搜档网
当前位置:搜档网 › 串匹配问题:BF算法、KMP算法、BM算法

串匹配问题:BF算法、KMP算法、BM算法

串匹配问题:BF算法、KMP算法、BM算法
串匹配问题:BF算法、KMP算法、BM算法

一、实验内容和目的

1、深刻理解并掌握蛮力算法的设计思想;

2、提高应用蛮力算法设计算法的技能;

3、理解这样一个观点:用蛮力法设计的算法,一般来说,经过适度的努

力后,都可以对算法的第一个版本进行一定程度的改良,改进其时

间性能。

二、实验原理及基本技术路线图(方框原理图)

串匹配问题——给定两个串S=“s1s2…s n” 和T=“t1t2…t m”,在主

串S中查找子串T的过程称为串匹配,也称模式匹配。

串匹配问题属于易解问题。

串匹配问题的特征:

(1)算法的一次执行时间不容忽视:问题规模n 很大,常常需要在

大量信息中进行匹配;

(2)算法改进所取得的积累效益不容忽视:串匹配操作经常被调用,执行频率高。

BF算法:

基本思想:从主串S的第一个字符开始和模式T的第一个字符进行比

较,若相等,则继续比较两者的后续字符;若不相等,则从主串S

的第二个字符开始和模式T的第一个字符进行比较,重复上述过程,若T中的字符全部比较完毕,则说明本趟匹配成功;若最后一轮匹配

的起始位置是n-m,则主串S中剩下的字符不足够匹配整个模式T,

匹配失败。这个算法称为朴素的模式匹配算法,简称BF算法。

KMP算法:

1. 在串S和串T中分别设比较的起始下标i和j;

2. 循环直到S中所剩字符长度小于T的长度或T中所有字符均比较

完毕

2.1 如果S[i]=T[j],则继续比较S和T的下一个字符;否则

2.2 将j向右滑动到next[j]位置,即j=next[j];

2.3 如果j=0,则将i和j分别加1,准备下一趟比较;

2.4 如果T中所有字符均比较完毕,则返回匹配的起始下标;否则返回0;

BM算法:

BM算法与KMP算法的主要区别是匹配操作的方向不同。虽然BM算法仅把匹配操作的字符比突顺序改为从右向左,但匹配发生失败时,模式T右移的计算方法却发生了较大的变化。

设计思想:设文本串T,模式串为P。首先将T与P进行左对齐,然后进行从右向左比较,若是某趟比较不匹配时,BM算法就采用两条启发式规则,即坏字符规则和好后缀规则,来计算模式串向右移动的距离,直到整个匹配过程的结束。

开始 主串S 长度→m

模式T 长度→n

0→i

i

0→b

i →a

S[a]=T[b]且b ?n a 加1

b 加1 b=n

Y

N

Y

Y

Y

N

N

N

BF 算法

结束

开始

主串S 长度→m 模式T 长度→n

0→a 0→b

a ≦m-n

S[a]=T[b]且b ?n

a 加1

b 加1

b=n

Y

Y Y

N

N

N

KMP 算法

结束

next[b]→b

a-b →a

b=-1

b 加1

三、 所用仪器、材料(设备名称、型号、规格等)

Windows 7,Microsoft Visual C++ 6.0

四、 实验方法、步骤 1、 实现BF 算法;

2、 实现BF 算法的改进算法:KMP 算法和BM 算法;

开始

i ≦主串S 长度-1

模式T 长度-1→j

j ≧0且S[i]=T[j]

i 减1

j 减1

j<0

Y

Y

Y

N

N

N

BM 算法

结束 0→a 0→b

0→z

模式T 长度-1→i

i+DIST(T,S[i])→i

3、观察并记录运行结果。

五、实验过程原始记录(数据、图表、计算等)源程序:

#include "stdio.h"

#include "conio.h"

#include

//BF算法

int BF(char s[],char t[])

