是近些年来随着微电子、信号处理、计算机等技术的高速发展应运而生的一种新的无线电技术。它最初起源于军事通信,是为了解决多军联合作战时通信互通互联问题而提出来的。经过这几年的迅速发展,软件无线电早已从军事领域的阶段逐步发展成为移动通信发展的基石,特别是第3、4代移动通信系统。个人移动通信系统已从第一代模拟蜂窝系统发展到第二代数字蜂窝系统(GMS、CDMA),目前正在向第三代移动通信系统发展,而且第四代移动通信技术也已经悄然问世。随着越来越大的通信需求,一方面使通信产品的生存周期缩短,开发费用上升;另一方面,新老体制共存,各种通信系统之间的互联变得更加复杂和困难、由于通信技术的迅猛发展,新的通信体制与标准不断提出,通信产品的生存周期减少,开发费用上升,导致以硬件为基础的传统通信体制无法适应新的局面;同时,不同体制互通的要求日趋强烈,并且随着通信业务的不断增长,无线频段资源变得越来越拥挤,对现有通信系统的频带利用率及抗干扰能力提出了更高的要求。但是沿着现有通信体制的发展,很难对频带重新规划。所以寻求一种既能满新一代通信系统需求,由能兼容老体制,而且更具有扩展能力的新的个人移动通信系统体系结构成为人们努力的方向。而软件无线电正好提供了解决这一问题的技术途径成为第三代移动通信系统研究的热点。 二.软件无线电的概念及特性 软件无线电技术将硬件、软件、无线技术有机地结合在一起,组成灵活多样的多功能系统。它的基本思想是以一个通用、标准、模块化的硬件平台为依托,从通过软件编程来实现无线电台的各种功能,从基于硬件、面向用途的电台设计方法中解放出来。功能的软件化实现势必要求减少功能单一的、灵活性差的硬件电路,尤其是减少模拟环节,把数字化处理(A/D和D/A转换)尽量靠近天线。软件无线电强调体系结构的开放性和全面可编程性,通过软件更新改变硬件配置结构,实现新的功能。软件无线电采用标准的、高性能的开放式

论文-无线电骚扰限值及测量方法解析

无线电骚扰限值及测量方 法解析 张大为 2012-6-8 信息技术类设备,家用电器、电动工具类器具,电气照明类似设备的无线电骚扰限值和测量方法

无线电骚扰限值及测量方法解析 ---张大为 2012.06.08 目录 一、前言 二、无线电骚扰介绍 三、信息技术设备的无线电骚扰限值和测量方法 四、家用电器、电动工具和类似器具的无线电骚扰限值和测量方法 五、电气照明和类似设备的无线电骚扰限值和测量方法 六、总结 关键词:EMI,电磁兼容,无线电骚扰限值 一、前言: 地球上各种各样的电磁波充斥着我们人类的生活空间,打雷、电视、收音机、电脑、电力线、电动机、汽车引擎、手机、医疗设备、电磁炉、微波炉、电热毯、电视广播发射台..等等。随着科技的发展我们对电磁波也有了越来越多的认识,被电子电气产品包围着的我们在享受快捷、高速、方便的同时也越来越多的暴露出了电磁辐射对生活的影响。广播电视接收质量下降,通话质量下降,视力下降... 如果有心人去网络上搜索“电磁辐射的危害”会看到形形色色的疾病和状况都好像和电磁辐射有关,这引发了更多的人对电磁兼容(EMC:Electromagnetic Co mpatibility)相关检测的关注,对人类所生存的电磁环境的担忧。他包含两个方面:一是,设备等本身产生的电磁波不能骚扰其它设备而导致其功能的丧失与降低;二是,其自身也应该具有相同的能力,承受其它设备所产生的干扰这就是“兼容”。 为此各国相继制订了电磁兼容的相关要求,来保护本国的电磁环境。根据产品特性不同电磁兼容所规定内容也差异很大,本篇文章主要是针对人们日常接触最频繁的小家电、电气照明设备以及信息技术设备的无线电骚扰标准中规定的检测

认知无线电的发展历程与现状

认知无线电的发展历程与现状 认知无线电的发展历程与现状 摘要:认知无线电是一种通过与其运行环境交互而改变其发射参数从而提高频谱利用率的新的智能技术,其核心思想是CR具有学习能力,能与周围环境交互 信息,以感知和利用在该空间的可用频谱,并限制和降低冲突的发生,认知无线电就是通过频谱感知(Spectrum Sensing )和系统的智能学习能力,实现动态频谱分配(DSA dynamic spectrum allocation )和频谱共享(Spectrum Shari ng )。本文主要分析认知无线电的起源,认知无线电的关键技术概要,认知无线电的相关标准化进程以及认知无线电的应用场景等多个方面,对认知无线电进行一个概述,从而加深对无线电的认知与了解。关键字:认知无线电、起源、关键技术、标准化、应用 随着无线通信需求的不断增长,对无线通信技术支持的数据传输速率的要求越来越高。根据香农信息理论,这些通信系统对无线频谱资源的需求也相应增长,从而导致适用于无线通信的频谱资源变得日益紧张,成为制约无线通信发展的新瓶颈。另一方面,已经分配给现有很多无线系统的频谱资源却在时间和空间上存在不同程度的闲置。为解决无线频谱资源紧张的问题,出现了许多先进的无线通信理论与技术,如链路自适应技术、多天线技术等。这些技术虽然能提高频谱效率,但仍受限于Sha nnon理论。 美国联邦通信委员会的大量研究表明:ISM频段以及适用于陆地移动通信的2GHz 左右授权频段过于拥挤,而有些授权频段却经常空闲。因而提出了认知无线电。认知无线电是一种智能频谱共享技术。它通过感知频谱环境、智能学习并实时调整其传输参数,实现频谱的再利用,进而显著地提高频谱的利用率,通过从时间和空间上充分利用那些空闲的频谱资源,从而有效解决上述难题。 1. 认知无线电的发展历程

