搜档网
当前位置:搜档网 › 国半的稳压芯片选型

国半的稳压芯片选型

国半的稳压芯片选型
国半的稳压芯片选型

型号稳压(V) 最大输出电流可替代型号

79L05 -5V 100mA

79L06 -6V 100mA

79L08 -8V 100mA

LM7805 5V 1A L7805,LM340T5

LM7806 6V 1A L7806

LM7808 8V 1A L7808

LM7809 9V 1A L7809

LM7812 12V 1A L7812,LM340T12

LM7815 15V 1A L7815,LM340T15

LM7818 18V 1A L7815

LM7824 24V 1A L7824

LM7905 -5V 1A L7905

LM7906 -6V 1A L7906,KA7906

LM7908 -8V 1A L7908

LM7909 -9V 1A L7909

LM7912 -12V 1A L7912

LM7915 -15V 1A L7915

LM7918 -18V 1A L7918

LM7924 -24V 1A L7924

78L05 5V 100mA

78L06 6V 100mA

78L08 8V 100ma

78L09 9V 100ma

78L12 12V 100ma

78L15 15V 100ma

78L18 18V 100ma

78L24 24V 100ma

开关稳压器件(电压转换效率高)

型号说明最大输出电流LM1575T-3.3 3.3V简易开关电源稳压器 1A

LM1575T-5.0 5V简易开关电源稳压器 1A

LM1575T-12 12V简易开关电源稳压器 1A

LM1575T-15 15V简易开关电源稳压器 1A

LM1575T-ADJ 简易开关电源稳压器(可调1.23V~37V) 1A

LM1575HVT-3.3 3.3V简易开关电源稳压器 1A

LM1575HVT-5.0 5V简易开关电源稳压器 1A

LM1575HVT-12 12V简易开关电源稳压器 1A

LM1575HVT-15 15V简易开关电源稳压器 1A

LM1575HVT-ADJ 简易开关电源稳压器(可调1.23V~37V) 1A

LM2575T-3.3 3.3V简易开关电源稳压器 1A

LM2575T-5.0 5V简易开关电源稳压器 1A LM2575T-12 12V简易开关电源稳压器 1A LM2575T-15 15V简易开关电源稳压器 1A LM2575T-ADJ 简易开关电源稳压器(可调1.23V~ 37V) 1A LM2575HVT-3.3 3.3V简易开关电源稳压器 1A LM2575HVT-5.0 5V简易开关电源稳压器 1A LM2575HVT-12 12V简易开关电源稳压器 1A LM2575HVT-15 15V简易开关电源稳压器 1A LM2575HVT-ADJ 简易开关电源稳压器(可调1.23V~37V) 1A LM2576T-3.3 3.3V简易开关电源稳压器 3A LM2576T-5.0 5.0V简易开关电源稳压器 3A LM2576T-12 12V简易开关电源稳压器 3A LM2576T-15 15V简易开关电源稳压器 3A LM2576T-ADJ 简易开关电源稳压器(可调1.23V~37V) 3A LM2576HVT-3.3 3.3V简易开关电源稳压器 3A LM2576HVT-5.0 5.0V简易开关电源稳压器 3A LM2576HVT-12 12V简易开关电源稳压器 3A LM2576HVT-15 15V简易开关电源稳压器 3A LM2576HVT-ADJ 简易开关电源稳压器(可调1.23V~37V) 3A

按应用分类的运算放大器选型指南

ADI 公司开发创新能源解决方案已逾十年。我们的高性能放大器产品组合在促进变电站设备中的电能质量监控方面起着重要作用,而且随着再生能源系统的最新发展,它们也有助于实现突破性的解决方案。 能源应用放大器 欲了解有关能源应用的更多信息,请访问:https://www.sodocs.net/doc/5c6107943.html,/zh/energy 典型太阳能电池系统图 典型变电站自动化系统图

过程控制和工业自动化应用放大器 40多年来,工业过程控制系统设计者与ADI公司密切合作,以定义、开发、实施针对各种应用进行优化的完整信号链解决方案。我们提供基于业界领先技术和系统性专业技术的精密控制与监测解决方案,使过程控制同时具备可靠性与创新性。 欲了解有关过程控制和工业自动化应用的更多信息,请访问:https://www.sodocs.net/doc/5c6107943.html,/zh/processcontrol

仪器仪表和测量应用放大器 ADI公司提供高性能模拟解决方案,用来检测、测量、控制各种传感器。我们的技术支持广泛的创新设备鉴别、测量液体、粉末、固体和气体。领先的放大器产品可帮助客户优化定性和定量仪器的性能。 网络分析仪框图 电子秤框图 欲了解有关仪器仪表和测量应用的更多信息,请访问:https://www.sodocs.net/doc/5c6107943.html,/zh/instrumentation

电机和电源控制应用放大器 针对电机和电源控制解决方案,ADI公司提供齐全的产品系列以优化系统级和应用导向设计。ADI公司的放大器产品在电流检测和电压检测应用中具有许多优势。 欲了解有关电机和电源控制应用的更多信息,请访问:https://www.sodocs.net/doc/5c6107943.html,/zh/motorcontorl

