搜档网
当前位置:搜档网 › 分子的对称性与分子结构-3

分子的对称性与分子结构-3

《函数对称性的解题方法归纳》

函数对称性的解题方法归纳 讲函数的对称性主要是讲奇偶函数图像的对称性,函数与反函数图像的对称性。前者是函数自身的性质,而后者是函数的变换问题。下文中我们均简称为函数的变换性。函数的对称性在近几年高考中屡见不鲜,对于解决其它问题也很有帮助,同时也是数学美的很好体现。现通过函数自身的对称性和不同函数之间的对称变换这两个方面来探讨函数对称性有关的性质。 1. 函数自身的对称性探究 设函数 )2()2(),()(x f x f x f +=-∞+-∞上满足在,)7()7(x f x f +=-,且在闭区间[0,7]上只有0)3()1(==f f (1)试判断函数)(x f y =的奇偶性; (2)试求方程0)(=x f 在闭区间[-2005,2005]上根的个数并证明你的结论。 分析:由)7()7(),2()2(x f x f x f x f +=-+=-可得:函数图象既关于x =2对称,又关于x =7对称,进而可得到周期性,然后再继续求解,而本题关键是要首先明确函数的对称性,因此,熟悉函数对称性是解决本题的第一步。 定理1 函数)(x f y =的图像关于直线x =a 对称的充要条件是)()(x a f x a f -=+即)2()(x a f x f -= 证明(略) 推论 函数)(x f y =的图像关于y 轴对称的充要条件是)()(x f x f -= 定理2 函数)(x f y =的图像关于点A (a ,b )对称的充要条件是 b x a f x f 2)2()(=-+ 证明(略) 推论 函数)(x f y =的图像关于原点O 对称的充要条件是0)()(=-+x f x f 偶函数、奇函数分别是定理1,定理2的特例。 定理3 ①若函数)(x f y =的图像同时关于点A (a ,c )和点B (b ,c )成中心对称(b a ≠),则)(x f y =是周期函数,且b a -2是其一个周期。

函数的周期和对称性

专题:函数的周期性对称性 1、周期函数的定义 一般地,对于函数)(x f y =,如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有)()(x f T x f =+,那么函数)(x f y =就叫做周期函数,非零常数T 叫做这个函数的一个周期。如果所有的周期中存在着一个最小的正数,就把这个最小的正数叫做最小正周期。 显然,若T 是函数的周期,则)0,(≠∈k z k kT 也是)(x f 的周期。如无特别说明,我们后面一般所说的周期是指函数的最小正周期。 说明:1、周期函数定义域必是无界的。 2、周期函数不一定都有最小正周期。 推广:若)()(b x f a x f +=+,则)(x f 是周期函数,a b -是它的一个周期; )2 ()2(T x f T x f -=+,则)(x f 周期为T ; ()f x 的周期为)(x f T ω?的周期为 ω T 。 2、常见周期函数的函数方程: (1)函数值之和定值型,即函数)()()(b a C x b f x a f ≠=+++ 对于定义域中任意x 满足)()()(b a C x b f x a f ≠=+++,则有)()]22([x f a b x f =-+,故函数)(x f 的周期是)(2a b T -= 特例:()()f x a f x +=-,则()x f 是以2T a =为周期的周期函数; (2)两个函数值之积定值型,即倒数或负倒数型 若)()()(可正可负,C b a C x b f x a f ≠=+?+,则得 )]22()2[()2(a b a x f a x f -++=+,所以函数)(x f 的周期是)(2a b T -=

分子的对称性与点群

分子的对称性与点群 摘要:分子也像日常生活中见到的物体一样,具有各种各样的对称性。分子的对称性是分子的很重要的几何性质,它是合理解释许多化学问题的简明而重要的基础。例如,往往从对称性入手,我们就能获得有关分子中电子结构的一些有用的定性结论,并从光谱推断有关分子的结构。 关键词:对称性点群对称操作 一.对称操作与点群 如果分子的图形相应于某一几何元素(点、线、面)完成某种操作后,所有原子在空间的排布与操作前的排布不可区分,则称此分子具有某种对称性。一般将能使分子构型复原的操作,称为对称操作,对称操作所据以进行的几何元素称为对称元素。描述分子的对称性时,常用到“点群”的概念。所谓点群,就是指能使一个分子的图象复原的全部点操作的集合。而全部对称元素的集合构成对称元素系。每个点群具有一个持定的符号。一个分子的对称性是高还是低,就可通过比较它们所属的点群得到说明。 二.分子中的对称元素和对称操作 2.1 恒等元及恒等操所谓点群,就是指能使一个分子的图象复原的全部点操作的集合。作 分别用E、E^表示。这是一个什么也没有做的动作,保持分子不动,是任何分子都具有的对称元素与对称操作。