无线电论文

论文关键词:短波通信;民航;短波地面站;数据链 论文摘要:短波通信由于其天波传播特性,在通信领域具有其它通信手段无法替代的地位,特别是在民用航空地空通信中,短波通信对于航线覆盖与极地飞行,起着重要的保障作用。文章介绍了短波的传播方式与通信特点,并就短波通信在民用航空中的应用进行了论述。 应用短波按照国际无线电咨询委员会(CCIR)的划分是指波长在10m~100m,频率为3MHz~30MHz的电磁波。短波通信又称高频(HF)通信,实际上,为了充分利用短波近距离通信的优点,其实际使用的频率范围为1.5MHz~30MHz。由于短波通信的固有特点,长期以来,短波通信始终是军事指挥的重要手段之一,一直被广泛地应用于外交、气象、邮电、交通等各个部门,用以传送图像、数据、语言、文字等信息。同时,它也是海上航行和高空飞行的必备通信方式。短波通信是无线通信的基础,尽管目前无线通信新技术不断涌现,短波通信有逐渐退出通信领域的趋势,但是自身所拥有的优势和长处并不能被完全取代,在国际通信、防汛救灾、海难救援及军事等领域依然发挥着重要作用。 一、短波的传播方式 民航通信中使用到的短波实质为无线电波,主要用于地面与飞机间的通信,其通信传播方式主要有以下三种: 1.1地面波。地面波是沿着地球表面传播的波,它沿着半导电性质和起伏不平的地表面进行传播,一方面使电波的场结构不同于自由空间传播的情况而发生变化并引起电波吸收,另一方面使电波不像在均匀媒质中那样以一定的速度沿着直线路径传播,而是由于地球表面呈现球形使电波传播的路径按绕射的方式进行。 1.2天波。天波是经过地面上空40~800公里高度含有大量自由电子离子的电离层的反射或折射后返回地面的电波传输方式。天波是短波的主要传播途径,可实现长距离的传播,短波信号由天线发出后,经电离层的多次反射,传播距离可以由几百公里达到上万公里,且不受地面障碍物阻挡。在天波传播的过程中,路径衰耗、大气噪声、时间延迟、电离层衰落、多径效应等因素,都会造成信号的畸变与弱化,影响短波通信的效果。 1.3直接波。直接波是从发射天线到接收天线之间,不经过任何发射,直接到达,电波就象一束光一样,所以有人称它为视线传播。由于民航中,飞机大多数时间都是在飞行,所以有些时候地、空之间的短波通信,实际上是可以靠直接波完成的。 二、短波通信的特点 与卫星通信、地面短波等通信手段相比,无线电短波通信有许多显著的优点:(1)短波通信无需建立中继站即可实现远距离通信,(2)短波通信元器件要求低、技术成熟、制造简单、设备体积小、价格便宜,建设和维护费用低;(3)设备简单,目标小、架设容易、机动性强,即使遭到损坏也容易修理,由于其造价相对较低,可以大量装备,因而系统顽存性强。(4)电路调度容易,灵活性强,可以使用固定设置,进行定点固定通信,也可背负或装入车辆,实现移动中的通信。这些优点是短波通信被长期保留、至今仍被广泛应用的主要原因。同时,短波通信也存在着一些明显的缺点:(1)信道拥挤、频带窄;(2)短波的天波信道是变参信道,

认知无线电验证平台场景设计

认知无线电 验证平台场景设计 2008-11-14 赵琳陈翼翼

目录 一、系统结构图 (3) 二、系统基本背景介绍 (3) 三、缩略语说明 (4) 四、场景案例设计 (4) 1.CR001:全频段内不存在PU时,SU接入核心网 (4) 2.CR002:全频段内不存在PU时,SU间进行网内通信 (5) 3.CR003:仅某几个子信道存在PU时,SU接入核心网 (5) 4.CR004:仅某几个子信道存在PU时,SU间进行网内通信 (6) 5.CR005:全频段内存在PU时,SU不能进行通信 (7) 6.CR006:全频段内不存在PU时,某SU伪装成PU占用某几个子信 道 (7) 7.CR007:全频段内不存在PU时,某SU伪装成PU占用全频段 (8) 8.CR008:仅某几个子信道存在PU时,系统未检出,但SUBS执行 的信道分配策略不会对通信造成干扰 (9) 9.CR009:仅某几个子信道存在PU时,系统未检出,且SUBS执行 的信道分配策略会对通信造成干扰 (10) 10.CR010:SU占用某几个信道时,PU强行接入 (11) 11.CR011:SU占用某几个信道时,PU退避接入 (11) 12.CR012:比较不同检测方法 (12) 13.CR013:比较不同合并算法 (13) 五、附录 (14) 1.利用峰均功率比的增强型能量检测法 (14) 2.合并算法介绍 (15) 2.1结果合并模型的背景介绍 (15) 2.2不同的结果合并模型 (15) 2.3模型比较及优缺点分析 (17)