健器械的未来。 脉搏血氧仪功能框图

电源芯片选型

①明确输入电压(或范围)和输出电压,根据输入输出的大小关系决定选择降压、升压或升降压芯片。如果是降压,则可以选择线性稳压器、电容式DC-DC(即电荷泵)或降压DC-DC (当然升/降压DC-DC也可以,考虑到性价比没有必要这样选);如果是升压或者升/降压,则只能选择DC-DC转换器(电容式或者电感式升压DC-DC)! ②如果是降压,考虑效率,需要计算输入与输出之间的压差。若这个压差很小(远远小于 1 V),则可以考虑选择低压差线性稳压器(LDO);若这个压差在1 V以上,则可以考虑选择普通线性稳压器或者电感式降压DC-DC。如果对效率没有要求,两种线性稳压器都可以的情况下,追求更低成本则可以选用普通线性稳压器。 ③在线性稳压器和DC-DC稳压器都可以的情况下,若把转换效率放在第一位,则可以选择DC-DC稳压器;若对价格限制得很严格,并且要求较小的纹波和噪声,则可以考虑选用线性稳压器。 ④在使用电池供电时,若要求较长的电池使用时间,需要优先考虑效率,无论是升压、降压、升/降压都可以选用DC-DC转换器。为获得较高的效率,此时需要参照DC-DC转换器芯片手册里边的效率随负载电流变化曲线,要根据负载电流选择合适的DC-DC转换器,确保稳压器达到较高的效率。 ⑤为保证电池供电系统电源负荷变化较大应用的效率,最好选择PFM/PWM自动切换控制式的DC-DC变换器。PWM的特点是噪音低、满负载时效率高且能工作在连续导电模式,PFM具有静态功耗小,在低负荷时可改进稳压器的效率。当系统在重负荷时由PWM控制,在低负荷时自动切换到PFM控制,这样能够兼顾轻重负载的效率。在备有待机模式的系统中,采用PFM/PWM切换控制的DC-DC稳压器能够得到较高效率。这样的电源芯片有TPS62110/62111/62112/62113、MAX1705/1706、NCP1523/1530/1550等。 ⑥不要“大牛拉小车”或“小牛拉大车”。选用电源芯片时为保证电源的使用寿命,需要留有一定的裕量,较合适的工作电流为电源芯片最大输出电流的70%~90%。如果用一个能输出大电流的稳压块来带动一个小电流的负载,虽然说驱动能力没有问题,但是可能会带来两个问题,一方面成本会提高;另一方面选用DC-DC转换器时效率可能会非常低,因为一般的DC-DC在输出电流非常小或者非常大的时候效率都比较低。当使用线性稳压器(特别是

芯片选型

芯片选型 微控制器是移动机器人运动控制系统的核心,它的选择直接决定了整个机器人运动系统的性能和开发方式。目前,国内外移动机器人平台采用的微控制器有多种,主要有8/16位单片机和数字信号处理器DSP两大类型。采用8/16位单片机,控制系统设计制作简单,硬件开发周期短,但数据处理能力不强,需要借助外加器件如计数器、PID调节器和PWM产生器等,系统的稳定性不是很强,系统控制板的结构尺寸也比较大。DSP具有数据处理能力强、速度快等特点,且体积比较小,有利于电路板布局,但DSP在中断处理、位处理或逻辑操作方面不如单片机,资料相对较少,芯片价格和相应的开发套件比较昂贵,专用性比较强,通用性比较弱。 与DSP具有同等性能的ARM微处理器资源丰富,具有很强的通用性,以其高速度、高性能低价格、低功耗等优点而广泛应用于各个领域。ARM本身是32位处理器,但是集成了16位的Thumb指令集,这使得ARM可以代替16位的处理器使用,同时具有32位处理器的速度,用单片机和DSP实现的系统,ARM都可以实现。ARM还集成了丰富的片内外设资源,利用自身资源不必增加外围器件就可以实现控制所要求的功能,同时使得机器人控制板的结构尺寸可以做的很小。另外,利用ARM处理器设计的嵌入式系统还具有非常好的移植性,这是其他处理器所不具备的特点。考虑到这些因素,本课题决定选择以ARM为核心的微处理器作为机器人底层运动控制芯片。 然而,ARM微处理器有几十种架构,几十个芯片生产厂家以及各种各样的内部功能配置,因此开发时需要对芯片做一些对比分析,芯片选型时主要考虑以下几个因素: 1.ARM微处理器内核的选择 不同的内核,适用于不同的应用领域。如ARM7内核没有MMU,而ARM9内核有MMU。由于uCLinux等不需要MMU单位,因而可以在ARM7上运行,相反,嵌入式Linux具有MMU,因而可以在ARM9上运行。 2.系统的工作频率 系统的工作频率很大程度上决定了系统处理任务的能力。但是系统的工作频率越高,其功耗也较高。因此在实际应用中,需要根据需要来选择工作频率。 3.芯片内存储器的容量 多数的ARM微处理器片内存储器的容量不大,因而需要用户在设计系统时进行外部扩展,但是也有芯片内部有较大的片内存储空间。因而,用户可以根据需要选择合适的方案。 4.片内外围电路的支持 几乎所有的芯片都有各自不同的适用领域,扩展了相应的外围模块功能,并集成在芯片内部,称之为片内外围电路。开发人员根据系统设计的需要,选择合适的ARM外围电路,可以大大地降低开发成本,节约开发时间。

