搜档网
当前位置:搜档网 › 大学物理上部分试题及答案

大学物理上部分试题及答案

大学物理上部分试题及答案
大学物理上部分试题及答案

第一章 质点运动学

一、填空题

1. 一质点作半径为R 的匀速圆周运动,在此过程中质点的切向加速度的方向 改变 ,法向加速度的大小 不变 。(填“改变”或“不变”)

2. 一质点作半径为 0.1 m 的圆周运动,其角位移随时间t 的变化规律是

= 2

+ 4t 2 (SI)。在t =2 s 时,它的法向加速度大小a n =_______25.6_______m/s 2;切向

加速度大小a t =________0.8______ m/s 2。

3. 一质点在OXY 平面内运动,其运动方程为22,192x t y t ==-,则质点在任意时刻的速

度表达式为 j t i

42-=ν ;加速度表达式为j a

4-=。

4、沿半径为R 的圆周运动,运动学方程为 212t θ=+ (SI) ,则t时刻质点的法向加速度大小为a n =( 16 R t 2 ) ;角加速度β=( 4 rad /s 2 )(1 分).

5. 一质点作半径为 0.1 m 的圆周运动,其角位置的运动学方程为:2

2

14πt +=θ,则其切向加速度大小为t a =______0.1______2m s -?, 第1秒末法向加速度的大小为n

a =______0.1______2m s -?.

6.一小球沿斜面向上作直线运动,其运动方程为:245t t s -+=,则小球运动到最高点的时刻是t =___2___s .

7、一质点在OXY 平面内运动,其运动方程为22,192x t y t ==-,则质点在任意时刻的速

度表达式为( j t i

42-=ν );加速度表达式为( j a

4-= )。

8. 一质点沿半径R=0.4 m 作圆周运动,其角位置θ=2+3t 2,在t=2s 时,它的法向加速度n a =( 57.6 )2/s m ,切向加速度t a =( 2.4 ) 2/s m 。

9、已知质点的运动方程为j t i t r )2(22

-+=,式中r 的单位为m ,t 的单位为s 。

则质点的运动轨迹方程=y (24

1

2x -),由0=t 到s t 2=内质点的位移矢量=

?r (j i

44-)m 。

10、质点在OXY 平面内运动,其运动方程为210,2t y

t x -==,质点在任意时刻的

位置矢量为(j t i t )10(22

-+);质点在任意时刻的速度矢量为(j t i 22-);加

速度矢量为(j

2-)。

二、选择题

1. 某质点作直线运动的运动学方程为x =5t -2t 3 + 8,则该质点作( D )。

(A) 匀加速直线运动,加速度沿x 轴正方向. (B) 匀加速直线运动,加速度沿x 轴负方向. (C) 变加速直线运动,加速度沿x 轴正方向. (D) 变加速直线运动,加速度沿x 轴负方向.

2. 一质点在平面上运动,已知质点位置矢量的表示式为 j bt i at r 2

2+=(其中a 、b

为常量), 则该质点作( C )。

(A) 匀速直线运动; (B) 抛物线运动; (C) 变速直线运动; (D)一般曲线运动。 3、某质点作直线运动的运动学方程为6533

+-=t t x (SI),则该质点作( D )。

(A )匀加速直线运动,加速度沿x 轴正方向 (B )匀加速直线运动,加速度沿x 轴负方向 (C )变加速直线运动,加速度沿x 轴正方向 (D )变加速直线运动,加速度沿x 轴负方向

4、一质点在x 轴上运动,其坐标与时间的变化关系为x =4t-2t 2,式中x 、t 分别以m 、s 为单位,则4秒末质点的速度和加速度为 ( B ) (A )12m/s 、4m/s 2; (B )-12 m/s 、-4 m/s 2 ; (C )20 m/s 、4 m/s 2 ; (D )-20 m/s 、-4 m/s 2;

5.在一直线上相向运动的两个小球作完全弹性碰撞,碰撞后两球均静止,则碰撞前两球应满足:

( D )。

(A )质量相等; (B) 速率相等;

(C) 动能相等; (D) 动量大小相等,方向相反。

6. 以下四种运动形式中,加速度保持不变的运动是( A )。 A .抛体运动; B .匀速圆周运动; C .变加速直线运动; D .单摆的运动.。

7、一质点沿x 轴运动的规律是m t t x 3352+-=。则第三秒时的加速度的大小是( A )2/s m 。 A . 10 B .50; C .15; D .12。

8、质点做半径为1m 的圆周运动,运动方程为θ=3+2t 2(SI 单位),则t 时刻质点的切向加速度的大小为t a =( C )m/s 2。 A . 1 B .3; C .4; D .8。

9、质点沿半径R 做圆周运动,运动方程为232t t θ=+(SI 单位),则任意时刻质点角速度的大小ω=(B )。

A .31t +

B .62t +;

C .42t +;

D .62t +。

10、质点在OXY 平面内运动,其运动方程为210,t y t x +==,质点在任意时刻的加速

度为( B )。

A .j

B .j

2;

C .3j ;

D .4j 。

三、一质点沿半径为R 的圆周按规律2

02

1bt t v s -

= 运动,b v ,0都是常量。

(1) 求t 时刻质点加速度的大小; (2) t 为何值时总加速度在数值上等于b ?

(3) 当加速度达到b 时,质点已沿圆周运行了多少圈? (1)由2

02

1bt t v s -

=可知bt v v -=0 ()R bt v R v a t 2

02-== b dt

dv a n -== ()

R bt v b R a a a t n

4

0222

2

-+=

+=

(2)()

b R

bt v b R a a a t n =-+=

+=

4

0222

2 即00=-bt v b

v t 0

=

(3)b v t 0=带入2

02

1bt t v s -= b v bt t v s 2212020=-= bR v n π42

0=

四、质点P 在水平面内沿一半径为1m 的圆轨道转动,转动的角速度ω与时间t 的关系为2kt =ω,已知t =2s 时,质点P 的速率为16m/s ,试求t=1s 时,质点P 的速率与加速度的大小。

解:由线速度公式 221kt Rkt R ?===ωυ 得 42

16

22

==

=

t k υ

P 点的速率为 2

4t =υ m/s t t

a t 8d d ==υ m/s 2

4222161)4(t t R a n ===υ m/s 2 t =1时:)/(414422s m t =?==υ )/(882s m t a t ==

)/(1611616244s m t a n =?== )/(9.175********

2s m a a a n t ≈=+=+=

五、已知质点的运动学方程为:()()

2283126810r t t i t t j =-++++. 式中r 的单位为米,t 的单位为秒,求作用于质点的合力的大小。

解: ()163(128)dr

v t i t j dt

=

=-++ 1612dv

a i j dt

=

=+ 六、一质点沿x 方向运动,其加速度随时间的变化关系为a = 3+2 t (SI) ,如果初始时质点的速度v 0为5m/s ,则当t为3s 时,质点的速率 v 为多大。

解:()2

()3+2 3 +v a t dt t dt t t

C ==

=+?

?

0t =时,05v = 可得积分常量5C =m/s

速度为23+5v t t =+ 当3t =时,()233+523v t t =+= m/s

七、一质点在OXY 平面内运动,其运动方程为22,10x t y t ==-,求(1)质点运动的轨迹方程;(2)质点在任意时刻的速度和加速度矢量。

(1)4102

x y -=

(2) j t i

22-=ν,

j a

2-=

八、已知一质点的运动方程为22r at i bt j =+(a 、b 为常数,且不为零),求此质点运动速度的矢量表达式、加速度的矢量表达式和轨迹方程。

22dr

v ati btj dt

==+ 22dv

a ai bj dt

=

=+ 2x at = 2y bt =

则将2x t a =

代入y 的表达式可得到质点运动的轨迹方程为b

y x a

= 九、已知质量为3kg 的质点的运动学方程为:()()

22321468r t t i t t j =+-+-+. 式中

r 的单位为米,t 的单位为秒,求任意时刻的速度矢量和加速度矢量表达式。

解: ()62(86)dr

v t i t j dt

=

=++- 68dv

a i j dt

=

=+ (2) 2226810m s a a -==+=?

31030N F ma ==?=

十、一质点在OXY 平面内运动,其运动方程为24,82x t y t ==-,求(1)质点运动的轨迹方程;(2)质点在任意时刻的速度和加速度矢量。

(1)2

88

x y =-

(2) 44i tj ν=-,

4a j =-

十一、已知质量为10kg 的质点的运动学方程为:()()

2283126810r t t i t t j =-++++.

式中r 的单位为米,t 的单位为秒,求作用于质点的合力的大小。

解: ()163(128)dr

v t i t j dt

=

=-++ 1612dv

a i j dt

=

=+ 222121620m s a a -==+=?

