搜档网
当前位置:搜档网 › 在Delphi中使用命名管道进行进程间通信

在Delphi中使用命名管道进行进程间通信

在Delphi中使用命名管道进行进程间通信
在Delphi中使用命名管道进行进程间通信

在Delphi中使用命名管道进行进程间通信

2011-11-07 16:05:35| 分类:Delphi源码 | 标签:delphi 进程通信命名管道|字号订阅说明:这段代码修改自网络中有问题的代码,已经在32位win7 +D7调试通过。

实现了在Server端做任何更改,Client端都通过时间触发器获取到修改的内容。

注意:尚未实现线程安全,请谨慎使用。

Server端(主动提供信息处):

{$R *.dfm}

procedure TForm1.btnServerClick(Sender:TObject);

const

pipename:string='\\.\pipe\dengke';

var

SPipeHandle:THandle;

Se:TSecurityAttributes;

WriteBuffer:DWORD;

Buffer:pchar;

begin

Se.nLength:=Sizeof(TSecurityAttributes);

Se.lpSecurityDescriptor:=nil;

Se.bInheritHandle:=True;

SPipeHandle:=CreateNamedPipe(pchar(pipename),PIPE_ACCESS_DUPLEX OR FILE_FLAG_WRITE_THROUGH,

PIPE_TYPE_BYTE or PIPE_WAIT,

2,512,512,1000,@Se);

if SPipeHandle=0then

raise Exception.Create('Create pipe Failed ');

try

if not ConnectNamedPipe(SPipeHandle,nil)then

begin

CloseHandle(SPipeHandle);

Raise Exception.Create(IntToStr(GetLastError)+'fail con ');

end;

Buffer:=StrAlloc(512);

Buffer:=Pchar(mmo1.Text);

WriteFile(SPipeHandle,Buffer[0],512,WriteBuffer,nil);

finally

DisConnectNamedPipe(SPipeHandle);

CloseHandle(SPipeHandle);

end;

end;

Client端(被动获取信息处):

unit uClient;

interface

uses

Windows,Messages,SysUtils,Variants,Classes,Graphics,Controls,Forms, Dialogs,StdCtrls,ExtCtrls;

type

TForm2=class(TForm)

btnClient:TButton;

mmo1:TMemo;

tmr1:TTimer;

procedure btnClientClick(Sender:TObject);

procedure tmr1Timer(Sender:TObject);

private

{Private declarations }

public

{Public declarations }

end;

var

Form2:TForm2;

implementation

{$R *.dfm}

procedure TForm2.btnClientClick(Sender:TObject);

const

PipeName:string='\\.\pipe\dengke';

var

Buffer:array[0..511] of char;

ReadSize:DWORD;

hh:Thandle;

begin

//if not WaitNamedPipe(pchar(PipeName),NMPWAIT_USE_DEFAULT_WAIT) then if WaitNamedPipe(pchar(PipeName),NMPWAIT_WAIT_FOREVER)then

begin

hh:=CreateFile(pchar(pipename), GENERIC_READ or GENERIC_WRITE, FILE_SHARE_READ or

FILE_SHARE_WRITE,NiL,OPEN_EXISTING,FILE_ATTRIBUTE_ARCHIVE or FILE_FLAG_WRITE_THROUGH,0);

if hh=INVALID_HANDLE_VALUE then

showmessage('error createfile ')

else

begin

readsize:=0;

fillchar(buffer,512,0);

readfile(hh,buffer,512,readsize,nil);

if readsize >0then

mmo1.Text:=Buffer;

end;

end;

end;

procedure TForm2.tmr1Timer(Sender:TObject);

begin

btnClientClick(nil);

end;

end.

进程同步与通信作业习题与答案

第三章 一.选择题(50题) 1.以下_B__操作系统中的技术是用来解决进程同步的。 A.管道 B.管程 C.通道 2.以下_B__不是操作系统的进程通信手段。 A.管道 B.原语 C.套接字 D.文件映射 3.如果有3个进程共享同一程序段,而且每次最多允许两个进程进入该程序段,则信号量的初值应设置为_B__。 4.设有4个进程共享一个资源,如果每次只允许一个进程使用该资源,则用P、V操作管理时信号量S的可能取值是_C__。 ,2,1,0,-1 ,1,0,-1,-2 C. 1,0,-1,-2,-3 ,3,2,1,0 5.下面有关进程的描述,是正确的__A__。 A.进程执行的相对速度不能由进程自己来控制 B.进程利用信号量的P、V 操作可以交换大量的信息 C.并发进程在访问共享资源时,不可能出现与时间有关的错误 、V操作不是原语操作 6.信号灯可以用来实现进程之间的_B__。 A.调度 B.同步与互斥 C.同步 D.互斥 7.对于两个并发进程都想进入临界区,设互斥信号量为S,若某时S=0,表示_B__。 A.没有进程进入临界区 B.有1个进程进入了临界区 C. 有2个进程进入了临界区 D. 有1个进程进入了临界区并且另一个进程正等待进入 8. 信箱通信是一种_B__方式 A.直接通信 B.间接通信 C.低级通信 D.信号量 9.以下关于临界区的说法,是正确的_C__。

