搜档网
当前位置:搜档网 › 机械设计基础第二章

机械设计基础第二章

机械设计基础第二章
机械设计基础第二章

第二章平面机构的运动简图及自由度

[学习目的]:通过本章学习,掌握运动副的概念、分类,运动副和构件的表示符号以及机构具有确定运动的条件。掌握自由度的计算

机构是认为的实物组合,并且各实物之间具有确定的相对运动。

组成机构的所有构件均在同一平面或平行平面内运动,该机构就称为平面机构。否则就称为空间机构。

2.1平面机构的组成

教师提问:

列举一下在我们日常生活中所观察到的两个构件的链接

答:学生列举例子。(螺栓连接、铆接、焊接、门与门框的链接等等)

我们从所举的例子中分析一下,有些连接是两个构件直接接触并能产生一定的相对运动的连接。

我们定义由两构件直接接触并产生一定相对运动的联接,称为运动副。

运动副的接触方式包括了点、线、面的接触。我们根据接触的方式不同,可以把运动副分成两大类,即低副和高副。

低副:

两构件通过面接触所构成的运动副称为低副。其构件之间的相对运动是转动或是移动。因此我们又可以把低副分为转动副和移动副。

转动副移动副

高副:

两构件之间以点或线相接触所组成的运动副称为高副。

在一个平面内,构件能出现独立运动的数目我们称为构件的自由度,而在物体运动是必然会产生一些限制条件来影响物体的运动,我们把这些限制条件称为约束。

问题:那么我们想一想,一个平面内自由运动的构件有几个自由度呢?

一个在平面内自由运动的构件具有3个自由度。

引入1个约束条件,构件将减少1个自由度。

所以我们对上述运动副分析能得到:

?组成转动副的构件只能绕同一轴线作相对转动,引入了2个约束,保留了1个自由度;

?组成移动副的构件只能沿某一轴线相对移动,也引入2个约束,保留了1个自由度;

?组成高副的构件的相对运动是转动兼移动,引入1个约束,保留了2个自由度;

组成机构的构件按运动性质可分为三类:

1.机构中接受外部给定运动规律的构件称为原动件。即机构中作用有驱动力或力矩的构件,或运动规律已知的构件。

2.机构中除了原动件以外,随着原动件的运动而运动的其余可动构件称为从动件。

3.在机构中固定不动的构件称为机架。用于支撑可动构件。

注意:

原动件,从动件以及机架都是单独的构件。由以上的构件组合在一起就构成了机构。

2.2 平面机构的运动简图

构件用线段或小方块表示,有时机架画成支架的形式。

转动副

陈立德版机械设计基础第4、5章课后题答案

第4章 平面连杆机构 4.1 机构运动分析时的速度多边形与加速度多边形特性是什么? 答:同一构件上各点的速度和加速度构成的多边形与构件原来的形状相似,且字母顺序一致。 4.2 为什么要研究机械中的摩擦?机械中的摩擦是否全是有害的? 答:机械在运转时,其相邻的两构件间发生相对运动时,就必然产生摩擦力,它一方面会消耗一部分的输入功,使机械发热和降低其机械效率,另一方面又使机械磨损,影响了机械零件的强度和寿命,降低了机械工作的可靠性,因此必须要研究机械中的摩擦。 机械中的摩擦是不一定有害的,有时会利用摩擦力进行工作,如带传动和摩擦轮传动等。 4.3 何谓摩擦角?如何确定移动副中总反力的方向? 答:(1)移动或具有移动趋势的物体所受的总反力与法向反力之间的夹角称为摩擦角?。 (2)总反力与相对运动方向或相对运动趋势的方向成一钝角90?+ ,据此来确定总反力的方向。 4.4 何谓摩擦圆?如何确定转动副中总反力的作用线? 答:(1)以转轴的轴心为圆心,以0()P P rf =为半径所作的圆称为摩擦圆。 (2)总反力与摩擦圆相切,其位置取决于两构件的相对转动方向,总反力产生的摩擦力矩与相对 转动的转向相反。 4.5 从机械效率的观点看,机械自锁的条件是什么? 答:机械自锁的条件为0η≤。 4.6 连杆机构中的急回特性是什么含义?什么条件下机构才具有急回特性? 答:(1)当曲柄等速转动时,摇杆来回摇动的速度不同,返回时速度较大。机构的这种性质,称为机构的急回特性。通常用行程速度变化系数K 来表示这种特性。 (2)当0θ≠时,则1K >,机构具有急回特性。 4.7 铰链四杆机构中曲柄存在的条件是什么?曲柄是否一定是最短杆? 答:(1)最长杆与最短杆的长度之和小于或等于其余两杆长度之和;最短杆或相邻杆应为机架。 (2)曲柄不一定为最短杆,如双曲柄机构中,机架为最短杆。 4.8 何谓连杆机构的死点?举出避免死点和利用死点的例子。 (1)主动件通过连杆作用于从动件上的力恰好通过其回转中心时的位置,称为连杆机构的死点位置。 (2)机车车轮在工作中应设法避免死点位置。如采用机车车轮联动机构,当一个机构处于死点位置时,可借助另一个机构来越过死点;飞机起落架是利用死点工作的,当起落架放下时,机构处于死点位置,使降落可靠。 4.9 在题4.9图示中,已知机构的尺寸和相对位置,构件1以等角速度1ω逆时针转动,求图示位置C 点和D 点的速度及加速度,构件2的角速度和角加速度。 题4.9图 解:取长度比例尺,绘制简图如题4.9答案图a 所示。

《机械设计基础》答案

《机械设计基础》作业答案 第一章 平面机构的自由度和速度分析 1-1 1-2 1-3 1-4 1-6 自由度为 或: 1-10 自由度为: 或: 1-11 1-13:求出题1-13图导杆机构的全部瞬心和构件1、3的角速度比。 1-14:求出题1-14图正切机构的全部瞬心。设s rad /101=ω,求构件3的速度3v 。 1-15:题1-15图所示为摩擦行星传动机构,设行星轮2与构件1、4保持纯滚动接触,试用瞬心法求轮1与轮2的角速度比21/ωω。 构件1、2的瞬心为P 12 P 24、P 14分别为构件2与构件1相对于机架的绝对瞬心 第二章 平面连杆机构 2-1 试根据题2-1图所注明的尺寸判断下列铰链四杆机构是曲柄摇杆机构、双