1020200N F ma ==?=

十二、有一质点沿 x 轴作直线运动, t 时刻的坐标为 x = 5t 2 - 3t 3 (SI). 试求(1)在第2秒内的平均速度;(2)第2秒末的瞬时速度;(3)第2秒末的加速度.

第四章 刚体的转动

一、填空题

1. 刚体绕定轴转动时,刚体的角加速度与它所受的合外力矩成_____正比___,与刚体本身的转动惯量成反比。(填“正比”或“反比”)

2. 花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为0J ,角速度为0ω;然后将两手臂合拢,使其转动惯量变为02J ,则转动角速度变为

032

ω.

(1) /6m/s x t =??=-v 2(2) d d 109,

x/t t t ==-v t 2

16 m/s ==-v 1018,

t =-(3) d /d a t =v 2

t 2

26 m/s a

==-

3.某人站在匀速旋转的圆台中央,两手各握一个哑铃,双臂向两侧平伸与平台一起旋转。当他把哑铃收到胸前时,人、哑铃和平台组成的系统转动角速度应变 大 ;转动惯量变 小 。

4、均匀细棒质量为m ,长度为l ,则对于通过棒的一端与棒垂直的轴的转动惯量为(32

ml

),对于通过棒的中点与棒垂直的轴的转动惯量(122ml )。

5、长为L 的匀质细杆,可绕过其端点的水平轴在竖直平面内自由转动。如果将细杆置与水平位置,然后让其由静止开始自由下摆,则开始转动的瞬间,细杆的角加速度为(

L g

23 ),细杆转动到竖直位置时角加速度为( 零 )。

6. 一长为1m l =的均匀直棒可绕过其一端且与棒垂直的水平光滑固定轴转动。抬起另一端使棒向上与水平面呈60°,然后无初转速地将棒释放,已知棒对轴的转动惯量为

2

13

ml ,则(1) 放手时棒的角加速度为( 7.5 )2/s rad ;(2) 棒转到水平位置时的角加速度为( 15 )2/s rad 。(210m /s g =)

7、一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并留在盘内,则子弹射入后的瞬间,圆盘的角速度ω( 减小 )。

8一根长为l ,质量为m 的均匀细棒在地上竖立着。如果让竖立着的棒以下端与地面接触处为轴倒下,则上端到达地面时细棒的角加速度应为( l

g

23 )。

9、某人站在匀速旋转的圆台中央,两手各握一个哑铃,双臂向两侧平伸与平台一起旋转。当他把哑铃收到胸前时,人、哑铃和平台组成的系统转动的角速度( 变大 ) 10、如图所示,一静止的均匀细棒,长为L 、质量为M ,可绕通过棒的端点且垂直于棒长的光滑固定轴O 在水平面内转动,转动惯量为32ML 。一质量为m 、速率为v 的子弹在水平面内沿与棒垂直的方向射出并穿出棒的自由端,设穿过棒后子弹的速率为

2v ,则此时棒的角速度应为( ML

m 2v 3 )。

二、选择题

1、长为L 的匀质细杆,可绕过其端点的水平轴在竖直平面内自由转动。

v 2

1

v

俯视图

如果将细杆置于水平位置,然后让其由静止开始自由下摆,则开始转动瞬间杆的角加速度和细杆转动到竖直位置时的角加速度分别为:( B )

(A )0;

L

g

23 (B)

L

g

23; 0 (C) 0;

L

g

3 (D )

L g

3;0。

2. 刚体定轴转动,当它的角加速度很大时,作用在刚体上的( B )。 A .力一定很大; B .力矩一定很大; C .力矩可以为零; D .无法确定。

3. 花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为0J ,角速度为0ω,然后将两手臂合拢,使其转动惯量为

02

3

J ,则转动角速度变为( C )。 A .03

2ω B.

03

2ω C. 023ω D.

02

3ω 4、如图所示,A 、B 为两个相同的定滑轮,A 滑轮挂一质量为m 的物体,B 滑轮受力F

= mg ,设A 、B 两滑轮的角加速度分别为A α和B α,不计滑轮的摩擦,这两个滑轮

的角加速度的大小关系为:( B ) (A ) B A αα= (B ) B A αα< (C ) B A αα> (D ) 无法判断

5. 刚体定轴转动,当它的角加速度很大时,作用在刚体上的( B )。 A .力一定很大; B .力矩一定很大; C .力矩可以为零; D .无法确定。

6、两个均质圆盘A 和B 的密度分别为A ρ和B ρ,若B A ρρ>,但两圆盘的质量与厚度相同,如两盘对通过盘心垂直于盘面轴的转动惯量各为A J 和B J ,则 :( B ) (A )B A J J > (B )B A J J <(C )B A J J =(D )A J 、B J 哪个大,不能确定。

7、假设卫星环绕地球中心作椭圆运动,则在运动过程中,卫星对地球中心的( A )。

=

(A) 动量不守恒,角动量守恒; (B) 动量不守恒,角动量不守恒; (C) 动量守恒,角动量不守恒; (D) 动量守恒,角动量守恒

8、均匀细棒 oA 可绕通过其一端 O 而与棒垂直的水平固定光滑轴转动,如图所示。今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下列说法正确的是:( A )

(A ) 角速度从小到大,角加速度从大到小。 (B ) 角速度从小到大,角加速度从小到大。 (C ) 角速度从大到小,角加速度从大到小。 (D ) 角速度从大到小,角加速度从小到大。

9、关于刚体对轴的转动惯量,下列说法正确的是( C ) (A )只取决于刚体质量,与质量的空间分布和轴的位置无关。 (B) 取决于刚体的质量和质量的空间分布,与轴的位置无关。 (C )取决于刚体的质量、质量的空间分布和轴的位置。

(D )只取决于轴的位置,与刚体的质量和质量的空间分布无关。

10.在某一瞬时,物体在力矩作用下,则有( C )。 (A) 角速度ω可以为零,角加速度α也可以为零; (B) 角速度ω不能为零,角加速度α可以为零; (C) 角速度ω可以为零,角加速度α不能为零; (D) 角速度ω与角加速度α均不能为零。

三、如图所示,一个质量为m 的物体与绕在定滑轮上的绳子相连,绳子的质量可以忽略,它与定滑轮之间无相对滑动.假设定滑轮质量为M 、半径为R ,其转动惯量为

21

2

MR ,滑轮轴光滑。试求该物体由静止开始下落的过程中,下落速度与时间的关系。

?

o

A

解:根据牛顿运动定律和转动定律列方程:

对物体: mg T =m a - 对滑轮: TR=J α 运动学关系:=R a α 解方程组,得 mg

=

m + M / 2

a

∵ v 0 = 0, ∴ mg t

v = t =

m + M / 2

a

四、一质量为m 0 ,长为l 的棒能绕通过O 点的水平轴自由转动。一质量为m ,速率为v 0的子弹从水平方向飞来,击中棒的中点且留在棒内,如图所示。则棒中点获得的瞬时速率为多少。 解:由角动量守恒定律可得

2

2001223l l mv m m l ωω??

=+ ???

由此可得棒和子弹的瞬时角速度为0

0634mv ml m l

ω=+

棒中点获得的瞬时速率为

0000

6334234mv mv l

v r ml m l m m ω==

?=++

五、如图所示,设两重物的质量分别为m 1和m 2,且m 1>m 2,定滑轮的半径为r ,对转轴的转动惯量为J ,轻绳与滑轮间无滑动,滑轮轴上摩擦不计。设开始时系统静止,试求t 时刻滑轮的角加速度。

解:作受力图。 m 1g-T 1=m 1a ① T 2-m 2g=m 2a ② (T 1-T 2)r=J

β ③ 且有a r β

= ④

由以上四式消去T 1,T 2

得:

β= (m 1-m 2)gr/[(m 1+m 2)r 2+J]

R

M

. m

六、如图所示,均匀直杆质量为m ,长为l ,初始时棒水平静止。轴光滑,

4

l

AO =

。求杆下摆到θ角时的角速度ω。

解 对于杆和地球系统,只有重力做功,故机械能守恒。 21

sin 42

l mg

J θω= ① 直杆的转动惯量为OA 段和OB 段转动惯量的叠加,所以

2222017

()12448

l J J md ml m ml =+=

+= ② 将②代入①,解得 l

g 7sin 62θ

ω=

七、一质量为m 、半径为R 的自行车轮,假定质量均匀分布在轮缘上(可看作圆环),可绕固定轴O 转动.另一质量为0m 的子弹(可看作质点)以速度0v 射入轮缘,并留在轮内。开始时轮是静止的,求子弹打入后车轮的角速度。