一、系统结构图 图1 系统结构图 二、系统基本背景介绍 1.该系统内存在2个主要用户(PU)。PU编号为PU0~PU1。 2.该系统内存在1个次级用户基站(SUBS),3个次级用户(SU)。SU编号 为SU0~SU2,都具有感知功能,并且均可采用不同的频谱检测方法进行检测。 3.在广播电视频段54~862MHz上选取20MHz。设定该系统工作在这20MHz 的频段内。将整个频段划分为40个500KHz的子信道(SCH),编号为0~39。 4.采用集中式的结构,1个SUBS管理所有的SU。SUBS具有绝对管理权,即 SUBS控制SU的频谱检测、接入空闲频段等一切操作。 5.SUBS维持一个子信道可用性分类的可见表格。这个功能表中,将子信道按 可用状态分类,比如被占用(如正在传输PU信号)、可用(可被SU用户占用)、禁止使用(不能被使用)等。 6.BS接入核心网(CN)。SU可以通过SUBS接入CN进行网间通信。网间通 信包括语音、图像、视频等业务。 7.SU之间可以通过SUBS的中转实现网内通信,但SU之间不能直接进行通信。 网内通信包括语音、图像、视频等业务。 8.存在一个静默期,划分为检测期和上报期。在检测期内,SUBS控制SU进行 频谱检测;在上报期内,SU向SUBS上报检测结果。[猜想] 9.基本场景中,SU采用能量检测法进行频谱检测。SUBS采用K秩准则进行结 果合并。有关不同检测算法、合并算法的比较均在扩展场景中进行。

软件无线电发射机的实现与仿真(三)的论文

软件无线电发射机的实现与仿真(三)的 论文 本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意! 由于频率与相位有一定的关系,为便于分析,可将式(4-56)改写为 =a(n)cos[ n+ ] (4-57) 式中,表示载波的角频率。所以=a(n)cos[ ]cos( n)-a(n)sin[ ]sin( n) = cos( n)- sin( n) (4-58) 式中 = a(n)cos[ ] (4-59) = a(n)sin[ ] (4-60) 这就是我们希望获得的同相和正交两个分量,根据、,就可以对各种调制样式进行解调,三大类解调的算法如下: 调幅(am)解调: a(n)= (4-61) 调相(pm)解调: = (4-62) (4-63)

调频(fm)解调 (4-64) 在利用相位差分计算瞬时频率,即= - 时,由于计算要进行除法和反正切运算,这对于非专用数字信号处理器来说是较复杂的,在用软件实现时也可以用下面的方法来计算瞬时频率: = = (4-65) 对于调频信号,其振幅近似恒定,设=1,则 (4-66) 式(4-66)就是利用、直接计算的近似公式。这种方法只有乘减运算,计算比较简便。最后得到的软件无线电数字正交解调的通用模型,如图所示。 shape \* mergeformat 图数字正交解调的通用模型 模拟调制信号解调算法 1. am解调 信号表达式: s(n)=a(n)cos( ) ( (4-67)式中,;为调制信号;为载波初始相位。 对信号进行正交分解,得到同相和正交分量: 同相分量:

认知无线电的发展历程与现状

认知无线电的发展历程与现状 摘要:认知无线电是一种通过与其运行环境交互而改变其发射参数从而提高频谱利用率的新的智能技术,其核心思想是CR具有学习能力,能与周围环境交互信息,以感知和利用在该空间的可用频谱,并限制和降低冲突的发生,认知无线电就是通过频谱感知(Spectrum Sensing)和系统的智能学习能力,实现动态频谱分配(DSA:dynamic spectrum allocation)和频谱共享(Spectrum Sharing)。本文主要分析认知无线电的起源,认知无线电的关键技术概要,认知无线电的相关标准化进程以及认知无线电的应用场景等多个方面,对认知无线电进行一个概述,从而加深对无线电的认知与了解。 关键字:认知无线电、起源、关键技术、标准化、应用 随着无线通信需求的不断增长,对无线通信技术支持的数据传输速率的要求越来越高。根据香农信息理论,这些通信系统对无线频谱资源的需求也相应增长,从而导致适用于无线通信的频谱资源变得日益紧张,成为制约无线通信发展的新瓶颈。另一方面,已经分配给现有很多无线系统的频谱资源却在时间和空间上存在不同程度的闲置。为解决无线频谱资源紧张的问题,出现了许多先进的无线通信理论与技术,如链路自适应技术、多天线技术等。这些技术虽然能提高频谱效率,但仍受限于Shannon理论。 美国联邦通信委员会的大量研究表明:ISM频段以及适用于陆地移动通信的2GHz左右授权频段过于拥挤,而有些授权频段却经常空闲。因而提出了认知无线电。认知无线电是一种智能频谱共享技术。它通过感知频谱环境、智能学习并实时调整其传输参数,实现频谱的再利用,进而显著地提高频谱的利用率,通过从时间和空间上充分利用那些空闲的频谱资源,从而有效解决上述难题。 1.认知无线电的发展历程 认知无线电的概念是由Joseph Mitola博士在1999年提出的,他认为认知无线电可以使SDR从预置程序的盲目执行者转变为无线电领域的智能代理,并在论文中描述了认知无线电如何通过无线电知识表示语言(RKRL)来提高个人无线业务的灵活性。2004年Rieser支出认知无线电不一定必须有SDR的支撑,他提出基于遗传算法的生物启发认知模型更适用于可快速部署的灾难通信系统。该认知模型可对无线电系统的物理层和MAC层烦人演进建模,主要由三部分组成,包括用于监听无线环境,进行信道建模的无线信道遗传算法(WCGA)、演进并自适应无线环境的无线通信遗传算法(WSGA)和根据无线电信道模型和无线电参数,监视并改变系统的状态,以决定如何适应无线电的认知监视系统(CSM)。 2003年5月,FCC召开了无线电研讨会,讨论了利用认知无线电技术实现灵活频谱利用的相关技术问题。并且对从频谱管理的角度出发对认知无线网进行了官方定义,认为认知无线电是指能够通过与工作环境的交互,改变发射参数的无线电设备。针对频谱利用率低的现状,FCC提出采用认知无线电技术实现“开放

