搜档网
当前位置:搜档网 › 绝对值不等式的证明及练习

绝对值不等式的证明及练习

绝对值不等式的证明及练习
绝对值不等式的证明及练习

绝对值不等式的证明

知识与技能:

1. 理解绝对值的三角不等式,

2.应用绝对值的三角不等式.

过程方法与能力:

培养学生的抽象能力和逻辑思维能力;提高分析问题、解决问题的能力.

情感态度与价值观:

让学生通过对具体事例的观察、归纳中找出规律,得出结论,培养学生解决应用问题的能力和严谨的学习态度。

教学重点:理解绝对值的三角不等式

应用绝对值的三角不等式.

教学难点:应用绝对值的三角不等式.

教学过程:

一、引入:

证明一个含有绝对值的不等式成立,除了要应用一般不等式的基本性质之外,经常还要用到关于绝对值的和、差、积、商的性质:

(1)b a b a +≥+ (2)b a b a +≤-

(3)b a b a ?=? (4))0(≠=b b

a b a 请同学们思考一下,是否可以用绝对值的几何意义说明上述性质存在的道理? 实际上,性质b a b a ?=?和)0(≠=b b

a b a 可以从正负数和零的乘法、除法法则直接推出;而绝对值的差的性质可以利用和的性质导出。因此,只要能够证明b a b a +≥+对于任意实数都成立即可。我们将在下面的例题中研究它的证明。

现在请同学们讨论一个问题:设a 为实数,a 和a 哪个大? 显然a a ≥,当且仅当0≥a 时等号成立(即在0≥a 时,等号成立。在0

含有绝对值的不等式的证明中,常常利用a a +≥、a a -≥及绝对值的和的性质。 定理(绝对值三角形不等式)

如果,a b 是实数,则a b a b a b -±+≤≤

注:当a b 、为复数或向量时结论也成立.

特别注意等号成立的条件.

定理推广:

1212≤n n

a a a a a a ++++++ .

当且仅当都12n a a a ,,,非正或都非负时取等号.

探究:利用不等式的图形解不等式 1. 111<--+x x ;

2..12≤+y x 3.利用绝对值的几何意义,解决问题:要使不等式34-+-x x

二、典型例题:

例1、证明 (1)b a b a +≥+, (2)b a b a -≥+。

证明(1)如果,0≥+b a 那么.b a b a +=+所以.b a b a b a +=+≥+

如果,0<+b a 那么).(b a b a +-=+ 所以b a b a b a b a +=+-=-+-≥+)()(

(2)根据(1)的结果,有b b a b b a -+≥-++,就是,a b b a ≥++。所以,b a b a -≥+。

例2、证明 b a b a b a +≤-≤-。

例3、证明 c b c a b a -+-≤-。

思考:如何利用数轴给出例3的几何解释?

(设A ,B ,C 为数轴上的3个点,分别表示数a ,b ,c ,则线段.CB AC AB +≤当且仅当C 在A ,B 之间时,等号成立。这就是上面的例3。

特别的,取c =0(即C 为原点),就得到例2的后半部分。)

探究:试利用绝对值的几何意义,给出不等式b a b a +≥+的几何解释?

含有绝对值的不等式常常相加减,得到较为复杂的不等式,这就需要利用例1,例2和例3的结果来证明。

例4、已知 2

,2c b y c a x <-<-,求证 .)()(c b a y x <+-+ 证明 )()()()(b y a x b a y x -+-=+-+ b y a x -+-≤(1)

2

,2c b y c a x <-<

- , ∴c c c b y a x =+<-+-22 (2) 由(1),(2)得:c b a y x <+-+)()(

例5、已知.6

,4a y a x <<

求证:a y x <-32。 证明 6,4a y a x << ,∴2

3,22a y a x <<, 由例1及上式,a a a y x y x =+<+≤-223232。 注意: 在推理比较简单时,我们常常将几个不等式连在一起写。但这种写法,只能用于不等号方向相同的不等式。

三、小结:

借助图形的直观性来研究不等式的问题,是学习不等式的一个重要方法,特别是利用绝对值和绝对值不等式的几何意义来解不等式或者证明不等式,往往能使问题变得直观明了,帮助我们迅速而准确地寻找到问题的答案。关键是在遇到相关问题时,能否准确地把握不等式的图形,从而有效地解决问题。

四、练习:

1、已知.2

,2c b B c a A <-<-求证:c b a B A <---)()(。

2、已知.6,4c b y c a x <-<

-求证:c b a y x <+--3232。

五、作业:

1.求证 .111b b

a a

b a b

a +++≤+++

2.已知 .1,1<

b a 3.若βα,为任意实数,

c 为正数,求证:.)11()1(222βαβαc

c +++≤+ (βαβαβα2222++≤+,而2112222βαβαβαc c c c +≤?=)

5.已知函数2()f x ax bx c =++,当01x ≤≤时,()f x ≤1

求证:a b c ++≤17

作业:导学大课堂练习

课后反思:绝对值不等式的证明 4. a b c 、、均为实数,,,a b b c a c ≠≠≠,

求证:222322a b c b c a c a b a b b c c a +-++-++-<-+-+-≤.