A.对于临界区,最重要的是判断哪个进程先进入 B.若进程A已进入临界区,而进程B的优先级高于进程A,则进程B可以 打断进程A而自己进入临界区 C. 信号量的初值非负,在其上只能做PV操作 D.两个互斥进程在临界区内,对共享变量的操作是相同的 10. 并发是指_C__。 A.可平行执行的进程 B.可先后执行的进程 C.可同时执行的进程 D.不可中断的进程 11. 临界区是_C__。 A.一个缓冲区 B.一段数据区 C.一段程序 D.栈 12.进程在处理机上执行,它们的关系是_C__。 A.进程之间无关,系统是封闭的 B.进程之间相互依赖相互制约 C.进程之间可能有关,也可能无关 D.以上都不对 13. 在消息缓冲通信中,消息队列是一种__A__资源。 A.临界 B.共享 C.永久 D.可剥夺 14. 以下关于P、V操作的描述正确的是__D_。 A.机器指令 B. 系统调用 C.高级通信原语 D.低级通信原语 15.当对信号量进行V源语操作之后,_C__。 A.当S<0,进程继续执行 B.当S>0,要唤醒一个就绪进程 C. 当S<= 0,要唤醒一个阻塞进程 D. 当S<=0,要唤醒一个就绪 16.对临界区的正确论述是__D_。 A.临界区是指进程中用于实现进程互斥的那段代码 B. 临界区是指进程中用于实现进程同步的那段代码 C. 临界区是指进程中用于实现进程通信的那段代码 D. 临界区是指进程中访问临界资源的那段代码 17. __A__不是进程之间的通信方式。 A.过程调用 B.消息传递 C.共享存储器 D.信箱通信 18. 同步是指进程之间逻辑上的__A__关系。

Windows进程间各种通信方式浅谈

Windows进程间各种通信方式浅谈 1、Windows进程间通信的各种方法 进程是装入内存并准备执行的程序,每个进程都有私有的虚拟地址空间,由代码、数据以及它可利用的系统资源(如文件、管道等)组成。 多进程/多线程是Windows操作系统的一个基本特征。Microsoft Win32应用编程接口(Application Programming Interface, API) 提供了大量支持应用程序间数据共享和交换的机制,这些机制行使的活动称为进程间通信(InterProcess Communication, IPC),进程通信就是指不同进程间进行数据共享和数据交换。 正因为使用Win32 API进行进程通信方式有多种,如何选择恰当的通信方式就成为应用开发中的一个重要问题, 下面本文将对Win32中进程通信的几种方法加以分析和比较。 2、进程通信方法 2.1 文件映射 文件映射(Memory-Mapped Files)能使进程把文件内容当作进程地址区间一块内存那样来对待。因此,进程不必使用文件I/O操作,只需简单的指针操作就可读取和修改文件的内容。 Win32 API允许多个进程访问同一文件映射对象,各个进程在它自己的地址空间里接收内存的指针。通过使用这些指针,不同进程就可以读或修改文件的内容,实现了对文件中数据的共享。 应用程序有三种方法来使多个进程共享一个文件映射对象。 (1)继承:第一个进程建立文件映射对象,它的子进程继承该对象的句柄。 (2)命名文件映射:第一个进程在建立文件映射对象时可以给该对象指定一个名字(可与文件名不同)。第二个进程可通过这个名字打开此文件映射对象。另外,第一个进程也可以通过一些其它IPC机制(有名管道、邮件槽等)把名字传给第二个进程。 (3)句柄复制:第一个进程建立文件映射对象,然后通过其它IPC机制(有名管道、

进程间通信方式比较

进程间的通信方式: 1.管道(pipe)及有名管道(named pipe): 管道可用于具有亲缘关系进程间的通信,有名管道除了具有管道所具有的功能外,它还允许无亲缘关系进程间的通信。 2.信号(signal): 信号是在软件层次上对中断机制的一种模拟,它是比较复杂的通信方式,用于通知进程有某事件发生,一个进程收到一个信号与处理器收到一个中断请求效果上可以说是一致得。 3.消息队列(message queue): 消息队列是消息的链接表,它克服了上两种通信方式中信号量有限的缺点,具有写权限得进程可以按照一定得规则向消息队列中添加新信息;对消息队列有读权限得进程则可以从消息队列中读取信息。 消息缓冲通信技术是由Hansen首先提出的,其基本思想是:根据”生产者-消费者”原理,利用内存中公用消息缓冲区实现进程之间的信息交换. 内存中开辟了若干消息缓冲区,用以存放消息.每当一个进程向另一个进程发送消息时,便申请一个消息缓冲区,并把已准备好的消息送到缓冲区,然后把该消息缓冲区插入到接收进程的消息队列中,最后通知接收进程.接收进程收到发送里程发来的通知后,从本进程的消息队列中摘下一消息缓冲区,取出所需的信息,然后把消息缓冲区不定期给系统.系统负责管理公用消息缓冲区以及消息的传递. 一个进程可以给若干个进程发送消息,反之,一个进程可以接收不同进程发来的消息.显然,进程中关于消息队列的操作是临界区.当发送进程正往接收进程的消息队列中添加一条消息时,接收进程不能同时从该消息队列中到出消息:反之也一样. 消息缓冲区通信机制包含以下列内容:

(1) 消息缓冲区,这是一个由以下几项组成的数据结构: 1、消息长度 2、消息正文 3、发送者 4、消息队列指针 (2)消息队列首指针m-q,一般保存在PCB中。 (1)互斥信号量m-mutex,初值为1,用于互斥访问消息队列,在PCB中设置。 (2)同步信号量m-syn,初值为0,用于消息计数,在PCB中设置。(3)发送消息原语send (4)接收消息原语receive(a) 4.共享内存(shared memory): 可以说这是最有用的进程间通信方式。它使得多个进程可以访问同一块内存空间,不同进程可以及时看到对方进程中对共享内存中数据得更新。这种方式需要依靠某种同步操作,如互斥锁和信号量等。 这种通信模式需要解决两个问题:第一个问题是怎样提供共享内存;第二个是公共内存的互斥关系则是程序开发人员的责任。 5.信号量(semaphore): 主要作为进程之间及同一种进程的不同线程之间得同步和互斥手段。 6.套接字(socket); 这是一种更为一般得进程间通信机制,它可用于网络中不同机器之间的进程间通信,应用非常广泛。 https://www.sodocs.net/doc/5d5925780.html,/eroswang/archive/2007/09/04/1772350.aspx linux下的进程间通信-详解