无线电遥控器毕业论文

无线电遥控器毕业论文 目录 1前言 (1) 1.1研究方向 (1) 1.2研究背景 (1) 1.3研究意义及作用 (1) 2方案分析 (1) 2.1方案要求 (1) 2.2方案原理 (1) 2.3方案器件 (2) 2.4方案步骤 (2) 3 电路分析 (3) 3.1发射系统 (3) 3.1.1数据电路 (5) 3.1.2编码电路 (6) 3.1.3调制振荡发射电路 (6) 3.2接收系统 (5) 3.2.1接收振荡电路 (9) 3.2.2整形放大电路 (10) 3.2.3译码电路 (11) 3.2.4手动开关电路 (12) 3.2.5 D触发器电路 (12) 3.2.6驱动电路 (13) 3.2.7控制电路 (14) 3.3电源电路 (14) 结束语 (15) 参考文献 (16)

1前言 1.1研究方向 无线电遥控就是利用电磁波在远距离上,按照人们的意志实现对物体对象的无线操纵和控制,这种无线控制的方式就叫做无线电遥控。 1.2研究背景 随着电子技术的飞速发展,新型大规模遥控集成电路的不断出现,使得遥控技术有了日新月异的发展。遥控装置的中心控制部件已从早期的分立元件、集成电路逐步发展到现在的单片微型计算机,智能化程度大大提高。近年来,遥控技术在工业生产、家用电器、安全保卫以及人们的日常生活中使用越来越广泛。无线电遥控技术的诞生,起源于无线电通信技术,最初的构想是无线电电报技术的建立,真空电子管的发明使得无线电技术的应用和普及很快应用在民用和军用等各个领域。自从爱迪生发明电灯以来,人类对照明电器的开启和关断控制主要使用手动机械开关。随着无线电的发展,从上个世纪60年代开始,相继出现了无线电遥控的灯开关。无线电遥控器(RF Remote Control)是利用无线电信号对远方的各种机构进行控制的遥控设备。这些信号被远方的接收设备接收后,可以指令或驱动其它各种相应的机械或者电子设备,去完成各种操作,如闭合电路、移动手柄、开动电机,之后再由这些机械进行需要的操作。一个多键的无线电遥控器可集中控制全家的只能遥控开关,具有人性化夜光功能,方便夜间找到开关位置,具有安装方便,使用简单,安全可靠等优点。但因为无线电波有穿墙越壁能力,所以会误开关邻居的灯。为了解决这个难题,后来的一种无线电遥控器采用了编码技术,像一把钥匙开一把锁一样,一个遥控器只对应控制一盏灯。

认知无线电技术

现代通信系统 论文 题目:认知无线电技术 姓名:朱雪峰 学院:潇湘学院 专业:通信工程 班级: 001 学号: 1254040121 指导教师:钟斌 2015年11月1日

目录 一、引言 (2) 二、认知无线电的基本概念 (2) 三、认知无线电的功能与实现 (4) 1.认知无线电的主要功能 (4) 2.认知无线电的实现关键 (5) 四、认知无线电的标准化 (7) 五、认知无线电的管制与应用情况 (8) 六、未来发展与展望 (9)

认知无线电技术的研究及发展 【摘要】认知无线电技术作为软件无线电技术的一个特殊扩展,受到日益广泛的关注。由于该技术能够自动检测无线电环境,调整传输参数,从空间、时间、频率、调制方式等多维度共享无线频谱,可以大幅度提高频谱利用效率。本文首先从认知无线电技术的定义入手,分别讨论了认知无线电的基本概念、功能与实现、标准化的进程。然后介绍了当前应用状况,最后分析了未来的发展及面临的挑战。 一、引言 随着无线通信技术的发展,人们可以获得的带宽不断地增加,移动通信的数据速率从10 kbit/s增长到2 Mbit/s,在不久的将来还可能提高到上百兆比特每秒。但即使如此,也无法满足人们日益增长的无线接入需求。为了缓解这一矛盾,一方面,人们不断开发新的无线接入技术,利用新的频段来提供各种业务;另一方面,不断改进各种编码调制方式,提高频谱效率。但由于移动终端天线尺寸和功率的限制,可以用于无线接入的频段很有限。在提高频谱效率方面,目前较为先进的CDMA空中接口技术,如HSDPA可以达到1 bit/(s·Hz)的频谱效率,将来OFDM和MIMO技术的应用也只能达到3-4 bit/(s·Hz)的频谱效率。3-4倍的频谱效率的提高对于人们成百上千倍的带宽需求增长是微不足道的。认知无线电技术的出现,为解决频谱资源不足、实现频谱动态管理及提高频谱利用率开创了崭新的局面。 二、认知无线电的基本概念 认知无线电(cognitive radio,CR)的概念是由Joseph Mitola博士提出的,他在1999年发表的一篇学术论文[1]中描述了认知无线电如何通过一种“无线电知识表示语言(RKRL)”的新语言提高个人无线业务的灵活性。随后在2000年瑞典皇家科学院举行的博士论文答辩中详细探讨了这一理论[2]。 认知无线电也被称为智能无线电。从广义上来说是指无线终端具备足够的智能或者认知能力,通过对周围无线环境的历史和当前状况进行检测、分析、学习、推理和规划,利用相应结果调整自己的传输参数,使用最适合的无线资源(包括频率、调制方式、发射功率等)完成无线传输。认知无线电能够帮助用户自动选择最好的、最廉价的服务进行无线传输。甚至能够根据现有的或者即将获得的无线资源延迟或主动发起传送。 由定义可以看出。认知无线电的一个最大优势就是无线用户可以通过该技术实现“频谱共享”。目前大多数频谱已经被划分给不同的许可持有者(又称为首要用户),包括移动通信、应急通信、广播电视等。但是随着用户需求的增长,简单地通过开发新的无线接入技术和使用新的频点已经无法充分满足市场需求。 近年来,很多学者通过监测分析当前无线频谱使用状况发现,虽然大部分频谱已经被分配给不同的用户,但是在相同时间、相同地点频谱的使用却非常有限。常常是大部分频点未被使用,而某些热点频率又处于超负荷运行。美国联邦通信管理委员会(FCC)充分注意到了这一点,于2002年11月出版了频谱政策任务组撰写的一份报告[3],该报告指出,当前分配的绝大多数频谱的利用率为15%-85%。因此FCC认为当前存在的最主要问题并不是没有频谱可用,而是现有的频谱分配方式导致资源没有被充分利用。只有彻底改变当前固定频谱分配政策,部分甚至全部采用动态频谱分配政策,使多种技术可以实现“频谱共享”,才能