初一绝对值化简,数轴动点问的题目

知识要点 1、a 的几何意义是:在数轴上,表示这个数的点离原点的距离; b -a 的几何意义是:在数轴上,表示数b a ,对应数轴上两点间的距离。 2、去绝对值符号的法则: 一、根据题设条件化简: 例1、设 化简 例2、三个有理数c b a ,,,其积不为零,求 c c b b a a ++的值 二、借助数轴化简 例3、有理数c b a ,,在数轴上对应的点(如下图),图中O 为原点,化简 a c b b a b a --+++-。 例4、c b a ,,的大小如下图所示,求 ac ab ac ab a c a c c b c b b a b a --+--+-----的值 a c x 0 b a b 0 x 1 c ()()()?? ???<-=>=时当时当时当000 0a a a a a a

三、采用零点分段讨论法化简 例5、化简|x+2|+|x-3| 例6、若245134x x x +-+-+的值恒为常数,求x 该满足的条件及此 常数的值。 例题精讲 1、当52<<-x 时,化简5772----+x x 2、如果32≤≤-x ,求322-+-+x x x 的最大值. 3、化简3223++-x x

4、已知0≠abc ,求 abc abc bc bc ac ac ab ab c c b b a a ++++++的值 5、当x 的取值范围为多少时,式子4311047+---+-x x x 的值恒为一个常数,试求出这个值及x 的 取值范围. 6、若21<

初 绝对值化简 知识点经典例题及练习题带答案

环球雅思教育学科教师讲义 讲义编号:副校长/组长签字:签字日期: 【考纲说明】 1、能够根据绝对值的意义、性质及非负性进行绝对值的化简; 2、灵活运用绝对值的性质进行化简和方程的解决。 【趣味链接】 由于研究的需要,人类创造了了大量的数学符号,来代替和表示某些数学概念和规律,简化了数学研究工作,促进了数学的发展.在中学数学中,常见的数学符号有以下八种:数量符号、运算符号、关系符号、结合符号、性质符号、简写符号、逻辑符号、集合论符号,其中,绝对值符号属于性质符号中的一种,常见的性质符号还有正号(+)和负号(-)。数学符号不仅随着数学发展的需要而产生,而且也随着数学的发展不断完善。我国宋朝科学家沈括说过,数学方法应该“见繁即变,见简即用”。数学符号正是适应这种变“繁”为“简”的实际需要而产生的。 【知识梳理】 一. 绝对值的实质: 正实数与零的绝对值是其自身,负实数的绝对值是它的相反数,即

也就是说,|x|表示数轴上坐标为x 的点与原点的距离。 总之,任何实数的绝对值是一个非负数,即|x|≥0,请牢牢记住这一点。 二. 绝对值的几何意义: 一个数的绝对值就是数轴上表示这个数的点到原点的距离。 三. 绝对值的性质: 1. 有理数的绝对值是一个非负数,即|x|≥0,绝对值最小的数是零。 2. 任何有理数都有唯一的绝对值,并且任何一个有理数都不大于它的绝对值,即x ≤|x|。 3. 已知一个数的绝对值,那么它所对应的是两个互为相反数的数。 4. 若两个数的绝对值相等,则这两个数不一定相等(显然如|6|=|-6|,但6≠-6),只有这两个数同号,且这两个数的绝对值相等时,这两个数才相等。 【经典例题】 【例1】(2012毫州)若0|2|)1(2=++-b a ,则b a +=_________. 【例2】(2012曲阜)(1)已知x 是有理数,且|x|=|-4|,那么x=____; (2)已知x 是有理数,且-|x|=-|2|,那么x=____; (3)已知x 是有理数,且-|-x|=-|2|,那么x=____. 【例3】(2012徐州)若|a|=b ,求|a+b|的值. 【例4】(2012淮北)已知|x-1|=2,|y|=3,且x 与y 互为相反数,求 y xy x 4312--的值. 【例5】(2012商丘)|m+3 |+|n-2 7|+|2p-1|=0,求p+2m+3n 的值.

初一数学绝对值知识点与例题

绝对值的性质及化简 【绝对值的几何意义】一个数a 的绝对值就是数轴上表示数a 的点与原点的距离.数a 的绝对值记作a . (距离具有非负性) 【绝对值的代数意义】一个正数的绝对值是它本身;一个负数的绝对值是它的相反数; 0的绝对值是0. 注意:① 取绝对值也是一种运算,运算符号是“| |”,求一个数的绝对值,就是根 据性质去掉绝对值符号. ② 绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相 反数;0的绝对值是0. ③ 绝对值具有非负性,取绝对值的结果总是正数或0. ④ 任何一个有理数都是由两部分组成:符号和它的绝对值,如:5-符号是负 号,绝对值是5. 【求字母a 的绝对值】 ①(0)0(0)(0)a a a a a a >??==??-?=?-≤? 利用绝对值比较两个负有理数的大小:两个负数,绝对值大的反而小. 绝对值非负性:|a|≥0 如果若干个非负数的和为0,那么这若干个非负数都必为0. 例如:若0a b c ++=,则0a =,0b =,0c = 【绝对值的其它重要性质】 (1)任何一个数的绝对值都不小于这个数,也不小于这个数的相反数, 即a a ≥,且a a ≥-; (2)若a b =,则a b =或a b =-; (3)ab a b =?; a a b b =(0)b ≠; (4)222||||a a a ==; (5)||a|-|b|| ≤ |a ±b| ≤ |a|+|b| a 的几何意义:在数轴上,表示这个数的点离开原点的距离. a b -的几何意义:在数轴上,表示数a .b 对应数轴上两点间的距离.

七年级数数学绝对值化简专题训练试题

绝对值的知识是初中代数的重要内容,在中考和各类竞赛中经常出现,含有绝对值符号的数学问题又是学生遇到的难点之一,解决这类问题的方法通常是利用绝对值的意义,将绝对值符号化去,将问题转化为不含绝对值符号的问题,确定绝对值符号内部分的正负,借以去掉绝对值符号的方法大致有三种类型。 一、根据题设条件 例1 设化简的结果是()。 (A)(B)(C)(D) 思路分析由可知可化去第一层绝对值符号,第二次绝对值符号待合并整理后再用同样方法化去. 解 ∴应选(B). 归纳点评只要知道绝对值将合内的代数式是正是负或是零,就能根据绝对值意义顺利去掉绝对值符号,这是解答这类问题的常规思路. 二、借助数轴 例2 实数a、b、c在数轴上的位置如图所示,则代数式的值等于(). (A)(B)(C)(D) 思路分析由数轴上容易看出,这就为去掉绝对值符号扫清了障碍. 解原式 ∴应选(C).