稳压器如何选择,稳压器选型方

稳压器如何选择,稳压器选型方法 购买稳压器时该如何选择? 因为稳压器品种较多,在购买时应该要注意以下事项: 1、首先要了解稳压器要用在什么地方?比如:是部分设备或整个用电系统稳压使用。 2、要了解稳压器的原理、特性、用途等; 3、需要稳压的设备功率或整个用电系统变压器的容量; 4、稳压器的单位(kva)和功率(kw)之间的换算关系:1kw=1.25kva,通常稳压器以kva计算; 5、稳压器的分类:按调压方式可分为四类,感应式稳压器(油浸式)、接触调压稳压器(干式)、无触点稳压器(可控硅导通)、电子式稳压器(磁饱和); 6、以上四类稳压器适应于不同的负载场所。 油浸式感应稳压器适用于整个用电系统稳压,即电力变压器后端接油浸式稳压器对整个用电系统稳压。(费用低) 干式稳压器和可控硅稳压器适用于全厂稳压器或部分设备稳压,其中可控硅稳压器的制造容量不能超过500KV A。 电子式稳压器适用于实验室或尖端设备,实验室电信、通讯、移动、高速公路收费系统等。 7、稳压器的保养: 油浸式稳压器无需特别保养,只需要定期在机械部位添加润滑油即可(6个月);

干式稳压器需要定期的碳刷保养(6个月)。 电子式稳压器需要对电容更换(2年) 稳压器选型方法 1、容量安全系数 交流稳压电源是以输出视在功率(kV A)为标称额定容量,而一般情况下负载都不是纯电阻性的,即功率因数COS¢≠1,稳压器实际能输出的有功功率kW= 容量(kV A)×COS¢。所以在实际选型时要按用电设备的额定功率、功率因数和负载类型等具体情况来合理选择稳压电源,其输出功率应留有适当余量,特别是冲击性负载选型时余量要更大,具体选型安全系数见下表 负载性质设备类型安全系数选择稳压电源容量 纯阻性负载白炽灯、电阻丝、电炉等设备1.25~1.5 1.25~1.5倍负载总功率感性、容性负载荧光灯具、风机、电动机、水泵、空调、电脑、电冰箱等2 ~ 3 ≥2~3倍负载总功率 大电感性、电容性负载(如电动机、电脑)环境下,选型时应考虑负载的起动电流特别大(达额定电流的5~8倍),所以选择稳压器容量时应是负载功率的2.5~3倍。 如:三相电机 2.2kW 1台,5.5 kW 1台,选用稳压器时,容量≥(2.2kW+5.5 kW)×2.5=19.25 kV A,即至少要选用三相SJW-20 kV A 以上产品的稳压器。 2、非补偿式稳压电源输出容量曲线 自耦式稳压器(单相0.5kV A~3kV A、10k卧式及以下,三相9kV A及以

DSP公司各主流芯片比较(精)

DSP芯片介绍及其选型 引言 DSP芯片也称数字信号处理器,是一种特别适合于进行数字信号处理运算的微处理器具,其主机应用是实时快速地实现各种数字信号处理算法。根据数字信号处理的要求,DSP芯片一般具有如下主要特点: (1)在一个指令周期内可完成一次乘法和一次加法; (2)程序和数据空间分开,可以同时访问指令和数据; (3)片内具有快速RAM,通常可通过独立的数据总线在两块中同时访问; (4)具有低开销或无开销循环及跳转的硬件支持; (5)快速的中断处理和硬件I/O支持; (6)具有在单周期内操作的多个硬件地址产生器; (7)可以并行执行多个操作; (8)支持流水线操作,使取指、译码和执行等操作可以重叠执行。 在我们设计DSP应用系统时, DSP芯片选型是非常重要的一个环节。在DSP系统硬件设计中只有选定了DSP芯片,才能进一步设计其外围电路及系统的其他电路。因此说,DSP芯片的选择应根据应用系统的实际需要而确定,做到既能满足使用要求,又不浪费资源,从而也达到成本最小化的目的。

DSP实时系统设计和开发流程如图1所示。 主要DSP芯片厂商及其产品 德州仪器公司 众所周知,美国德州仪器(Texas Instruments,TI)是世界上最知名的DSP芯片生产厂商,其产品应用也最广泛,TI公司生产的TMS320系列DSP芯片广泛应用于各个领域。TI公司在1982年成功推出了其第一代DSP芯片TMS32010,这是DSP应用历史上的一个里程碑,从此,DSP芯片开始得到真正的广泛应用。由于TMS320系列DSP芯片具有价格低廉、简单易用、功能强大等特点,所以逐渐成为目前最有影响、最为成功的DSP系列处理器。 目前,TI公司在市场上主要有三大系列产品: (1)面向数字控制、运动控制的TMS320C2000系列,主要包括TMS320C24x/F24x、 TMS320LC240x/LF240x、TMS320C24xA/LF240xA、TMS320C28xx等。

仪表放大器的设计说明

目录 一、绪言 (7) 二、电路设计 (8) 设计要求 (8) 设计方案 (8) 1、电路原理 (8) 2、主要器件选择 (9) 3、电路仿真 (10) 三、电路焊接 (13) 四、电路调试 (14) 1、仪表放大电路的调试 (14) 2、误差分析 (15) 五、心得体会 (18) 六、参考文献 (19)