软件无线电的应用

软件无线电的应用 软件无线电的应用 摘要:软件无线电技术正日益广泛地应用于现代通信的各个领域。 关键词:软件无线电;数字信号处理;调制解调;数字广播;世界数字广播 软件无线电是随着计算机技术、高速数字处理技术的迅速发展而发展起来的,其基本思想就是将宽带A/D/A变换器尽可能地靠近天线,将电台的各种功能尽量在一个开放性、模块化的平台上由软件来确定和实现。该平台的调制方式、码速率、载波频率、指令数据格式、调制码型等系统工作参数具有完全的可编程性 1 用软件无线电技术实现卫星控制平台 传统的卫星测控平台存在着性能不完善,调制方式、副载波、码速率组态不灵活,体积偏大等问题。研制和开发通用化、综合化、智能化的测控平台,通过注入不同的软件,实现对调制载频、调制方式、传输码速率等参数的改变,应用于各种轨道卫星平台的遥测遥控任务。 软件无线电技术正日益广泛地应用于现代通信的各个领域。随着A/D/A器件与DSP处理器的迅速发展,使得软件无线电技术广泛地应用于陆上移动通信、卫星移动通信与全球定位系统等。 用软件无线电技术实现卫星控制平台包括软件无线电通用平台 的DSP技术和DSP实现信号调制和解调。其中软件无线电通用平台的DSP技术又包括 TMS320C6701 DSP芯片,DSP技术在软件平台中的应用,调制器与解调器。DSP实现信号调制和解调又包括信号调制,信号解调。 软件无线电通用测控平台是卫星测控平台发展的方向,可以很好地解决原来平台开发成本高、周期长、通用性差的问题。以新一代DSP芯片TMS320C6000作为软件无线电平台的核心,可以很好地满足需要,且有较大的冗余度,利用升级。

基于认知无线电的无线通信研究现状

2010年第05期,第43卷 通 信 技 术 Vol.43,No.05,2010 总第221期Communications Technology No.221,Totally 基于认知无线电的无线通信研究现状 白敏丹 (中国传媒大学信息工程学院,北京 100024) 【摘 要】归纳了从软件无线电到认知无线电功能的演进。认知无线电是在软件无线电的基础上提出的智能化的无线通信技术,它着力解决频谱资源的有效利用问题;认知无线电概念的提出将对现行的频谱管理体制提出挑战,并给无线通信带来新的发展空间。软件无线电在其系统硬件无需变更的情况下,可以在不同的时候根据需要通过软件加载来完成不同的功能。认知无线电可以感知周围电磁环境,通过无线电知识描述语言(RKRL)与通信网络进行智能交流,并实时调整传输参数,以达到无论何时何地都能达到通信系统的高可靠性和频谱利用的高效性。文中在此基础上探讨了认知无线电技术未来发展值得关注的热点问题。 【关键词】软件无线电;认知无线电;无线通信;移动通信 【中图分类号】TN92【文献标识码】A【文章编号】1002-0802(2010)05-0044-03 Situation of Wireless Communication Based on Cognitive Radio BAI Min-dan (Information Engineering School, Communication University of China, Beijing 100024,China) 【Abstract】The paper summarizes the functional evolution from software radio to cognition radio. Cognitive radio is a software-defined radio based on the intelligent wireless communication technology. It emphatically resolves how to make use of spectrum resources. The proposal of cognitive concept would challenge the present spectrum management system, and bring new space for the development of wireless communication. Software radio system could, without any change of system hardware, implement various functions at different times by loading the software. Cognitive radio could sense the surrounding electromagnetic environment and realize intelligent exchanges with communications network through radio knowledge description language (RKRL), and by real-time adjustment of the transmission parameters, achieve high reliability and spectrum utilization efficiency of communication system at anytime and anywhere. Based on these, this paper discusses the hot issues in the future development of cognitive radio technology. 【Key words】software radio; cognitive radio; wireless communication; mobile communication 0 引言 通过近20年的发展,移动通信已成为通信领域最活跃、市场份额最高的产业,也成为国际上市场竞争最激烈的部分。但是,按着传统的思路的产品开发及生产方式,已表现出不少问题,如产品是针对特定的标准中一个版本来开发和制造的。当新技术出现或版本升级或提供新业务时,只能开发新的专用芯片,制造新一代的设备。其结果不是限制了新技术和新业务的使用,就是给制造商、运营商带来更大的投资风险,给用户带来诸多不便。随着各种新标准、新协议的不断发布,无线系统制造商和通信服务提供商不得不做出响应,通过系统升级,以保持其技术的先进性,不断为用户提供高质量的通信服务(从1 G到4 G)。但是,如此反复的重新设计和硬件的不断更新换代,不仅成本高,浪费资源,而且给最终用户也带来诸多不便。软件无线电SDR(Software Defined Radio)就是在这样的背景下诞生的能经得起时间考验的无线通信系统[1]。 软件无线电是指采用固定不变的硬件平台,通过软件重构(升级)来实现灵活多变的通信体制和通信功能的无线电系统。软件无线电硬件平台的特点是通用化、标准化、模块化,以及对信号波形的广泛适应性;软件无线电的核心是其驻留在DSP和/或FPGA和/或ASIC内部的功能软件,这些软件是可升级、可重构的,以适应不同的技术标准、接口协议和信号波形。近几年,软件无线电在微电子技术的带动 收稿日期:2009-09-02。 作者简介:白敏丹(1964-),女,硕士,副教授,主要从事专业及基础课教学的研究工作。 44