归纳点评这类题型是把已知条件标在数轴上,借助数轴提供的信息让人去观察,一定弄清: 1.零点的左边都是负数,右边都是正数. 2.右边点表示的数总大于左边点表示的数. 3.离原点远的点的绝对值较大,牢记这几个要点就能从容自如地解决问题了. 三、采用零点分段讨论法 例3 化简 思路分析本类型的题既没有条件限制,又没有数轴信息,要对各种情况分类讨论,可采用零点分段讨论法,本例的难点在于的正负不能确定,由于x是不断变化的,所以它们为正、为负、为零都有可能,应当对各种情况—一讨论. 解令得零点:; 令得零点:, 把数轴上的数分为三个部分(如图) ①当时, ∴原式 ②当时,, ∴原式 ③当时,,

∴原式 ∴ 归纳点评虽然的正负不能确定,但在某个具体的区段内都是确定的,这正是零点分段讨论法的优点,采用此法的一般步骤是: 1.求零点:分别令各绝对值符号内的代数式为零,求出零点(不一定是两个). 2.分段:根据第一步求出的零点,将数轴上的点划分为若干个区段,使在各区段内每个绝对值符号内的部分的正负能够确定. 3.在各区段内分别考察问题. 4.将各区段内的情形综合起来,得到问题的答案. 误区点拨千万不要想当然地把等都当成正数或无根据地增加一些附加条件,以免得出错误的结果. 练习: 请用文本例1介绍的方法解答l、2题 1.已知a、b、c、d满足且,那么 2.若,则有()。 (A)(B)(C)(D) 请用本文例2介绍的方法解答3、4题 3.有理数a、b、c在数轴上的位置如图所示,则式子化简结果为().

含绝对值的不等式解法练习题及答案

含绝对值的不等式解法练习题及答案 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

例1 不等式|8-3x|>0的解集是 [ ]答选C. 例2 绝对值大于2且不大于5的最小整数是 [ ] A.3 B.2 C.-2 D.-5 分析列出不等式. 解根据题意得2<|x|≤5. 从而-5≤x<-2或2<x≤5,其中最小整数为-5, 答选D. 例3不等式4<|1-3x|≤7的解集为________. 分析利用所学知识对不等式实施同解变形. 解原不等式可化为4<|3x-1|≤7,即4<3x-1≤7或-7例4已知集合A={x|2<|6-2x|<5,x∈N},求A. 分析转化为解绝对值不等式. 解∵2<|6-2x|<5可化为 2<|2x-6|<5 因为x∈N,所以A={0,1,5}. 说明:注意元素的限制条件.

例5 实数a,b满足ab<0,那么 [ ] A.|a-b|<|a|+|b| B.|a+b|>|a-b| C.|a+b|<|a-b| D.|a-b|<||a|+|b|| 分析根据符号法则及绝对值的意义. 解∵a、b异号, ∴ |a+b|<|a-b|. 答选C. 例6 设不等式|x-a|<b的解集为{x|-1<x<2},则a,b 的值为 [ ] A.a=1,b=3 B.a=-1,b=3 C.a=-1,b=-3 分析解不等式后比较区间的端点. 解由题意知,b>0,原不等式的解集为{x|a-b<x<a+b},由于解集又为{x|-1<x<2}所以比较可得. 答选D. 说明:本题实际上是利用端点的位置关系构造新不等式组.例7 解关于x的不等式|2x-1|<2m-1(m∈R)

绝对值化简方法辅导

下面我们就人大附中初一学生的家庭作业进行讲解如何对绝对值进行化简 首先我们要知道绝对值化简公式: 例题1:化简代数式 |x-1| 可令x-1=0,得x=1 (1叫零点值) 根据x=1在数轴上的位置,发现x=1将数轴分为3个部分 1)当x<1时,x-1<0,则|x-1|=-(x-1)=-x+1 2)当x=1时,x-1=0,则|x-1|=0 3)当x>1时,x-1>0,则|x-1|=x-1 另解,在化简分组过程中我们可以把零点值归到零点值右侧的部分 1)当x<1时,x-1<0,则|x-1|=-(x-1)=-x+1 2)当x≥1时,x-1≥0,则|x-1|=x-1 例题2:化简代数式 |x+1|+|x-2| 解:可令x+1=0和x-2=0,得x=-1和x=2(-1和2都是零点值) 在数轴上找到-1和2的位置,发现-1和2将数轴分为5个部分 1)当x<-1时,x+1<0,x-2<0,则|x+1|+|x-2|=-(x+1)-(x-2)=-x-1-x+2=-2x+1 2)当x=-1时,x+1=0,x-2=-3,则|x+1|+|x-2|=0+3=3 3)当-10,x-2<0,则|x+1|+|x-2|=x+1-(x-2)=x+1-x+2=3 4)当x=2时,x+1=3,x-2=0,则|x+1|+|x-2|=3+0=3 5)当x>2时,x+1>0,x-2>0,则|x+1|+|x-2|=x+1+x-2=2x-1 另解,将零点值归到零点值右侧部分 1)当x<-1时,x+1<0,x-2<0,则|x+1|+|x-2|=-(x+1)-(x-2)=-x-1-x+2=-2x+1 2)当-1≤x<2时,x+1≥0,x-2<0,则|x+1|+|x-2|=x+1-(x-2)=x+1-x+2=3 3)当x≥2时,x+1>0,x-2≥0,则|x+1|+|x-2|=x+1+x-2=2x-1 例题3:化简代数式 |x+11|+|x-12|+|x+13| 可令x+11=0,x-12=0,x+13=0 得x=-11,x=12,x=-13(-13,-11,12是本题零点值) 1)当x<-13时,x+11<0,x-12<0,x+13<0,则|x+11|+|x-12|+|x+13|=-x-11-x+12-x-13=-3x-12 2)当x=-13时,x+11=-2,x-12=-25,x+13=0,则|x+11|+|x-12|+|x+13|=2+25+13=40 3)当-130,则|x+11|+|x-12|+|x+13|=-x-11-x+12+x+13=-x+14 4)当x=-11时,x+11=0,x-12=-23,x+13=2,则|x+11|+|x-12|+|x+13|=0+23+2=25 5)当-110,x-12<0,x+13>0,则|x+11|+|x-12|+|x+13|=x+11-x+12+x+13=x+36 6)当x=12时,,x+11=23,x-12=0,x+13=25,则|x+11|+|x-12|+|x+13|=23+0+25=48 7)当x>12时,x+11>0,x-12>0,x+13>0,则|x+11|+|x-12|+|x+13|=x+11+x-12+x+13=3x+12 另解,将零点值归到零点值右侧部分 1)当x<-13时,x+11<0,x-12<0,x+13<0,则|x+11|+|x-12|+|x+13|=-x-11-x+12-x-13=-3x-12 2)当-13≤x<-11时,x+11<0,x-12<0,x+13≥0,则|x+11|+|x-12|+|x+13|=-x-11-x+12+x+13=-x+14 3)当-11≤x<12时,x+11≥0,x-12<0,x+13>0,则|x+11|+|x-12|+|x+13|=x+11-x+12+x+13=x+36 4)当x≥12时,x+11>0,x-12≥0,x+13>0,则|x+11|+|x-12|+|x+13|=x+11+x-12+x+13=3x+12 例题4:化简代数式|x-1|+|x-2|+|x-3|+|x-4| 解:令x-1=0,x-2=0,x-3=0,x-4=0 则零点值为x=1 , x=2 ,x=3 ,x=4 (1)当x<1时,|x-1|+|x-2|+|x-3|+|x-4|=-4x+10