曲柄机构还是双摇杆机构。 (1)双曲柄机构 (2)曲柄摇杆机构 (3)双摇杆机构 (4)双摇杆机构 2-3 画出题2-3图所示各机构的传动角和压力角。图中标注箭头的构件为原动件。 2-4 已知某曲柄摇杆机构的曲柄匀速转动,极位夹角θ为300,摇杆工作行程需时7s 。试问:(1)摇杆空回程需时几秒?(2)曲柄每分钟转数是多少? 解:(1)根据题已知条件可得: 工作行程曲柄的转角01210=? 则空回程曲柄的转角02150=? 摇杆工作行程用时7s ,则可得到空回程需时: (2)由前计算可知,曲柄每转一周需时12s ,则曲柄每分钟的转数为 2-7 设计一曲柄滑块机构,如题2-7图所示。已知滑块的行程mm s 50=,偏距 mm e 16=,行程速度变化系数2.1=K ,求曲柄和连杆的长度。 解:由K=1.2可得极位夹角 第三章 凸轮机构 3-1 题3-1图所示为一偏置直动从动件盘形凸轮机构,已知AB 段为凸轮的推程廓线,试在图上标注推程运动角Φ。 3-2题3-2图所示为一偏置直动从动件盘形凸轮机构,已知凸轮是一个以C 点为圆心的圆盘,试求轮廓上D 点与尖顶接触是的压力角,并作图表示。

机械设计基础第十四章 机械系统动力学

第十四章 机械系统动力学 14-11、在图14-19中,行星轮系各轮齿数为123z z z 、、,其质心与轮心重合,又齿轮1、2对质心12O O 、的转动惯量为12J J 、,系杆H 对的转动惯量为H J ,齿轮2的质量为2m ,现以齿轮1为等效构件,求该轮系的等效转动惯量J ν。 2222 2121221 12323121 13212 1 13222 12311212213121313 ( )()()()1()()()( )()()()o H H H o H J J J J m z z z z z z z z z O O z z z z z z z O O J J J J m z z z z z z z z νννωωω ωωωω ωω ωωωωνω=+++=-= += +=+-=++++++解: 14-12、机器主轴的角速度值1()rad ?从降到时2()rad ?,飞轮放出的功 (m)W N ,求飞轮的转动惯量。 max min 122 2 121 ()2 2F F Wy M d J W J ?ν??ωωωω==-=-? 解: 14-15、机器的一个稳定运动循环与主轴两转相对应,以曲柄和连杆所组成的转动副A 的中心为等效力的作用点,等效阻力变化曲线c A F S ν-如图14-22所示。等效驱动力a F ν为常数,等效构件(曲柄)的平均角速度值25/m rad s ?=, 3 H 1 2 3 2 1 H O 1 O 2

不均匀系数0.02δ=,曲柄长度0.5OA l m =,求装在主轴(曲柄轴)上的飞轮的转动惯量。 (a) W v 与时间关系图 (b )、能量指示图 a 2 24()2 3015m Wy=25N m 25 6.28250.02 c va OA vc OA OA va F W W F l F l l F N Mva N J kg m νν=∏?∏=∏+==∏= =?解:稳定运动循环过程 14-17、图14-24中各轮齿数为12213z z z z =、,,轮1为主动轮,在轮1上加力矩1M =常数。作用在轮 2 上的阻力距地变化为: 2r 22r 020M M M ??≤≤∏==∏≤≤∏=当时,常数;当时,,两轮对各自中心的转动惯量为12J J 、。轮的平均角速度值为m ω。若不均匀系数为δ,则:(1)画出以轮1为等效构件的等效力矩曲线M ν?-;(2)求出最大盈亏功;(3)求飞轮的转动惯量F J 。 图14-24 习题14-17图 40Nm 15∏ 12.5∏ 22.5∏ 15Nm ∏ 2∏ 2.5∏ 4∏ 25∏ 1 1 z 2 z 2 r M 2 M ∏ 2∏ 2?

机械设计基础第一章

《机械设计基础》电子教案 第一章机械设计基础概论 课题机械设计基础概论 授课日期授课类型理论课课时 教学目标了解机械及其组成 机械设计的基本要求和一般程序 金属材料的性能 机械零件的常用材料 机械零件的力学基础 摩擦、磨损及润滑 本课程的研究内容、性质及任务 教学内容机械及其组成 机械设计的基本要求和一般程序 金属材料的性能 机械零件的常用材料 机械零件的力学基础 摩擦、磨损及润滑 本课程的研究内容、性质及任务 教学方法教师讲解与学生领悟、练习相结合。 教学资源多媒体教室,多媒体课件 教学步骤及主要内容备注教学环节教学内容

讲授新知 第一节机械及其组成 1 机器是执行机械运动的装置,用来变换或传递能力、物流和 (1)动力部分。 (2) (3) (4)控制部分。 2 机构是用来传递运动和力的、有一个构件为机架的、用运动副连接起来的构件系统。 1 从运动学的角度看,机器是由若干个运动的单元所组成,这些运动单元称为构件。构件可以是单一的整体(如活塞),也可以 2 零件是组成构件的基本单元。零件可以分为两类,一类是通用零件,在各种机器中普遍使用,如螺母、齿轮、键等;另外一类是专用零件,在少数机器中使用,如内燃机的曲轴,汽轮机中 第二节机械设计的基本要求和一般程序 机械零件的常见失效形式有断裂或过大的塑性变形,过大的弹性变形,工作表面失效(如磨损、疲劳点蚀、表面压馈、胶合等),发生强烈的振动以及破坏正常工作条件引起的失效(如连 1. 2. 3. 4. 5. 6.其他方面的要求 (1)根据零件在机械中的地位和作用,选择零件的类型和结(2)分析零件的载荷性质,拟定零件的计算简图,计算作用(3)根据零件的工作条件及对零件的特殊要求,选择适当的(4)分析零件可能出现的失效形式,决定计算准则和许用应

机械设计基础第6章

第6章圆柱齿轮传动 6.1 齿轮传动的特点、应用和分类 6.1.1齿轮传动的特点 齿轮传动用来传递任意两轴间的运动和动力,其圆周速度可达到300m/s,传递功率可达105KW,齿轮直径可从不到1mm到150m 以上,是现代机械中应用最广的一种机械传动。 齿轮传动与带传动相比主要有以下优点: (1)传递动力大、效率高; (2)寿命长,工作平稳,可靠性高; (3)能保证恒定的传动比,能传递任意夹角两轴间的运动。 齿轮传动与带传动相比主要缺点有: (1)制造、安装精度要求较高,因而成本也较高; (2)不宜作远距离传动。 6.1.2齿轮传动的类型 6.2 渐开线的形成原理及其基本性质 6.2.1 渐开线的形成 直线BK沿半径为rb的圆作纯滚动时,直线上任一点K 的轨迹称为该圆的渐开线。该圆称为渐开线的基圆。 --- 渐开线上rb --- 基圆半径;BK --- 渐开线发生线; k K点的展角 6.2.2 渐开线的性质