认知无线电之频谱共享技术

软件无线电课程论文 论文题目:认知无线电之频谱共享技术 姓名: 学号: 班级: 目录 目录 2 摘要 3 1 引言 3 2 研究现状 3 3 基本原理和算法 3 4 分布式动态频谱共享系统系统模型 3 5 个人理解和体会 3 6 参考文献 3 摘要 当前,无线频谱资源的紧缺是限制无线通信与服务应用持续发展的瓶颈。认知无线电(Cognitive Radio,CR)作为一种新兴的技术,它改变了传统的由政府授权使用无线电频谱的方式,它以频谱利用的高效性为目标,允许非授权用户机会式利用授权用户的频谱空洞传输,被认为是解决无线频谱资源紧缺问题的一种新方法。基于认知无线电技术进行频谱共享,能大大降低频谱和带宽限制对无线通信技术发展的束缚,极大地改变目前无线频谱资源日益紧缺的状况.本文将从研究现状、原理等简单介绍认知无线电中的频谱共享技术。 关键字:认知无线电频谱共享技术频谱利用频谱分配 1 引言 基于认知无线电技术进行动态频谱共享,能大大降低频谱和带宽限制对无线通信技术发展的束缚,极大地改变目前无线频谱资源日益紧缺的状况.动态频谱共享本质上是一种多目标优化问题,由于所有参与者(包括主用户和认知用户) 具有不同的目标和利益,彼此之间的决

策行为相互影响,并存在竞争和协作关系. 如何设计频谱的使用规则和相关接入机制,协调所有参与者的行为实现有效的频谱共享,满足各自不同的利益需求就成为关键问题. 目前,利用博弈论的方法分析动态频谱分配策略研究逐渐被研究者关注. 目前普遍采用的非合作博弈模型中,理性的博弈者总是追求自身利益最大化,从而导致博弈的纳什均衡偏离全局最优状态. 解决这一问题的一种有效方法用户效用函数的设计中,除了包括用户自身的收益之外,还将自身行为对其他用户造成的影响考虑在内. 每个用户在追求自身效用最大化的同时兼顾了其他人的利益,其结果使得非合作博弈的均衡状态收敛于系统的最优状态. 2 研究现状 认知无线电的频谱共享技术在提高频谱利用率方面的价值引起了各国电信管制机构的兴趣,不过由于认知无线电的技术和概念都非常超前,多数国家仍在研究讨论当中,只有美国的FCC已经正式批准具备认知无线电性能的设备进入市场。 近年来美国希望大力发展宽带无线接入业务,但由于频谱资源匮乏,亟需寻找新的频段给新的接入技术。美国是最早推动和批准使用认知无线电设备的国家。FCC从2003年就开始尝试引入认知无线电提高频谱的利用。2003年12月,FCC公布了《使用认知无线电技术促进频谱利用的通知》,就《FCC规则第15章(FCC rule part 15)》(用于数字式设备和低功发射机的法规)进行了修订,并于2005年10月,正式批准了关于引入认知无线电技术、使用认知无线电设备的法规。 FCC认为目前最适合应用认知无线电技术的是UHF中分配给电视广播业务的6 MHz频段,因为目前该频段在美国利用率很低,通过允许其它免许可设备使用这个频段,不仅可以提高频率利用率,而且还可以推广宽带无线接入业务,因为这个波段传播距离远,适合为偏远地区提供服务,可以促进美国社会的宽带普及。FCC认为认知无线电技术还可以在高频率频段发挥作用,如100 GHz以上的频段在美国的使用率只有5%-10%。 认知无线电的频谱共享技术听起来是个十分新颖的概念,但事实上无线局域网(WLAN)领域已经开始利用认知无线电技术的频谱共享技术。 WLAN是最早利用认知无线电频谱共享技术的无线通信系统。FCC等法规机构要求802.11a无线电能检测雷达信号并避免与它们形成干扰,这种躲避雷达的能力要求系统具有强大的CR类自适应能力,而这只是WLAN-CR功能的开始。 无论在军用还是民用领域,认知无线电的研究与应用都处于起步阶段。在军用领域,美国国防部高等研究计划署(DARPA)于2003年成立了下一代通信计划(XG),着眼于开发认知无线电的实际标准和动态频谱管理标准。2003年开始,Raytheon公司与DARPA签订了下一代无线通信计划的合同。从事认知无线电相关的技术研究与开发。在民用领域,Motorola、Intel等公司也已经成立认知无线电研究组并开始开展相关的研究。 3 基本原理和算法 3.1频谱共享技术概述 采用高效频谱利用技术,首先需要重新认识频谱,频谱不是具体和有限的资源,它是抽象和无限的资源,对其利用率高低取决于所采用的技术。其次,需要详细探讨能充分利用频谱的高效频谱利用技术。近年来随着智能天线、高性能数字处理器,新型扩频码、多址接入技术,软件无线电、智能无线电、感知无线电,动态频谱分配和共享等新技术的迅猛发展,为频谱高效利用提供了可能。 在这些改善频谱利用的新技术中,多无线电系统动态频谱分配与共享技术能显著提高整体频谱利用率,从长远看是提高频谱利用率的根本方法。但动态频谱分配需要改变现有频谱分配总体结构,对频谱管理、网络结构、通信终端等方面改变较大,近期看,实现难度较大。而频谱共享技术在不改变现有频谱分配总体结构下,通过不同无线电系统频谱共享来提高频