绝对值化简专题训练.doc

v1.0可编辑可修改 绝对值难题解析 绝对值的知识是初中代数的重要内容,在中考和各类竞赛中经常出现,含有绝对值符号的数 学问题又是学生遇到的难点之一,解决这类问题的方法通常是利用绝对值的意义,将绝对值 符号化去,将问题转化为不含绝对值符号的问题,确定绝对值符号内部分的正负,借以去掉 绝对值符号的方法大致有三种类型。 一、根据题设条件 例 1设化简的结果是()。 (A)(B)(C)(D) 思路分析由可知可化去第一层绝对值符号,第二次绝对值符号 待合并整理后再用同样方法化去. 解 ∴应选( B). 归纳点评只要知道绝对值将合内的代数式是正是负或是零,就能根据绝对值意义顺利去掉绝对值符号,这是解答这类问题的常规思路. 二、借助数轴 例 2实数a、b、c在数轴上的位置如图所示,则代数式的值等于(). (A)(B)(C)(D)

思路分析由数轴上容易看出,这就为去掉绝对值符号扫清了障碍. 解原式 ∴应选( C). 归纳点评这类题型是把已知条件标在数轴上,借助数轴提供的信息让人去观察,一定弄清: 1.零点的左边都是负数,右边都是正数. 2.右边点表示的数总大于左边点表示的数. 3.离原点远的点的绝对值较大,牢记这几个要点就能从容自如地解决问题了. 三、采用零点分段讨论法 例3化简 思路分析本类型的题既没有条件限制,又没有数轴信息,要对各种情况分类讨论,可 采用零点分段讨论法,本例的难点在于的正负不能确定,由于x 是不断变化的,所以它们为正、为负、为零都有可能,应当对各种情况—一讨论. 解令得零点:; 令得零点:, 把数轴上的数分为三个部分(如图) ①当时,

∴原式 ②当时,, ∴原式 ③当时,, ∴原式 ∴ 归纳点评虽然的正负不能确定,但在某个具体的区段内都是确定的,这正是零点分段讨论法的优点,采用此法的一般步骤是: 1.求零点:分别令各绝对值符号内的代数式为零,求出零点(不一定是两个). 2.分段:根据第一步求出的零点,将数轴上的点划分为若干个区段,使在各区段内每个 绝对值符号内的部分的正负能够确定. 3.在各区段内分别考察问题. 4.将各区段内的情形综合起来,得到问题的答案. 误区点拨千万不要想当然地把等都当成正数或无根据地增加一些附加条件,以免得出错误的结果. 练习: 请用文本例 1 介绍的方法解答 l 、2 题

高考含绝对值不等式的解法

高考中常见的七种含有绝对值的不等式的解法 类型一:形如)()(,)(R a a x f a x f ∈><型不等式 解法:根据a 的符号,准确的去掉绝对值符号,再进一步求解.这也是其他类型的解题基础. 1、当0>a 时, a x f a a x f <<-?<)()( a x f a x f >?>)()(或a x f -<)( 2、当0=a a x f <)(,无解 ?>a x f )(使0)(≠x f 的解集 3、当0a x f )(使)(x f y =成立的x 的解集. 例1 (2008年四川高考文科卷)不等式22<-x x 的解集为( ) A.)2,1(- B.)1,1(- C.)1,2(- D.)2,2(- 解: 因为 22<-x x ,

所以 222<-<-x x . 即 ?????<-->+-0 20222x x x x , 解得: ? ??<<-∈21x R x , 所以 )2,1(-∈x ,故选A. 类型二:形如)0()(>><><<)()0()( 或a x f b -<<-)( 需要提醒一点的是,该类型的不等式容易错解为: b x f a a b b x f a <><<)()0()( 例2 (2004年高考全国卷)不等式311<+