(1)发生线沿基圆滚过的线段长度等 于基圆上被滚过的相应弧长。 由于发生线BK在基圆上作纯滚动,故 (2)渐开线上任意一点法线必然与基 圆相切。换言之,基圆的切线必为渐开 线上某点的法线。 因为当发生线在基圆上作纯滚动时,它 与基圆的切点B是发生线上各点在这 一瞬时的速度瞬心,渐开线上K点的轨 迹可视为以B点为圆心,BK为半径所 作的极小圆弧,故B点为渐开线上K 点的曲率中心,BK为其曲率半径和K点的法线,而发生线始终相切于基圆,所以渐开线上任意一点法线必然与基圆相切。(3)渐开线齿廓上某点的法线与该点的速度方向所夹的锐角称为该点的压力角。 (4)渐开线的形状只取决于基圆大小。 基圆愈小,渐开线愈弯曲;基圆愈大,渐开线愈平直。当基圆半径为无穷大,其渐开线将成为一条直线。 (5)基圆内无渐开线。 6.2.3 渐开线方程 建立渐开线方程式前,我们先了解一下渐开线压力角的概 念:

机械设计基础习题答案第7章

7-1何谓蜗杆传动的主平面?在主平面内,蜗杆传动的参数有何意义? 答:通过蜗杆轴线并垂直于蜗轮轴线的中间平面称为主平面。 在主平面内,蜗杆蜗轮的啮合关系相当于齿条与齿轮的传动。在蜗杆传动的设计计算中,均取主平面的参数和几何尺寸为基准,并沿用齿轮传动的计算关系。主平面内蜗杆的参数为轴面参数,蜗轮的参数为端面参数。 7-2 何谓蜗杆传动的滑动速度?它对效率有何影响? 答:蜗杆传动时,蜗杆齿面啮合点相对蜗轮齿面的啮合点间的相对速度称为蜗杆传动的滑动速度。滑动速度越大,传动的效率越低。 7-3 蜗杆热平衡计算的前提条件是什么?但热平衡不满足要求时,可采取什么措施? 答:热平衡计算的前提条件是:使蜗杆传动单位时间内产生的热量与散发热量相等。当热平衡条件不满足时,可采取以下措施:1.在箱体外表面铸出或焊上散热片,以增加散热面积;2.在蜗杆轴端安装风扇,加速空气流动,提高散热能力;3.在箱体油池中安装蛇形冷却水管,利用循环水冷却;4.用压力喷油的方法进行循环润滑,并达到散热目的。 7-4答案略。 7-5图示为一提升机构传动简图,已知电动机轴的转向(图中n1)及重物的运行方向(图中v)。试确定:(1)蜗杆的旋向;(2)各啮合点上的受力方向。 习题7-5图 答:(1)蜗杆为右旋。(2)各传动件的转动方向如图所示。锥齿轮啮合处,圆周力的方向垂直向外;蜗轮处,根据所需蜗轮到转动方向,圆周力的方向与转向相同,如图;蜗轮所受圆周力的方向为蜗杆轴向力的反向,利用“左右手定则”,判断出蜗杆旋向为右旋。

7-6 图示为蜗杆-斜齿轮传动,为使轴Ⅱ上的轴向力抵消一部分,斜齿轮3的旋向应如何?画出蜗轮及斜齿轮3上轴向力的方向。 答:斜齿轮3的旋向应为左旋。 蜗轮轴向力水平向左,齿轮3的轴向力水平向右 习题7-6答案

机械设计基础各章习题67页

绪论 一、判断题(正确T,错误F) 1. 构件是机械中独立制造的单元。() 2. 能实现确定的相对运动,又能做有用功或完成能量形式转换的机械称为机器。() 3. 机构是由构件组成的,构件是机构中每个作整体相对运动的单元体。() 4. 所有构件一定都是由两个以上零件组成的。() 二、单项选择题 1. 如图所示,内燃机连杆中的连杆体1是()。 A 机构 B 零件 C 部件 D 构件 2. 一部机器一般由原动机、传动部分、工作机及控制部分组成, 本课程主要研究()。 A 原动机 B 传动部分 C 工作机 D 控制部分 三、填空题 1. 构件是机械的运动单元体,零件是机械的______单元体。 2. 机械是______和______的总称。 参考答案 一、判断题(正确T,错误F) 1. F 2. T 3. T 4. F 二、单项选择题 1. B 2. B 三、填空题 1. 制造 2. 机构机器

第一章平面机构的自由度 一、判断题(正确T,错误F) 1. 两构件通过点或线接触组成的运动副为低副。() 2. 机械运动简图是用来表示机械结构的简单图形。() 3. 两构件用平面低副联接时相对自由度为1。() 4. 将构件用运动副联接成具有确定运动的机构的条件是自由度数为1。() 5. 运动副是两构件之间具有相对运动的联接。() 6. 对独立运动所加的限制称为约束。() 7. 由于虚约束在计算机构自由度时应将其去掉,故设计机构时应尽量避免出现虚约束() 8. 在一个确定运动的机构中,计算自由度时主动件只能有一个。() 二、单项选择题 1. 两构件通过()接触组成的运动副称为高副。 A 面 B 点或线 C 点或面 D 面或线 2. 一般情况下,门与门框之间存在两个铰链,这属于()。 A 复合铰链 B 局部自由度 C 虚约束 D 机构自由度 3. 平面机构具有确定运动的条件是其自由度数等于()数。 A 1 B 从动件 C 主动件 D 0 4. 所谓机架是指()的构件。 A 相对地面固定 B 运动规律确定 C 绝对运动为零 D 作为描述其他构件运动的参考坐标点 5. 两构件组成运动副必须具备的条件是两构件()。 A 相对转动或相对移动 B 都是运动副 C 相对运动恒定不变 D 直接接触且保持一定的相对运动 三、填空题 1. 机构是由若干构件以_______________相联接,并具有__________________________的组合体。 2. 两构件通过______或______接触组成的运动副为高副。 3. m个构件组成同轴复合铰链时具有______个回转副。 四、简答题 1. 何为平面机构? 2. 试述复合铰链、局部自由度和虚约束的含义?为什么在实际机构中局部自由度和虚约束常会出现? 3. 计算平面机构自由度,并判断机构具有确定的运动。 (1)(2)