2mR J = ω2000)(R m m R v m +=

R

m m v m )(00

0+=

ω

八、长为l 的木杆,质量为M,可绕通过其中点并与之垂直的轴转动。今有一子弹质量为m,以水平速度v 射入杆的一端,并留在其中,求木杆获得的角速度(212

1

Ml J =

)。

221()2122

l l mv

Ml m ωω=+

九、一轻绳跨过两个质量为m 、半径为 r 的均匀圆盘状定滑轮,绳的两端分别挂着质量为3m 和m 的重物,如图所示,绳与滑轮间无相对滑动,滑轮轴光滑,两个定滑轮

的转动惯量均为2

2mr ,将由两个定滑轮以及质量为3m 和m 的重物组成的系统从静止

释放,求重物的加速度和两滑轮之间绳内的张力2T 。 解: 列牛顿第二定律方程

ma mg T 333=- ma mg T =-1

根据αJ M =

αr T T m r 22321)(=- αr T T m r 2

122

1)(=-

α

r a = g a 5

2=

mg T 58

2=

十、均质细棒长为l 质量为m ,2

3

1ml J =

,和一质量也为m 的小球牢固地连在杆的一端,可绕过杆的另一端的水平轴转动。在忽略转轴处摩擦的情况下,使杆自水平位置由静止状态开始自由转下,试求:(1)当杆与水平线成θ角时,刚体的角加速度;(2)当杆转到竖直线位置时,刚体的角速度,小球的线速度。 解:(1)由转动定律得

αθθ?+=+)3

1

(cos cos 222ml ml mgl l mg

l

g 8cos 9θ

α=

(2)由机械能守恒得

222)3

1

(212ωml ml mgl l mg

+=+ l

g

2

3=

ω (1分) gl v 23=

6(3)mv

M m l

ω=

+

1

十一、质量为M ,长为L 的均匀的细杆竖直放置,其下端与一固定铰链O 相接,并可绕其转动,由于此竖直放置的细杆处于非稳定的平衡状态,当其受到微小扰动时,细杆将在重力的作用下由静止开始绕铰链O 转动。试计算细杆与竖直线成θ角时的角速度和角加速度。

αJ M = 2

sin θ

mgl M = 32ml J =

l

g 2sin 3θ

α=

l g d d dt d 2sin 3θθθω= l

g d d 2sin 3θ

θωω=

?

?

ω

θθωω0

2sin 3d l g d ()l

g θωcos 13-=

十二、如图所示:长为L 的匀质细杆,质量为M 可绕过其端点的水平轴在竖直平面内自由转动。如果将细杆置与水平位置,然后让其由静止开始自由下摆。求:(1)开始转动的瞬间,细杆的角加速度为多少?(2)细杆转动到竖直位置时角速度为多少? 解:(1)开始转动的瞬间 αJ L

mg

=2

23

1mL J =

L g

23=α (2)垂直位置时 22

1

2ωJ L mg

= L

g 3=ω

十三、轻绳绕于半径r=20cm 的飞轮边缘,在绳端施以大小为98N 的拉力,飞轮的转动惯量J=0.5kg ?m 2

(1) 飞轮的角加速度;

(2) 如以质量m=10kg 的物体挂在绳端,试计算飞轮的角加速度。 (1)由转动定律 αJ M =

()

2/2.395

.02.098s rad J r F J M =?=?==

α (2)对物体应用牛顿运动定律 a m T mg ?=- 对滑轮应用转动定律 ()α-=?-J r T 利用关系 αr a = 由以上各式解得

()

2

2

2/8.215

.02.0108.92.010s rad J mr mrg g r

J mr m =+???=+=

+

=

α

十四、如图所示,有两个转动惯量分别为J 1、J 2的圆盘,它们分别以角速度ω1 、ω2绕

水平轴转动,且旋转轴在同一条直线上。当两个圆盘在沿水平轴方向的外力作用下,啮合为一体时,其角速度为ω。求两圆盘啮合后共同的角速度 ω 。 解:根据角动量守恒

ωωω)(212211J J J J +=+

2

12

211J J J J ++=ωωω

第九章 静电场

二、主要内容 1、库伦定律:123

01

4q q r

F r πε=

1J 2

J 12

2、电场强度:0

F E q =

电场强度的叠加原理:123E E E E =+++… 电荷连续分布的带电体的场强:301

4dq E dE r r πε==

?

?

(1)线状分布:2

014l

dl r

E r

r

λπε=

?

(2)面状分布:2

14s

ds r

E r

r

σπε=

??

(3)体状分布:2

14V

dV r

E r

r ρπε=

???

3、静电场的高斯定理:

1

01

n

i

i S

E dS q ε=?=∑??

4、静电场的环路定理:0L

E dl ?=?

5、电势:P P

U E dl ∞

=

??

电势的叠加原理:123U U U U =+++… 电荷连续分布的带电体的电势:01

4dq U dU r πε==

?

?

(1)线状分布:014l

dl

U r

λπε=

?

(2)面状分布:0

14s

ds

U r

σπε=

??

(3)体状分布:0

14V

dV

E r

ρπε=

???

6、导体的静电平衡条件

电场表述:(1)导体内部场强处处为零;(2)导体表面附近的场强方向处处与它的表面垂直,且0/e E σε=。

电势表述:(1)导体是等势体;(2)导体表面是等势面。 7、电介质中的高斯定理:

1

n

i

i S

D dS q =?=∑?? 各向同性线性电介质:0r

D E E εεε==

8、电容器的电容:Q C U =

特例:平行板电容器的电容:S C d

ε=

电容器储能:22111

222

Q W QU CU C =

== 9、电场的能量密度:201

2e r E ωεε= 电场能量:2012e e r V V

W dV E dV ωεε==??????

三、习题及解答

1.在真空中的静电场中,作一封闭的曲面,则下列结论中正确的是( D )

A.通过封闭曲面的电通量仅是面内电荷提供的

B.封闭曲面上各点的场强是面内电荷激发的

C.由高斯定理求得的场强仅由面内电荷所激发的

D.由高斯定理求得的场强是空间所有电荷共同激发的

2、半径为R 的“无限长”均匀带电圆柱面的静电场中各点的电场强度的大小E 与距轴线的距离r 的关系曲线为: ( B )

3、在真空中的A 、B 两平行金属板,相距为d ,板面积为S (S →∞),各带电+q 和-q ,

两板间的作用力f 大小为( C )

4、在静电场中,作一闭合曲面S ,若有 则S 面内必定(D )

A .既无自由电荷,也无束缚电荷

B .没有自由电荷

C .自由电荷和束缚电荷的代数和为零

D .自由电荷的代数和为零

5.关于静电场中的电位移线,下列说法中,哪一种是正确的?(C )

A .起自正电荷,止于负电荷,不形成闭合线,不中断

B .任何两条电位移线互相平行

C .起自正自由电荷,止于负自由电荷,任何两条电位移线在无自由电荷的空间不相交

D .电位移线只出现在有电介质的空间

6、一带电体可作为点电荷处理的条件是(C )

(A )电荷必须呈球形分布。 (B )带电体的线度很小。

(C )带电体的线度与其它有关长度相比可忽略不计。 (D )电量很小。

7、真空中一半径为 R 的球面均匀带电 Q ,在球心 o 处有一带电量为 q 的点电荷,设无穷远处为电势零点,则在球内离球心 o 距离的 r 的 P 点处的电势为:(B)

S q A 02/)(εd q B 024/)(πεS q C 022/)(εSd

q D 022/)(ε0S

D ds ?=?

A、 B 、 C 、 D、

8、有两个点电荷电量都是 +q ,相距为2a 。今以左边的点电荷所在处为球心,以a 为半径作一球形高斯面, 在球面上取两块相等的小面积S

1

和S 2, 其位置如下图所示。设通过S 1 和 S 2的

电场强度通量分别为 和 ,通过整个球面的电场强度通量为 则(D )

9、两块“无限大”的带电平行电板,其电荷面密度分别为σ(σ>0)及-2 σ,如图所示,试

写出各区域的电场强度

?区 的大小 ,方向 .

??区 的大小 ,方向 .

???区 的大小 ,方向 .

10、下列几个说法中哪一个是正确的?(C )

(A )电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向。

04q

r

πε014q Q r R πε??+ ???

04q Q r

πε+014q Q q r R πε+??+ ?

??

21/,.εq ΦΦΦA S =>021/2,.εq ΦΦΦB S =<0

21/,.εq ΦΦΦC S ==0

21/,.εq ΦΦΦD S =<2

Φ1ΦS

Φ0

/2E σε=.

x 轴正向0

3/2E σε=x 轴正向

/2E σε=x

轴负向

(B )在以点电荷为中心的球面上,由该点电荷所产生的场强处处相同。

(C )场强方向可由 E =F /q 定出,其中 q 为试验电荷的电量,q 可正、可负,F 为试

验电荷所受的电场力。 ( D )以上说法都不正确。

11、下面说法正确的是 (D)

(A)等势面上各点场强的大小一定相等; (B)在电势高处,电势能也一定高; (C)场强大处,电势一定高;

(D)场强的方向总是从电势高处指向低处.