绝对值计算化简专项练习

绝对值计算化简专项练 习 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

绝对值计算化简专项练习 1.已知a 、b 、c 在数轴上的位置如图所示,化简:|2a|﹣|a+c|﹣|1﹣b|+|﹣a ﹣b| 2.有理数a ,b ,c 在数轴上的对应位置如图,化简:|a ﹣b|+|b ﹣c|+|a ﹣c|. 3.已知xy <0,x <y 且|x|=1,|y|=2. (1)求x 和y 的值; (2)求的值. 4.已知|m ﹣n|=n ﹣m ,且|m|=4,|n|=3,求(m+n )2的值. 5.a 、b 在数轴上的位置如图所示,化简:|a|+|a ﹣b|﹣|a+b|. 6.有理数a ,b ,c 在数轴上的位置如图所示,试化简下式:|a ﹣c|﹣|a ﹣b|﹣|b ﹣c|+|2a|. 7.若|x|=3,|y|=2,且x >y ,求x ﹣y 的值. 8.已知:有理数a 、b 在数轴上对应的点如图,化简|a|+|a+b|﹣|1﹣a|﹣|b+1|. 9.计算:|﹣|+|﹣|+|﹣|+…+| ﹣| 10.阅读下列材料并解决相关问题: 我们知道()()()0000x x x x x x >??==??-

初一数学绝对值化简求值练习试题

初一数学绝对值化简求值练习试题 下文是数学绝对值化简求值练习试题 设a,b,c为实数,且化简|a|+a=0,|ab|=ab,|c|-c=0,化简|b|-|a+b|-|c-b|+|a-c| 【解析】 |a|+a=0,即|a|=-a,a |ab|=ab,ab0,b |c|-c=0,即|c|=c,c0 原式=-b+a+b-c+b-a+c=b 【答案】b 二、【考点】有理数运算、绝对值化简 【人大附期中】 在有理数的范围内,我们定义三个数之间的新运算# 法则:a#b#c=(|a-b-c|+a+b+c)/2 如:(-1)#2#3=[|(-1-2-3)|+(-1)+2+3]/2=5 (1)计算:3#(-2)#(-3)___________ (2)计算:1#(-2)#(10/3)=_____________ (3)在-6/7,-5/7-1/7,0,1/9,2/98/9这15个数中,①任取三个数作为a、b、c的值,进行a#b#c运算,求所有计算结果的最大值__________,②若将这十五个数任意分成五组,每组三个数,进行a#b#c运算,得到五个不同的结果,由于分组不同,所以五个运算的结果也不同,那么五个结果之和的最大值

是___________ 【分析】将a#b#c=(|a-b-c|+a+b+c)/2进行取绝对值化简。【解析答案】 (1)原式=3 (2)原式=4/3 (3)当a<b+c时,原式=b+c,当ab+c时,原式=a ①令b=7/9,c=8/9时a#b#c的最大值为b+c=5/3 ②4(提示,将1/9,2/98/9分别赋予b、c同时赋予a四个负数;最后一组,a=0,b、c赋予两个负数即可) 三、【考点】绝对值与平方的非负性、二元一次方程组 【北京四中期中】 已知:(a+b)+|b+5|=b+5,|2a-b-1|=0,求ab的值. 【分析】考察平方和绝对值的非负性,若干个非负数的和为零,则每个数都为零。 【解析】 由题意知b+50,(a+b)+b+5=b+5,即(a+b)=0① 2a-b-1=0② 解得a=1/3,b=-1/3 所以ab=-1/9 【答案】-1/9 四、【考点】绝对值化简,零点分段法 【北大附中期中】

绝对值的化简

“绝对值的化简”例题解析 无论是从绝对值的几何定义,还是绝对值的代数定义,都揭示了绝对值的一个重要性质——非负性,也就是说任何一个有理数的绝对值都是非负数,即:无论a取任意有理数都有 。 下面关于绝对值的化简题作一探讨。 一、含有一个绝对值符号的化简题 1. 已知未知数的取值或取值范围进行化简。 如,当时化简(根据绝对值的意义直接化简) 解:原式。 2. 没有告诉未知数的取值或取值范围进行化简。 如,化简(必须进行讨论) 我们把使绝对值符号内的代数式为0的未知数的值叫做界值,显然绝对值符号内代数式是,使的未知数的值是5,所以我们把5叫做此题的界值,确定了界值后,我们就把它分成三种情况进行讨论。 (1)当时,则是一个正数,则它的绝对值应是它本身,所以原式。 (2)当时,则,而0的绝对值为0,所以原式或 。 (3)当时,则,是一个负数,而负数的绝对值应是它的相反数,所以原 式。 又如,化简 此题虽含有一个绝对值符号,但绝对值符号内出现了两个未知数,在这种情况下,我们把含有两个未知数的式子看作一个整体,即把2x+y看作一个整体未知数,找出界值,使 的整体未知数的值是,我们把6叫做此题的界值,这样又可分三种情况进行讨论。 (1)当时,

(2)当时 (3)当时 二、含有两个绝对值符号的化简题 1. 已知未知数的取值或取值范围,进行化简也应根据绝对值的意义直接化简。如:当时,化简 解:原式 2. 没有告诉未知数的取值或取值范围进行化简也必须进行讨论 如:化简 的界值为-3,的界值为 所以对此类化简题,我们仍从三个方面进行讨论。

解:(1)当时(界值为较大界值,讨论的第(1)种情况为大于大的界值) 原式 (2)当时,(第(2)种情况为小于小的界值) 原式 (3)当时(第(3)种情况大于小界值小于大界值) 原式 又如,化简 此题含有两个绝对值符号,且每个绝对值符号内含有两个未知数,且未知数对应项系数相等或成比例,在这种情况下,我们把含有未知数较小的那个式子看作一个整体 即把看作一个整体分别求出每个绝对值符号内的界值,仍从三个方面进行讨论。 的界值为2,的界值为-2。 解:(1)当时, 原式 (2)当时, 原式