{

int i;

int a;

int b;

int m,n;

m=strlen(s); //主串长度

n=strlen(t); //子串长度

printf("\n*****BF*****算法\n");

for(i=0;i

{

b=0;

a=i;

while(s[a]==t[b]&&b!=n)

{

a++;

b++;

}

if(b==n)

{

printf("查找成功!!\n\n");

return 0;

}

}

printf("找不到%s\n\n",t);

return 0;

}

//前缀函数值,用于KMP算法

int GETNEXT(char t[],int b)

{

int NEXT[10];

NEXT[0]=-1;

int j,k;

j=0;

k=-1;

while(j

{

if ((k==-1)||(t[j]==t[k]))

{

j++;

k++;

NEXT[j]=k;

}

else k=NEXT[k];

}

b=NEXT[b];

return b;

}

//KMP算法

int KMP(char s[],char t[])

{

int a=0;

int b=0;

int m,n;

m=strlen(s); //主串长度

n=strlen(t); //子串长度

printf("\n*****KMP算法*****\n");

while(a<=m-n)

{

while(s[a]==t[b]&&b!=n)

{

a++;

b++;

}

if(b==n)

{

printf("查找成功!!\n\n");

return 0;

}

b=GETNEXT(t,b);

a=a-b;

if(b==-1) b++;

}

printf("找不到%s\n\n",t);

return 0;

}

//滑动距离函数,用于BM算法

int DIST(char t[],char c)

{

int i=0,x=1;

int n;

n=strlen(t);

while(x&&i!=n-1)

{

if(t[i]==c)

x=0;

else i++;

}

if(i!=n-1)

n=n-1-i;

return n;

}

//BM算法

int BM(char s[],char t[])

{

int a=0;

int b=0;

int i,j;

printf("\n*****BM算法*****\n");

int z=0;

i=strlen(t)-1;

while(i<=strlen(s)-1)

{

j=strlen(t)-1;

while(j>=0&&s[i]==t[j])

j--;

i--;

}

if(j<0)

{

printf("查找成功!!\n\n");

return 0;

}

else

i=i+DIST(t,s[i]);

}

printf("找不到%s\n\n",t);

return 0;

}

void main()

{

char s[]={'\0'}; //主串S

int n=10;

char t[]={'\0'}; //模式T

printf("\n----------串匹配问题----------\n");

printf("\n输入主串S\nS=");

scanf("%s",&s);

printf("\n输入子串T\nT=");

scanf("%s",&t);

printf("主串长%d,子串长为%d\n",strlen(s),strlen(t));

BF(s,t); //BF算法

KMP(s,t); //KMP算法

BM(s,t); //BM算法

}

模式匹配的KMP算法详解

模式匹配的KMP算法详解 模式匹配的KMP算法详解 这种由D.E.Knuth,J.H.Morris和V.R.Pratt同时发现的改进的模式匹配算法简称为KMP算法。大概学过信息学的都知道,是个比较难理解的算法,今天特把它搞个彻彻底底明明白白。 注意到这是一个改进的算法,所以有必要把原来的模式匹配算法拿出来,其实理解的关键就在这里,一般的匹配算法: int Index(String S,String T,int pos)//参考《数据结构》中的程序 { i=pos;j=1;//这里的串的第1个元素下标是1 while(i<=S.Length && j<=T.Length) { if(S[i]==T[j]){++i;++j;} else{i=i-j+2;j=1;}//**************(1) } if(j>T.Length) return i-T.Length;//匹配成功 else return 0; } 匹配的过程非常清晰,关键是当‘失配’的时候程序是如何处理的?回溯,没错,注意到(1)句,为什么要回溯,看下面的例子: S:aaaaabababcaaa T:ababc aaaaabababcaaa ababc.(.表示前一个已经失配) 回溯的结果就是 aaaaabababcaaa a.(babc) 如果不回溯就是 aaaaabababcaaa aba.bc 这样就漏了一个可能匹配成功的情况 aaaaabababcaaa ababc 为什么会发生这样的情况?这是由T串本身的性质决定的,是因为T串本身有前后'部分匹配'的性质。如果T为abcdef这样的,大没有回溯的必要。