认知无线电论文

摘要在认知无线网络中,当主用户的频带当前没有使用时,副用户允许利用主用户的频带。为了支持这种频谱再利用的功能,副用户需要感知无线电的频率环境,并且一旦主用户使用了这个频段,副用户在一定的时间内必须让出该信道。因此,在认知无线电中频谱感知是很重要的。在频谱感知中有两个参数:监测概率和假报警概率。监测概率越高,主用户受到的保护越好。而对于副用户来说,假报警概率越低,可以再利用的空闲信道越多,因此副网络可利用的吞吐量越高。这篇文章中,我们要学习当主用户充分的受到保护时,怎样确定感知时间使得副网络获得最大的吞吐量。我们要精确地计算出权衡感知吞吐量这个问题,并且利用能量检测来说明这个问题有一个最佳的检测时间,它可以使得副网络获得最高的吞吐量。协同感知运用多重小时隙,多重副用户同样学习使用了本文章中提出的方法。通过电脑仿真,我们知道对于一个6MHz的信道,当帧长度是100ms,且副用户收到主用户的信噪比是20dB,当保持了90%的检测概率时,能获得最高吞吐量的感知时间是14.2ms。当利用了分布式的频谱感知时,最佳感知时间会降低。 关键词认知无线电,感知吞吐量,频谱复用,频谱感知,吞吐量最大值。

1引言 过去的十年里,我们看到了无线服务越来越流行。根据频谱固定分配的方法,在很多国家,大部分可利用的频谱都分配给了固定的设备。另一方面,频谱再利用地方式缓解了固定频谱分配所造成的没有充分利用的问题。事实上,在美国,FCC目前的做法表明70%的固定频段没有利用。而且,其频段占用的时间短至毫秒,长则数小时。所以推动了频谱重复利用的思想,它允许当主用户或主网络不使用其频段时,副用户或者副网络使用该频段。 频谱再利用的核心技术是认知无线电,它包括三部分:(1)频谱感知阶段:副用户需要去感知并且检测无线环境来检测空白频谱。(2)动态频谱管理:为了通信认知无线电网络需要去选择最佳的可利用频段。(3)适用通信:认知无线电设备要能够辨别出它的传输参数(载频,带宽,传输功率等等),这可以更好的利用一直在变化的频谱。 2003年12月,FCC发布了通知表明,认知无线电对于设备的频谱共享很有帮助。之后,成立了IEEE802.22工作组,为无线区域网络(WRAN)设定标准,它利用了电视广播的VHF/UHF频段。这样做之后,还需要对于主用户来说没有有害干扰,因为在VHF/UHF频段包括了电视用户和FCC部分74个无线麦克风。 图1说明了WRAN系统的拓扑结构,主用户包括电视用户和无线麦克风,副用户包括WRAN基站(BS)和WRAN客户前置设配(CPEs)WRAN体系对用农村和城郊区域都提供无线带宽,其半径可达33千米。WRAN的使用是依靠接入了临时没有使用的电视频段。当主用户没有使用TV信道时,对于WRAN 体系来说最基本的目标就是最大限度的利用该频谱。为了保护主用户,当主用户需要使用时,WRAN系统在一定时间内(802.22小组规定的时间为2s)需要撤离该信道。所以对于认知无线电系统频谱感知是很重要的。在802.22WRAN,MAC帧包括一个感知时隙和一个数据传输时隙,这是的周期频谱感知传输可以实现。第一个要学习的问题就是降低平均搜索时间,其主要对象就是提高副用户在短时间内能够找到至少一个可利用的空闲信道的机会。一旦找到这个最佳搜索时间,就要使之最优化,以获得最高的吞吐量。