初一绝对值专项练习

【知识梳理】 1、什么叫绝对值? 在数轴上,一个数所对应的点与原点的距离叫做这个数的绝对值.例如+5的绝对值等于 5,记作|+5|=5;-3的绝对值等于3,记作|-3|=3. 拓展:︱x -2︱表示的是点x到点2的距离。 例:(1)|x|=5,求x 的值. (2)|x -3|=5,求x 的值. 2、绝对值的特点有哪些? (1)一个正数的绝对值是它本身;例如,|4|=4 , |+7.1| = 7.1 (2)一个负数的绝对值是它的相反数;例如,|-2|=2,|-5.2|=5.2 (3)0的绝对值是0. 容易看出,两个互为相反数的数的绝对值相等.如|-5|=|+5|=5. 绝对值的性质: ① 对任何有理数a,都有|a |≥0 ②若|a|=0,则|a |=0,反之亦然 ③若|a|=b ,则a=±b ④对任何有理数a,都有|a|=|-a| 何一个有理数的绝对值都是非负数,即|a ≥|0, (0)|0 (0) (0)a a a a a a >??==??-

绝对值问题的求解方法

绝对值问题的求解方法 一、定义法 例1 若方程只有负数解,则实数a的取值范围是:_________。 分析与解因为方程只有负数解,故,原方程可化为: , ∴, 即 说明绝对值的意义有两点。其一,一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,零的绝对值是零;其二,在数轴上表示一个点到原点的距离。利用绝对值的定义常可达到去掉绝对值符号的目的。 二、利用非负性 例2 方程的图象是() (A)三条直线: (B)两条直线: (C)一点和一条直线:(0,0), (D)两个点:(0,1),(-1,0)

分析与解由已知,根据非负数的性质,得 即或 解之得:或 故原方程的图象为两个点(0,1),(-1,0)。 说明利用非负数的性质,可以将绝对值符号去掉,从而将问题转化为其它的问题来解决。 三、公式法 例3 已知,求的值。 分析与解, ∴原式 说明本题根据公式,将原式化为含有的式子,再根据绝对值的定义求值。 四、分类讨论法 例4 实数a满足且,那么

分析与解由可得 且。 当时, ; 当时, 说明有的题目中,含绝对值的代数式不能直接确定其符号,这就要求分情况对字母涉及的可能取值进行讨论。 五、平方法 例5 设实数a、b满足不等式,则 (A)且 (B)且 (C)且 (D)且 分析与解由于a、b满足题设的不等式,则有 ,

整理得 , 由此可知,从而 上式仅当时成立, ∴,即且, 选B。 说明运用此法是先对不等式进行平方去掉绝对值,然后求解。 六、图示法 例6 在式子中,由不同的x值代入,得到对应的值。在这些对应值中,最小的值是() (A)1 (B)2 (C)3 (D)4 分析与解问题可变化为:在数轴上有四点A、B、C、D,其对应的值分别是-1、-2,-3、-4,求一点P,使最小(如图)。 由于是当P点在线段AD上取得最小值3,是当P在线段BC上取得最小值1,故的最小值是4。选D。 说明由于借助图形,巧妙地把问题在图形中表示出来,形象直观,便于思考,从而达到快捷解题之目的。

七年级数数学绝对值化简专题训练试题

绝对值的知识是初中代数的重要内容, 在中考和各类竞赛中经常出现, 含有绝对值符号的数 学问题又是学生遇到的难点之一, 解决这类问题的方法通常是利用绝对值的意义, 将绝对值 符号化去,将问题转化为不含绝对值符号的问题, 确定绝对值符号内部分的正负, 借以去掉 绝对值符号的方法大致有三种类型。 一、根据题设条件 例 1 设二’「[化简二二 TT 的结果是( )。 思路分析 由八? 一「-可知工一;吒< -可化去第一层绝对值符号,第二次绝对值 符号待合并整理后再用同样方法化去. 2-|2-|x-2||=2-|2-(2-z)|=2-|x| = 2-(-x)=2-Fx ???应选(B ). 归纳点评 只要知道绝对值将合内的代数式是正是负或是零,就能根据绝对值意义顺 利去掉绝对值符号,这是解答这类问题的常规思路. 二、借助数轴 例2 实数a 、b 、c 在数轴上的位置如图所示, 则代数式的 值等于( ) 思路分析 由数轴上容易看出,这就为 去掉绝对值符号扫清了障碍. 解 原式 [’」 ;■- . ■; 二 - 应选(C ) (A ) __二 (B )-_?; (C ) 一 丄+ ': (A ) — * (D )

归纳点评这类题型是把已知条件标在数轴上,借助数轴提供的信息让人去观察,一 定弄清: 1.零点的左边都是负数,右边都是正数. 2.右边点表示的数总大于左边点表示的数. 3.离原点远的点的绝对值较大,牢记这几个要点就能从容自如地解决问题了. 三、采用零点分段讨论法 例3化简■ HI - 1 思路分析本类型的题既没有条件限制,又没有数轴信息,要对各种情况分类讨论, 可采用零点分段讨论法,本例的难点在于’■' ' ■的正负不能确定,由于x是不断变化的,所以它们为正、为负、为零都有可能,应当对各种情况一一讨论. 解令"-■-=-得零点:丁二I ; 令讥I丨_」得零点:?一 ', 把数轴上的数分为三个部分(如图) 丄 _____________________ 1___________ I _____ k -4 0 2 ①当X工2时兀一220」+蚪>0 ???原式:'■' ②当-4K2时,x亠处1卄4工0 , ? 原式打 ,:|. ; ③当葢工一4时A-2 <0^+4 <0

含绝对值的不等式解法·典型例题

含绝对值的不等式解法·典型例题 能力素质 例1 不等式|8-3x|>0的解集是 [ ] A B R C {x|x } D {83 }...≠.? 83 分析∵->,∴-≠,即≠. |83x|083x 0x 83 答 选C . 例2 绝对值大于2且不大于5的最小整数是 [ ] A .3 B .2 C .-2 D .-5 分析 列出不等式. 解 根据题意得2<|x|≤5. 从而-5≤x <-2或2<x ≤5,其中最小整数为-5, 答 选D . 例3 不等式4<|1-3x|≤7的解集为________. 分析 利用所学知识对不等式实施同解变形. 解 原不等式可化为4<|3x -1|≤7,即4<3x -1≤7或-7 ≤-<-解之得<≤或-≤<-,即所求不等式解集为-≤<-或<≤.3x 14x 2x 1{x|2x 1x }53835383 例4 已知集合A ={x|2<|6-2x|<5,x ∈N},求A . 分析 转化为解绝对值不等式. 解 ∵2<|6-2x|<5可化为 2<|2x -6|<5 即-<-<,->或-<-, 52x 652x 622x 62??? 即<<,>或<,12x 112x 82x 4???