进程间通信的四种方式

一、剪贴板 1、基础知识 剪贴板实际上是系统维护管理的一块内存区域,当在一个进程中复制数据时,是将这个数据放到该块内存区域中,当在另一个进程中粘贴数据时,是从该内存区域中取出数据。 2、函数说明: (1)、BOOL OpenClipboard( ) CWnd类的OpenClipboard函数用于打开剪贴板。若打开剪贴板成功,则返回非0值。若其他程序或当前窗口已经打开了剪贴板,则该函数返回0值,表示打开失败。若某个程序已经打开了剪贴板,则其他应用程序将不能修改剪贴板,直到前者调用了CloseClipboard函数。 (2)、BOOL EmptyClipboard(void) EmptyClipboard函数将清空剪贴板,并释放剪贴板中数据的句柄,然后将剪贴板的所有权分配给当前打开剪贴板的窗口。 (3)、HANDLE SetClipboardData(UINT uFormat, HANDLE hMem) SetClipboardData函数是以指定的剪贴板格式向剪贴板上放置数据。uFormat指定剪贴板格式,这个格式可以是已注册的格式,或是任一种标准的剪贴板格式。CF_TEXT表示文本格式,表示每行数据以回车换行(0x0a0x0d)终止,空字符作为数据的结尾。hMem指定具有指定格式的数据的句柄。hMem参数可以是NULL,指示采用延迟提交技术,则该程序必须处理WM_RENDERFORMA T和WM_RENDERALLFORMATS消息。应用程序在调用SetClipboardData函数之后,就拥有了hMem参数所标识的数据对象,该应用程序可以读取该数据对象,但在应用程序调用CloseClipboard函数之前,它不能释放该对象的句柄,或者锁定这个句柄。若hMem标识了一个内存对象,那么这个对象必须是利用GMEM_MOVEABLE标志调用GlobalAlloc函数为其分配内存。 注意:调用SetClipboardData函数的程序必须是剪贴板的拥有者,且在这之前已经打开了剪贴板。 延迟提交技术:当一个提供数据的进程创建了剪贴板数据之后,直到其他进程获取剪贴板数据之前,这些数据都要占据内存空间。若在剪贴板上放置的数据过大,就会浪费内存空间,降低对资源的利用率。为了避免这种浪费,就可以采用延迟提交计数,也就是由数据提供进程先提供一个指定格式的空剪贴板数据块,即把SetClipboardData函数的hMem参数设置为NULL。当需要获取数据的进程想要从剪贴板上得到数据时,操作系统会向数据提供进程发送WM_RENDERFORMA T消息,而数据提供进程可以响应这个消息,并在此消息的响应函数中,再一次调用SetClipboardData函数,将实际的数据放到剪贴板上。当再次调用SetClipboardData函数时,就不再需要调用OpenClipboard函数,也不再需要调用EmptyClipboard函数。也就是说,为了提高资源利用率,避免浪费内存空间,可以采用延迟提交技术。第一次调用SetClipboardData函数时,将其hMem参数设置为NULL,在剪贴板上以指定的剪贴板格式放置一个空剪贴板数据块。然后直到有其他进程需要数据或自身进程需要终止运行时再次调用SetClipboardData函数,这时才真正提交数据。 (4)、HGLOBAL GlobalAlloc( UINT uFlags,SIZE_T dwBytes); GlobalAlloc函数从堆上分配指定数目的字节。uFlags是一个标记,用来指定分配内存的方式,uFlags为0,则该标记就是默认的GMEM_FIXED。dwBytes指定分配的字节数。

进程的管道通信

计算机操作系统实验第六次实验报告 学院:计算机科学与信息学院专业:通信工程班级:081姓名学号 实验 组 实验时间2010年11月17日指导教师成绩 实验项目名称进程的管道通信实 验目的 1、了解什么是管道; 2、熟悉UNIX/LINUX支持的管道通信方式。 实 验要求 1、了解管道的概念和管道的类型; 2、熟悉UNIX/LINUX支持的管道通信方式。 实 验 原 理 在管道通信时系统会调用:pipe( )建立一无名管道;read( );write( ) 。 实 验 仪 器 PC机或工作站一台; RedHat9.0操作系统;

实验步骤一、什么是管道 UNIX系统在OS的发展上,最重要的贡献之一便是该系统首创了管道(pipe)。这也是UNIX系统的一大特色。 所谓管道,是指能够连接一个写进程和一个读进程的、并允许它们以生产者—消费者方式进行通信的一个共享文件,又称为pipe文件。由写进程从管道的写入端(句柄1)将数据写入管道,而读进程则从管道的读出端(句柄0)读出数据。 句柄fd[0] 句柄fd[1] 读出端 写入端 二、管道的类型: 1、有名管道 一个可以在文件系统中长期存在的、具有路径名的文件。用系统调用mknod( )建立。它克服无名管道使用上的局限性,可让更多的进程也能利用管道进行通信。因而其它进程可以知道它的存在,并能利用路径名来访问该文件。对有名管道的访问方式与访问其他文件一样,需先用open( )打开。 2、无名管道 一个临时文件。利用pipe( )建立起来的无名文件(无路径名)。只用该系统调用所返回的文件描述符来标识该文件,故只有调用pipe( )的进程及其子孙进程才能识别此文件描述符,才能利用该文件(管道)进行通信。当这些进程不再使用此管道时,核心收回其索引结点。 二种管道的读写方式是相同的,本文只讲无名管道。 3、pipe文件的建立 分配磁盘和内存索引结点、为读进程分配文件表项、为写进程分配文件表项、分配用户文件描述符 4、读/写进程互斥 内核为地址设置一个读指针和一个写指针,按先进先出顺序读、写。 为使读、写进程互斥地访问pipe文件,需使各进程互斥地访问pipe文件索引结点中的直接地址项。因此,每次进程在访问pipe文件前,都需检查该索引文件是否已被上锁。若是,进程便睡眠等待,否则,将其上锁,进行读/写。操作结束后解锁,并唤醒因该索引结点上锁而睡眠的进程。 三、所涉及的系统调用 1、pipe( ) 建立一无名管道。 系统调用格式 pipe(filedes) 参数定义 int pipe(filedes); int filedes[2]; 其中,filedes[1]是写入端,filedes[0]是读出端。 该函数使用头文件如下: #include #inlcude #include 2、read( ) 系统调用格式