2.2旋转轴和旋转操作 分别用C n 、 C ^n 表示。 如果一个分子沿着某一轴旋转角度α能使分 子复原,则该分子具有轴C n , α是使分子复原所旋转的最小角度, 若一个分子中存在着几个旋转轴,则轴次高的为主轴 (放在竖直位 置),其余的为副轴。分子沿顺时针方向绕某轴旋转角度 α,α=360° /n (n=360°/α(n=1,2,3……) 能使其构型成为等价构型或复原, 即分子的新取向与原取向能重合,就称此操作为旋转操作,并称此分 子具有 n 次对称轴。n 是使分子完全复原所旋转的次数, 即为旋转 轴的轴次, 对应于次轴的对称操作有n 个。 C n n =E ﹙上标n 表示操 作的次数,下同﹚。 如NH3 (见图 1) 旋转 2π/3 等价于旋转 2π (复 原), 基转角 α=360°/n C3 - 三重轴;再如平面 BF3 分 子, 具有一个 C3 轴和三个 C2 轴,倘若分子中有一个以 上 的旋转轴,则轴次最高的为主轴。 2.3 对称面与反映操作 分别用σ、σ^表示。对称面也称为镜面, 它将分子分为两个互为镜 像的部分。对称面所对应的操作是反映, 它使分子中互为镜像的两 个部分交换位置而使分子复原。 σ^?=E ^ ﹙n 为偶数﹚, σ^2n =E ^﹙n 为奇数﹚。 对称面又分为: σh 面﹙垂直于主轴的对称面﹚、σ v 面﹙包含主轴的对称面﹚与σd 面﹙包含主轴并平分垂直于主轴的两 个C 2轴的夹角的平面﹚, σd 是σv 面的特殊类型。 图1

分子结构和对称性

普化无机试卷(分子结构和对称性) 一、填空题 1. (1801) ClO 2F 的结构是 ,其点群是 。 2. (1802) 用VSEPR 理论判断H 2Se 和H 3O +的结构和点群分别是H 2Se 和H 3O + 。 3. (1804) 如果金属三羰基化合物分别具有C 3v 、D 3h 和C s 对称性,其中每一种在IR 光谱中的CO 伸缩振动谱带数各有 , 和 个。 4. (1806) PF 5分子和SO 32 -离子的对称群(若有必要,可利用VSEPR 理论确定几何形状)分别是 和 。 5. (1807) NH 4+中的C 3轴有 个,各沿 方向。 6. (1808) 二茂钌分子是五角棱柱形,Ru 原子夹在两个C 5H 5环之间。该分子属 点群, 极性(有、无)。 7. (1809) CH 3CH 3具有S 6轴的构象是 。 8. (1813) (H 3Si)3N 和(H 3C)3N 的结构分别是 和 ,原因是 。 9. (1814) 下列分子(或离子)具有反演中心的是 ,具有S 4轴的是 。 (1) CO 2,(2) C 2H 2,(3) BF 3,(4) SO 42 - 10. (1815) 平面三角形分子BF 3,四面体SO 42 -离子的点群分别是 和 。 11. (1817) 确定下列分子或离子的点群: (1) CO 32 - ;(2) SiF 4 ;(3) HCN ; (4) SiFClBrI 12. (1818) (1) 手性的对称性判据是 。

(2) NH2Cl,CO32-,SiF4,HCN,SiFClBrI,BrF4-中具有光学活性的是。 13. (1822) 分子中的键角受多种因素的影响,归纳这些因素并解释下列现象。 OF2< H2O AsF3 > AsH3 101.5?104.5?96.2?91.8? 14. (1829) 配离子[Cr(ox)3]3-(其中ox代表草酸根[O2CCO2]2-)的结构属于D3群。该分子(是、否)为手性分子。因为。 二、问答题 15. (1800) 绘出或写出AsF5及其与F-形成的配合物的分子形状(若需要,可使用VSEPR理论),并指出其点群。 16. (1803) 有关O2配位作用的讨论中认定氧有O2、O2-和O22-等三种形式。试根据O2的分子轨 道能级图,讨论这些物种作为配体时的键级、键长和净自旋。 17. (1805) 已知N、F、H的电负性值分别为3.04、3.98和2.20,键的极性是N—F大于N—H,但分子的极性却是NH3 >NF3,试加以解释。 18. (1810) (一) 试说明哪些对称元素的存在使分子没有偶极矩? (二) 用对称性判断确定下列分子(或离子)中哪些有极性。 (1) NH2Cl,(2) CO32-,(3) SiF4,(4) HCN,(5) SiFClBrI,(6) BrF4- 19. (1811) 长久以来,人们认为H2与I2的反应是典型的双分子反应:H2和I2通过侧向碰撞形成一个梯形活化配合物,然后I—I键、H—H键断裂,H—I键生成。请从对称性出发,分析这种机理是否合理。 20. (1812) 画出或用文字描述下列分子中对称元素的草图: (1) NH3分子的C3轴和σv对称面; (2) 平面正方形[PtCl4]2-离子的C4轴和σh对称面。 21. (1816) 确定下列原子轨道的对称元素: 轨道。 (1) s轨道;(2) p轨道;(3) d xy轨道;(4) d z2 22. (1819) H2O和NH3各有什么对称元素?分别属于什么点群? 23. (1820)

高中函数对称性总结分析

高中函数对称性总结 新课标高中数学教材上就函数的性质着重讲解了单调性、奇偶性、周期性,但在考试测验甚至高考中不乏对函数对称性、连续性、凹凸性的考查。尤其是对称性,因为教材上对它有零散的介绍,例如二次函数的对称轴,反比例函数的对称性,三角函数的对称性,因而考查的频率一直比较高。以笔者的经验看,这方面一直是教学的难点,尤其是抽象函数的对称性判断。所以这里我对高中阶段所涉及的函数对称性知识做一个粗略的总结。 一、对称性的概念及常见函数的对称性 1、对称性的概念 ①函数轴对称:如果一个函数的图像沿一条直线对折,直线两侧的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴。 ②中心对称:如果一个函数的图像沿一个点旋转180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的中心对称,该点称为该函数的对称中心。 2、常见函数的对称性(所有函数自变量可取有意义的所有值) ①常数函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴。 ②一次函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴。 ③二次函数:是轴对称,不是中心对称,其对称轴方程为x=-b/(2a)。 ④反比例函数:既是轴对称又是中心对称,其中原点为它的对称中心,y=x与y=-x均为它的对称轴。 ⑤指数函数:既不是轴对称,也不是中心对称。 ⑥对数函数:既不是轴对称,也不是中心对称。 ⑦幂函数:显然幂函数中的奇函数是中心对称,对称中心是原点;幂函数中的偶函数是轴对称,对称轴是y轴;而其他的幂函数不具备对称性。 ⑧正弦函数:既是轴对称又是中心对称,其中(kπ,0)是它的对称中心,x=kπ+π/2是它的对称轴。 ⑨正弦型函数:正弦型函数y=Asin(ωx+φ)既是轴对称又是中心对称,只需从ωx+φ=kπ中解出x,就是它的对称中心的横坐标,纵坐标当然为零;只需从ωx+φ=kπ+π/2中解出x,就是它的对称轴;需要注意的是如果图像向上