字符串的模式匹配算法

在前面的图文中,我们讲了“串”这种数据结构,其中有求“子串在主串中的位置”(字符串的模式匹配)这样的算法。解决这类问题,通常我们的方法是枚举从A串(主串)的什么位置起开始与B串(子串)匹配,然后验证是否匹配。假设A串长度为n,B串长度为m,那么这种方法的复杂度是O(m*n)的。虽然很多时候复杂度达不到m*n(验证时只看头一两个字母就发现不匹配了),但是我们有许多“最坏情况”,比如: A=“aaaaaaaaaaaaaaaaaaaaaaaaab”,B=“aaaaaaaab”。 大家可以忍受朴素模式匹配算法(前缀暴力匹配算法)的低效吗?也许可以,也许无所谓。 有三位前辈D.E.Knuth、J.H.Morris、V.R.Pratt发表一个模式匹配算法,最坏情况下是O(m+n),可以大大避免重复遍历的情况,我们把它称之为克努特-莫里斯-普拉特算法,简称KMP算法。 假如,A=“abababaababacb”,B=“ababacb”,我们来看看KMP是怎样工作的。我们用两个指针i和j分别表示,。也就是说,i是不断增加的,随着i 的增加j相应地变化,且j满足以A[i]结尾的长度为j的字符串正好匹配B串的前j个字符(j当然越大越好),现在需要检验A[i+1]和B[j+1]的关系。 例子: S=“abcdefgab” T=“abcdex” 对于要匹配的子串T来说,“abcdex”首字符“a”与后面的串“bcdex”中任意一个字符都不相等。也就是说,既然“a”不与自己后面的子串中任何一字符相等,那么对于主串S来说,前5位字符分别相等,意味着子串T的首字符“a”不可能与S串的第2到第5位的字符相等。朴素算法步骤2,3,4,5的判断都是多余,下次的起始位置就是第6个字符。 例子: S=“abcabcabc” T=“abcabx”

字符串匹配算法总结

Brute Force(BF或蛮力搜索) 算法: 这是世界上最简单的算法了。 首先将匹配串和模式串左对齐,然后从左向右一个一个进行比较,如果不成功则模式串向右移动一个单位。 速度最慢。 那么,怎么改进呢? 我们注意到Brute Force 算法是每次移动一个单位,一个一个单位移动显然太慢,是不是可以找到一些办法,让每次能够让模式串多移动一些位置呢? 当然是可以的。 我们也注意到,Brute Force 是很不intelligent 的,每次匹配不成功的时候,前面匹配成功的信息都被当作废物丢弃了,当然,就如现在的变废为宝一样,我们也同样可以将前面匹配成功的信息利用起来,极大地减少计算机的处理时间,节省成本。^_^ 注意,蛮力搜索算法虽然速度慢,但其很通用,文章最后会有一些更多的关于蛮力搜索的信息。 KMP算法 首先介绍的就是KMP 算法。 这个算法实在是太有名了,大学上的算法课程除了最笨的Brute Force 算法,然后就介绍了KMP 算法。也难怪,呵呵。谁让Knuth D.E. 这么world famous 呢,不仅拿了图灵奖,而且还写出了计算机界的Bible (业内人士一般简称TAOCP). 稍稍提一下,有个叫H.A.Simon的家伙,不仅拿了Turing Award ,顺手拿了个Nobel Economics Award ,做了AI 的爸爸,还是Chicago Univ的Politics PhD ,可谓全才。 KMP 的思想是这样的: 利用不匹配字符的前面那一段字符的最长前后缀来尽可能地跳过最大的距离 比如 模式串ababac这个时候我们发现在c 处不匹配,然后我们看c 前面那串字符串的最大相等前后缀,然后再来移动 下面的两个都是模式串,没有写出来匹配串 原始位置ababa c 移动之后aba bac 因为后缀是已经匹配了的,而前缀和后缀是相等的,所以直接把前缀移动到原来后缀处,再从原来的c 处,也就是现在的第二个b 处进行比较。这就是KMP 。 Horspool算法。 当然,有市场就有竞争,字符串匹配这么大一个市场,不可能让BF 和KMP 全部占了,于是又出现了几个强劲的对手。