linux进程间通讯的几种方式的特点和优缺点

1. # 管道( pipe ):管道是一种半双工的通信方式,数据只能单向流动,而且只能在具有亲缘关系的进程间使用。进程的亲缘关系通常是指父子进程关系。 # 有名管道(named pipe) :有名管道也是半双工的通信方式,但是它允许无亲缘关系进程间的通信。 # 信号量( semophore ) :信号量是一个计数器,可以用来控制多个进程对共享资源的访问。它常作为一种锁机制,防止某进程正在访问共享资源时,其他进程也访问该资源。因此,主要作为进程间以及同一进程内不同线程之间的同步手段。 # 消息队列( message queue ) :消息队列是由消息的链表,存放在内核中并由消息队列标识符标识。消息队列克服了信号传递信息少、管道只能承载无格式字节流以及缓冲区大小受限等缺点。 # 信号( sinal ) :信号是一种比较复杂的通信方式,用于通知接收进程某个事件已经发生。#共享内存( shared memory):共享内存就是映射一段能被其他进程所访问的内存,这段共享内存由一个进程创建,但多个进程都可以访问。共享内存是最快的IPC方式,它是针对其他进程间通信方式运行效率低而专门设计的。它往往与其他通信机制,如信号量,配合使用,来实现进程间的同步和通信。 # 套接字( socket ) :套解口也是一种进程间通信机制,与其他通信机制不同的是,它可用于不同及其间的进程通信。 管道的主要局限性正体现在它的特点上: 只支持单向数据流; 只能用于具有亲缘关系的进程之间; 没有名字; 管道的缓冲区是有限的(管道制存在于内存中,在管道创建时,为缓冲区分配一个页面大小);管道所传送的是无格式字节流,这就要求管道的读出方和写入方必须事先约定好数据的格式,比如多少字节算作一个消息(或命令、或记录)等等; 2. 用于进程间通讯(IPC)的四种不同技术: 1. 消息传递(管道,FIFO,posix和system v消息队列) 2. 同步(互斥锁,条件变量,读写锁,文件和记录锁,Posix和System V信号灯) 3. 共享内存区(匿名共享内存区,有名Posix共享内存区,有名System V共享内存区) 4. 过程调用(Solaris门,Sun RPC) 消息队列和过程调用往往单独使用,也就是说它们通常提供了自己的同步机制.相反,共享内存区

实验4 进程的管道通信

实验4 进程的管道通信 1. 目的 1)加深对进程概念的理解,明确进程和程序的区别。 2)进一步认识并发执行的实质。 3)分析进程争用资源的现象,学习解决进程互斥的方法。 4)学习解决进程同步的方法。 5)了解Linux系统中进程通信的基本原理。 进程是操作系统中最重要的概念,贯穿始终,也是学习现代操作系统的关键。通过本次实验,要求理解进程的实质和进程管理的机制。在Linux系统下实现进程从创建到终止的全过程,从中体会进程的创建过程、父进程和子进程之间的关系、进程状态的变化、进程之间的互斥、同步机制、进程调度的原理和以管道为代表的进程间的通信方式的实现。 2. 内容及要求 这是一个设计型实验,要求自行编制程序。 使用系统调用pipe()建立一条管道,两个子进程分别向管道写一句话: Child process1 is sending a message! Child process2 is sending a message! 父进程从管道读出来自两个子进程的信息,显示在屏幕上。 要求: 1)父进程先接收子进程1发来的消息,然后再接收子进程2发来的消息。 2)实现管道的互斥使用,当一个子进程正在对管道进行写操作时,另一子进程必须等待。使用系统调用lockf(fd[1],1,0)实现对管道的加锁操作,用lockf(fd[1],0,0)解除对 管道的锁定。 3)实现父子进程的同步,当子进程把数据写入管道后,便去睡眠等待;当父进程试图从一空管道中读取数据时,也应等待,直到子进程将数据写入管道后,才将其唤醒。 3.相关的系统调用 1)fork() 用于创建一个子进程。 格式:int fork(); 返回值:在子进程中返回0;在父进程中返回所创建的子进程的ID值;当返回-1时,创建失败。 2)wait() 常用来控制父进程与子进程的同步。 在父进程中调用wait(),则父进程被阻塞,进入等待队列,等待子进程结束。当子进程结束时,父进程从wait()返回继续执行原来的程序。 返回值:大于0时,为子进程的ID值;等于-1时,调用失败。 3)exit() 是进程结束时最常调用的。 格式:void exit( int status); 其中,status为进程结束状态。 4)pipe() 用于创建一个管道 格式:pipe(int fd); 其中fd是一个由两个数组元素fd[0]和fd[1]组成的整型数组,fd[0]是管道的读端口,用