函数的对称性

函数的对称性 集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]

函数的对称性 一、教学目标 函数图象的对称性是一类函数的特性,是函数性质的重要方面,它包括自身对称和两个函数图象之间的对称,理解掌握函数对称性,对数学问题的解决有很大的帮助,对也是数形结合思想的重要体现。 1.自身对称函数,函数图象本身具有对称轴或是对称中心,该函数的图象是轴对称图形或是中心对称图形,奇函数与偶函数是最典型的两类函数,其它自身对称的函数都可以由奇偶函数平移得到; 2.两个函数图象的对称,是指两个图形之间的关系,它们之间存在某种关联,即它们关于某一点对称或是关于某一条直线对称,研究其中一个函数的性质就可知另一个函数的特点(互为反函数的两个函数图象)。 二、举例分析 例1. 设()f x 是定义在R 上的函数, (1)若对任意x R ∈,都有()()f a x f b x -=+成立,则函数()f x 的图象关于直线2 a b x +=对称; (2)若对任意x R ∈,都有()()22f x f a x b +-=,则函数()f x 的图象关于点(),a b 成中心对称。 选题目的:通过此题的学习,让学生明白一个道理,函数()f x 的图象是轴对称或是中心对称,函数解析式()f x 应满足一关系式是什么,并能通过奇偶函数的平移获得理解这种关系式的钥匙。 思路分析: (1)要证明()f x 图象上任意一点()00,P x y 关于直线2 a b x +=对称的点()00,Q a b x y +-也在()f x 的图象上。 事实上,()()()()00000y f x f a a x f b a x f a b x ==--=+-=+-????????,即得点 ()00,Q a b x y +-也在()f x 的图象上。 特别地,当,a b 都为0时,就是偶函数的特征了。

函数的对称性完美

函数的对称性 一、教学目标 函数图象的对称性是一类函数的特性,是函数性质的重要方面,它包括自身对称和两个函数图象之间的对称,理解掌握函数对称性,对数学问题的解决有很大的帮助,对也是数形结合思想的重要体现。 1.自身对称函数,函数图象本身具有对称轴或是对称中心,该函数的图象是轴对称图形或是中心对称图形,奇函数与偶函数是最典型的两类函数,其它自身对称的函数都可以由奇偶函数平移得到; 2.两个函数图象的对称,是指两个图形之间的关系,它们之间存在某种关联,即它们关于某一点对称或是关于某一条直线对称,研究其中一个函数的性质就可知另一个函数的特点(互为反函数的两个函数图象)。 二、举例分析 例1. 设()f x 是定义在R 上的函数, (1)若对任意x R ∈,都有()()f a x f b x -=+成立,则函数()f x 的图象关于直线2 a b x +=对称; (2)若对任意x R ∈,都有()()22f x f a x b +-=,则函数()f x 的图象关于点(),a b 成中心对称。 选题目的:通过此题的学习,让学生明白一个道理,函数()f x 的图象是轴对称或是中心对称,函数解析式()f x 应满足一关系式是什么,并能通过奇偶函数的平移获得理解这种关系式的钥匙。 思路分析: (1)要证明()f x 图象上任意一点()00,P x y 关于直线2 a b x +=对称的点()00,Q a b x y +-也在()f x 的图象上。 事实上,()()()()00000y f x f a a x f b a x f a b x ==--=+-=+-????????,即得点()00,Q a b x y +-也在()f x 的图象上。 特别地,当,a b 都为0时,就是偶函数的特征了。

结构化学基础习题答案分子的对称性

04分子的对称性 【4.1】HCN 和2CS 都是直线型分子,写出该分子的对称元素。 解:HCN :(),C υσ∞∞; CS 2 :()()2,,,,h C C i υσσ∞∞∞ 【4.2】写出3H CCl 分子中的对称元素。 解:()3,3C υσ 【4.3】写出三重映轴3S 和三重反轴3I 的全部对称操作。 解:依据三重映轴S 3所进行的全部对称操作为: 1133h S C σ=,2233S C =, 33h S σ= 4133S C =,52 33h S C σ=, 63S E = 依据三重反轴3I 进行的全部对称操作为: 1133I iC =,22 33I C =,33I i = 4133I C =,5233I iC =,63I E = 【4.4】写出四重映轴4S 和四重反轴4I 的全部对称操作。 解:依据S 4进行的全部对称操作为: 1121334 4442444,,,h h S C S C S C S E σσ==== 依据4I 进行的全部对称操作为: 11213344442444,,,I iC I C I iC I E ==== 【4.5】写出xz σ和通过原点并与χ轴重合的2C 轴的对称操作12C 的表示矩阵。 解: 100010001xz σ????=-??????, ()1 2100010001x C ?? ??=-?? ??-?? 【4.6】用对称操作的表示矩阵证明: (a ) ()2xy C z i σ= (b ) ()()()222C x C y C z = (c ) ()2yz xz C z σσ= 解: (a ) ()()11 2 2xy z z x x x C y C y y z z z σ-?????? ??????==-?????? ??????--??????, x x i y y z z -????????=-????????-????