12、已知一高斯面所包围的体积内电量代数和为零,则可肯定:(C ) (A )高斯面上各点场强均为零。

(B )穿过高斯面上每一面元的电通量均为零。 (C )穿过整个高斯面的电通量为零。 (D )以上说法都不对。

13.真空中有一半径为R 均匀带正电的细圆环,其电荷线密度为λ,则电荷在圆心处

产生的电场强度

的大小为 0 。

14、一质量为m 、电量为q

的a 点,移动到电

势为零的b 点,若已知小球在b 点的速率为V b V a = 。

15、 设在半径为R 的球体内,其电荷为球对称分布,电荷体密度为kr

ρ=(0)r R ≤≤ 0ρ= ()r R > k 为一常量。试分别用高斯定理和电场叠加原理求电场

强度E 与r 的函数关系。

E

分析:通常有两种处理方法:(1)利用高斯定理求球内外的电场分布。由题意知电荷呈球对称分布,因而电场分布也是球对称,选择与带电球体同心的球面为高斯面,在球面上电场强度大小为常量,且方向垂直于球面,因而有24s

E ds E r π?=??

根据高斯定理

1

s

E ds dV ρε

?=

?

?,可解得电场强度的分布。 (2)利用带电球壳电场叠加的方法求球内外的电场分布。将带电球分割成无数个同心带电球壳,球壳带电荷为24''dq r dr ρπ=?,每个带电球壳在壳内激发的电场0dE =,而在球壳外激发的电场 2

04r dq dE e r πε=

由电场叠加可解得带电球体内外的电场分布

()r

E r dE =? (0)r R ≤≤ 0

()R

E r dE =? ()r R >

解1:因电荷分布和电场分布均为球对称,球面上各点电场强度的大小为常量,由高斯定理

1

s

E ds dV ρε

?=

?

?得球体内(0)r R ≤≤

2

2

2

4000

1

()44,()4r

r k kr E r r kr r dr r E r e πππεεε===?

球体外()r R > 4

2

2

420

0001

()44,()4R

r

k kR E r r kr r dr R E r e r

πππεεε?=

==? 解2:将带电球分割成球壳,球壳带电2'4''dq dV kr r dr ρπ== 由上述分析,球体内(0)r R ≤≤ 22

2

00

1'4''()44r

r r kr r dr kr E r e e r ππεε?=

=?

球体外()r R > 24

220

001'4''()44R

r r

kr r dr kR E r e e r r

ππεε?=

=?

16、 两个同心球面的半径分别为1R 和2R ,各自带有电荷1Q 和2Q 。求:(1)各区域电势分布,并画出分布曲线;(2)两球面间的电势差为多少?

分析: 通常可采用两种方法(1)由于电荷均匀分布在球面上,电场分布也具有球面对称性,因此,可根据电势与电场强度的积分关系求电势。取同心球面为高斯面,借助高斯定理可求得各区域的电场分布,再由p P

V E dl ∞

=

??

可求得电势分布。

大学物理学下册答案第11章

第11章 稳恒磁场 习 题 一 选择题 11-1 边长为l 的正方形线圈,分别用图11-1中所示的两种方式通以电流I (其中ab 、cd 与正方形共面),在这两种情况下,线圈在其中心产生的磁感应强度的大小分别为:[ ] (A )10B =,20B = (B )10B = ,02I B l π= (C )01I B l π= ,20B = (D )01I B l π= ,02I B l π= 答案:C 解析:有限长直导线在空间激发的磁感应强度大小为012(cos cos )4I B d μθθπ= -,并结合右手螺旋定则判断磁感应强度方向,按照磁场的叠加原理,可计 算 01I B l π= ,20B =。故正确答案为(C )。 11-2 两个载有相等电流I 的半径为R 的圆线圈一个处于水平位置,一个处于竖直位置,两个线圈的圆心重合,如图11-2所示,则在圆心O 处的磁感应强度大小为多少? [ ] (A )0 (B )R I 2/0μ (C )R I 2/20μ (D )R I /0μ 答案:C 解析:圆线圈在圆心处的磁感应强度大小为120/2B B I R μ==,按照右手螺旋定 习题11-1图 习题11-2图

则判断知1B 和2B 的方向相互垂直,依照磁场的矢量叠加原理,计算可得圆心O 处的磁感应强度大小为0/2B I R =。 11-3 如图11-3所示,在均匀磁场B 中,有一个半径为R 的半球面S ,S 边线所在平面的单位法线矢量n 与磁感应强度B 的夹角为α,则通过该半球面的磁通量的大小为[ ] (A )B R 2π (B )B R 22π (C )2cos R B πα (D )2sin R B πα 答案:C 解析:通过半球面的磁感应线线必通过底面,因此2cos m B S R B παΦ=?= 。故正 确答案为(C )。 11-4 如图11-4所示,在无限长载流直导线附近作一球形闭合曲面S ,当曲面S 向长直导线靠近时,穿过曲面S 的磁通量Φ B 将如何变化?[ ] ( A )Φ增大, B 也增大 (B )Φ不变,B 也不变 ( C )Φ增大,B 不变 ( D )Φ不变,B 增大 答案:D 解析:根据磁场的高斯定理0S BdS Φ==? ,通过闭合曲面S 的磁感应强度始终为0,保持不变。无限长载流直导线在空间中激发的磁感应强度大小为02I B d μπ= ,曲面S 靠近长直导线时,距离d 减小,从而B 增大。故正确答案为(D )。 11-5下列说法正确的是[ ] (A) 闭合回路上各点磁感应强度都为零时,回路内一定没有电流穿过 (B) 闭合回路上各点磁感应强度都为零时,回路内穿过电流的代数和必定为零 (C) 磁感应强度沿闭合回路的积分为零时,回路上各点的磁感应强度必定为零 (D) 磁感应强度沿闭合回路的积分不为零时,回路上任意一点的磁感应强度 I 习题11-4图 习题11-3图

大学物理学 答案

作业 1-1填空题 (1) 一质点,以1-?s m π的匀速率作半径为5m 的圆周运动,则该质点在5s 内,位移的大 小是 ;经过的路程 是 。 [答案: 10m ; 5πm] (2) 一质点沿x 方向运动,其加速度随时间 的变化关系为a=3+2t (SI),如果初始时刻 质点的速度v 0为5m 2s -1,则当t 为3s 时, 质点的速度v= 。 [答案: 23m 2s -1 ] 1-2选择题 (1) 一质点作直线运动,某时刻的瞬时 速度s m v /2=,瞬时加速度2/2s m a -=,则 一秒钟后质点的速度 (A)等于零 (B)等于-2m/s (C)等于2m/s (D)不能确定。 [答案:D] (2) 一质点沿半径为R 的圆周作匀速率运 动,每t 秒转一圈,在2t 时间间隔中,其

平均速度大小和平均速率大小分别为 (A)t R t R ππ2,2 (B) t R π2,0 (C) 0,0 (D) 0,2t R π [答案:B] (3)一运动质点在某瞬时位于矢径) ,(y x r 的端点处,其速度大小为 (A)dt dr (B)dt r d (C)dt r d || (D) 22)()(dt dy dt dx + [答案:D] 1-4 下面几个质点运动学方程,哪个是匀变速直线运动? (1)x=4t-3;(2)x=-4t 3+3t 2+6;(3) x=-2t 2+8t+4;(4)x=2/t 2-4/t 。 给出这个匀变速直线运动在t=3s 时的 速度和加速度,并说明该时刻运动是加速 的还是减速的。(x 单位为m ,t 单位为s ) 解:匀变速直线运动即加速度为不等于

大学物理试题及答案

第2章刚体得转动 一、选择题 1、如图所示,A、B为两个相同得绕着轻绳得定滑轮.A滑轮挂一质量为M得物体,B滑轮受拉力F,而且F=Mg.设A、B两滑轮得角加速度分别为βA与βB,不计滑轮轴得摩擦,则有 (A) βA=βB。(B)βA>βB. (C)βA<βB.(D)开始时βA=βB,以后βA<βB。 [] 2、有两个半径相同,质量相等得细圆环A与B。A环得质量分布均匀,B环得质量分布不均匀。它们对通过环心并与环面垂直得轴得转动惯量分别为JA与J B,则 (A)JA>J B.(B) JA

大学物理第三版下册答案(供参考)