KMP字符串模式匹配算法解释

个人觉得这篇文章是网上的介绍有关KMP算法更让人容易理解的文章了,确实说得很“详细”,耐心地把它看完肯定会有所收获的~~,另外有关模式函数值next[i]确实有很多版本啊,在另外一些面向对象的算法描述书中也有失效函数f(j)的说法,其实是一个意思,即next[j]=f(j-1)+1,不过还是next[j]这种表示法好理解啊: KMP字符串模式匹配详解 KMP字符串模式匹配通俗点说就是一种在一个字符串中定位另一个串的高效算法。简单匹配算法的时间复杂度为O(m*n);KMP匹配算法。可以证明它的时间复杂度为O(m+n).。 一.简单匹配算法 先来看一个简单匹配算法的函数: int Index_BF ( char S [ ], char T [ ], int pos ) { /* 若串S 中从第pos(S 的下标0≤pos

模式匹配KMP算法实验报告

实验四:KMP算法实验报告 一、问题描述 模式匹配两个串。 二、设计思想 这种由D.E.Knuth,J.H.Morris和V.R.Pratt同时发现的改进的模式匹配算法简称为KM P算法。 注意到这是一个改进的算法,所以有必要把原来的模式匹配算法拿出来,其实理解的关键就在这里,一般的匹配算法: int Index(String S,String T,int pos)//参考《数据结构》中的程序 { i=pos;j=1;//这里的串的第1个元素下标是1 while(i<=S.Length && j<=T.Length) { if(S[i]==T[j]){++i;++j;} else{i=i-j+2;j=1;}//**************(1) } if(j>T.Length) return i-T.Length;//匹配成功 else return 0; } 匹配的过程非常清晰,关键是当‘失配’的时候程序是如何处理的?为什么要回溯,看下面的例子: S:aaaaabababcaaa T:ababc aaaaabababcaaa ababc.(.表示前一个已经失配) 回溯的结果就是 aaaaabababcaaa a.(babc) 如果不回溯就是 aaaaabababcaaa aba.bc 这样就漏了一个可能匹配成功的情况 aaaaabababcaaa ababc 这是由T串本身的性质决定的,是因为T串本身有前后'部分匹配'的性质。如果T为a bcdef这样的,大没有回溯的必要。 改进的地方也就是这里,我们从T串本身出发,事先就找准了T自身前后部分匹配的位置,那就可以改进算法。 如果不用回溯,那T串下一个位置从哪里开始呢? 还是上面那个例子,T为ababc,如果c失配,那就可以往前移到aba最后一个a的位置,像这样:

C语言字符串模式匹配

数据结构面试之十四——字符串的模式匹配 题注:《面试宝典》有相关习题,但思路相对不清晰,排版有错误,作者对此参考相关书籍和自己观点进行了重写,供大家参考。 十四、字符串的模式匹配 1. 模式匹配定义——子串的定位操作称为串的模式匹配。 2. 普通字符串匹配BF算法(Brute Force 算法,即蛮力算法) 【算法思想】: 第(1)步;从主串S的第pos个字符和模式的第一个字符进行比较之,若相等,则继续逐个比较后续字符;否则从主串的下一个字符起再重新和模式串的字符比较之。 第(2)步骤;依次类推,直至模式T中的每一个字符依次和主串S中的一个连续的字符序列相等,则称匹配成功;函数值为和模式T中第一个字符相等的字符在主串S中的序号,否则称为匹配不成功,函数值为0。 比如对于主串S=”abacababc”; 模式串T=”abab”; 匹配成功,返回4。 对于主串S=”abcabcabaac”; 模式串T=”abab”; 匹配不成功,返回0。 【算法实现】: //普通字符串匹配算法的实现 int Index(char* strS, char* strT, int pos) { //返回strT在strS中第pos个字符后出现的位置。 int i = pos; int j = 0; int k = 0; int lens = strlen(strS);