高考数学复习专题函数的对称性与周期性

第5炼 函数的对称性与周期性 一、基础知识 (一)函数的对称性 1、对定义域的要求:无论是轴对称还是中心对称,均要求函数的定义域要关于对称轴(或对称中心)对称 2、轴对称的等价描述: (1)()()f a x f a x -=+?()f x 关于x a =轴对称(当0a =时,恰好就是偶函数) (2)()()()f a x f b x f x -=+?关于2 a b x += 轴对称 在已知对称轴的情况下,构造形如()()f a x f b x -=+的等式只需注意两点,一是等式两侧f 前面的符号相同,且括号内x 前面的符号相反;二是,a b 的取值保证2 a b x += 为所给对称轴即可。例如:()f x 关于1x =轴对称()()2f x f x ?=-,或得到 ()()31f x f x -=-+均可,只是在求函数值方面,一侧是()f x 更为方便 (3)()f x a +是偶函数,则()()f x a f x a +=-+,进而可得到:()f x 关于x a =轴对称。 ① 要注意偶函数是指自变量取相反数,函数值相等,所以在()f x a +中,x 仅是括号中的一部分,偶函数只是指其中的x 取相反数时,函数值相等,即()()f x a f x a +=-+,要与以下的命题区分: 若()f x 是偶函数,则()()f x a f x a +=-+????:()f x 是偶函数中的x 占据整个括号,所以是指括号内取相反数,则函数值相等,所以有()()f x a f x a +=-+???? ② 本结论也可通过图像变换来理解,()f x a +是偶函数,则()f x a +关于0x =轴对称,而()f x 可视为()f x a +平移了a 个单位(方向由a 的符号决定),所以()f x 关于x a =对称。 3、中心对称的等价描述: (1)()()f a x f a x -=-+?()f x 关于(),0a 轴对称(当0a =时,恰好就是奇函数) (2)()()()f a x f b x f x -=-+?关于,02a b +?? ??? 轴对称 在已知对称中心的情况下,构造形如()()f a x f b x -=-+的等式同样需注意两点,一是

手性分子与旋光性

手性分子和旋光性 一、手性分子与非手性分子 不具有对称面和对称中心的分子有一个重要的特点,就是实体和镜象不能重叠,其关系正和左、右手的关系相似,因此现在普遍地称这类分子为手 它可以写出结构式(i)和(ii),(i)和(ii)与左、右手一样具有实体和镜象的关系,因此乳酸是一个手性分子。实体和镜象互称为对映体。一对对映体从表观上看,它们是“非常对称”的,这种实体和镜象不能重叠的而表观上或结构上又“非常对称”的关系可看作是一种“特殊的对称”。 从对称因素考虑,乳酸只有一个C 简单对称轴,任何一个物体或分子旋转360° 1 (n=1)时,都可复原。为了和许多其它只具有C n>1简单对称轴的手性分子区别开来,所以把这种手性分子称为不对称分子,而后者称为非对称分子。 乳酸分子还有一个特点,它的一个碳原子和四个不同的基团相连,这种碳原子称为不对称碳原子或手性碳原子,氮、磷、硫原子也可连接不同的基团,这种原子,均可称为手性中心。现在已知绝大多数手性分子(不对称分子)含有一个或多个不对称碳原子,但并不能因此就将含有手性碳原子作为产生手性分子的绝对条件,产生手性分子的必要与充分条件是实体和镜象不能重叠。

二、对映体和光活性 实体和镜象不能重叠的分子成为一对对映体。这二者的物理性质及化学性质,如溶解度、熔点、密度、焓等,都是相同的。它们的化学反应性能也是相同的,只有在特殊的环境下,如在手性溶剂或试剂存在下,才表现出差异,生物体内的大多数反应是在手性的环境下进行的。但一对对映体对偏振光的作用不同,一个可以把偏振光向左旋,另一个则把偏振光向右旋,而非手性分子对偏振光没有这种作用,因此手性分子又称为光活性分子。光活性并不是手性分子的唯一特征,个别手性分子显示不出旋光性来,因此用手性这个名词,就更恰当一些。偏振光是检查手性分子的一种最常用的方法,因此需要对它略加讨论。 普通的光线含有各种波长的射线,是在各个不同的平面上振动的,图3-1(i)代表一束光线朝着我们的眼睛直射过来,它包含有在各个平面上(如A,B,C,D…)振动的射线,假若使光线通过一个电气石制的棱镜,又叫尼可尔(Nicol)棱镜,一部分射线就被阻挡不能通过,这是因为这种棱镜具有一种特殊的性质,只有和棱镜的晶轴平行振动的射线才能全部通过。假若这个棱镜的晶轴是直立的,那么只有在这个垂直平面上振动的射线才可通过,这种通过棱镜的光叫做平面偏光。图3-1(ii)表示凡在虚线平面上振动的射线都将受到全部地或者部分地阻挡。图3-1(iii)表示通过棱镜的光线是仅含有在箭头所示平面上振动的偏光。 用两块电气石制的棱镜放在眼睛和一个光源之间,若两个棱镜的轴彼此平行,则通过第一个棱镜的射线也可通过第二个棱镜,我们看到的是透明的图3-2(i),若两个棱镜的轴互相垂直,通过第一个棱镜的射线就不能通过第二个棱镜,此时看到两镜相交处是不透明的[图3-2(ii)]。电气石棱镜对于光的作用可以用一本书和一