绪言 智能仪表仪器通过传感器输入的信号,一般都具有“小”信号的特征:信号幅度很小(毫伏甚至微伏量级),且常常伴随有较大的噪声。对于这样的信号,电路处理的第一步通常是采用仪表放大器先将小信号放大。放大的最主要目的不是增益,而是提高电路的信噪比;同时仪表放大器电路能够分辨的输入信号越小越好,动态围越宽越好。仪表放大器电路性能的优劣直接影响到智能仪表仪器能够检测的输入信号围。本文从仪表放大器电路的结构、原理出发,设计出仪表放大器电路实现方案,通过分析,为以后进行电子电路实验提供一定的参考。 在同组成员帅威、智越的共同努力下,大家集思广益,深入探讨了实验过程中可能出现的各种问题,然后分工负责个部分的工作,我和帅威负责前期的电路设计和器件的采购,后期的焊接由智越完成,最后的调试由我们三个人共同完成。本报告在做实验以及其他同学提出的富有建设性意见的基础上由我编写,报告中难免会有不足或疏漏之处,还望大家指正为谢!

第一章电路设计 一、设计要求 1、电路放大倍数>3000倍 2、输入电阻>3000kΩ 3、输出电阻<300Ω 二、设计方案 1、电路原理 仪表放大器电路的典型结构如图1所示。它主要由两级差分放大器电路构成。其中,运放A1,A2为同相差分输入方式,同相输入可以大幅度提高电路的输入阻抗,减小电路对微弱输入信号的衰减;差分输入可以使电路只对差模信号放大,而对共模输入信号只起跟随作用,使得送到后级的差模信号与共模信号的幅值之比(即共模抑制比CMRR)得到提高。这样在以运放A3为核心部件组成的差分放大电路中,在CMRR要求不变情况下,可明显降低对电阻R3和R4,RF和R5的精度匹配要求,从而使仪表放大器电路比简单的差分放大电路具有更好的共模抑制能力。在R1=R2,R3=R4,Rf=R5的条件下,图1电路的增益为:G=(1+2R1/Rg)(Rf/R3)。由公式可见,电路增益的调节可以通过改变Rg阻值实现。

DSP厂商及选型参考(精)

DSP厂商 1.德州仪器公司 众所周知,美国德州仪器(Texas Instruments,TI)是世界上最知名的DSP芯片生产厂商,其产品应用也最广泛,TI公司生产的丁MS320系列 DSP芯片广泛应用于各个领域。TI公司在1982年成功推出了其第一代DSP芯片TMS32010,这是DSP 应用历史上的一个里程碑,从此,DSP芯片开始得到真正的广泛应用。由于TMS320系列DSP芯片具有价格低廉、简单易用功能强大等特点,所以逐渐成为目前最有影响、最为成功的DSP系列处理器。 目前,TI公司在市场上主要有三大系列产品: (1)面向数字控制、运动控制的TMS320C2000系列,主要包括 TMS320C24x/F24x、TMS320LC240x/LF240x、TMS320C24xA/LF240xA、TMS320C28xx 等。 (2)面向低功耗、手持设备、无线终端应用的TMS320C5000系列,主要包括 TMS320C54x, TMS320C54xx,TMS320C55x等。 (3)面向高性能、多功能、复杂应用领域的TMS320C6000系列,主要包括 TMS320C62xx、TMS320C64xx、TMS320C67xx等。 2.美国模拟器件公司 ADI公司在DSP芯片市场上也占有一定的份额,相继推出了一系列具有自己特点的DSP芯片,其定点DSP芯片有ADSP2101/2103/2105、ADSP2111/2115、 ADSP2126/2162/2164、ADSP2127/2181、ADSP-BF532以及Blackfin系列,浮点DSP 芯片有ADSP21000/21020、ADSP21060/21062,以及虎鲨TS101、TS201S。 Motorola公司 Motorola公司推出的DSP芯片比较晚。1986年该公司推出了定点DSP处理器 MC56001;1990年,又推出了与IEEE浮点格式兼容的的浮点DSP芯片MC96002。 还有DSP53611、16位DSP56800、24位的DSP563XX和MSC8101等产品。

运放关键参数及选型原则

运放参数解释及常用运放选型 集成运放的参数较多,其中主要参数分为直流指标和交流指标,外加所有芯片都有极限参数。本文以NE5532为例,分别对各指标作简单解释。下面内容除了图片从NE5532数据手册上截取,其它内容都整理自网络。 极限参数 主要用于确定运放电源供电的设计(提供多少V电压、最大电流不能超过多少),NE5532的极限参数如下: 直流指标 运放主要直流指标有输入失调电压、输入失调电压的温度漂移(简称输入失调电压温漂)、输入偏置电流、输入失调电流、输入偏置电流的温度漂移(简称输入失调电流温漂)、差模开环直流电压增益、共模抑制比、电源电压抑制比、输出峰-峰值电压、最大共模输入电压、最大差模输入电压。NE5532的直流指标如下:

输入失调电压Vos 输入失调电压定义为集成运放输出端电压为零时,两个输入端之间所加的补偿电压。输入失调电压实际上反映了运放内部的电路对称性,对称性越好,输入失调电压越小。输入失调电压是运放的一个十分重要的指标,特别是精密运放或是用于直流放大时。输入失调电压与制造工艺有一定关系,其中双极型工艺(即上述的标准硅工艺)的输入失调电压在±1~10mV 之间;采用场效应管做输入级的,输入失调电压会更大一些。对于精密运放,输入失调电压一般在1mV以下。输入失调电压越小,直流放大时中间零点偏移越小,越容易处理。所以对于精密运放是一个极为重要的指标。 输入失调电压的温度漂移(简称输入失调电压温漂)ΔVos/ΔT 输入失调电压的温度漂移定义为在给定的温度范围内,输入失调电压的变化与温度变化的比值。这个参数实际是输入失调电压的补充,便于计算在给定的工作范围内,放大电路由于温度变化造成的漂移大小。一般运放的输入失调电压温漂在±10~20μV/℃之间,精密运放的输入失调电压温漂小于±1μV/℃。 输入偏置电流Ios 输入偏置电流定义为当运放的输出直流电压为零时,其两输入端的偏置电流平均值。输入偏置电流对进行高阻信号放大、积分电路等对输入阻抗有要求的地方有较大的影响。 Input bias current(偏置电流)是运放输入端的固有特性,是使输出电压为零(或规定值)时,流入两输入端电流的平均值。偏置电流bias current就是第一级放大器输入晶体管的基极直流电流。这个电流保证放大器工作在线性范围, 为放大器提供直流工作点。 输入偏置电流与制造工艺有一定关系,其中双极型工艺(即上述的标准硅工艺)的输入偏置电流在±10nA~1μA之间;采用场效应管做输入级的,输入偏置电流一般低于1nA。

步进电机驱动芯片选型指南

以下是中国步进电机网对步进电机驱动系统所做的较为完整的表述: 1、系统常识: 步进电机和步进电机驱动器构成步进电机驱动系统。步进电机驱动系统的性能,不但取决于步进电机自身的性能,也取决于步进电机驱动器的优劣。对步进电机驱动器的研究几乎是与步进电机的研究同步进行的。 2、系统概述: 步进电机是一种将电脉冲转化为角位移的执行元件。当步进电机驱动器接收到一个脉冲信号(来自控制器),它就驱动步进电机按设定的方向转动一个固定的角度(称为“步距角”),它 的旋转是以固定的角度一步一步运行的。 3、系统控制: 步进电机不能直接接到直流或交流电源上工作,必须使用专用的驱动电源(步进电机驱动器)。控制器(脉冲信号发生器)可以通过控制脉冲的个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。 4、用途: 步进电机是一种控制用的特种电机,作为执行元件,是机电一体化的关键产品之一,随着微电子和计算机技术的发展(步进电机驱动器性能提高),步进电机的需求量与日俱增。步进电机在运行中精度没有积累误差的特点,使其广泛应用于各种自动化控制系统,特别是开环控制系统。 5、步进电机按结构分类: 步进电机也叫脉冲电机,包括反应式步进电机(VR)、永磁式步进电机(PM)、混合式步进电机(HB)等。 (1)反应式步进电机: 也叫感应式、磁滞式或磁阻式步进电机。其定子和转子均由软磁材料制成,定子上均匀分布的大磁极上装有多相励磁绕组,定、转子周边均匀分布小齿和槽,通电后利用磁导的变化产生转矩。一般为三、四、五、六相;可实现大转矩输出(消耗功率较大,电流最高可达20A,驱动电压较高);步距角小(最小可做到六分之一度);断电时无定位转矩;电机内阻尼较小,单步运行(指脉冲频率很低时)震荡时间较长;启动和运行频率较高。 (2)永磁式步进电机: 通常电机转子由永磁材料制成,软磁材料制成的定子上有多相励磁绕组,定、转子周边没有小齿和槽,通电后利用永磁体与定子电流磁场相互作用产生转矩。一般为两相或四相;输出转矩小(消耗功率较小,电流一般小于2A,驱动电压12V);步距角大(例如7.5度、15度、22.5度等);断电时具有一定的保持转矩;启动和运行频率较低。 (3)混合式步进电机: 也叫永磁反应式、永磁感应式步进电机,混合了永磁式和反应式的优点。其定子和四相反应式步进电机没有区别(但同一相的两个磁极相对,且两个磁极上绕组产生的N、S极性必须相同),转子结构较为复杂(转子内部为圆柱形永磁铁,两端外套软磁材料,周边有小齿和槽)。一般为两相或四相;须供给正负脉冲信号;输出转矩较永磁式大(消耗功率相对较小);步距角较永磁式小(一般为1.8度);断电时无定位转矩;启动和运行频率较高;是目前发展较快的一种步进电机。 6、步进电机按工作方式分类:可分为功率式和伺服式两种。 (1)功率式:输出转矩较大,能直接带动较大负载(一般使用反应式、混合式步进电机)。(2)伺服式:输出转矩较小,只能带动较小负载(一般使用永磁式、混合式步进电机)。 7、步进电机的选择: (1)首先选择类型,其次是具体的品种与型号。