int lent = strlen(strT); while(i < lens && j < lent) { if(strS[i+k] == strT[j]) { ++j; //模式串跳步 ++k; //主串(内)跳步 } else { i = i+1; j=0; //指针回溯,下一个首位字符 k=0; } }//end i if(j >= lent) { return i; } else { return 0; } }//end [算法时间复杂度]:设主串长度为m,模式串的长度为n。一般情况下n

字符串模式匹配

实验7、字符串查找 目的 掌握字符串模式匹配的经典算法。 问题描述 分别用简单方法和KMP方法实现index在文本串中查找指定字符串的功能。 步骤 1.定义字符串类型 2.实现简单的index操作,从文本串中查找指定字符串。 3.实现KMP方法的index操作,从文本串中查找指定字符串。 4.[选]建立一个文本文件,读入每一行来测试自己完成的练习,观察并理解程序的各 个处理。 设备和环境 PC计算机、Windows操作系统、C/C++开发环境 结论 能够理解和掌握字符串模式匹配的典型算法。 思考题 1.对KMP算法分别用手工和程序对某个模式串输出next和nextval。 朴素算法: #include #include #define NOTFOUND -1

#define ERROR -2 #define MAXLEN 100//字符串的最大长度 char S[MAXLEN+10],T[MAXLEN+10],st[MAXLEN+10];//串S和串T int S0,T0; //S0:串S的长度 T0:串T的长度 int pos; //pos的起始位置 void Init(char *S,int &S0)//读入字符串 { int len,i; New_Input: scanf("%s",st);//读入字符串 len=strlen(st); if (len>MAXLEN)//如果字符串的长度大于规定的字符串最大长度 { printf("This String is too long,Please Input a new one.nn"); goto New_Input;//重新读入字符串

字符串匹配算法的研究_本科论文

字符串匹配算法的研究及其程序实现 计算机学院计算机科学与技术专业2007级指导教师:滕云 摘要:在字符串匹配算法之中,最古老和最著名的是由D. E. Knuth, J. h. Morris, V. R. Pratt 在1997年共同提出的KMP算法。直至今日,人们对字符串匹配问题还在进行着大量的研究,以寻求更简单,或者平均时间复杂度更优的算法;学者们在不同的研究方向上,设计出了很多有效的匹配算法。在现实生活中,串匹配技术的应用十分广泛,其主要领域包括:入侵检测,病毒检测,信息检索,信息过滤,计算生物学,金融检测等等。在许多应用系统中,串匹配所占的时间比重相当大,因此,串匹配算法的速度很大程度上影响着整个系统的性能。该论文重点分析了KMP算法的实现原理和C语言实现,并在此基础上提出了改进的KMP算法,使得该算法更方便实用。 关键词:KMP算法;时间复杂度;串匹配;改进;方便使用; String matching algorithm and Implementation of the Program College of Computer Sciences, Computer Science and Technology Professional grade 2007, Instructor YunTeng Abstractor:Among the string matching algorithm,the oldest and most famous is KMP algorithm co-sponsored by D.E Knuth, J. h. Morris, VR Pratt in 1997. As of today, a lot of research to String matching are still in progress, to seek a more simply or better average time complexity of the algorithm. In different research direction, scholars have designed a lot of valid matching.In real life, the string matching technique is widely used,The main areas include: intrusion detection, virus detection, information retrieval, information filtering, computational biology, financial inspection and so on.In many applications,a large percentage of the time was placed by the string matching, so the string matching algorithms significantly affect the speed performance of the whole system.The paper analyzes the implementation of the KMP algorithm theory and through the C language to achieve it.And we puts forward a modified KMP algorithm in order to makes the algorithm more convenient and practical. Key words:KMP algorithm; Time complexity; String matching; Improved; Easy to use;