函数的对称性知识点讲解及典型习题分析

函数的对称性知识点讲解及典型习题分析 新课标高中数学教材上就函数的性质着重讲解了单调性、奇偶性、周期性,但在考试测验甚至高考中不乏对函数对称性、连 续性、凹凸性的考查。尤其是对称性,因为教材上对它有零散的介绍,例如二次函数的对称轴,反比例函数的对称性,三角 函数的对称性,因而考查的频率一直比较高。 对称性的概念及常见函数的对称性 1、对称性的概念: ①函数轴对称:如果一个函数的图像沿一条直线对折,直线两侧的图像能够完全重合,则称该函数具备对称性中的轴对称, 该直线称为该函数的对称轴。 ②中心对称:如果一个函数的图像沿一个点旋转180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的 中心对称,该点称为该函数的对称中心。 常见函数的对称性(所有函数自变量可取有意义的所有值) ①常数函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴。 ②一次函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴。 ③二次函数:是轴对称,不是中心对称,其对称轴方程为 a b x2。 ④反比例函数:既是轴对称又是中心对称,其中原点为它的对称中心,y=x与y=-x均为它的对称轴。 ⑤指数函数:既不是轴对称,也不是中心对称。 ⑥对数函数:既不是轴对称,也不是中心对称。 ⑦幂函数:显然幂函数中的奇函数是中心对称,对称中心是原点;幂函数中的偶函数是轴对称,对称轴是y轴;而其他的幂函数不具备对称性。 ⑧正弦函数:既是轴对称又是中心对称,其中(kπ,0 )是它的对称中心,2kx是它的对称轴。 ⑨正弦型函数:正弦型函数y=Asin(ωx+φ)既是轴对称又是中心对称,只需从ωx+φ=kπ中解出x,就是它的对称中心的横坐标,纵坐标当然为零;只需从ωx+φ=kπ+π/2中解出x,就是它的对称轴;需要注意的是如果图像向上向下平移,对称轴不 会改变,但对称中心的纵坐标会跟着变化。 ⑩余弦函数:既是轴对称又是中心对称,其中x=kπ是它的对称轴,) 0,2 (k是它的对称中心。 (11 )正切函数:不是轴对称,但是是中心对称,其中)0,2 ( k是它的对称中心,容易犯错误的是可能有的同学会误以为对 称中心只是(kπ,0)。 对号函数:对号函数y=x+a/x(其中a>0)因为是奇函数所以是中心对称,原点是它的对称中心。但容易犯错误的是同学们可能 误以为最值处是它的对称轴。 三次函数:显然三次函数中的奇函数是中心对称,对称中心是原点,而其他的三次函数是否具备对称性得因题而异。 绝对值函数:这里主要说的是y=f(│x│)和y=│f(x)│两类。前者显然是偶函数,它会关于y轴对称;后者是把x轴下方的图像对称到x轴的上方,是否仍然具备对称性,这也没有一定的结论,例如y=│lnx│就没有对称性,而y=│sinx│却仍然是轴对称。 二、函数的对称性猜测: 具体函数特殊的对称性猜测 ①一个函数一般是不会关于x轴对称,这是由函数定义决定的,因为一个x不会对应两个y的值。但一个曲线是可能关于x 轴对称的。例1、判断曲线xy42 ②函数关于y轴对称例2、判断函数y=cos(sinx)的对称性。 ③函数关于原点对称例3、判断函数xxysin3 ④函数关于y=x对称例4 、判断函数x y1 ⑤函数关于y=-x对称例5 、判断函数x y4 总结为:设(x,y)为原曲线图像上任一点,如果(x,-y)也在图像上,则该曲线关于x轴对称;如果(-x,y)也在图像上,则该曲线关于y轴对称;如果(-x,-y)也在图像上,则该曲线关于原点对称;如果(y,x)也在图像上,则该曲线关 于y=x对称;如果(-y,-x)也在图像上,则该曲线关于y=-x轴对称。2、抽象函数的对称性猜测①轴对称 例6、如果函数y=f(x)满足f(x+1)=f(4-x),求该函数的所有对称轴。(任意取值代入例如x=0有f(1)=f(4),正中间 2.5,从而该函数关于x=2.5对称) 例7、如果函数y=f(x)满足f(x)=f(-x),求该函数的所有对称轴。(按上例一样的方法可以猜出对称轴为x=0,可见偶函数是特殊的轴对称) 例8、如果f(x)为偶函数,并且f(x+1)=f(x+3),求该函数的所有对称轴。(因为f(x+1)=f(-x-3),按上例可以猜出对称轴x=-1,又因为它以2为周期,所以x=k是它所有的对称轴,k∈Z)②中心对称 例9、如果函数y=f(x)满足f(3+x)+f(4-x)=6,求该函数的对称中心。(因为自变量加起来为7时函数值的和始终为6,所以中点固定为(3.5,3),这就是它的对称中心)