解之得<<或<<.4x x 211212 因为x ∈N ,所以A ={0,1,5}. 说明:注意元素的限制条件. 例5 实数a ,b 满足ab <0,那么 [ ] A .|a -b|<|a|+|b| B .|a +b|>|a -b| C .|a +b|<|a -b| D .|a -b|<||a|+|b|| 分析 根据符号法则及绝对值的意义. 解 ∵a 、b 异号, ∴ |a +b|<|a -b|. 答 选C . 例6 设不等式|x -a|<b 的解集为{x|-1<x <2},则a ,b 的值为 [ ] A .a =1,b =3 B .a =-1,b =3 C .a =-1,b =-3 D a b .=,=1232 分析 解不等式后比较区间的端点. 解 由题意知,b >0,原不等式的解集为{x|a -b <x <a +b},由于解集又为{x|-1<x <2}所以比较可得. a b 1a b 2 a b -=-+=,解之得=,=.???1232 答 选D . 说明:本题实际上是利用端点的位置关系构造新不等式组. 例7 解关于x 的不等式|2x -1|<2m -1(m ∈R) 分析 分类讨论. 解若-≤即≤,则-<-恒不成立,此时原不等 2m 10m |2x 1|2m 112 式的解集为;? 若->即>,则--<-<-,所以-<2m 10m (2m 1)2x 12m 11m 12 x <m .

绝对值的化简求值

初一上学期期中考试重难点分析 ----绝对值的化简求值 进入初一上学期,同学们会发现大部门知识学起来还是比较简单,唯独绝对值的化简和 求值成为了众多学生的拦路虎。 无论是从绝对值的几何定义,还是绝对值的代数定义,都揭示了绝对值的一个重要性质——非负性,也就是说任何一个有理数的绝对值都是非负数,即:无论a 取任意有理数都有||a ≥0。 经过仔细分析,绝对值的考查无非就三种题型,用到的思想基本上就是分类讨论和数形结合,方法大部分题型考查的就是零点分段讨论,下面我们简单的分析下: 零点分段讨论法:我们把使绝对值符号内的代数式为0的未知数的值叫做零点,一个代数式里有几个绝对值符号,通常就有几个零点。比如|42||3|-++x x ,有两个绝对值,就有两个零点,分别是-3和2。确定了零点后,再根据两个零点在数轴上把整个数轴分成几段,就进行几类分类讨论。 题型一:含一个绝对值符号的化简 1、已知未知数的取值或取值范围进行化简 典型题型:当x >2时化简||23x x -+(根据绝对值的意义直接化简) 解:原式=-+=-2333x x x 。 2、没有告知未知数的取值或取值范围进行化简 典型题型:化简||x x -+52(此题中零点是5,5把数轴分成了两部分,因此分两类讨论) 解:(1)当5≥x 时,则05≥-x 是一个非负数,则它的绝对值应是它本身,所以原式=-+=-x x x 5235。 (2)当x <5时,则x -<50,是一个负数,而负数的绝对值应是它的相反数,所以原式=--+=-++=+()x x x x x 52525。 人大附中2009年期中测试真题:化简||2612 x y x y +-+- 此题虽含有一个绝对值符号,但绝对值符号内出现了两个未知数,在这种情况下,我们把含有两个未知数的式子看作一个整体,即把2x +y 看作一个整体未知数,找出零点,使260x y +-=的整体未知数的值是26x y +=,我们把6叫做此题的零点,这样又可分两种情况进行讨论。 (1)当62≥+y x 时, ||2612x y x y +-+- =+-+ -= -261252 6x y x y x

绝对值计算化简专项练习

绝对值计算化简专项练习 Prepared on 22 November 2020

绝对值计算化简专项练习 1.已知a 、b 、c 在数轴上的位置如图所示,化简:|2a|﹣|a+c|﹣|1﹣b|+|﹣a ﹣b| 2.有理数a ,b ,c 在数轴上的对应位置如图,化简:|a ﹣b|+|b ﹣c|+|a ﹣c|. 3.已知xy <0,x <y 且|x|=1,|y|=2. (1)求x 和y 的值; (2)求的值. 4.已知|m ﹣n|=n ﹣m ,且|m|=4,|n|=3,求(m+n )2的值. 5.a 、b 在数轴上的位置如图所示,化简:|a|+|a ﹣b|﹣|a+b|. 6.有理数a ,b ,c 在数轴上的位置如图所示,试化简下式:|a ﹣c|﹣|a ﹣b|﹣|b ﹣c|+|2a|. 7.若|x|=3,|y|=2,且x >y ,求x ﹣y 的值. 8.已知:有理数a 、b 在数轴上对应的点如图,化简|a|+|a+b|﹣|1﹣a|﹣|b+1|. 9.计算:|﹣|+|﹣|+|﹣|+…+| ﹣| 10.阅读下列材料并解决相关问题: 我们知道()()()0000x x x x x x >??==??-

七年级数学--绝对值化简专题训练

绝对值化简专题训练 去绝对值的法则:1、正数的绝对值等于它本身a a=()0?a 2、负数的绝对值等于它的相反数a =()0?a a- 3、零的绝对值等于零。0 a()0=a = 1.如图,数轴上的三点A、B、C分别表示有理数a、b、c,则 (1)b﹣a0,a﹣c0,b+c0(用“>”“<”或“=”填空).(2)化简:|b﹣a|﹣|a﹣c|+|b+c| 2.如图,数轴上的a、b、c分别表示有理数a、b、c. (1)化去下列各式的绝对值: ①|c|=;②|a|=;③|a﹣b|=. (2)化简:|b﹣a|+|a﹣b﹣c|﹣|a﹣c|. 3.数a,b,c在数轴上的位置如图所示: 化简:|b﹣a|﹣|c﹣b|+|a+b|. 4.已知:有理数a、b、c在数轴上如图所示.化简:|a|+3|c﹣a|+|b+c|.