ADI《仪表放大器应用工程师指南》中文版

下面是我上月25号整理的,当时偶然发现我就趋值班的时间整理了一下,现在整理一下供大家点评。下面有下划线的地方是我修改过的(方括号[]内是原译和本人观点),我觉得这样比较通顺一点,正文中的黑体处属于准确性明显不足的地方。今天还发现了一个明显是错误的地方,呆会帖出来,大家看看是不是? 信号放大与 CMR [原译:仪表放大器是一种放大两输入信号电压之差而抑制对两输入端共模的任何信号的器件。----观点:原文说得好好的,但译出了一种洋味,特别是那个“对”字,纯属多余又影响理解。|| 原文:An instrumentation amplifier is a device that amplifies the dif ference between two input signal voltages while rejecting any signals that are common to both inputs. 抑制这两个输入端共模信号的器件,因此,仪表放大器在从传感器和其它信号源提取微弱信号时提供非常重要的功能。 共模抑制(CMR)是指抵消任何共模信号([原译:两输入端电位相同----观点:两个输入端的电位|| 原文:the same potential on both inputs])同时放大差模信号(两输入端的电位差)的特性,这是仪表放大器所提供的最重要的功能(阅读附注:也可以说是表现最突出、最有吸引力的功能/性能)。[原译:DC 和交流(AC)CMR 两者都是仪表放大器的重要技术指标----观点:意思没错,就是有点“涩”,翻译时加上CMR的中文意思更多方便更语言化一点,但那个“两者”是没有必要加进去了。|| 原文:Both dc and ac common-mode rejection are important in-amp specifications.]直流和交流的共模抑制CMR都是它的重要技术指标。[原译:使用现代任何质量合格的仪表放大器都能将由于DC 共模电压(即,出现在两输入端的DC 电压)产生的任何误差减小到80 dB 至120 dB。----观点:理由同上句,但读者要注意原文并没有说交流共模抑制也能达到8 0~120dB。|| 原文:Any errors due to dc common-mode voltage (i.e., dc v oltage present at both inputs) will be reduced 80 dB to 120 dB by any mo dern in-amp of decent quality 共模电压(即出现在两输入端的直流电压)产生的任何误差减小到80~120dB。 然而,[原译:如果AC CMR 不够大会产生一种很大的时变误差。因为它通常随着频率产生很大变化,所以要在仪表放大器的输出端消除它是困难的。幸好大多数现代单片集成电

CCD芯片地选择

CCD芯片就像人的视网膜,是摄像头的核心。 目前市场上大部分摄像头采用的是日本SONY、SHARP、松下、LG等公司生产的芯片,现在国也有能力生产,但质量就要稍逊一筹。 因为芯片生产时产生不同等级,各厂家获得途径不同等原因,造成CCD采集效果也大不相同。在购买时,可以采取如下方法检测:接通电源,连接视频电缆到监视器,关闭镜头光圈,看图像全黑时是否有亮点,屏幕上雪花大不大,这些是检测CCD芯片最简单直接的方法,而且不需要其它专用仪器。然后可以打开光圈,看一个静物,如果是彩色摄像头,最好摄取一个色彩鲜艳的物体,查看监视器上的图像是否偏色,扭曲,色彩或灰度是否平滑。好的CCD可以很好的还原景物的色彩,使物体看起来清晰自然;而残次品的图像就会有偏色现象,即使面对一白纸,图像也会显示蓝色或红色。个别CCD由于生产车间的灰尘,CCD靶面上会有杂质,在一般情况下,杂质不会影响图像,但在弱光或显微摄像时,细小的灰尘也会造成不良的后果,如果用于此类工作,一定要仔细挑选。 第二章摄像机的主要技术参数 一、CCD尺寸 即摄象机靶面。目前采用的芯片大多数为1/3”和1/4”。 在购买摄像头时,特别是对摄像角度有比较严格要求的时

候,CCD靶面的大小,CCD与镜头的配合情况将直接影响视场角的大小和图像的清晰度。在相同的光学镜头下,成像尺寸越大,视场角越大。 1英寸——靶面尺寸为宽12.7mm*高9.6mm,对角线16mm。 2/3英寸——靶面尺寸为宽8.8mm*高6.6mm,对角线11mm。 1/2英寸——靶面尺寸为宽6.4mm *高4.8mm,对角线8mm。 1/3英寸——靶面尺寸为宽4.8mm *高3.6mm,对角线6mm。 1/4英寸——靶面尺寸为宽3.2mm *高2.4mm,对角线4mm。 二、CCD像素 是CCD的主要性能指标,它决定了显示图像的清晰程度,分辨率越高,图像细节的表现越好。CCD是由面阵感光元素组成,每一个元素称为像素,像素越多,图像越清晰。现在市场上大多以25万和38万像素为划界,38万像素以上者为高清晰度摄象机。 三、水平分辨率 分辨率是用电视线(简称线TV LINES)来表示的。彩色摄象机的典型分辨率是在320到500电视线之间,主要有330线、380线、420线、460线、500线等不同档次。 分辨率与CCD和镜头有关,还与摄像头电路通道的频带宽度直接相关,通常规律是1MHz的频带宽度相当于清晰度为80线。频带越宽,图像越清晰,线数值相对越大。