机械设计基础习题答案第6章

6-1 齿轮啮合传动应满足哪些条件? 答:齿轮啮合传动应满足:1.两齿轮模数和压力角分别相等;2.12 1≥= p B B b ε,即实际啮 合线B 1 B 2大于基圆齿距p b 。3. 满足无侧隙啮合,即一轮节圆上的齿槽宽与另一轮节圆上的齿厚之差为零。 6-2 齿轮的失效形式有哪些?采取什么措施可减缓失效? 答:1.轮齿折断。设计齿轮传动时,采用适当的工艺措施,如降低齿根表面的粗糙度,适当增大齿根圆角、对齿根表面进行强化处理(如喷丸、辗压等)以及采用良好的热处理工艺等,都能提高轮齿的抗折断能力。 2.齿面点蚀。可采用提高齿面硬度,降低表面粗糙度,增大润滑油粘度等措施来提高齿面抗点蚀能力。 3.齿面磨损。减小齿面粗糙度、保持良好的润滑、采用闭式传动等措施可减轻或避免磨粒磨损。 4.齿面胶合。可适当提高齿面硬度及降低表面粗糙度,选用抗胶合性能好的材料,使用时采用粘度较大或抗胶合性较好的润滑油等。 5.塑性变形。为减小塑性变形,应提高轮齿硬度。 6-3 现有4个标准齿轮:m 1=4mm ,z 1=25;m 2=4mm ,z 2=50;m 3= 3mm ,z 3=60;m 4=2.5mm ,z 4=40。试问:(1)哪两个齿轮的渐开线形状相同?(2)哪两个齿轮能正确啮合?(3)哪两个齿轮能用同一把滚刀加工?这两个齿轮能否改成同一把铣刀加工? 答:1.根据渐开线性质4,渐开线的形状取决于基圆半径,基圆半径 ααc o s 2 c o s r mz r b ==。当两齿轮基圆半径相等时,其齿廓形状相同。 98.46cos 2 cos 1 1 11 r == =ααz m r b 97.93cos 2 cos 21 2 22r ===ααz m r b 38.56cos 2 cos 3 3 31b3 r == =ααz m r 98.46cos 2 cos 4 4 44r == =ααz m r b 因此,齿轮1和4渐开线形状相同。 2.两个齿轮能正确啮合条件是两齿轮模数和压力角分别相等。因此,齿轮1和2能够正确啮合。 3.齿轮利用滚刀加工时,只要齿数和压力角相等,齿轮都可用同一把刀具加工。因此,齿轮1和2可用同一把刀具加工。 不能。铣刀加工齿轮为仿形法。需渐开线形状相同。 6-4 什么是软齿面和硬齿面齿轮传动?设计准则是什么? 答:软齿面齿轮齿面硬度≤350HBS ,应齿面齿轮齿面硬度>350HBS 。其设计准则分别为:

2010008 机械设计基础1(中英文)(2011)

天津大学《机械设计基础1》课程教学大纲 课程编号:2010008课程名称:机械设计基础1 学时:80 学分: 5 学时分配:授课:80上机:实验:6实践:实践(周): 授课学院:机械工程学院 适用专业:近机类 先修课程:工程图学,材料力学,理论力学 一、课程的性质与目的 机械设计基础是一门培养学生具有一定机械设计能力的技术基础课。本课程在教学内容方面着重基本知识、基本理论和基本方法,在培养实践能力方面着重设计技能和创新能力的基本训练。 本课程的主要目的和任务是培养学生:1)掌握常用机构的工作原理、运动特性和动力特性,具有分析和设计常用机构的基本能力,并初步具有机械运动方案设计的能力;2)掌握通用机械零部件的工作原理、特点、选用和设计计算的基本知识,并具有设计简单机械及通用机械传动装置的基本能力;3)具有应用计算机进行辅助设计的能力;4)具有应用标准、规范、手册、图册等有关资料的能力;5)能通过实验巩固和加深对理论的理解, 获得实验技能的基本训练。 二、教学基本要求 1、要求掌握的基本知识 机械设计的一般知识。熟悉机构和机械零件的主要类型、性能、特点和应用,熟悉机械零件的常用材料、标准和结构,熟悉摩擦、磨损、润滑和密封的一般知识。 2、要求掌握的基本理论和方法 熟悉机构的组成、主要类型、工作原理和运动特性,具有分析和设计常用机构的能力,能进行简单机构的分析与综合。掌握机械动力学的基本原理,了解机械的调速、刚性回转件的平衡。熟悉机械零件的工作原理、受力分析、应力状态、失效形式等。熟练掌握机械零件的设计计算准则:强度、刚度、耐磨性、寿命、热平衡及经济性等。能进行简化计算,掌握当量法,试算法等。了解改善载

机械设计基础-第12章_轴作业解答

12-7 解:由 得: 12-8 解:由 得: 12-9 解:对不变转矩α=0.3,45钢调质的[σ-1b ]=60MPa ,则: 该轴能满足强度要求。 12-10 解: 对不变转矩α=0.3,则: 由 得: ][1.0)(13 22b e d T M -≤+=σασmm x mm M Fa Ma x 4268.42510 584.1300900030010584.16 6==?-???=-=取x a Fax M +=max Nmm T d M b 622362 23110584.1)23003.0()6010801.0()()][1.0(?=?-???=-≤-ασ][2.01055.936ττ≤?=n d P mm d mm n P d 3828.364010002.040 1055.9][2.01055.93636==????=?≥取τ][2.01055.936ττ≤?= n d P kw nd P 61.711055.9553514502.01055.9][2.06363=????=?≤τ][5.0551.0)10153.0()107(1.0)(132 323322b e MPa d T M -≤=???+?=+=σασ

解: 错误说明:(略) 改正图(略) 12-12 解: 取d =28mm 12-13 解: 1. 计算中间轴上的齿轮受力 中间轴所受转矩为: 1 2 3 4 5 6 1 2

2. 轴的空间受力情况如图a)所示。 3. 垂直面受力简图如图b)所示。 垂直面的弯矩图如图c)所示。 4. 水平面受力简图如图d)所示。 水平面的弯矩图如图e)所示。 B 点左边的弯矩为: B 点右边的弯矩为: C 点右边的弯矩为: C 点左边的弯矩为:

机械设计基础课后答案及解析第三版刘江南郭克希编

3-1 何谓构件?何谓运动副及运动副元素?运动副是如何进行分类的? 解答:构件是机器中每一个独立运动的单元体,是组成机构的基本要素之一。运动副是由两个构件直接接触而组成的可动连接,是组成机构的基本要素之一。运动副元素是两构件能够参加接触而构成运动副的表面,如点线面等。运动副分类: a) 按两构件接触情况分为低副和高副; b) 按两构件相对运动情况分为平面运动副和空间运动副。 2 机构运动简图有何用处?它能表示出原机构哪些方面的特征?如何绘制机构运动简图? 答:机构运动简图:表达各种构件的相对运动关系,确切表达机构的运动规律和特性,用规定符号表示构件和运动副,并按比例绘制的图形。 机构运动简图的用处:表达各种构件的相对运动关系,确切表达机构的运动规律和特性。 4 在计算机构的自由度时,应注意哪些事项?通常在哪些情况下存在虚约束?答:在计算机构的自由度时,应注意复合铰链、局部自由度、虚约束。虚约束通常存在情况有:1.两构件组成多个导路相互平行或重合的移动副,只有一个移动副起约束作用,其余为虚约束;2两构件构成高副,两处接触且法线重合或平行;3. 轨迹重合:在机构中,若被联接到机构上的构件,在联接点处的运动轨迹与机构上的该点的运动轨迹重合时,该联接引入的约束是虚约束;4、机构中存在对传递运动不起独立作用的对称部分。 **平面机构中的低副和高副各引入几个约束? 答:每个自由构件具有3个自由度,高副引入一个约束,还有两个自由度;低副引入两个约束,还有一个自由度。 4-1 什么是连杆机构的急回特性?他用什么表达?什么叫极位角?它与机构的急回特性有什么关系?

4-2什么叫死点? 5-18、请指出凸轮机构从动件常用运动规律有哪些?并说明每一种运动规律的冲击特性及其应用场合。答:凸轮机构从动件常用运动规律有:(1)等速运动规律;)等速运动规律有刚性冲击,用于低速轻载的场合;(2)等加速等减速运动规律,等加速等减速运动规律有柔性冲击,用于中低速的场合;(3)简谐运动规律(余弦加速度运动规律);简谐运动规律(余弦加速度运动规律)当有停歇区间时有柔性冲击,用于中低速场合;当无停歇区间时无柔性冲击,用于高速场合。 9、何为带传动的弹性滑动?何为带传动的打滑?请具体说明二者最主要的区别。答:由于带的紧边与松边拉力不等,使带产生弹性变形而引起的带在带轮表面上滑动的现象,称为弹性滑动。 当带传动工作过程中作用到从动轮上的阻力矩大于带和带轮间的极限摩 擦力矩时,带与带轮的接触面就会发生相对滑动的现象,称为打滑。 区别:打滑是有过载引起的,是可以避免的,不过载就不会打滑; 而弹性滑动是由于传动带具有弹性且紧边与松边存在拉力差而产生的,它是带传动中所固有的物理现象,是不可以避免的。 6-2直齿圆柱齿轮的基参数? (1)齿数z: 齿轮整个圆周上轮齿的总数 2)模数m: 分度圆的周长l=πd=zp,则有分度圆直径d=p/π*z 由于π是无理数,给齿轮的设计、制造及检测带来不便。为此,人们将比值p/π为简单的有理数(如1,2,3…)并将该比值为模数,用m表示,单位是:mm。因此分度圆直径d=mz,分度圆齿距p=πm。模数是决定齿轮尺寸重要参数,齿数相同的齿轮,模数越大,其尺寸也越大。 3)压力角α:渐开线上各点的压力角是不同的。压力角太大对传动不利,我国规定压力角为20度。 4)齿顶高系数ha *和顶隙系数c*。齿轮齿顶高和齿根高得计算:ha = ha *m, hf =

《机械设计基础》答案

《机械设计基础》作业答案 第一章平面机构的自由度和速度分析1-1 1-2 1-3 1-4 1-5

自由度为: 1 1 19 21 1 )0 1 9 2( 7 3 ' )' 2( 3 = -- = - - + ? - ? = - - + - =F P P P n F H L 或: 1 1 8 2 6 3 2 3 = - ? - ? = - - = H L P P n F 1-6 自由度为 1 1 )0 1 12 2( 9 3 ' )' 2( 3 = - - + ? - ? = - - + - =F P P P n F H L 或: 1 1 22 24 1 11 2 8 3 2 3 = -- = - ? - ? = - - = H L P P n F 1-10

自由度为: 1 128301)221142(103')'2(3=--=--?+?-?=--+-=F P P P n F H L 或: 1 22427211229323=--=?-?-?=--=H L P P n F 1-11 2 2424323=-?-?=--=H L P P n F 1-13:求出题1-13图导杆机构的全部瞬心和构件1、3的角速度比。 1334313141P P P P ?=?ωω

1 1314133431==P P ω 1-14:求出题1-14图正切机构的全部瞬心。设s rad /101=ω,求构件3的速度3v 。 s mm P P v v P /20002001013141133=?===ω 1-15:题1-15图所示为摩擦行星传动机构,设行星轮2与构件1、4保持纯滚动接触,试用瞬心法求轮1与轮2的角速度比21/ωω。 构件1、2的瞬心为P 12 P 24、P 14分别为构件2与构件1相对于机架的绝对瞬心 1224212141P P P P ?=?ωω