5.已知a、b、c这三个有理数在数轴上的位置如图所示, 化简:|b﹣c|﹣|a﹣b|+|a+c|. 6.有理数在数轴上的位置如图所示,化简:|c﹣a|+|b﹣c|﹣|a﹣b|+|a+b|. 7.有理数a,b,c在数轴上如图所示,试化简|2c﹣b|+|a+b|﹣|2a﹣c|. 8.已知有理数a、b、c在数轴上的位置如图所示, 化简:|a﹣b|﹣|a+c|﹣|c﹣a|+|a+b+c|+|b﹣c| 9.已知a,b,c在数轴上的位置如图所示,所对应的点分别为A,B,C.(1)填空:A、B之间的距离为,B、C之间的距离为,A、C之间的距离为; (2)化简:|a+b|﹣|c﹣b|+|b﹣a|; (3)a、b、c在数轴上的位置如图所示,且c2=4,﹣b的倒数是它本身,a的绝对值的相反数是﹣2,求﹣a+2b﹣c﹣2(a﹣4c﹣b)的值.

含绝对值不等式的解法(含答案)

含绝对值的不等式的解法 一、 基本解法与思想 解含绝对值的不等式的基本思想是等价转化,即采用正确的方法去掉绝对值符号转化为不含绝对值的不等式来解,常用的方法有公式法、定义法、平方法。 (一)、公式法:即利用a x >与a x <的解集求解。 主要知识: 1、绝对值的几何意义:x 是指数轴上点x 到原点的距离;21x x -是指数轴上1x ,2x 两点间的距离.。 2、a x >与a x <型的不等式的解法。 当0>a 时,不等式>x 的解集是{} a x a x x -<>或, 不等式a x <的解集是} a x a x <<-; 当0的解集是{}R x x ∈ 不等式a x <的解集是?; 3.c b ax >+与 c b ax <+型的不等式的解法。 把 b ax + 看作一个整体时,可化为a x <与a x >型的不等式来求解。 当0>c 时,不等式c b ax >+的解集是{ } c b ax c b ax x -<+>+或, 不等式c b ax <+的解集是{}c b ax c x <+<-; 当0+的解集是{}R x x ∈ 不等式c bx a <+的解集是?; 例1 解不等式32<-x 分析:这类题可直接利用上面的公式求解,这种解法还运用了整体思想,如把“2-x ” 看着一个整体。答案为{} 51<<-x x 。(解略) (二)、定义法:即利用(0),0(0),(0).a a a a a a >??==??-++。 分析:由绝对值的意义知,a a =?a ≥0,a a =-?a ≤0。 解:原不等式等价于 2 x x +<0?x(x+2)<0?-2<x <0。

初一数学绝对值典型例题精 讲

第三讲绝对值 内容概述 绝对值是有理数中非常重要的组成部分,它其中相关的基本思想及数学方法是初中数学学习的基石,希望同学们通过学习、巩固对绝对值的相关知识能够掌握要领。 绝对值的定义及性质 绝对值简单的绝对值方程 化简绝对值式,分类讨论(零点分段法) 绝对值几何意义的使用 绝对值的定义及性质 绝对值的定义:在数轴上,一个数所对应的点与原点的距离称为该数的绝对值,记作|a|。 绝对值的性质: (1)绝对值的非负性,可以用下式表示:|a|≥0,这是绝对值非常重要的性质; a (a>0) (2)|a|= 0 (a=0)(代数意义) -a (a<0) (3)若|a|=a,则a≥0;若|a|=-a,则a≤0; (4)任何一个数的绝对值都不小于这个数,也不小于这个数的相反数,即|a|≥a, 且|a|≥-a; (5)若|a|=|b|,则a=b或a=-b;(几何意义) (6)|ab|=|a|·|b|;||=(b≠0); (7)|a|=|a|=a;

(8)|a+b|≤|a|+|b| |a-b|≥||a|-|b|| |a|+|b|≥|a+b| |a|+|b|≥|a-b|

[例1] (1)绝对值大于2.1而小于4.2的整数有多少个? (2)若ab<|ab|,则下列结论正确的是() A.a<0,b<0 B.a>0,b<0 C.a<0,b>0 D.ab<0 (3)下列各组判断中,正确的是() A.若|a|=b,则一定有a=b B.若|a|>|b|,则一定有a>b C. 若|a|>b,则一定有|a|>|b| D.若|a|=b,则一定有a=(-b) (4)设a,b是有理数,则|a+b|+9有最小值还是最大值?其值是多少? 分析: (1)结合数轴画图分析。绝对值大于2.1而小于4.2的整数有±3,±4,有4个 (2)答案C不完善,选择D.在此注意复习巩固知识点3。 (3)选择D。 (4)根据绝对值的非负性可以知道|a+b|≥0,则|a+b|≥9,有最小值9 [巩固] 绝对值小于3.1的整数有哪些?它们的和为多少? <分析>:绝对值小于3.1的整数有0,±1,±2,±3,和为0。 [巩固] 有理数a与b满足|a|>|b|,则下面哪个答案正确() A.a>b B.a=b C.a

相关主题