字符串的模式匹配实验报告

实验题目:字符串的模式匹配 一、实验描述 用BF算法实现字符串的模式匹配 二、实验目的和任务 从主串的第pos位置字符开始和模式子串字符比较,如果相等,则继续逐个比较后续字符;否则从主串的下一个字符起再重新和模式子串的字符比较。直到找到匹配字符串或者是主串结尾。 三、概要设计 BF(Brute Force)算法是普通的模式匹配算法,BF算法的思想就是将目标串S的第一个字符与模式串P的第一个字符进行匹配,若相等,则继续比较S的第二个字符和P的第二个字符;若不相等,则比较S的第二个字符和P的第一个字符,依次比较下去,直到得出最后的匹配结果。 四、运行与测试 #include #include int BFMatch(char *s,char *p) { int i,j; i =0; while(i < strlen(s)) { j = 0; while(s[i] == p[j] &&j

{ char *szSource = "ababcababa"; char *szSub = "ababa"; int index =BFMatch(szSource, szSub); printf("目标串包含匹配串的起始位置:%d",index); } 五、运行结果 六、实验心得 通过这次课程设计,让我了解了字符串的定位操作即字符串模式匹配的基本概念和算法,探讨了字符串模式匹配操作的最基本的BF匹配算法。虽然看起来很简单的程序,做起来却遇到了不少问题,编程中出行了一些小错误,多次查改之后再进行修改,所以我觉得在以后的学习中,我会更加注重实践,注重多练,多积累。

KMP算法-如何理解

对KMP算法的理解 整理者——戴红伟 字符匹配算法的现实意义:随着互联网的日渐庞大,信息也是越来越多,如何在海量的信息中快速查找自己所要的信息是网络搜索研究的热点所在,在这其中,字符串匹配算法起着非常重要的作用,一个高效的字符串匹配算法,可以极大的提高搜索的效率和质量。 (请同时参照课本P53~54相关内容) 1.要理解next[j]=k 中,k的含意; (1)BF算法 假设有字符串 S=S1S2......S N P=P1P2......P M 其中(M

(2)KMP算法 为了解决上述的问题,KMP算法被发现。 KMP算法的思想如下。匹配过程中,出现不匹配时,S的指针不进行回朔(原地不动),将P尽可能地向后移动一定的距离,再进行匹配。 如图: (该图引用自互联网) 从上图中我们看到,当S移动到i,P到j的时候失配。这时候i不回朔,而只是将P 向前移动尽可能的距离,继续比较。 假设,P向右移动一定距离后,第k个字符P[k]和S[i]进行比较。 此时如上图,当P[j]和S[i]失配后,i不动,将P前移到K,让P[k]和S[i]继续匹配。现在的关键是K的值是多少? 通过上图,我们发现,因为黄色部分表示已经匹配了的结果(因为是到了S[i]和P[j]的时候才失配,所以S i-j+1S i-j+2…S i-1 = P1P2…P j-1,见黄色的部分)。所以有: 1、S i-k+1S i-k+2…S i-1 = P j-k+1P j-k+2…P j-1。 所以当P前移到K时,有: 2、S i-k+1S i-k+2…S i-1 = P1P2…P k-1。 通过1,2有 P j-k+1P j-k+2…P j-1 = P1P2…P k-1。 呵呵,此时我们的任务就是求这个k值了。。。 参考:https://www.sodocs.net/doc/6014517684.html,/2008-09/122068902261358.html 2.求出k 值 按照课本的求法就可以处理。 课本是已知前j个元素的“前缀函数值”,如何求的j+1个元素的前缀函数值。这里有一个思路要发生转变的地方,把一个模式串分成两个部分,因为我们要找k使得P j-k+1P j-k+2…P j-1= P1P2…P k-1,而这本身就是一个模式匹配问题,所以把模式串的前边部分的子串当作“新的模式串”,这样就很容易理解为什么当t k!=t j时,t1…t next[k]-1 = t j-(next[k]-1)…t j-1了。因为这时候t k匹配失败,需要进一步移动模式子串,所以移动的位置就是next[k]。