机械设计基础第三章

图3-3 仿形刀架 第3章 凸轮机构 §3-1 凸轮机构的应用与分类 一、凸轮机构的应用与特点 凸轮机构广泛应用于各种自动机械和自动控制装置中。如图3-1所示的内燃机配气机构,凸轮1是向径变化的盘形构件,当它匀速转动时,导致气阀的推杆2在固定套筒3内上下移动,使推杆2按预期的运动规律开启或关闭气阀(关闭靠弹簧的作用),使燃气准时进入气缸或废气准时排出气缸。如图3-2所示的自动送料机构,构件1是带沟槽的凸轮,当其匀速转动时,迫使嵌在其沟槽内的送料杆2作往复的左右移动,达到送料的目的。如图3-3 图3-1 内燃机配气机构 图3-2 自动送料凸轮机构 所示,构件1是具有曲线轮廓且只能作相对往复直线运动的凸轮,当刀架3水平移动时,凸轮1的轮廓使从动件2带动刀头按相同的轨迹 移动,从而切出与凸轮轮廓相同的旋转曲面。 由上可知,凸轮是具有某种曲线轮廓或凹 槽的构件,一般作连续匀速转动或移动,通过 高副接触使从动件作连续或不连续的预期运 动。凸轮机构通常由凸轮、从动件和机架组成。 从动件的运动规律由凸轮的轮廓或沟槽 的形状决定。所以只需设计合适的凸轮轮廓曲 线,即可得到任意预期的运动规律,且凸轮机 构简单紧凑,这就是凸轮机构广泛应用的优 点。但是凸轮与从动件之间的接触是高副,易 于磨损,所以常用于传力不大的控制机构。 二、凸轮机构的分类 凸轮的类型很多,常按以下三种方法来分类: 1.按凸轮的形状来分

(1)盘形凸轮(图3-1)凸轮绕固定轴心转动且向径是变化的,其从动件在垂直于凸轮轴的平面内运动。是最常用的基本形型式。 (2)移动凸轮(图3-3)凸轮作往复直线移动,它可看作是轴心在无穷远处的盘形凸轮。 (3)圆柱凸轮(图3-2)凸轮是在圆柱上开曲线凹槽,或在圆柱端面上做出曲线轮廓的构件。 盘形凸轮和移动凸轮与从动件之间的相对运动都是平面运动,属于平面凸轮机构。圆柱凸轮与从动件之间的运动是空间运动,属于空间凸轮机构。 2.按从动件的形状来分 图3-4 从动件的形状 (1)尖顶从动件如图3-4a所示,该从动件结构简单,尖顶能与任意复杂的凸轮轮廓保持接触,可实现从动件的任意运动规律。但尖顶易磨损,所以只适用于作用力很小的低速凸轮机构,如仪表机构中。 (2)滚子从动件如图3-4b所示,该从动件的端部装有可自由转动的滚子,使其与凸轮间为滚动摩擦,可减少摩擦和磨损,能传递较大的动力,应用广泛。但结构复杂,端部质量较大,所以不宜用于高速场合。 (3)平底从动件如图3-4c所示,若不考虑摩擦,凸轮对从动件的作用力始终垂直于平底,传动效率最高,且平底与凸轮轮廓间易形成油膜,有利于润滑,所以可用于高速场合。但是平底不能用于有内凹曲线或直线的凸轮轮廓的凸轮机构。 3.按凸轮与从动件保持接触(称为封闭)的方式来分 (1)力封闭如图3-1和图3-4所示,分别依靠弹簧力和重力使从动件和凸轮始终保持接触。 3-5 形封闭凸轮结构 (2)形封闭如图3-5a所示,凸轮上加工有沟槽,从动件的滚子嵌在其中,保证凸轮

机械设计基础-课后答案

第三章部分题解参考 3-5 图3-37所示为一冲床传动机构的设计方案。设计者的意图是通过齿轮1带动凸轮2旋转后,经过摆 杆3带动导杆4来实现冲头上下冲压的动作。试分析此方案有无结构组成原理上的错误。若有,应如何修改? 习题3-5图 习题3-5解图(a) 习题3-5解图(b) 习题3-5解图(c) 解 画出该方案的机动示意图如习题3-5解图(a),其自由度为: 14233 2345=-?-?=--=P P n F 其中:滚子为局部自由度 计算可知:自由度为零,故该方案无法实现所要求的运动,即结构组成原理上有错误。 解决方法:①增加一个构件和一个低副,如习题3-5解图(b)所示。其自由度为: 1 15243 2345=-?-?=--=P P n F ②将一个低副改为高副,如习题3-5解图(c)所示。其自由度为: 1 23233 2345=-?-?=--=P P n F 3-6 画出图3-38所示机构的运动简图(运动尺寸由图上量取),并计算其自由度。 习题3-6(a)图 习题3-6(d)图 解(a) 习题3-6(a)图所示机构的运动简图可画成习题3-6(a)解图(a)或习题3-6(a)解图(b)的两种形式。 自由度计算: 1042332345=-?-?=--=P P n F

习题3-6(a)解图(a) 习题3-6(a)解图(b) 解(d) 习题3-6(d)图所示机构的运动简图可画成习题3-6(d)解图(a)或习题3-6(d)解图(b)的两种形式。 自由度计算: 1042332345=-?-?=--=P P n F 习题3-6(d)解图(a) 习题3-6(d)解图(b) 3-7 计算图3-39所示机构的自由度,并说明各机构应有的原动件数目。 解(a) 10102732345=-?-?=--=P P n F A 、 B 、 C 、 D 为复合铰链 原动件数目应为1 说明:该机构为精确直线机构。当满足B E =BC =CD =DE ,AB =AD , AF =CF 条件时,E 点轨迹是精确直线,其轨迹垂直于机架连心线AF

最新机械设计基础教案——第6章间歇运动机构.docx

第 6 章间歇运动机构 (一)教学要求 1.掌握各种常用机构的工作原理 2.了解各种机构的组成及应用 (二)教学的重点与难点 1.工作原理 2.常用机构的应用 (三)教学内容 6.1槽轮机构 一、组成、工作原理 1.组成:具有径向槽的槽轮,具有圆销的构件,机架 2.工作原理: 构件 1→连续转动;构件2(槽轮)→时而转动,时而静止 当构件 1 的圆销 A 尚未进入槽轮的径向槽时,槽轮的内凹锁住弧被构件 1 的外凸圆弧卡住,槽轮静止不动。 当构件 1 的圆销 A 开始进入槽轮径向槽的位置,锁住弧被松开,圆销驱使槽轮传动。 当圆销开始脱出径向槽时,槽轮的另一内凹锁住弧又被构件 1 的外凸圆弧卡住,槽轮静止不动。 往复循环。 4 个槽的槽轮机构:构件 1 转一周,槽轮转1 周。4