习题八 8-1 电量都是q的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解: 如题8-1图示 (1) 以A处点电荷为研究对象,由力平衡知:q'为负电荷 2 2 2 0) 3 3 ( π4 1 30 cos π4 1 2 a q q a q' = ? ε ε 解得q q 3 3 - =' (2)与三角形边长无关. 题8-1图题8-2图 8-7 一个半径为R的均匀带电半圆环,电荷线密度为λ,求环心处O点的场强. 解: 如8-7图在圆上取? Rd dl= 题8-7图 ? λ λd d d R l q= =,它在O点产生场强大小为

2 0π4d d R R E ε? λ= 方向沿半径向外 则 ??ελ ?d sin π4sin d d 0R E E x = = ??ελ ?πd cos π4)cos(d d 0R E E y -= -= 积分R R E x 000 π2d sin π4ελ ??ελπ == ? 0d cos π400 =-=? ??ελ π R E y ∴ R E E x 0π2ελ = =,方向沿x 轴正向. 8-11 半径为1R 和2R (2R >1R )的两无限长同轴圆柱面,单位长度上分别带有电量λ和-λ,试求:(1)r <1R ;(2) 1R <r <2R ;(3) r >2R 处各点的场强. 解: 高斯定理0 d ε∑? = ?q S E s 取同轴圆柱形高斯面,侧面积rl S π2= 则 rl E S E S π2d =?? 对(1) 1R r < 0,0==∑E q (2) 21R r R << λl q =∑ ∴ r E 0π2ελ = 沿径向向外

大学物理作业(二)答案

班级___ ___学号____ ____姓名____ _____成绩______________ 一、选择题 1. m 与M 水平桌面间都是光滑接触,为维持m 与M 相对静止,则推动M 的水平力F 为:( B ) (A)(m +M )g ctg θ (B)(m +M )g tg θ (C)mg tg θ (D)Mg tg θ 2. 一质量为m 的质点,自半径为R 的光滑半球形碗口由静止下滑,质点在碗内某处的速率为v ,则质点对该处的压力数值为:( B ) (A)R mv 2 (B)R mv 232 (C)R mv 22 (D)R mv 252 3. 如图,作匀速圆周运动的物体,从A 运动到B 的过程中,物体所受合外力的冲量:( C ) (A) 大小为零 (B ) 大小不等于零,方向与v A 相同 (C) 大小不等于零,方向与v B 相同 (D) 大小不等于零,方向与物体在B 点所受合力相同 二、填空题 1. 已知m A =2kg ,m B =1kg ,m A 、m B 与桌面间的摩擦系数μ=0.5,(1)今用水平力F =10N 推m B ,则m A 与m B 的摩擦力f =_______0______,m A 的加速度a A =_____0_______. (2)今用水平力F =20N 推m B ,则m A 与m B 的摩擦力f =____5N____,m A 的加速度a A =_____1.7____. (g =10m/s 2) 2. 设有三个质量完全相同的物体,在某时刻t 它们的速度分别为v 1、v 2、v 3,并且v 1=v 2=v 3 ,v 1与v 2方向相反,v 3与v 1相垂直,设它们的质量全为m ,试问该时刻三物体组成的系统的总动量为_______m v 3________. 3.两质量分别为m 1、m 2的物体用一倔强系数为K 的轻弹簧相连放在光滑水平桌面上(如图),当两物体相距为x 时,系统由静止释放,已知弹簧的自然长度为x 0,当两物体相距为x 0时,m 1的速度大小为 2 2 121 Km x m m m + . 4. 一弹簧变形量为x 时,其恢复力为F =2ax -3bx 2,现让该弹簧由x =0变形到x =L ,其弹力的功为: 2 3 aL bL - . 5. 如图,质量为m 的小球,拴于不可伸长的轻绳上,在光滑水平桌面上作匀速圆周运动,其半径为R ,角速度为ω,绳的另一端通过光 滑的竖直管用手拉住,如把绳向下拉R /2时角速度ω’为 F m A m B m M F θ A O B R v A v B x m 1 m 2 F m R

赵近芳版《大学物理学上册》课后答案

1 习题解答 习题一 1-1 |r ?|与r ? 有无不同? t d d r 和 t d d r 有无不同? t d d v 和 t d d v 有无不同?其不同在哪里?试举例说明. 解:(1) r ?是位移的模,? r 是位矢的模的增量,即r ?1 2r r -=,1 2r r r -=?; (2) t d d r 是速度的模,即 t d d r = =v t s d d .t r d d 只是速度在径向上的分量. ∵有r r ?r =(式中r ?叫做单位矢),则t ?r ?t r t d d d d d d r r r += 式中t r d d 就是速度径向上的分量, ∴ t r t d d d d 与 r 不同如题1-1图所示 . 题1-1图 (3) t d d v 表示加速度的模,即t v a d d = , t v d d 是加速度a 在切向上的分量. ∵有ττ (v =v 表轨道节线方向单位矢) ,所以 t v t v t v d d d d d d ττ += 式中dt dv 就是加速度的切向分量. (t t r d ?d d ?d τ 与的运算较复杂,超出教材规定,故不予讨论) 1-2 设质点的运动方程为x =x (t ),y = y (t ),在计算质点的速度和加速度时,有人先求出r =2 2y x +,然后根据v = t r d d ,及a = 2 2d d t r 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即 v = 2 2d d d d ?? ? ??+??? ??t y t x 及a = 2 22222d d d d ??? ? ??+???? ??t y t x 你认为两种方法哪一种正确?为什么?两者差别何在? 解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r +=, j t y i t x t r a j t y i t x t r v 222222d d d d d d d d d d d d +==+==∴ 故它们的模即为

大学物理试题库及答案详解【考试必备】

第一章 质点运动学 1 -1 质点作曲线运动,在时刻t 质点的位矢为r ,速度为v ,速率为v,t 至(t +Δt )时间内的位移为Δr , 路程为Δs , 位矢大小的变化量为Δr ( 或称Δ|r |),平均速度为v ,平均速率为v . (1) 根据上述情况,则必有( ) (A) |Δr |= Δs = Δr (B) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d s ≠ d r (C) |Δr |≠ Δr ≠ Δs ,当Δt →0 时有|d r |= d r ≠ d s (D) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d r = d s (2) 根据上述情况,则必有( ) (A) |v |= v ,|v |= v (B) |v |≠v ,|v |≠ v (C) |v |= v ,|v |≠ v (D) |v |≠v ,|v |= v 分析与解 (1) 质点在t 至(t +Δt )时间内沿曲线从P 点运动到P′点,各量关系如图所示, 其中路程Δs =PP′, 位移大小|Δr |=PP ′,而Δr =|r |-|r |表示质点位矢大小的变化量,三个量的物理含义不同,在曲线运动中大小也不相等(注:在直线运动中有相等的可能).但当Δt →0 时,点P ′无限趋近P 点,则有|d r |=d s ,但却不等于d r .故选(B). (2) 由于|Δr |≠Δs ,故t s t ΔΔΔΔ≠r ,即|v |≠v . 但由于|d r |=d s ,故t s t d d d d =r ,即|v |=v .由此可见,应选(C). 1 -2 一运动质点在某瞬时位于位矢r (x,y )的端点处,对其速度的大小有四种意见,即 (1)t r d d ; (2)t d d r ; (3)t s d d ; (4)2 2d d d d ?? ? ??+??? ??t y t x . 下述判断正确的是( ) (A) 只有(1)(2)正确 (B) 只有(2)正确

大学物理学(第三版)课后习题参考答案

习题1 1.1选择题 (1) 一运动质点在某瞬时位于矢径),(y x r 的端点处,其速度大小为 (A)dt dr (B)dt r d (C)dt r d | | (D) 22)()(dt dy dt dx + [答案:D] (2) 一质点作直线运动,某时刻的瞬时速度s m v /2=,瞬时加速度2 /2s m a -=,则 一秒钟后质点的速度 (A)等于零 (B)等于-2m/s (C)等于2m/s (D)不能确定。 [答案:D] (3) 一质点沿半径为R 的圆周作匀速率运动,每t 秒转一圈,在2t 时间间隔中,其平均速度大小和平均速率大小分别为 (A) t R t R ππ2, 2 (B) t R π2,0 (C) 0,0 (D) 0,2t R π [答案:B] 1.2填空题 (1) 一质点,以1 -?s m π的匀速率作半径为5m 的圆周运动,则该质点在5s 内,位移的大小是 ;经过的路程是 。 [答案: 10m ; 5πm] (2) 一质点沿x 方向运动,其加速度随时间的变化关系为a=3+2t (SI),如果初始时刻质点的 速度v 0为5m ·s -1 ,则当t 为3s 时,质点的速度v= 。 [答案: 23m ·s -1 ] (3) 轮船在水上以相对于水的速度1V 航行,水流速度为2V ,一人相对于甲板以速度3V 行走。如人相对于岸静止,则1V 、2V 和3V 的关系是 。 [答案: 0321=++V V V ]