函数对称性与周期性几个重要结论赏析

函数对称性与周期性几个重要结论赏析 对称性和周期性是函数的两个重要性质,下面总结这两个性质的几个重要结论及运用它们解决抽象型函数的有关习题。 一、 几个重要的结论 (一)函数图象本身的对称性(自身对称) 1、函数)(x f y =满足)()(x T f x T f -=+(T 为常数)的充要条件是)(x f y =的图象关于直线T x =对称。 2、函数)(x f y =满足)2()(x T f x f -=(T 为常数)的充要条件是)(x f y =的图象关于直线T x =对称。 3、函数)(x f y =满足)()(x b f x a f -=+的充要条件是)(x f y =图象关于直线2 2)()(b a x b x a x +=-++=对称。 4、如果函数 )(x f y =满足)()(11x T f x T f -=+且)()(22x T f x T f -=+,(1T 和2T 是不相等的常数),则)(x f y =是以为)(212T T -为周期的周期函数。 5、如果奇函数)(x f y =满足)()(x T f x T f -=+(0≠T ),则函数)(x f y =是以4T 为周期的周期性函数。 6、如果偶函数)(x f y =满足)()(x T f x T f -=+(0≠T ),则函数)(x f y =是以2T 为周期的周期性函数。 (二)两个函数的图象对称性(相互对称)(利用解析几何中的对称曲线轨迹方程理解) 1、曲线 )(x f y =与)(x f y -=关于X 轴对称。 2、曲线)(x f y =与)(x f y -=关于Y 轴对称。 3、曲线)(x f y =与)2(x a f y -=关于直线a x =对称。 4、曲线0),(=y x f 关于直线b x =对称曲线为0)2,(=-y b x f 。 5、曲线0),(=y x f 关于直线0=++c y x 对称曲线为0),(=----c x c y f 。 6、曲线0),(=y x f 关于直线0=+-c y x 对称曲线为0),(=+-c x c y f 。 7、曲线0),(=y x f 关于点),(b a P 对称曲线为0)2,2(=--y b x a f 。 二、试试看,练练笔 1、定义在实数集上的奇函数 )(x f 恒满足)1()1(x f x f -=+,且)0,1(-∈x 时, 512)(+=x x f ,则=)20(log 2f ________。 2、已知函数)(x f y =满足0)2()(=-+x f x f ,则)(x f y =图象关于__________对称。 3、函数)1(-=x f y 与函数)1(x f y -=的图象关于关于__________对称。 4、设函数)(x f y =的定义域为R ,且满足)1()1(x f x f -=-,则)(x f y =的图象关于__________ 对称。 5、设函数)(x f y =的定义域为R ,且满足)1()1(x f x f -=+,则)1(+=x f y 的图象关于__________对称。)(x f y =图象关于__________对称。 6、设)(x f y =的定义域为R ,且对任意R x ∈,有)2()21(x f x f =-,则)2(x f y =图象关于__________对称,)(x f y =关于__________对称。 7、已知函数)(x f y =对一切实数x 满足)4()2(x f x f +=-,且方程0)(=x f 有5个实根,则这5个实根之和为( ) A 、5 B 、10 C 、15 D 、18 8、设函数 )(x f y =的定义域为R ,则下列命题中,①若)(x f y =是偶函数,则)2(+=x f y 图象

分子结构和对称性

普化无机试卷(分子结构和对称性)答案 一、填空题 1. (1801) 锥形,C s 2. (1802) 弯曲形,C2v;锥形,C3v 3. (1804) 2,1,3 4. (1806) D3h,C3v 5. (1807) 4,1个N—H键 6. (1808) D5h,无 7. (1809) “交错式”构象 8. (1813) 平面三角形,三角锥,Si上的空d轨道和N上的孤对电子有π成键作用,降低了N上孤对电子的电子云密度。 9. (1814) 2- CO2,C2H2;SO 4 10. (1815) D3h,T d 11. (1817) (1) D3h;(2) T d;(3) C∞v;(4) C1 12. (1818) (1) 没有S n对称元素;(2) SiFClBrI。 13. 1 分(1822) (1) 中心原子的孤对电子的数目将影响键角,孤对电子越多、键角越小。 (2) 配位原子的电负性越大,键角越小,中心原子的电负性越大,键角越大。 (3) 多重键的存在使键角变大。 在上述OF2和H2O分子中,F的电负性大于H,成键电子对更靠近F,排斥力减小,故键角减小。 在AsF3和AsH3、除上述电负性因素外,主要还因As—F之间生成反馈p - dπ键,使As与F之间具有多重键的性质,故键角增大。 14. (1829) 是,D3群由对称元素E、C3、3C2组成,不含非真旋转轴(包括明显的和隐藏的), 二、问答题( 共16题90分) 15. (1800) AsF5三角双锥(D3h);AsF6-正八面体(O h)。

F F 16. (1803) 电中性O 2,双键,较短,三重态; O 2-键级1.5,键较长,二重态; O 2 2-较长的单键,单重态。 17. (1805) 键的极性和分子的极性分别由键的偶极矩和分子的偶极矩来度量。偶极矩是一个矢量,有大小、方向,其大小等于偶极长度乘以电荷,其方向是由正向负。分子的偶极矩等于分子中各偶极矩的矢量之和。因此: NH 3分子的偶极矩等于由三条键偶极矩的矢量之和加上由孤 对电子产生的偶极矩。二者均由下向上,相加的结果 +=, 偶极矩较大。 在NF 3中,由于孤对电子产生的偶极矩与键偶极矩方向不一 致,相加的结果+=,偶极矩较小。 18. (1810) (一) 含有i ,或其它对称元素有公共交点的分子没有偶极矩,或者说不属于C n 或C n v 点群的分子; (二) (1)、(4)、(5)可能是。 19. (1811) 根据分子轨道能级图,H 2的HOMO 是σ (s )MO ,LUMO 是σ*(s ),而I 2的HOMO 是π *(p ),而LUMO 是σ*(p )。如果进行侧碰撞,有两种可能的相互作用方式: (1) 由H 2的HOMO 即σ (s )MO 与I 2分子LUMO 即σ*(p )相互作用。显然对称性不匹配, 净重叠为0,为禁阻反应。 (2) 由I 2的HOMO 即π*(p )与H 2的LUMO 即σ*(s )相互作用,对称性匹配,轨道重叠不为0。然而若按照这种相互作用方式,其电子流动是I 2的反键流向H 2的反键,对I 2来讲电子流动使键级增加,断裂不易;而且,从电负性来说,电子由电负性高的I 流向电负性低的 H 也不合理。 N H H H N F F F H 2 HOMO I 2 LUMO I 2 HOMO H 2 LUMO