德州仪器公司(TI)最新DSP选型指南

DSP Selection Guide

Worldwide Contact Information

Table of Contents Introduction to TI DSPs Introduction to TI DSP Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 DSP Developer’s Kits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 TMS320? DSPs TMS320C6000? DSP Platform – High Performance DSPs TMS320C64x?, TMS320C62x?, TMS320C67x? DSPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 Complementary Analog Products for the TMS320C6000 DSP Platform . . . . . . . . . . . . . . . . . . . . . . . . . . .10 TMS320C5000? DSP Platform – Industry’s Best Power Efficiency TMS320C55x?, TMS320C54x? DSPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 Complementary Analog Products for the TMS320C5000 DSP Platform . . . . . . . . . . . . . . . . . . . . . . . . . . .17 TMS320C2000? DSP Platform – Most Control-Optimized DSPs TMS320C28x?, TMS320C24x? DSPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19 Complementary Analog Products for the TMS320C2000 DSP Platform . . . . . . . . . . . . . . . . . . . . . . . . . . .24 TMS320C3x? DSP Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26 Complementary Analog Products for the TMS320C3x DSP Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29 eXpressDSP? Real-Time Software Technology eXpressDSP Real-Time Software Technology Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31 Code Composer Studio? Integrated Development Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32 DSP/BIOS? Scalable Real-Time Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34 TMS320? DSP Algorithm Standard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35 TI DSP Third-Party Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36 eXpressDSP-Compliant Algorithms and Plug-Ins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37 Support Resources DSP Development Tools Decision Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40 DSP Development Tools Feature Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42 Online Development Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43 Training Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44

运放分类及选型

运放分类及选型 对于较大音频、视频等交流信号,选SR (转换速率)大的运放比较合适。 对于处理微弱的直流信号的电路,选用精度比较高的运放比较合适(即失调电流,失调电压及温漂均比较小) 运算放大器大体上可以分为如下几类: 1、 通用型运放 2、 高阻型运放 3、 低温漂型运放 4、 高速型运放 5、 低功耗型运放 6、 高压大功率型运放 1、 通用型运放 其性能指标能适合于一般性(低频以及信号变化缓慢)使用,例如741A μ,LM358(双运放),LM324及场效应管为输入级的LF356. 2、 高阻型运放 这类运放的特点是差模输入阻抗非常高,输入偏置电流非常小。实现这些指标的主要措施是利用场效应管的高输入阻抗的特点,但这类运放的输入失调电压较大。 这类运放有LF356、LF355、LF347、CA3130、CA3140等 3、 低温漂型运放 在精密仪器、弱信号检测等自动控制仪表中,希望运放的失调电压要小,且不随温度的变化而变化。底温漂型运放就是为此设计的。 目前常用的低温漂型运放有OP07、OP27、OP37、AD508及MOSFET 组成的斩波稳零型低温漂移器件ICL7650等。 4、 高速型运放 在快速A/D 及D/A 以及在视频放大器中,要求运放的转换速率SR 一定要高,单位增益带宽BWG 一定要足够大。高速型运放的主要特点是具有高的转换速率和宽的频率响应。 常见的运放有LM318、175A μ等。其SR=50~70V/ms 5、 低功耗型运放 由于便携式仪器应用范围的扩大,必须使用低电源电压供电、低功耗的运放。 常用的低功耗运放有TL-022C ,TL-160C 等。 6、 高压大功率型运放 运放的输出电压主要受供电电源的限制。在普通运放中,输出的电压最大值一般仅有几十伏,输出电流仅几十毫安,若要提高多输出电压或输出电流,运放外部必须要加辅助电路。 高压大功率运放外部不需要附加任何电路,即可输出高电压和大电流。D41运放的电源电压可达V 150±,791A μ运放的输出电流可达1A 。 Not e1:精密运放是指漂移和噪声非常低、增益和共模抑制比非常高的运放。这类运放的温度漂移一般低于C V ? /1μ Note 2:高输入阻抗运放是指采用结型场效应管或MOS 管做的输入级集成运放。它的一个附带特性是转换速度比较高。高输入阻抗运放应用十分广泛,如采样-保持电路、积分器、对数放大器、测量放大器、带通滤波器等。

稳压器与变压器的区别 图文 民熔

稳压器 民熔稳压器是使输出电压稳定的设备。稳压器由调压电路、控制电路、及伺服电机等组成。当输入电压或负载变化时,控制电路进行取样、比较、放大,然后驱动伺服电机转动,使调压器碳刷的位置改变,通过自动调整线圈匝数比,从而保持输出电压的稳定。 民熔稳压器广泛用于工矿企业、纺织机械、印刷包装、石油化工、学校、商场、电梯、邮电通信、医疗机械等所有需要正常电压保证的场合。 民熔稳压器拥有优质核心配件,稳压范围大,正常输出范围220V士4%。铝线圈补偿,三线包补偿调压,比单双包调压更安全,减少碳刷磨损。 民熔稳压器拥有五大保护功能:过载保护、欠压保护、过压保护、过温保护、延时保护。双LED液晶显示,输入输出电压可视,数据准确,灵敏度高,经久耐用。 本文将会介绍关于民熔稳压器与变压器的区别,感觉这篇文章对你有帮助的话,可以关注下小编

民熔稳压器与变压器的区别到底在哪?稳压器与变压器是相对的,变压器是改变交流电压的装置,主要构件是初级线圈、次级线圈和铁心(绕线机)。 变压器在电器设备和无线电路中,常用作升降电压、匹配阻抗,安全隔离等而稳压器由调压电路、控制电路、及伺服电机等组成,当输入电压或负载变化时,控制电路进行取样、比较放大,然后驱动伺服电机转动,使调压器碳刷的位置改变,通过自动调整线圈匝数比,从而保持输出电压的稳定。容量较大的稳压器,还采用电压补偿的原理工作。 箔绕机产生原因:变压器噪声是由本体结构设计、选型布局、安装、使用过程中,变压器本体及冷却系统产生的不规则、间歇、连续或随机引起的机械噪声及空气噪声总和。变压器所产生的噪声广泛影响住宅小区、商业中心、轻站、机场、厂矿、企业、医院、学校等场所。 具体来说,变压器噪声共有三个声源,一是铁心,二是绕组,三是冷却器,即空载、负载和冷却系统引起噪声之和。铁