1.3 一个物体能否被看作质点,你认为主要由以下三个因素中哪个因素决定: (1) 物体的大小和形状; (2) 物体的内部结构; (3) 所研究问题的性质。 解:只有当物体的尺寸远小于其运动范围时才可忽略其大小的影响,因此主要由所研究问题的性质决定。 1.4 下面几个质点运动学方程,哪个是匀变速直线运动? (1)x=4t-3;(2)x=-4t 3+3t 2+6;(3)x=-2t 2+8t+4;(4)x=2/t 2 -4/t 。 给出这个匀变速直线运动在t=3s 时的速度和加速度,并说明该时刻运动是加速的还是减速的。(x 单位为m ,t 单位为s ) 解:匀变速直线运动即加速度为不等于零的常数时的运动。加速度又是位移对时间的两阶导数。于是可得(3)为匀变速直线运动。 其速度和加速度表达式分别为 2 2484 dx v t dt d x a dt = =+== t=3s 时的速度和加速度分别为v =20m/s ,a =4m/s 2 。因加速度为正所以是加速的。 1.5 在以下几种运动中,质点的切向加速度、法向加速度以及加速度哪些为零哪些不为零? (1) 匀速直线运动;(2) 匀速曲线运动;(3) 变速直线运动;(4) 变速曲线运动。 解:(1) 质点作匀速直线运动时,其切向加速度、法向加速度及加速度均为零; (2) 质点作匀速曲线运动时,其切向加速度为零,法向加速度和加速度均不为零; (3) 质点作变速直线运动时,其法向加速度为零,切向加速度和加速度均不为零; (4) 质点作变速曲线运动时,其切向加速度、法向加速度及加速度均不为零。 1.6 |r ?|与r ? 有无不同?t d d r 和d d r t 有无不同? t d d v 和t d d v 有无不同?其不同在哪里?试举例说明. 解:(1)r ?是位移的模,?r 是位矢的模的增量,即r ?12r r -=,12r r r -=?; (2) t d d r 是速度的模,即t d d r ==v t s d d . t r d d 只是速度在径向上的分量. ∵有r r ?r =(式中r ?叫做单位矢),则 t ?r ?t r t d d d d d d r r r += 式中 t r d d 就是速度在径向上的分量,

大学物理上册试卷及答案(完整版)

大学物理(I )试题汇总 《大学物理》(上)统考试题 一、填空题(52分) 1、一质点沿x 轴作直线运动,它的运动学方程为 x =3+5t +6t 2-t 3 (SI) 则 (1) 质点在t =0时刻的速度=v __________________; (2) 加速度为零时,该质点的速度=v ____________________. 2、一质点作半径为 0.1 m 的圆周运动,其角位置的运动学方程为: 2 2 14πt += θ (SI) 则其切向加速度为t a =__________________________. 3、如果一个箱子与货车底板之间的静摩擦系数为μ,当这货车爬一与水平方向成θ角的平缓山坡时,要不使箱子在车底板上滑动,车的最大加速度a max =____________________. 4、一圆锥摆摆长为l 、摆锤质量为m ,在水平面上作匀速圆周运动, 摆线与铅直线夹角θ,则 (1) 摆线的张力T =_____________________; (2) 摆锤的速率v =_____________________. 5、两个滑冰运动员的质量各为70 kg ,均以6.5 m/s 的速率沿相反的方向滑行,滑行路线间的垂直距离为10 m ,当彼此交错时, 各抓住一10 m 长的绳索的一端,然后相对旋转,则抓住绳索之后各自对绳中心的角动量L =_______;它们各自收拢绳索,到绳长为 5 m 时,各自的速率v =_______. 6、一电子以0.99 c 的速率运动(电子静止质量为9.11310-31 kg ,则电子的总能量是__________J ,电子的经典力学的动能与相对论动能之比是_____________. 7、一铁球由10 m 高处落到地面,回升到 0.5 m 高处.假定铁球与地面碰撞时 损失的宏观机械能全部转变为铁球的内能,则铁球的温度将升高__________.(已知铁的比 热c = 501.6 J 2kg -12K -1 ) 8、某理想气体在温度为T = 273 K 时,压强为p =1.0310-2 atm ,密度ρ = 1.24310-2 kg/m 3,则该气体分子的方均根速率为___________. (1 atm = 1.0133105 Pa) 9、右图为一理想气体几种状态变化过程的p -V 图,其中MT 为等温线,MQ 为绝热线,在AM 、BM 、CM 三种准静态过程中: (1) 温度升高的是__________过程; (2) 气体吸热的是__________过程. 10、两个同方向同频率的简谐振动,其合振动的振幅为20 cm , 与第一个简谐振动的相位差为φ –φ1 = π/6.若第一个简谐振动的振幅 为310 cm = 17.3 cm ,则第二个简谐振动的振幅为 ___________________ cm ,第一、二两个简谐振动的相位 差φ1 - φ2为____________. 11、一声波在空气中的波长是0.25 m ,传播速度是340 m/s ,当它进入另一介质时,波

大学物理学上册习题解答

大学物理学习题答案 习题一答案 习题一 1.1 简要回答下列问题: (1) 位移和路程有何区别?在什么情况下二者的量值相等?在什么情况下二者的量值不相等? (2) 平均速度和平均速率有何区别?在什么情况下二者的量值相等? (3) 瞬时速度和平均速度的关系和区别是什么?瞬时速率和平均速率的关系和区别又是什么? (4) 质点的位矢方向不变,它是否一定做直线运动?质点做直线运动,其位矢的方向是否一定保持不变? (5) r ?v 和r ?v 有区别吗?v ?v 和v ?v 有区别吗?0dv dt =v 和0d v dt =v 各代表什么运动? (6) 设质点的运动方程为:()x x t = ,()y y t =,在计算质点的速度和加速度时,有人先求出 r = dr v dt = 及 22d r a dt = 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即 v = 及 a = 你认为两种方法哪一种正确?两者区别何在? (7) 如果一质点的加速度与时间的关系是线性的,那么,该质点的速度和位矢与时间的关系是否也是线性 的? (8) “物体做曲线运动时,速度方向一定在运动轨道的切线方向,法向分速度恒为零,因此其法向加速度 也一定为零.”这种说法正确吗? (9) 任意平面曲线运动的加速度的方向总指向曲线凹进那一侧,为什么? (10) 质点沿圆周运动,且速率随时间均匀增大,n a 、t a 、a 三者的大小是否随时间改变? (11) 一个人在以恒定速度运动的火车上竖直向上抛出一石子,此石子能否落回他的手中?如果石子抛出后,火车以恒定加速度前进,结果又如何? 1.2 一质点沿x 轴运动,坐标与时间的变化关系为224t t x -=,式中t x ,分别以m 、s 为单位,试计算:(1)在最初s 2内的位移、平均速度和s 2末的瞬时速度;(2)s 1末到s 3末的平均加速度;(3)s 3末的瞬时加速度。 解: (1) 最初s 2内的位移为为: (2)(0)000(/)x x x m s ?=-=-= 最初s 2内的平均速度为: 0(/)2 ave x v m s t ?= ==?

大学物理(下)试题及答案

全国2007年4月高等教育自学考试 物理(工)试题 课程代码:00420 一、单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.以大小为F的力推一静止物体,力的作用时间为Δt,而物体始终处于静止状态,则在Δt时间内恒力F对物体的冲量和物体所受合力的冲量大小分别为() A.0,0B.FΔt,0 C.FΔt,FΔt D.0,FΔt 2.一瓶单原子分子理想气体与一瓶双原子分子理想气体,它们的温度相同,且一个单原子分子的质量与一个双原子分子的质量相同,则单原子气体分子的平均速率与双原子气体分子的平均速率()A.相同,且两种分子的平均平动动能也相同 B.相同,而两种分子的平均平动动能不同 C.不同,而两种分子的平均平动动能相同 D.不同,且两种分子的平均平动动能也不同 3.系统在某一状态变化过程中,放热80J,外界对系统作功60J,经此过程,系统内能增量为()A.140J B.70J C.20J D.-20J 4.自感系数为L的线圈通有稳恒电流I时所储存的磁能为() A.LI2 1 B.2 LI 2 C.LI 1 D.LI 2 5.如图,真空中存在多个电流,则沿闭合路径L磁感应强度的环流为() A.μ0(I3-I4) B.μ0(I4-I3) C.μ0(I2+I3-I1-I4) D.μ0(I2+I3+I1+I4)