6 个槽的槽轮机构:构件 1 转一周,槽轮转1 周。6 二、槽轮机构的基本尺寸和运动系数 1.基本尺寸 b l (r r s )r s——圆销的半径 r l sin2b——槽轮回转中心到径向槽底的距离 a l cos2a——槽轮回转中心到径向槽口的距离 r——圆销中心到构件 1 中心的距离 l ——两轮回转中心之间的距离 2.运动系数(τ ):槽轮每次运动的时间 m t 之比。 t 对主动构件回转一周的时间 t m21(构件 1 等速回转) t2 2 1——槽轮运动时构件 1 转过的角度 (通常,为了使槽轮 2 在开始和终止运动时的瞬时角速度为零。以避免圆销与槽发生撞击,圆销进入、退出径向槽的瞬间使O1A ⊥O2A ) ∴ 2 1222 Z ∴ 21Z211 22Z2Z 讨论: 1、τ>0,∴ Z ≥3 τ=0,槽轮始终不动。 2、111 2Z :槽轮的运动时间总小于静止时间。 2 3、要使1 ,须在构件 1 上安装多个圆销。2 设 K为均匀分布的圆销数, K (Z2) 2Z 三、槽轮机构的特点和应用 优点:结构简单,工作可靠,能准确控制转动的角度。常用于要求恒定旋转角的分度机构中。 缺点:①对一个已定的槽轮机构来说,其转角不能调节。 ②在转动始、末,加速度变化较大,有冲击。 应用:应用在转速不高,要求间歇转动的装置中。 电影放映机中,用以间歇地移动影片。 自动机中的自动传送链装置。(布图)

机械设计基础(第四版)-推荐下载

一、选择题 1、链传动中,链节数常采用偶数,这是为了使链传动 D 。A 、工作平稳 B 、链条与链轮轮齿磨损均匀 C 、提高传动效率 D 、避免采用过渡链节 2、 一对圆柱齿轮传动,经校核得知满足弯曲强度,而不满足接触强度时,可以采取 B 。 A .保持中心距不变增大模数 B .保持中心距不变增大齿数 C .增大中心距 D .减小中心距 3、有一减速传动装置由带传动、链传动和齿轮传动组成,其安排顺序以方案 为好A A 、带传动---齿轮传动---链传动 B 、链传动---齿轮传动---带传动 C 、带传动---链传动---齿轮传动 D 、链传动---带传动---齿轮传动 4、在闭式齿轮传动中,高速重载齿轮传动的主要失效形式是 C A 、轮齿疲劳折断 B 、齿面疲劳点蚀 C 、齿面胶合 D 、齿面磨粒磨损 5、对齿轮轮齿材料性能的基本要求是 A A 、齿面要硬,齿芯要韧 B 、齿面要硬,齿芯要脆 C 、齿面要软,齿芯要脆 D 、齿面要软,齿芯要韧 6、采用 A 的措施不能有效地改善轴的刚度。A 、改用合金钢 B 、改变轴的直径C 、改变轴的支承位置 D 、改变轴的结构 7、在下列滚动轴承代号中, B 是圆锥滚子轴承。A.N 2210; B.30212; C.6215; D.7209AC 。 8、为了提高蜗杆传动的效率η,在润滑良好的情况下,最有效的是采用 措施。B A 、单头蜗杆 B 、多头蜗杆 C 、大直径系数的蜗杆 D 、提高蜗杆转速n 9、一个滚动轴承的基本额定动载荷是指 D 。A 、该轴承的使用寿命为106转时,所受的载荷B 、该轴承的使用寿命为106小时时,所能承受的载荷C 、该轴承平均寿命为106转时,所能承受的载荷D 、该轴承基本额定寿命为106转时,所能承受的最大载荷10、_____B___决定了从动杆的运动规律。 A 、凸轮转速 B 、凸轮轮廓曲线 C 、凸轮形状 D 、凸轮形状和转速 11、斜齿轮和锥齿轮强度计算中的齿形系数和应力修正系数应按 B 查图表。 多项方动方必要高

机械设计基础第三章习题

一.判断题(认为正确的,在括号内画√,反之画X) 1.根据铰链四杆机构各杆长度,即可判断其类型。()2.四杆机构中,传动角越大,机构的传力性能越好。()3.极位夹角是反映机构力学性能的参数。()4.曲柄为主动件的摆动倒杆机构一定具有急回特性。()5.曲柄为主动件的曲柄滑块机构一定具有急回特性。()6.曲柄为主动件的曲柄摇杆机构一定具有急回特性。()7.曲柄为主动件的曲柄摇杆机构,其最小传动角的位置在曲柄与连杆共线的两位置之一() 8.曲柄为主动件的曲柄滑块机构,其最小传动角的位置在曲柄与导路垂直的位置。() 9.四杆机构有无止点位置,与何构件为主动件无关。()10.极位夹角是从动件两极限位置之间的夹角。()二.选择题(将正确的答案的序号字母填入括号内) 1.曲柄滑块机构有止点时,其主动件为何构件?()A.曲柄B.滑块C.曲柄滑块均可 2.四杆长度不等的双曲柄机构,若主动曲柄作连续匀速转动,则从动曲柄怎样运动?()A.匀速转动B.间歇转动C.变速转动 3.杆长不等的铰链四杆机构,若以最短杆为机架,则是什麽机构?() A.双曲柄机构 B. 双摇杆机构 C.双曲柄机构或双摇杆机构 4.一对心曲柄滑块机构,曲柄长度为100mm,则滑块的行程是多少?() A.50mm B.100mm C. 200mm 5.有急回特性的平面连杆机构的行程速比系数K是什麽值? A.K=1 B.K>1 C.K>0 6.对心曲柄滑块机构的曲柄为主动件时,机构有无急回特性和止点位置? ( ) A.有急回特性,无止点位置 B.无急回特性,无止点位置 C.有急回特性,有止点位置 7.铰链四杆机构ABCD各杆长分别为L ab=40mm,L bc=90mm,L cd=55mm,L ad=100mm,若取AB为机架,则为何机架?() A.双摇杆机构 B.曲柄摇杆机构 C.双曲柄机构 8.当曲柄为主动件时,下述哪种机构具有急回特性?() A.平行双曲柄机构 B.对心曲柄滑块机构 C.摆动导杆机构 三.设计计算题 1.一铰链四杆机构,已知L bc=50mm,L cd=35mm,L ad=30mm,ad杆为机架,试分析: 1)若此机构为曲柄摇杆机构时,L ab的取值范围。 2)若此机构为双曲柄机构时,L ab的取值范围。 3)若此机构为双曲柄机构时,L ab的取值范围。 2.已知,图3-42所示各四杆机构,1为主动件,3为从动件 1)作各机构的极限位置,并量出从动件的行程S或摆角ψ. 2)计算各机构行程速比系数k. 3) 作出个机构出现最小传动角γmin(或最大压力角αmax)时的位置图,并量出其大小。 3. 若上题各四杆机构中,构件3为主动件,构件1位从动件,试做各机构的止点位置。 4.图3-43所示为用四杆机构控制的加热炉炉门的启闭机构。工作要求,加热时炉门能