实验三 进程间通信

实验三进程间通信(2学时) 一、实验目的 (1)了解什么是信号。 (2)熟悉LINUX系统中进程之间软中断通信的基本原理。 (3)熟悉LINUX支持的管道通信方式。 二、实验内容 (1)编写一段程序,使其现实进程的软中断通信。 即:使用系统调用fork()创建两个子进程,再用系统调用signal()让父进程捕捉键盘上来的中断信号(即按 ctrl+c 键);当捕捉到中断信号后,父进程用系统调用kill( )向两个子进程发出信号,子进程捕捉到信号后,分别输出下列信息后终止: Child Process11 is killed by Parent! Child Process12 is killed by Parent! 父进程等待两个子进程终止后,输出如下的信息后终止 Parent Process is killed! 要求:运行以下参考程序并分析结果。 <参考程序> #include #include #include #include void waiting(),stop(),alarming(); int wait_mark; main() { int p1,p2; if(p1=fork()) /*创建子进程p1*/ { if(p2=fork()) /*创建子进程p2*/ { //父进程 wait_mark=1; signal(SIGINT,stop); /*接收到^c信号,转stop*/

signal(SIGALRM,alarming);/*接受SIGALRM*/ waiting(); kill(p1,16); /*向p1发软中断信号16*/ kill(p2,17); /*向p2发软中断信号17*/ wait(0); /*同步*/ wait(0); printf("parent process is killed!\n"); exit(0); //会暂时停止目前进程的执行,直到有信号来到或子进程结束。 } else { wait_mark=1; signal(17,stop); signal(SIGINT,SIG_IGN); /*忽略 ^c信号*/ while (wait_mark!=0); lockf(1,1,0); printf("child process2 is killed by parent!\n"); lockf(1,0,0); exit(0); } } else { wait_mark=1; signal(16,stop); signal(SIGINT,SIG_IGN); /*忽略^c信号*/ while (wait_mark!=0); lockf(1,1,0); printf("child process1 is killed by parent!\n"); lockf(1,0,0); exit(0); } } void waiting() { sleep(5); if (wait_mark!=0) kill(getpid(),SIGALRM); } void alarming()

实验四进程的管道通信

实验四:进程的管道通信 1.实验目的 1)加深对进程概念的理解,明确进程和程序的区别。 2)学习进程创建的过程,进一步认识进程并发执行的实质。 3)分析进程争用资源的现象,学习解决进程互斥的方法。 4)学习解决进程同步的方法。 5)掌握Linux系统中进程间通过管道通信的具体实现。 2.实验内容 使用系统调用pipe()建立一条管道,系统调用fork()分别创建两个子进程,它们分别向管道写一句话,如: Child process1 is sending a message! Child process2 is sending a message! 父进程分别从管道读出来自两个子进程的信息,显示在屏幕上。 3.实验要求 这是一个设计型实验,要求自行、独立编制程序。 两个子进程要并发执行。 实现管道的互斥使用。当一个子进程正在对管道进行写操作时,另一个欲写入管道的子进程必须等待。 使用系统调用lockf(fd[1],1,0)实现对管道的加锁操作,用lockf(fd[1],0,0)解除对管道的锁定。 实现父子进程的同步,当父进程试图从一空管道中读取数据时,便进入等待状态,直到子进程将数据写入管道返回后,才将其唤醒。 fork() 用于创一个子进程。格式:int fork();返回值:在子进程中返回0;在父进程中返回所创建的子进程的ID值;当返回-1时,创建失败。 wait() 常用来控制父进程与子进程的同步。在父进程中调用wait(),则父进程被阻塞,进入等待队列,等待子进程结束。当子进程结束时,父进程从wait()返回继续执行原来的程序。返回值:大于0时,为子进程的ID值;等于-1时,调用失败。 exit() 是进程结束时最常调用的。格式:void exit( int status); 其中,status为进程结束状态。 pipe() 用于创建一个管道格式:pipe(int fd);其中fd是一个由两个数组元素fd[0]和fd[1]组成的整型数组,fd[0]是管道的读端口,用于从管道读出数据,fd[1]是管道的写端口,用于向管道写入数据。返回值:0 调用成功;-1 调用失败。 sleep() 使调用进程睡眠若干时间,之后唤醒。格式:sleep(int t);其中t为睡眠时间。 lockf() 用于对互斥资源加锁和解锁。在本实验中该调用的格式为: lockf(fd[1],1,0);/* 表示对管道的写入端口加锁。 lockf(fd[1],0,0);/* 表示对管道的写入端口解锁。

第3章 进程同步与通信 练习题答案

第3章进程同步与通信练习题 (一)单项选择题 1.临界区是指( )。 A.并发进程中用于实现进程互斥的程序段 B.并发进程中用于实现进程同步的程序段 C.并发进程中用户实现进程通信的程序段 D.并发进程中与共享变量有关的程序段 2.相关临界区是指( )。 A.一个独占资源 B.并发进程中与共享变量有关的程序段 c.一个共享资源 D.并发进程中涉及相同变量的那些程序段 3.管理若干进程共享某一资源的相关临界区应满足三个要求,其中( )不考虑。 A一个进程可以抢占己分配给另一进程的资源 B.任何进程不应该无限地逗留在它的临界区中c.一次最多让一个进程在临界区执行 D.不能强迫一个进程无限地等待进入它的临界区4、( )是只能由P和v操作所改变的整型变量。 A共享变量 B.锁 c整型信号量 D.记录型信号量 5.对于整型信号量,在执行一次P操作时,信号量的值应( )。 A.不变 B.加1 C减1 D.减指定数值 6.在执行v操作时,当信号量的值( )时,应释放一个等待该信号量的进程。 A>0 B.<0 c.>=0 D.<=0 7.Pv操作必须在屏蔽中断下执行,这种不可变中断的过程称为( )。 A初始化程序 B.原语 c.子程序 D控制模块 8.进程间的互斥与同步分别表示了各进程间的( )。 A.竞争与协作 B.相互独立与相互制约 c.不同状态 D.动态性与并发性 9并发进程在访问共享资源时的基本关系为( )。 A.相互独立与有交往的 B.互斥与同步 c并行执行与资源共享 D信息传递与信息缓冲 10.在进程通信中,( )常用信件交换信息。 A.低级通信 B.高级通信 c.消息通信 D.管道通信 11.在间接通信时,用send(N,M)原语发送信件,其中N表示( )。 A.发送信件的进程名 B.接收信件的进程名 C信箱名 D.信件内容 12.下列对线程的描述中,( )是错误的。 A不同的线程可执行相同的程序 B.线程是资源分配单位 c.线程是调度和执行单位 D.同一 进程中的线程可共享该进程的主存空间 13.实现进程互斥时,用( )对应,对同一个信号量调用Pv操作实现互斥。 A.一个信号量与一个临界区 B.一个信号量与—个相关临界区 c.一个信号量与一组相关临界 区 D一个信号量与一个消息 14.实现进程同步时,每一个消息与一个信号量对应,进程( )可把不同的消息发送出去。 A.在同一信号量上调用P操作 B在不同信号量上调用P操作 c.在同一信号量上调用v操作D.在不同信号量上调用v操作 (二)填空题 1.目前使用的计算机的基本特点是处理器______执行指令。 2.进程的______是指进程在顺序处理器上的执行是按顺序进行的。 3.当一个进程独占处理器顺序执行时,具有______和______两个特性。 4.进程的封闭性是指进程的执行结果只取决于______,不受外界影响。 5 进程的可再现性是指当进程再次重复执行时,必定获得______的结果。 6.一个进程的工作在没有全部完成之前,另一个进程就可以开始工作,则称这些进程为______.