驱动芯片的选择

电机驱动有单极性和双极性两种。当只需要电机单方向驱动时,可采用单极性驱动,如下图(a)所示,此电路由于续流二极管工作时间较长,损耗大,所以改进后的半桥驱动如下图(b): Figure 1.Illustration of the half bridge. 当需要电机正反两个方向旋转时,采用双极性驱动方式,如下: Figure 2.Illustration of the H bridge. 功能逻辑如下:(1:合并,0:断开) S1 S2 S3 S4 电机动作 1 0 0 1 正传 0 1 1 0 反转 0 0 0 0 自由 0 1 0 1 刹车 1 0 1 0 刹车 这又称为全桥驱动,上图中开关使用大功率MOS管替代,可以使用分立元件,也可以使用集成电路。但是能用于PWM驱动的低电压大电流芯片产品并不多,在智能车比赛中使用最多的有:MC33886, VNH3SP30, BTS7960B, DT340I, IRF3205。 根据查阅的资料,使用单片MC33886时易发生发热、噪声等问题,对电源电压影响过大等问题,所以可以使用两片并联,如下所示:

该接法降低了MOS管的导通内阻,增大了驱动电流,可以起到增强驱动能力、减小芯片发热的作用,但是起始频率受限,电机噪声大且发热严重。 VNH3SP30是意法半导体公司生产的专用于电机驱动的大电流功率集成芯片。芯片核心是一个双单片上桥臂驱动器(HSD)和2个下桥臂开关,HSD开关的设计采用ST的ViPowe 技术,允许在一个芯片内集成一个功率场效应MOS管和智能信号/保护电路。下桥臂开关是采用ST专有的EHD(STripFET)工艺制造的纵向场效应MOS管。3个模块叠装在一个表面组装MultiPowerSO- 30引脚框架电绝缘封装内,具体性能指标如下: ①最大电流30 A、电源电压高达40 V; ②功率MOS管导通电阻0.034 Ω; ③5 V兼容的逻辑电平控制信号输入;④内含欠压、过压保护电路;⑤芯片过热报警输出和自动关断。与MC3886相比,它具有一个显著优点就是芯片不会发热,且保护功能强大,但是存在开关频率限10 kHz,电机噪声大且电机容易发热,但芯片较贵,很多场合性价比不高。 采用2个半桥智能功率驱动芯片BTS7960B组合成一个全桥驱动器,驱动直流电机转动。BTS7960B是应用于电机驱动的大电流半桥集成芯片,它带有一个P沟道的高边MOSFET、一个N沟道的低边MOSFET和一个驱动IC。P沟道高边开关省去了电荷泵的需求,因而减少了电磁干扰(EMI)。集成的驱动IC具有逻辑电平输入、电流诊断、斜率调节、死区时间产生和超温、过压、欠压、过流及短路保护功能。BTS7960B的通态电阻典型值为16 mΩ,驱动电流可达43 A,调节SR引脚外接电阻的大小可以调节MOS

DSP芯片的选用

1 数字控制的优缺点 在IGBT模块使用中,除注意最高耐压、最大电流、最高开关频率、尖峰吸收外,还要特别注意最小关断时间、开通时间、半桥电路的死区时间,因为IGBT 可靠开通或关断都需要一定的时间,若IGBT开通短于最小开通时间又关断或关断短于最小关断时间又开通,由于尚未完成开关状态转换,IGBT工作于放大区城,长时间工作在这种状态将使IGBT的开关损耗急剧增大,易导致过热失效;对于半桥电路,若上管(或下管)尚未可靠关断就开通下管(上管),将导致半桥电路直通,过电流失效。数字控制器与模拟控制器相比较,具有可靠性高、参数调整方便、更改控制策略灵活、控制精度高、对环境因素不敏感等一系列优点,在用于IGBT模块控制时,具有下列独特优点: 1. 可严格控制最小开通、最小关断时间。 2. 可严格控制死区时间。 3. 对于码盘、位置传感器、同步信号一类数字轴 人、反馈信号,可直接使用无须变换。 4. 可以非常简单地实现SPWM控制。 5. 可将整个控制系统划分为若于个不同的工作 状态,针对不同的状态施加不同的控制策略。 6. 借助于电流传感器、比较器,可实现限流保 护,限流关断达到恒转矩控制。 7. 可进行时序滤波,进一步提高抗干扰能力。 8. 多个数字芯片可相互监视、互为看门狗。 9 强干扰环境、远距离控制可方便地采用奇偶。 校验、光电隔离、电流环等数字通信技术。 10. 可进行故障自诊断、显示。 当然,目前高档数字控制器与模拟控制器相比成本略高,这一方面由于数字控制芯片FPGA,DSP价格较高,另一方面研究阶段难以确定控制策略及所需资源,一般选择芯片及资派均留有较大余f有关。随若技术的发展,FPGA,DSP等数字控制芯片价格必将下降,对数字控制技术研究的深人也将使芯片选择更准确。数字控制器的另一个缺点是存在上电程序加载时间,必须解决强电与控制电的上

相关主题