认知无线电原理技术与发展趋势

摘要:认知无线电是指具有自主寻找和使用空闲频谱资源能力的智能无线电技术。认知无线电技术的提出,为解决不断增长的无线通信应用需求与日益紧张的无线频谱资源之间的矛盾提供了一种有效的解决途径。当前,认知无线电技术从理论到实践都面临很多困难。文章简述了认知无线电的基本原理,对认知无线电涉及的射频、频谱感知和数据传输等物理层核心关键技术进行了总结分析,并结合当前的发展状况对该技术未来的发展趋势进行了预测。 关键词:认知无线电;频谱感知;数据传输;网络体系与协议 Abstract: Cognitive Radio (CR) is an intelligent radio technology which has the capability to search and utilize underutilized spectrum resources. CR has been recognized as an effective solution to the dilemma introduced by the rapid growth of wireless communications and the scarcity of spectrum resources. However, from theory to practical applications, there are many challenges faced by CR currently. In this paper, the key physical layer techniques of CR, such as radio frequency front-end, spectrum sensing and data transmission, are discussed. According to the status of the research, the development tendency of this technology is also predicted. Key words: cognitive radio; spectrum sensing; data transmission; network architecture and protocol 随着无线通信需求的不断增长,对无线通信技术支持的数据传输速率的要求越来越高。根据香农信息理论,这些通信系统对无线频谱资源的需求也相应增长,从而导致适用于无线通信的频谱资源变得日益紧张,成为制约无线通信发展的新瓶颈。另一方面,已经分配给现有很多无线系统的频谱资源却在时间和空间上存在不同程度的闲置。因此,人们提出采用认知无线电(CR)技术,通过从时间和空间上充分利用那些空闲的频谱资源,从而有效解决上述难题。 这一思想在2003年美国联邦通信委员会(FCC)的《关于修改频谱分配规则的征求意见通知》中得到了充分体现,该通知明确提出采用CR技术作为提高频谱利用率的技术手段。此后,CR技术受到了产业界和学术界的广泛关注,成为了无线通信研究和市场发展的新热点。然而,CR技术从理论到大规模实际应用,还面临很多挑战。这些挑战包括了技术、政策和市场等诸多方面。本文从技术的角度,总结分析CR的基本原理、关键技术,并对将来技术发展趋势进行预测。 1 认知无线电基本原理 1.1 认知无线电的概念与特征 自1999年“软件无线电之父”Joseph Mitola Ⅲ博士首次提出了CR的概念并系统地阐述了CR的基本原理以来,不同的机构和学者从不同的角度给出了CR的定义[1-3],其中比较有代表性的包括FCC和著名学者Simon Haykin教授的定义。FCC认为:“CR是能够基于对其工作环境的交互改变发射机参数的无线电”[4]。Simon Haykin则从信号处理的角度出发,认为:“CR是一个智能无线通信系统。它能够感知外界环境,并使用人工智能技术从环境中学习,通过实时改变某些操作参数(比如传输功率、载波频率和调制技术等),使其内部状态适应接收到的无线信号的统计性变化,以达到以下目的:任何时间任何地点的高度可靠通信;对频谱资源的有效利用。”

认知无线电频谱感知技术现状研究

认知无线电频谱感知技术现状研究 【摘要】近年来无线电技术飞速发展,无线通信得到广泛应用,随之而来的是更多的用户需求与无线电频谱资源紧张的矛盾。认知无线电可以有效地解决无线通信中频谱资源紧张的问题,为资源的高效利用提供方案。 【关键词】节点选择;频谱感知;协作频谱感知 从1999年CR这一概念被Joseph Mitola III提出至今,认知无线电技术一直为无线通信研究的热门。认知无线电技术和频谱感知技术的发展日新月异,近期开始有更多的学者开始研究复杂环境下的协作频谱感知方案。 一、认知无线电 Simon Haykin定义CR通过构建理解方法论来学习环境并且通过实时改变运行过程中的某些参数来适应环境带来的统计变化,这些参数包括载频、调制方法和发射功率等参数。总之它是一种感知周围环境的智能无线通信系统,其中核心目标包括:随时随地,高度可靠的通信和高效的频带利用率。Simon Haykin构建CR的框架是从信号处理和自适应过程的角度进行的。另外,Joseph Mitola III认为,为了提高无线电技术的灵活性,认知无线电技术使用“;无线电知识表达语言”;(Radio Knowledge Representation Language,RKRL)。这一语言将会逐步演变成由软件进行配置,符合网络或者用户要求的通信功能和参数的软件无线电。CR通过对环境的观察、自身定位、计划决策、学习、判断和执行来完成自身功能的循环。 同时,美国联邦通讯委员会发布的FCC 03-322文件,申明了CR是一种能通过和其所在的环境相互作用来改变自身发射频率的无线电技术。包括主动地与其他频带使用用户进行交流协商或者通过被动的感知与判断等方式[1]。FCC还具体对CR的使用标准和适用场合做了规定。 二、频谱感知技术 在CR中,频谱感知已经成为核心研究内容,而且频谱感知技术目前又以对主用户发射机进行检测的为主。对发射机进行检测分为单节点检测和多节点检测(又称作合作检测或者协作频谱感知)。单节点检测主流的方法又有能量检测(Energy Detection),循环平稳特性检测(Cyclostationarity)和匹配滤波器检测(Matched Filtering Detection)。 协作频谱感知,又称多节点频谱检测。由于主用户的发送信号经过不同的衰落的信道到达感知从用户(CU),因此主用户的信号伴随着一定的阴影效应或多径衰落,将多个CU的单节点检测作为可以互相协作的整体,共同对同一段频谱进行感知,多节点能量检测技术可以通过AP的信息融合技术,将这一信道的不良干扰大幅度降低。这样,在AP通过特定的融合、判决后得到对主用户LU的

相关主题