关于分子的对称性(精)

关于分子的对称性 高剑南 ﹙华东师范大学200062﹚ 1.从《非极性分子和极性分子》一课说起 曾经看过有关《非极性分子和极性分子》的教学设计,也听过《非极性分子和极性分子》的公开课。无论是教学设计,还是公开課,都很精彩。遗憾的是听到教师这样的讲述:CCl4分子为正四面体结构,是对称分子,所以是非极性分子。H2O分子的空间构型为折线形,不对称,所以是极性分子。甚至总结为:“分子的空间构型为直线型、平面正四边型、正四面体等空间对称构型的多原子分子则为非极性分子;分子的空间构型为折线型、三角锥型、四面体等空间不对称构型的多原子分子则为极性分子”。 那么,这样的判断有没有问题?何谓对称?何谓不对称?何谓极性分子?何谓非极性分子?分子的对称性与分子极性有着怎样的内在联系?研究对称性有什么意义? 2. 对称性 在所有智慧的追求中,很难找到其他例子能够在深刻的普遍性与优美简洁性方面与对称性原理相比。——李政道 2.1 对称是自然界的一个普遍性质 对称性是自然界的一个普遍现象。任何动物,无论是低等动物草履虫,还是高等的哺乳动物包括人;任何植物,无论是叶,还是花,都具有某种对称性。人类受此启发,任何建筑,无论是古建筑天坛、罗马式大教堂、泰姬陵,还是现代建筑国家大剧院、鸟巢体育馆;无论是高档别墅,还是普通民居,都具有某种对称性。对称是自然界中普遍存在的一种性质,因而常被认为是最简单、最平凡的现象。然而,对称又具有最深刻的意义。科学家、艺术家、哲学家从各种角度研究和赞美对称,“完美的对称”、“神秘的对称”、“可怕的对称”,表明对称性在人类心灵中引起的震撼。 a. 捕蝇草 b. 台灣萍蓬草 c.对称性雕塑艺术 图1 对称是一个普遍现象 2.2 对称操作与对称元素 对称性用对称元素和对称操作来描述。经过不改变图形中任何两点间距离的操作能够复原的图形称为对称图形。能使对称图形复原的操作称为对称操作。进行对称操作时所依赖的对称要素(点、线、面)称为对称元素。根据对称操作的概念,将一张纸撕成两半,然后再拼接,即使拼得天衣无缝,这“撕”纸的操作不能称为对称操作,这张纸即使修复得“天衣无缝”,也不能说纸在对称意义上“复原”了。因为在撕纸的过程中图形中任意两点间的距离都改变了,不满足对称图形的要求。

分子的对称性及分子结构习题及答案

第二章分子的对称性与分子结构 【补充习题及答案】 1.HCN和CS2都是直线形分子,请写出它们具有的对称元素的种类。 答案:HCN:C∞、σv。CS2:C∞、C2'、σh、σv、i、S∞。 2.指出下列分子存在的对称元素: (1)AsCl3;(2)BHFBr;(3)SiH4 答案:(1)AsCl3分子为三角锥形,存在对称元素C3和3σv。 (2)BHFBr分子为三角形,存在对称元素1个σ。 (3)SiH4分子为四面体形,存在对称元素4C3、3C2、3S4、6σd。 3.SF5Cl分子的形状和SF6相似,试指出它的点群。 答案:SF5Cl分子仍为八面体,但1条键与其他键不同,分子点群为C4v。 4.正八面体6个顶点上的原子有3个被另一种原子取代,有几种可能的方式?取代产物各属于什么点群?取代产物是否具有旋光性和偶极矩? 答案:只有经式(mer-)和面式(fac-)两种取代方式。经式产物属于C2v点群,面式产物属于C3v点群。均有偶极矩,均无旋光性。 5.指出下列各对分子的点群。 (1)CO2和 SO2 (2)二茂铁(交错式)和二茂钌(重叠式)(3)[IF6]+八面体)和[IF6]-(五角锥)(4) SnClF(角形)和XeClF(线形)

(5)mer-WCl3F3和fac-WCl3F3(6)顺式和反式Mo(CO)4Cl2 答案:(1)CO2:D∞h点群;SO2:C2v点群。 (2)二茂铁(交错式):D5h点群;二茂钌(重叠式):D5d点群。 (3) [IF6]+(八面体):O h点群;[IF6]-(五角锥):C5v点群。 (4)SnClF(角形):C s点群;XeClF(线形):C∞v点群。 (5)mer-WCl3F3:C2v点群;fac-WCl3F3:C3v点群。 (6)顺式Mo(CO)4Cl2:C2v;反式Mo(CO)4Cl2 :D4h点群 6.如何判断一个分子有无永久偶极矩和有无旋光性? 答案:对称元素不是交于一点的分子具有永久偶极矩。C n和C nv点群对称元素交于C n轴,因此属于C n和C nv点群的分子都具有永久偶极矩,而其他点群的分子无永久偶极矩。由于C1v ≡C s,因此C s点群也包括在C nv点群中。 凡具有反轴S n对称性的分子一定无旋光性,而不具有反轴对称性的分子理论上具有旋光性。由于S1≡σ,S2≡i,所以具有i和σ的分子也一定无旋光性。 7.下列哪个物质具有手性?哪个物质具有极性?(分子中离域的双键均忽略不计) Cl HO P N N P N P P N (1)顺式CrCl2(acac)2(2)反式CrCl2(acac)2(3)cyclo-(Cl2PN)4答案:(1)有手性,有极性。