6.如图,在静电场中有P 1、P 2两点,P 1点的电场强度大小比P 2点的( ) A .大,P 1点的电势比P 2点高 B .小,P 1点的电势比P 2点高 C .大,P 1点的电势比P 2点低 D .小,P 1点的电势比P 2点低7.一质点作简谐振动,其振动表达式为x=0.02cos(4)2 t π+π(SI),则其周期和t=0.5s 时的相位分别为()A .2s 2π B .2s π25 C .0.5s 2π D .0.5s π258.平面电磁波的电矢量 E 和磁矢量B () A .相互平行相位差为0 B .相互平行相位差为 2πC .相互垂直相位差为0 D .相互垂直相位差为2π 9.μ子相对地球以0.8c(c 为光速)的速度运动,若μ子静止时的平均寿命为τ,则在地球上观测到的μ子的平均 寿命为( )A .τ5 4B .τC .τ35D .τ2 510.按照爱因斯坦关于光电效应的理论,金属中电子的逸出功为A ,普朗克常数为h ,产生光电效应的截止频率 为( )A .v 0=0 B .v 0=A/2h C .v 0=A/h D .v 0=2A/h 二、填空题Ⅰ(本大题共8小题,每空2分,共22分) 请在每小题的空格中填上正确答案。错填、不填均无分。 11.地球半径为R ,绕轴自转,周期为T ,地球表面纬度为?的某点的运动速率为_____,法向加速度大小为_____。

大学物理学吴柳下答案

大学物理学下册 吴柳 第12章 12.1 一个封闭的立方体形的容器,内部空间被一导热的、不漏气的、可移动的隔板分为两部分,开始其内为真空,隔板位于容器的正中间(即隔板两侧的长度都为l 0),如图12-30所示.当两侧各充以p 1,T 1与 p 2,T 2的相同气体后, 长度之比是多少)? 解: 活塞两侧气体的始末状态满足各自的理想气体状态方程 左侧: T pV T V p 111= 得, T pT V p V 1 11= 右侧: T pV T V p 222= 得, T pT V p V 2 22= 122121T p T p V V = 即隔板两侧的长度之比 1 22121T p T p l l = 12.2 已知容器内有某种理想气体,其温度和压强分别为T =273K,p =1.0×10-2 atm ,密度32kg/m 1024.1-?=ρ.求该气体的摩尔质量. 解: nkT p = (1) nm =ρ (2) A mN M = (3) 由以上三式联立得: 1235 2232028.010022.610 013.1100.12731038.11024.1----?=?????????==mol kg N p kT M A ρ 12.3 可用下述方法测定气体的摩尔质量:容积为V 的容器内装满被试验的气体,测出其压力为p 1,温度为T ,并测出容器连同气体的质量为M 1,然后除去一部分气体,使其压力降为p 2,温度不变,容器连同气体的质量为M 2,试求该气体的摩尔质量. 解: () V V -2 2p T )(21M M - V 1p T 1M V 2p T 2M 221V p V p = (1) ( )()RT M M M V V p 21 22-=- (2)

大学物理上册答案详解

大学物理上册答案详解 习题解答 习题一 1-1 |r ?|与r ? 有无不同? t d d r 和t d d r 有无不同? t d d v 和t d d v 有无不同?其不同在哪里?试举例说明. 解:(1)r ?是位移的模,?r 是位矢的模的增量,即r ?12r r -=, 12r r r -=?; (2) t d d r 是速度的模,即t d d r ==v t s d d . t r d d 只是速度在径向上的分量. ∵有r r ?r =(式中r ?叫做单位矢),则 t ?r ?t r t d d d d d d r r r += 式中 t r d d 就是速度径向上的分量, ∴ t r t d d d d 与r 不同如题1-1图所示. 题1-1图 (3)t d d v 表示加速度的模,即t v a d d =,t v d d 是加速度a 在切向上的分量. ∵有ττ (v =v 表轨道节线方向单位矢),所以 t v t v t v d d d d d d ττ += 式中 dt dv 就是加速度的切向分量.

(t t r d ?d d ?d τ 与的运算较复杂,超出教材规定,故不予讨论) 1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加 速度时,有人先求出r =2 2 y x +,然后根据v =t r d d ,及a =22d d t r 而求 得结果;又有人 v =2 2 d d d d ?? ? ??+??? ??t y t x 及a = 2 222 22d d d d ??? ? ??+???? ??t y t x 你认为两种方法哪一种正确?为什么?两者差别何在? 解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标 系中,有j y i x r +=, j t y i t x t r a j t y i t x t r v 22 2222d d d d d d d d d d d d +==+==∴ 故它们的模即为 2 222 22222 2 2 2d d d d d d d d ? ?? ? ??+???? ??=+=? ? ? ??+??? ??=+=t y t x a a a t y t x v v v y x y x 而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作 22d d d d t r a t r v == 其二,可能是将22d d d d t r t r 与误作速度与加速度的模。在1-1题中已说明 t r d d 不是速度的模,而只是速度在径向上的分量,同样,22d d t r 也不是加速

大学物理试题及答案

《大学物理》试题及答案 一、填空题(每空1分,共22分) 1.基本的自然力分为四种:即强力、、、。 2.有一只电容器,其电容C=50微法,当给它加上200V电压时,这个电容储存的能量是______焦耳。 3.一个人沿半径为R 的圆形轨道跑了半圈,他的位移大小为,路程为。 4.静电场的环路定理公式为:。5.避雷针是利用的原理来防止雷击对建筑物的破坏。 6.无限大平面附近任一点的电场强度E为 7.电力线稀疏的地方,电场强度。稠密的地方,电场强度。 8.无限长均匀带电直导线,带电线密度+λ。距离导线为d处的一点的电场强度为。 9.均匀带电细圆环在圆心处的场强为。 10.一质量为M=10Kg的物体静止地放在光滑的水平面上,今有一质量为m=10g的子弹沿水平方向以速度v=1000m/s射入并停留在其中。求其 后它们的运动速度为________m/s。 11.一质量M=10Kg的物体,正在以速度v=10m/s运动,其具有的动能是_____________焦耳 12.一细杆的质量为m=1Kg,其长度为3m,当它绕通过一端且垂直于细杆 的转轴转动时,它的转动惯量为_____Kgm2。 13.一电偶极子,带电量为q=2×105-库仑,间距L=0.5cm,则它的电距为________库仑米。 14.一个均匀带电球面,半径为10厘米,带电量为2×109-库仑。在距球心 6厘米处的电势为____________V。 15.一载流线圈在稳恒磁场中处于稳定平衡时,线圈平面的法线方向与磁场强度B的夹角等于。此时线圈所受的磁力矩最。 16.一圆形载流导线圆心处的磁感应强度为1B,若保持导线中的电流强度不

大学物理D下册习题答案

习题9 9.1选择题 (1)正方形的两对角线处各放置电荷Q,另两对角线各放置电荷q,若Q所受到合力为零, 则Q与q的关系为:() (A)Q=-23/2q (B) Q=23/2q (C) Q=-2q (D) Q=2q [答案:A] (2)下面说法正确的是:() (A)若高斯面上的电场强度处处为零,则该面内必定没有净电荷; (B)若高斯面内没有电荷,则该面上的电场强度必定处处为零; (C)若高斯面上的电场强度处处不为零,则该面内必定有电荷; (D)若高斯面内有电荷,则该面上的电场强度必定处处不为零。 [答案:A] (3)一半径为R的导体球表面的面点荷密度为σ,则在距球面R处的电场强度() (A)σ/ε0 (B)σ/2ε0 (C)σ/4ε0 (D)σ/8ε0 [答案:C] (4)在电场中的导体内部的() (A)电场和电势均为零;(B)电场不为零,电势均为零; (C)电势和表面电势相等;(D)电势低于表面电势。 [答案:C] 9.2填空题 (1)在静电场中,电势梯度不变的区域,电场强度必定为。 [答案:零] (2)一个点电荷q放在立方体中心,则穿过某一表面的电通量为,若将点电荷由中 心向外移动至无限远,则总通量将。 [答案:q/6ε0, 将为零] (3)电介质在电容器中作用(a)——(b)——。 [答案:(a)提高电容器的容量;(b) 延长电容器的使用寿命] (4)电量Q均匀分布在半径为R的球体内,则球内球外的静电能之比。 [答案:1:5] 9.3 电量都是q的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解: 如题9.3图示 (1) 以A处点电荷为研究对象,由力平衡知:q 为负电荷