国家开放大学机械设计基础形成性考核习题及答案

机械设计基础课程形成性考核作业(一) 第1章 静力分析基础 1.取分离体画受力图时,__CEF__力的指向可以假定,__ABDG__力的指向不能假定。 A .光滑面约束力 B .柔体约束力 C .铰链约束力 D .活动铰链反力 E .固定端约束力 F .固定端约束力偶矩 G .正压力 2.列平衡方程求解平面任意力系时,坐标轴选在__B__的方向上,使投影方程简便;矩心应选在_FG_点上,使力矩方程简便。 A .与已知力垂直 B .与未知力垂直 C .与未知力平行 D .任意 E .已知力作用点 F .未知力作用点 G .两未知力交点 H .任意点 3.画出图示各结构中AB 构件的受力图。 4.如图所示吊杆中A 、B 、C 均为铰链连接,已知主动力F =40kN,AB =BC =2m,α=30?.求两吊杆的受力的大小。 解:受力分析如下图 列力平衡方程: 又因为 AB=BC 第2章 常用机构概述 1.机构具有确定运动的条件是什么? 答:当机构的原动件数等于自由度数时,机构具有确定的运动 2.什么是运动副?什么是高副?什么是低副? 答:使两个构件直接接触并产生一定相对运动的联接,称为运动副。以点接触或线接触的运动副称为高副,以面接触的运动副称为低副。 3.计算下列机构的自由度,并指出复合铰链、局部自由度和虚约束。 (1)n =7,P L =10,P H =0 (2)n =5,P L =7,P H =0 C 处为复合铰链 (3)n =7,P L =10,P H =0 (4)n =7,P L =9,P H =1 E 、E ’有一处为虚约束 F 为局部自由度 C 处为复合铰链 第3章 平面连杆机构 1.对于铰链四杆机构,当满足杆长之和的条件时,若取_C_为机架,将得到双曲柄机构。 A .最长杆 B .与最短杆相邻的构件 C .最短杆 D .与最短杆相对的构件 2.根据尺寸和机架判断铰链四杆机构的类型。 a )双曲柄机构 b )曲柄摇杆机构 c )双摇杆机构 d )双摇杆机构 3.在图示铰链四杆机构中,已知,l BC =150mm ,l CD =120mm ,l AD =100mm ,AD 为机架;若想得到双曲柄机构,求l AB 的最小值。 解:要得到双曲柄机构,因此AD 杆必须为最短杆; 若AB 为最长杆,则AB ≥BC =150mm 若BC 为最长杆,由杆长条件得: 因此AB l 的最小值为130mm 4.画出各机构的压力角传动角。箭头标注的构件为原动件。 .如下图: 第4章 凸轮机构 1.凸轮主要由__凸轮___,___推杆__和___机架___三个基本构件组成。 2.凸轮机构从动件的形式有__尖顶_从动件,_滚子_从动件和_平底__从动件。 3.按凸轮的形状可分为__盘形_凸轮、_圆柱_凸轮和__曲面__凸轮。 4.已知图示凸轮机构的偏心圆盘的半径R =25mm ,凸轮轴心到圆盘中心的距离L=15mm ,滚子半径r T =5mm 。试求: (1)凸轮的基圆半径R O =?解:(1)mm r L R R T 15515250=+-=+-= (2) (4)mm r L R L r R S T T 98.10)()(22=----+=

机械设计基础课后习题第9章

习题9 9-1 轴的功用是什么?转轴、传动轴、心轴有何区别?轴由哪些部分组成? 答:轴用于支承旋转零件、传递转矩和运动。 工作时既承受弯矩又承受转矩的轴称为转轴。用来支承转动零件,只承受弯矩而不传递转矩的轴称为心轴。主要用于传递转矩而不承受弯矩,或所承受弯矩很小的轴称为传动轴。 轴通常由轴头、轴颈、轴肩、轴环、轴端及不装任何零件的轴段等部分组成。 9-2 轴的常用材料有哪些?什么时候选用合金钢? 答:轴的常用材料为碳素钢和合金钢。 合金钢具有较高的机械性能和更好的淬透性,但价格较贵,可以在传递大功率、要求减轻轴的重量和提高轴颈耐磨性时采用,在一般工作温度下,合金钢和碳素钢具有相近的弹性模量,采用合金钢不能提高轴的刚度。 9-3 为什么一般转轴都做成阶梯形?阶梯轴的各段直径和长度应根据什么原则确定? 答:阶梯轴各轴段截面的直径不同,各轴段的强度相近,且有利于轴上零件的装拆和固定。因此阶梯轴在机器中的应用最为广泛。 阶梯轴的各段直径是在初估最小直径的基础上,根据轴上零件的固定方式及其受力情况等,逐段增大估算确定;轴的各段长度主要由轴上零件及相互间的距离所决定。 9-4 进行轴的结构设计时,应考虑哪些问题? 答:1.便于轴上零件的装配;2.保证轴上零件的准确定位和可靠固定;3.轴的加工和装配工艺性好;4.减少应力集中,改善轴的受力情况 9-5 试从减小轴上载荷、提高轴的强度出发,分别指出图(a)、(b)中哪一种布置形式结构更合理?为什么? (a)(b) 习题9-5图 答:(a)图第一种布置形式的弯矩图 第二种布置形式的弯矩图

根据弯矩图,第二种布置形式更合理。 (b)图第一种布置形式的弯矩图 第二种布置形式的弯矩图 根据弯矩图,第一种布置形式更合理。 9-6 轴上零件常用的轴向固定和周向固定方法有哪些? 答:常用的轴向固定方式有;轴肩和轴环套筒和圆螺母;弹性挡圈和紧定螺钉;轴端挡圈和圆锥面;常用的周向固定方式有键联接、花键联接、销联接,成形联接及过盈配合联接9-7 判断图中的1、2、3、4处轴的结构是否合理?为什么? 图题9-7 答:1处:轴肩高度超过了轴承的安装尺寸,不合理;2处:轴头长度过长,不能实现齿轮的轴向固定;3、4处:结构合理,能保证轴承的轴向定位。 9-8 如图题9-8所示减速器轴输出轴,分析其结构存在哪些错误。

相关主题