Linux下的进程间通信-详解

Linux下的进程间通信-详解 详细的讲述进程间通信在这里绝对是不可能的事情,而且笔者很难有信心说自己对这一部分内容的认识达到了什么样的地步,所以在这一节的开头首先向大家推荐著 名作者Richard Stevens的著名作品:《Advanced Programming in the UNIX Environment》,它的中文译本《UNIX环境高级编程》已有机械工业出版社出版,原文精彩,译文同样地道,如果你的确对在Linux下编程有浓 厚的兴趣,那么赶紧将这本书摆到你的书桌上或计算机旁边来。说这么多实在是难抑心中的景仰之情,言归正传,在这一节里,我们将介绍进程间通信最最初步和最 最简单的一些知识和概念。 首先,进程间通信至少可以通过传送打开文件来实现,不同的进程通过一个或多个文件来传递信息,事实上,在很多应用系统里,都使用了这种方法。但一般说来, 进程间通信(IPC:InterProcess Communication)不包括这种似乎比较低级的通信方法。Unix系统中实现进程间通信的方法很多,而且不幸的是,极少方法能在所有的Unix系 统中进行移植(唯一一种是半双工的管道,这也是最原始的一种通信方式)。而Linux作为一种新兴的操作系统,几乎支持所有的Unix下常用的进程间通信 方法:管道、消息队列、共享内存、信号量、套接口等等。下面我们将逐一介绍。 2.3.1 管道 管道是进程间通信中最古老的方式,它包括无名管道和有名管道两种,前者用于父进程和子进程间的通信,后者用于运行于同一台机器上的任意两个进程间的通信。 无名管道由pipe()函数创建: #include int pipe(int filedis[2]); 参数filedis返回两个文件描述符:filedes[0]为读而打开,filedes[1]为写而打开。filedes[1]的输出是filedes[0]的输入。下面的例子示范了如何在父进程和子进程间实现通信。 #define INPUT 0 #define OUTPUT 1 void main() { int file_descriptors[2]; /*定义子进程号 */ pid_t pid; char buf[256]; int returned_count; /*创建无名管道*/ pipe(file_descriptors); /*创建子进程*/ if((pid = fork()) == -1) { printf("Error in fork\n"); exit(1); } /*执行子进程*/ if(pid == 0) { printf("in the spawned (child) process...\n"); /*子进程向父进程写数据,关闭管道的读端*/ close(file_descriptors[INPUT]); write(file_descriptors[OUTPUT], "test data", strlen("test data"));

实验二_进程间通信

实验二 进程间通信
一、实验目的 在本实验中,通过对文件映射对象的了解,来加深对 Windows 2000 线程同步的理解. 回顾系统进程、线程的有关概念,加深对 Windows 2000 线程间通讯的理解;了解文件映射 对象;通过分析实验程序,了解线程如何通过文件映射对象发送数据;了解在进程中如何使 用文件映射对象. 二、背景知识 1. 共享内存: Windows 2000 提供了一种在文件中处理数据的方法, 名为内存映射文件, 也称为文件映射.文件映射对象是在虚拟内存中分配的永久或临时文件对象区域 (如果可能 的话,可大到整个文件) ,可将其看作是二进制的数据块.使用这类对象,可获得直接在内 存中访问文件内容的能力. 文件映射对象提供了强大的扫描文件中数据的能力,而不必移动文件指针.对于多线程 的读写操作来说, 这一点特别有用, 因为每个线程都可能想要把读取指针移动到不同的位置 去——为了防止这种情况,就需要使用某种线程同步机制保护文件. 在 CreateFileMapping() API 中,一个新的文件映射对象需要有一个永久的文件对象 (由 CreateFile() 所创建) .该函数使用标准的安全性和命名参数,还有用于允许操作 (如只读) 的保护标志以及映射的最大容量.随后可根据来自 OpenFileMapping() API 的其他线程或进程 使用该映射——这与事件和互斥体的打开进程是非常类似的. 内存映射文件对象的另一个强大的应用是可请求系统创建一个运行映射的临时文件.该 临时文件提供一个临时的区域, 用于线程或进程互相发送大量数据, 而不必创建或保护磁盘 上的文件.利用向创建函数中发送 INVALID_HANDLE_VALUE 来代替真正的文件句柄,就 可创建这一临时的内存映射文件; 指令内核使用系统页式文件来建立支持映射的最大容量的 临时数据区. 为了利用文件映射对象,进程必须将对文件的查看映射到它的内存空间中.也就是说, 应该将文件映射对象想象为进程的第一步,在这一步中,当查看实际上允许访问的数据时, 附加有共享数据的安全性和命名方式.为了获得指向内存区域的指针需要调用 MapViewOfFile() API,此调用使用文件映射对象的句柄作为其主要参数.此外还有所需的访 问等级 (如读-写) 和开始查看时文件内的偏移和要查看的容量.该函数返回一个指向进程内 的内存的指针,此指针可有多种编程方面的应用 (但不能超过访问权限) . 当结束文件映射查看时,必须用接受到的指针调用 UnmapViewOfFlie() API,然后再根 据映射对象调用 CloseHandle() API,从而将其清除。
三、实验内容 1. 编译运行项目 Lab5.1\SHAREMEM.DSW,观察运行结果,并阅读和分析实验程序.