大学物理试题及答案

大学物理试题及答案 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】

第1部分:选择题 习题1 1-1 质点作曲线运动,在时刻t 质点的位矢为r ,速度为v ,t 至()t t +?时间内的位移为r ?,路程为s ?,位矢大小的变化量为r ?(或称r ?),平均速度为v ,平均速率为v 。 (1)根据上述情况,则必有( ) (A )r s r ?=?=? (B )r s r ?≠?≠?,当0t ?→时有dr ds dr =≠ (C )r r s ?≠?≠?,当0t ?→时有dr dr ds =≠ (D )r s r ?=?≠?,当0t ?→时有dr dr ds == (2)根据上述情况,则必有( ) (A ),v v v v == (B ),v v v v ≠≠ (C ),v v v v =≠ (D ),v v v v ≠= 1-2 一运动质点在某瞬间位于位矢(,)r x y 的端点处,对其速度的大小有四种意见,即 (1) dr dt ;(2)dr dt ;(3)ds dt ;(4下列判断正确的是: (A )只有(1)(2)正确 (B )只有(2)正确 (C )只有(2)(3)正确 (D )只有(3)(4)正确 1-3 质点作曲线运动,r 表示位置矢量,v 表示速度,a 表示加速度,s 表示路程,t a 表示切向加速度。对下列表达式,即 (1)dv dt a =;(2)dr dt v =;(3)ds dt v =;(4)t dv dt a =。

下述判断正确的是( ) (A )只有(1)、(4)是对的 (B )只有(2)、(4)是对的 (C )只有(2)是对的 (D )只有(3)是对的 1-4 一个质点在做圆周运动时,则有( ) (A )切向加速度一定改变,法向加速度也改变 (B )切向加速度可能不变,法向加速度一定改变 (C )切向加速度可能不变,法向加速度不变 (D )切向加速度一定改变,法向加速度不变 * 1-5 如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向 岸边运动。设该人以匀速率0v 收绳,绳不伸长且湖水静止,小船的速率为v ,则小船作( ) (A )匀加速运动,0 cos v v θ= (B )匀减速运动,0cos v v θ= (C )变加速运动,0cos v v θ = (D )变减速运动,0cos v v θ= (E )匀速直线运动,0v v = 1-6 以下五种运动形式中,a 保持不变的运动是 ( ) (A)单摆的运动. (B)匀速率圆周运动. (C)行星的椭圆轨道运动. (D)抛体运动. (E)圆锥摆运动. 1-7一质点作直线运动,某时刻的瞬时速度v=2m/s,瞬时加速度22/a m s -=-,则一秒钟后质点的速度 ( ) (A)等于零. (B)等于-2m/s. (C)等于2m/s. (D)不能确定.

《大学物理学》(袁艳红主编)下册课后习题答案

第9章 静电场 习 题 一 选择题 9-1 两个带有电量为2q 等量异号电荷,形状相同的金属小球A 和B 相互作用力为f ,它们之间的距离R 远大于小球本身的直径,现在用一个带有绝缘柄的原来不带电的相同的金属小球C 去和小球A 接触,再和B 接触,然后移去,则球A 和球B 之间的作用力变为[ ] (A) 4f (B) 8f (C) 38f (D) 16 f 答案:B 解析:经过碰撞后,球A 、B 带电量为2q ,根据库伦定律12204q q F r πε=,可知球A 、B 间的作用力变为 8 f 。 9-2关于电场强度定义式/F E =0q ,下列说法中哪个是正确的?[ ] (A) 电场场强E 的大小与试验电荷0q 的大小成反比 (B) 对场中某点,试验电荷受力F 与0q 的比值不因0q 而变 (C) 试验电荷受力F 的方向就是电场强度E 的方向 (D) 若场中某点不放试验电荷0q ,则0=F ,从而0=E 答案:B 解析:根据电场强度的定义,E 的大小与试验电荷无关,方向为试验电荷为正电荷时的受力方向。因而正确答案(B ) 9-3 如图9-3所示,任一闭合曲面S 内有一点电荷q ,O 为S 面上任一点,若将q 由闭合曲面内的P 点移到T 点,且 OP =OT ,那么[ ] (A) 穿过S 面的电场强度通量改变,O 点的场强大小不变 (B) 穿过S 面的电场强度通量改变,O 点的场强大小改变 习题9-3图

(C) 穿过S 面的电场强度通量不变,O 点的场强大小改变 (D) 穿过S 面的电场强度通量不变,O 点的场强大小不变 答案:D 解析:根据高斯定理,穿过闭合曲面的电场强度通量正比于面内电荷量的代数和,曲面S 内电荷量没变,因而电场强度通量不变。O 点电场强度大小与所有电荷有关,由点电荷电场强度大小的计算公式2 04q E r πε= ,移动电荷后,由于OP =OT , 即r 没有变化,q 没有变化,因而电场强度大小不变。因而正确答案(D ) 9-4 在边长为a 的正立方体中心有一个电量为q 的点电荷,则通过该立方体任一面的电场强度通量为 [ ] (A) q /ε0 (B) q /2ε0 (C) q /4ε0 (D) q /6ε0 答案:D 解析:根据电场的高斯定理,通过该立方体的电场强度通量为q /ε0,并且电荷位于正立方体中心,因此通过立方体六个面的电场强度通量大小相等。因而通过该立方体任一面的电场强度通量为q /6ε0,答案(D ) 9-5 在静电场中,高斯定理告诉我们[ ] (A) 高斯面内不包围电荷,则面上各点E 的量值处处为零 (B) 高斯面上各点的E 只与面内电荷有关,但与面内电荷分布无关 (C) 穿过高斯面的E 通量,仅与面内电荷有关,而与面内电荷分布无关 (D) 穿过高斯面的E 通量为零,则面上各点的E 必为零 答案:C 解析:高斯定理表明通过闭合曲面的电场强度通量正比于曲面内部电荷量的代数和,与面内电荷分布无关;电场强度E 为矢量,却与空间中所有电荷大小与分布均有关。故答案(C ) 9-6 两个均匀带电的同心球面,半径分别为R 1、R 2(R 1

《大学物理(上册)》课后习题答案

第1章 质点运动学 P21 1.8 一质点在xOy 平面上运动,运动方程为:x =3t +5, y = 2 1t 2 +3t -4. 式中t 以 s 计,x ,y 以m 计。⑴以时间t 为变量,写出质点位置矢量的表示式;⑵求出t =1 s 时刻和t =2s 时刻的位置矢量,计算这1秒内质点的位移;⑶ 计算t =0 s 时刻到t =4s 时刻内的平均速度;⑷求出质点速度矢量表示式,计算t =4 s 时质点的速度;(5)计算t =0s 到t =4s 内质点的平均加速度;(6)求出质点加速度矢量的表示式,计算t =4s 时质点的加速度(请把位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式)。 解:(1)j t t i t r )432 1()53(2-+++=m ⑵ 1=t s,2=t s 时,j i r 5.081-= m ;2114r i j =+m ∴ 213 4.5r r r i j ?=-=+m ⑶0t =s 时,054r i j =-;4t =s 时,41716r i j =+ ∴ 140122035m s 404 r r r i j i j t --?+= ===+??-v ⑷ 1d 3(3)m s d r i t j t -==++?v ,则:437i j =+v 1s m -? (5) 0t =s 时,033i j =+v ;4t =s 时,437i j =+v 24041 m s 44 j a j t --?= ===??v v v (6) 2d 1 m s d a j t -==?v 这说明该点只有y 方向的加速度,且为恒量。 1.9 质点沿x 轴运动,其加速度和位置的关系为2 26a x =+,a 的单位为m/s 2, x 的单位为m 。质点在x =0处,速度为10m/s,试求质点在任何坐标处的速度值。 解:由d d d d d d d d x a t x t x ===v v v v 得:2 d d (26)d a x x x ==+v v 两边积分 210 d (26)d x x x =+? ?v v v 得:2322 250x x =++v ∴ 1m s -=?v 1.11 一质点沿半径为1 m 的圆周运动,运动方程为θ=2+33t ,式中θ以弧度计,t 以秒计,求:⑴ t =2 s 时,质点的切向和法向加速度;⑵当加速度 的方向和半径成45°角时,其角位移是多少? 解: t t t t 18d d ,9d d 2==== ωβθω ⑴ s 2=t 时,2 s m 362181-?=??==βτR a 2 222s m 1296)29(1-?=??==ωR a n ⑵ 当加速度方向与半径成ο45角时,有:tan 451n a a τ?== 即:βωR R =2 ,亦即t t 18)9(2 2=,解得:9 23= t 则角位移为:32 2323 2.67rad 9 t θ=+=+? = 1.13 一质点在半径为0.4m 的圆形轨道上自静止开始作匀角加速度转动,其角加速度为α=0.2 rad/s 2,求t =2s 时边缘上各点的速度、法向加速度、切向加速度和合加速度。 解:s 2=t 时,4.022.0=?== t αω 1s rad -? 则0.40.40.16R ω==?=v 1s m -? 064.0)4.0(4.022=?==ωR a n 2 s m -? 0.4 0.20.0a R τα==?=2s m -? 22222 s m 102.0)08.0()064.0(-?=+=+= τa a a n 与切向夹角arctan()0.06443n a a τ?==≈?

相关主题