二次函数对称性

(一)、教学内容 1. 二次函数的解析式六种形式 ① 一般式 y=ax 2 +bx+c(a ≠0) ② 顶点式 2 ()y a x h k =-+(a ≠0已知顶点) ③ 交点式 12()()y a x x x x =--(a ≠0已知二次函数与X 轴的交点) ④ y=ax 2 (a ≠0) (顶点在原点) ⑤ y=ax 2+c (a ≠0) (顶点在y 轴上) ⑥ y= ax 2 +bx (a ≠0) (图象过原点) 2. 二次函数图像与性质 对称轴:2b x a =- 顶点坐标:2 4(,)24b ac b a a -- 与y 轴交点坐标(0,c ) 增减性:当a>0时,对称轴左边,y 随x 增大而减小;对称轴右边,y 随x 增大而增大 当a<0时,对称轴左边,y 随x 增大而增大;对称轴右边,y 随x 增大而减小 ☆ 二次函数的对称性 二次函数是轴对称图形,有这样一个结论:当横坐标为x 1, x 2 其对应的纵坐标相等那么对称轴:12 2 x x x += 与抛物线y=ax 2 +bx+c(a ≠0)关于 y 轴对称的函数解析式:y=ax 2 -bx+c(a ≠0) 与抛物线y=ax 2 +bx+c(a ≠0)关于 x 轴对称的函数解析式:y=-ax 2 –bx-c(a ≠0) 当a>0时,离对称轴越近函数值越小,离对称轴越远函数值越大; 当a<0时,离对称轴越远函数值越小,离对称轴越近函数值越大; 【典型例题】 题型 1 求二次函数的对称轴 1、 二次函数y=2x -mx+3的对称轴为直线x=3,则m=________。 2、 二次函数c bx x y ++=2的图像上有两点(3,-8)和(-5,-8),则此拋物线的对称轴是( ) (A )1x =- (B )1x = (C )2x = (D )3x = 3、 y=2x 2-4的顶点坐标为___ _____,对称轴为__________。 4、 如图是二次函数y =ax 2+bx +c 图象的一部分,图象过点A (-3,0), 对称轴为x =-1.求它与x 轴的另一个交点的坐标( , ) y x O

函数对称性、周期性和奇偶性的规律总结大全

函数对称性、周期性和奇偶性规律 一、 同一函数的周期性、对称性问题(即函数自身) 1、 周期性:对于函数 )(x f y =,如果存在一个不为零的常数 T ,使得当x 取定义域内的每一个值时,都有 )()(x f T x f =+都成立,那么就把函数)(x f y =叫做周期函数,不为零的常数T 叫做这个函数的周 期。如果所有的周期中存在着一个最小的正数,就把这个最小的正数叫做最小正周期。 2、 对称性定义(略),请用图形来理解。 3、 对称性: 我们知道:偶函数关于y (即x=0)轴对称,偶函数有关系式 )()(x f x f =- 奇函数关于(0,0)对称,奇函数有关系式 0)()(=-+x f x f 上述关系式是否可以进行拓展?答案是肯定的 探讨:(1)函数)(x f y =关于a x =对称?)()(x a f x a f -=+ )()(x a f x a f -=+也可以写成)2()(x a f x f -= 或 )2()(x a f x f +=- 简证:设点),(11y x 在 )(x f y =上,通过)2()(x a f x f -=可知,)2()(111x a f x f y -==, 即点)(),2(11x f y y x a =-也在上,而点),(11y x 与点),2(11y x a -关于x=a 对称。得证。 若写成:)()(x b f x a f -=+,函数)(x f y =关于直线2 2)()(b a x b x a x +=-++= 对称 (2)函数 )(x f y =关于点),(b a 对称?b x a f x a f 2)()(=-++ b x f x a f 2)()2(=-++上述关系也可以写成 或 b x f x a f 2)()2(=+- 简证:设点),(11y x 在 )(x f y =上,即) (11x f y =,通过 b x f x a f 2)()2(=+-可知, b x f x a f 2)()2(11=+-,所以 1 112)(2)2(y b x f b x a f -=-=-,所以点 )2,2(11y b x a --也在)(x f y =上,而点)2,2(11y b x a --与),(11y x 关于),(b a 对称。得 证。 若写成:c x b f x a f =-++)()(,函数)(x f y =关于点)2 ,2( c b a + 对称 (3)函数 )(x f y =关于点b y =对称:假设函数关于b y =对称,即关于任一个x 值,都有两个 y 值与其对应,显然这不符合函数的定义,故函数自身不可能关于b y =对称。但在曲线c(x,y)=0,则 有可能会出现关于 b y =对称,比如圆04),(22=-+=y x y x c 它会关于y=0对称。 4、 周期性: (1)函数 )(x f y =满足如下关系系,则T x f 2)(的周期为 A 、 )()(x f T x f -=+ B 、) (1 )()(1)(x f T x f x f T x f - =+= +或 C 、 )(1)(1)2(x f x f T x f -+=+或) (1) (1)2(x f x f T x f +-=+(等式右边加负号亦成立)

相关主题