进程间的通信

# 管道( pipe ):管道是一种半双工的通信方式,数据只能单向流动,而且只能在具有亲缘关系的进程间使用。进程的亲缘关系通常是指父子进程关系。 # 有名管道(named pipe) :有名管道也是半双工的通信方式,但是它允许无亲缘关系进程间的通信。 # 信号量( semophore ) :信号量是一个计数器,可以用来控制多个进程对共享资源的访问。它常作为一种锁机制,防止某进程正在访问共享资源时,其他进程也访问该资源。因此,主要作为进程间以及同一进程内不同线程之间的同步手段。 # 消息队列( message queue ) :消息队列是由消息的链表,存放在内核中并由消息队列标识符标识。消息队列克服了信号传递信息少、管道只能承载无格式字节流以及缓冲区大小受限等缺点。 # 信号( sinal ) :信号是一种比较复杂的通信方式,用于通知接收进程某个事件已经发生。# 共享内存( shared memory ) :共享内存就是映射一段能被其他进程所访问的内存,这段共享内存由一个进程创建,但多个进程都可以访问。共享内存是最快的IPC 方式,它是针对其他进程间通信方式运行效率低而专门设计的。它往往与其他通信机制,如信号两,配合使用,来实现进程间的同步和通信。 # 套接字( socket ) :套接口也是一种进程间通信机制,与其他通信机制不同的是,它可用于不同及其间的进程通信。 windows进程通信的几种方式(转) 2008-10-13 16:47 1 文件映射 文件映射(Memory-Mapped Files)能使进程把文件内容当作进程地址区间一块内存那样来对待。因此,进程不必使用文件I/O操作,只需简单的指针操作就可读取和修改文件的内容。 Win32 API允许多个进程访问同一文件映射对象,各个进程在它自己的地址空间里接收内存的指针。通过使用这些指针,不同进程就可以读或修改文件的内容,实现了对文件中数据的共享。 应用程序有三种方法来使多个进程共享一个文件映射对象。 (1)继承:第一个进程建立文件映射对象,它的子进程继承该对象的句柄。 (2)命名文件映射:第一个进程在建立文件映射对象时可以给该对象指定一个名字(可与文件名不同)。第二个进程可通过这个名字打开此文件映射对象。另外,第一个进程也可以通过一些其它IPC机制(有名管道、邮件槽等)把名字传给第二个进程。 (3)句柄复制:第一个进程建立文件映射对象,然后通过其它IPC机制(有名管道、邮件槽等)把对象句柄传递给第二个进程。第二个进程复制该句柄就取得对该文件映射对象的访问权限。 文件映射是在多个进程间共享数据的非常有效方法,有较好的安全性。但文件映射只能用于本地机器的进程之间,不能用于网络中,而开发者还必须控制进程间的同步。 2 共享内存 Win32 API中共享内存(Shared Memory)实际就是文件映射的一种特殊情况。进程在创建文件映射对象时用0xFFFFFFFF来代替文件句柄(HANDLE),就表示了对应的文件映射对象是从操作系统页面文件访问内存,其它进程打开该文件映射

进程间使用管道通信pipe

进程间使用管道通信 本节将以管道方式为例讲解进程间通信的使用方法。管道本身是一种数据结构,遵循先进先出原则。先进入管道的数据,也能先从管道中读出。数据一旦读取后,就会在管道中自动删除。管道通信以管道数据结构作为内部数据存储方式,以文件系统作为数据存储媒体。Linux系统中有两种管道,分别是无名管道和命名管道。pipe系统调用可创建无名管道,open 系统调用可创建命名管道。下面介绍这两种管道的实现方式。 1 。1 pipe系统调用 系统调用pipe用来建立管道。与之相关的函数只有一个,即pipe()函数,该函数被定义在头文件unistd.h中,它的一般形式是: int pipe(int filedes[2]); pipe系统调用需要打开两个文件,文件标识符通过参数传递给pipe()函数。文件描述符filedes[0]用来读数据,filedes[1]用来写数据。调用成功时,返回值为0,错误时返回-1。管道的工作方式可以总结为以下3个步骤。 1.将数据写入管道 将数据写入管道使用的是write()函数,与写入普通文件的操作方法一样。与文件不同的是,管道的长度受到限制,管道满时写入操作会被阻塞。执行写操作的进程进入睡眠状态,直到管道中的数据被读取。管道满时,write()函数的返回值为0。如果写入数据长度小于管道长度,则要求一次写入完成。如果写入数据长度大于管道长度,在写完管道长度的数据时,write()函数将被阻塞。 2.从管道读取数据 读取数据使用read()函数实现,读取的顺序与写入顺序相同。当数据被读取后,这些数据将自动被管道清除。因此,使用管道通信的方式只能是一对一,不能由一个进程同时向多个进程传递同一数据。如果读取的管道为空,并且管道写入端口是打开的,read()函数将被阻塞。读取操作的进程进入睡眠状态,直到有数据写入管道为止。 3.关闭管道 管道虽然有2个端口,但只有一个端口能被打开,这样避免了同时对管道进行读和写的操作。关闭端口使用的是close()函数,关闭读端口时,在管道上进行写操作的进程将收到SIGPIPE信号。关闭写端口时,进行读操作的read()函数将返回0。如下例所示:

进程间通信实验报告

进程间通信实验报告 班级:10网工三班学生姓名:谢昊天学号:1215134046 实验目的和要求: Linux系统的进程通信机构 (IPC) 允许在任意进程间大批量地交换数据。本实验的目的是了解和熟悉Linux支持的消息通讯机制及信息量机制。 实验内容与分析设计: (1)消息的创建,发送和接收。 ①使用系统调用msgget (), msgsnd (), msgrev (), 及msgctl () 编制一长度为1k 的消息的发送和接收程序。 ②观察上面的程序,说明控制消息队列系统调用msgctl () 在此起什么作用? (2)共享存储区的创建、附接和段接。 使用系统调用shmget(),shmat(),sgmdt(),shmctl(),编制一个与上述功能相同的程序。(3)比较上述(1),(2)两种消息通信机制中数据传输的时间。 实验步骤与调试过程: 1.消息的创建,发送和接收: (1)先后通过fork( )两个子进程,SERVER和CLIENT进行通信。 (2)在SERVER端建立一个Key为75的消息队列,等待其他进程发来的消息。当遇到类型为1的消息,则作为结束信号,取消该队列,并退出SERVER 。SERVER每接收到一个消息后显示一句“(server)received”。 (3)CLIENT端使用Key为75的消息队列,先后发送类型从10到1的消息,然后退出。最后的一个消息,既是 SERVER端需要的结束信号。CLIENT每发送一条消息后显示一句“(client)sent”。 (4)父进程在 SERVER和 CLIENT均退出后结束。 2.共享存储区的创建,附接和断接: (1)先后通过fork( )两个子进程,SERVER和CLIENT进行通信。 (2)SERVER端建立一个KEY为75的共享区,并将第一个字节置为-1。作为数据空的标志.等待其他进程发来的消息.当该字节的值发生变化时,表示收到了该消息,进行处理.然后再次把它的值设为-1.如果遇到的值为0,则视为结束信号,取消该队列,并退出SERVER.SERVER 每接收到一次数据后显示”(server)received”. (3)CLIENT端建立一个为75的共享区,当共享取得第一个字节为-1时, Server端空闲,可发送请求. CLIENT 随即填入9到0.期间等待Server端再次空闲.进行完这些操作后, CLIENT退出. CLIENT每发送一次数据后显示”(client)sent”. (4)父进程在SERVER和CLIENT均退出后结束。 实验结果: 1.消息的创建,发送和接收: 由 Client 发送两条消息,然后Server接收一条消息。此后Client Server交替发送和接收消息。最后一次接收两条消息。Client 和Server 分别发送和接收了10条消息。message 的传送和控制并不保证完全同步,当一个程序不再激活状态的时候,它完全可能继续睡眠,造成上面现象。在多次send message 后才 receive message.这一点有助于理解消息转送的实现机理。

04--Linux系统编程-进程间通信

IPC方法 Linux环境下,进程地址空间相互独立,每个进程各自有不同的用户地址空间。任何一个进程的全局变量在另一个进程中都看不到,所以进程和进程之间不能相互访问,要交换数据必须通过内核,在内核中开辟一块缓冲区,进程1把数据从用户空间拷到内核缓冲区,进程2再从内核缓冲区把数据读走,内核提供的这种机制称为进程间通信(IPC,InterProcess Communication)。 在进程间完成数据传递需要借助操作系统提供特殊的方法,如:文件、管道、信号、共享内存、消息队列、套接字、命名管道等。随着计算机的蓬勃发展,一些方法由于自身设计缺陷被淘汰或者弃用。现今常用的进程间通信方式有: ①管道(使用最简单) ②信号(开销最小) ③共享映射区(无血缘关系) ④本地套接字(最稳定) 管道 管道的概念: 管道是一种最基本的IPC机制,作用于有血缘关系的进程之间,完成数据传递。调用pipe系统函数即可创建一个管道。有如下特质: 1. 其本质是一个伪文件(实为内核缓冲区) 2.由两个文件描述符引用,一个表示读端,一个表示写端。 3. 规定数据从管道的写端流入管道,从读端流出。 管道的原理: 管道实为内核使用环形队列机制,借助内核缓冲区(4k)实现。 管道的局限性: ①数据自己读不能自己写。 ②数据一旦被读走,便不在管道中存在,不可反复读取。 ③由于管道采用半双工通信方式。因此,数据只能在一个方向上流动。 ④只能在有公共祖先的进程间使用管道。

常见的通信方式有,单工通信、半双工通信、全双工通信。 pipe函数 创建管道 int pipe(int pipefd[2]); 成功:0;失败:-1,设置errno 函数调用成功返回r/w两个文件描述符。无需open,但需手动close。规定:fd[0] →r;fd[1] →w,就像0对应标准输入,1对应标准输出一样。向管道文件读写数据其实是在读写内核缓冲区。 管道创建成功以后,创建该管道的进程(父进程)同时掌握着管道的读端和写端。如何实现父子进程间通信呢?通常可以采用如下步骤: 1.父进程调用pipe函数创建管道,得到两个文件描述符fd[0]、fd[1]指向管道的读端和写端。 2.父进程调用fork创建子进程,那么子进程也有两个文件描述符指向同一管道。 3.父进程关闭管道读端,子进程关闭管道写端。父进程可以向管道中写入数据,子进程将管道中的数据读出。由于管道是利用环形队列实现的,数据从写端流入管道,从读端流出,这样就实现了进程间通信。 练习:父子进程使用管道通信,父写入字符串,子进程读出并,打印到屏幕。【pipe.c】 思考:为甚么,程序中没有使用sleep函数,但依然能保证子进程运行时一定会读到数据呢? 管道的读写行为 使用管道需要注意以下4种特殊情况(假设都是阻塞I/O操作,没有设置O_NONBLOCK标志): 1.如果所有指向管道写端的文件描述符都关闭了(管道写端引用计数为0),而仍然有进程从管道的读端读数据,那么管道中剩余的数据都被读取后,再次read会返回0,就像读到文件末尾一样。

相关主题