模式匹配KMP算法实验步骤

一、问题描述 模式匹配两个串。 二、设计思想 这种由D.E.Knuth,J.H.Morris和V.R.Pratt同时发现的改进的模式匹配算法简称为KM P算法。 注意到这是一个改进的算法,所以有必要把原来的模式匹配算法拿出来,其实理解的关键就在这里,一般的匹配算法: int Index(String S,String T,int pos)//参考《数据结构》中的程序 { i=pos;j=1;//这里的串的第1个元素下标是1 while(i<=S.Length && j<=T.Length) { if(S[i]==T[j]){++i;++j;} else{i=i-j+2;j=1;}//**************(1) } if(j>T.Length) return i-T.Length;//匹配成功 else return 0; } 匹配的过程非常清晰,关键是当‘失配’的时候程序是如何处理的?为什么要回溯,看下面的例子: S:aaaaabababcaaa T:ababc aaaaabababcaaa ababc.(.表示前一个已经失配) 回溯的结果就是 aaaaabababcaaa a.(babc) 如果不回溯就是 aaaaabababcaaa aba.bc 这样就漏了一个可能匹配成功的情况 aaaaabababcaaa ababc 这是由T串本身的性质决定的,是因为T串本身有前后'部分匹配'的性质。如果T为a bcdef这样的,大没有回溯的必要。

改进的地方也就是这里,我们从T串本身出发,事先就找准了T自身前后部分匹配的位置,那就可以改进算法。 如果不用回溯,那T串下一个位置从哪里开始呢? 还是上面那个例子,T为ababc,如果c失配,那就可以往前移到aba最后一个a的位置,像这样: ...ababd... ababc ->ababc 这样i不用回溯,j跳到前2个位置,继续匹配的过程,这就是KMP算法所在。这个当T[j]失配后,j应该往前跳的值就是j的next值,它是由T串本身固有决定的,与S串无关。 《数据结构》上给了next值的定义: 0 如果j=1 next[j]={Max{k|1aaab ->aaab ->aaab 像这样的T,前面自身部分匹配的部分不止两个,那应该往前跳到第几个呢?最近的一个,也就是说尽可能的向右滑移最短的长度。 到这里,就实现了KMP的大部分内容,然后关键的问题是如何求next值?先看如何用它来进行匹配操作。 将最前面的程序改写成: int Index_KMP(String S,String T,int pos) { i=pos;j=1;//这里的串的第1个元素下标是1 while(i<=S.Length && j<=T.Length) {

字符串匹配算法报告

课程设计报告题目:字符串匹配算法实测分析 课程名称:数据结构 专业班级:计科XX 学号:UXXXXX XX 姓名:FSH 指导教师:xxx 报告日期:2015.9.13

计算机科学与技术学院 数据结构课程组 2015年5月 题目字符串匹配算法实测分析 ?设计目的:掌握线性结构中的字符串的物理存储结构与基本算法,通过查询阅读文献资料,拓广知识面以及培养学生科研能力。 ?设计内容:结合教材上的字符串匹配算法,查询文献资料检索4种以上的有关精确匹配算法,掌握算法原理并实现。 ?设计要求: (1)查阅相关的文献资料,特别是留意年近些年发表的文献资料; (2)要求对各种算法进行理论分析,同时也对实测结果进行统计分析。测试数据要求有一定规模,比如一本书或不少于50篇的中英文文献。 (3)要求界面整洁、美观,操作方便; 报告内容: (一), 运行界面,及运行结果截图 (二),各算法的具体分析,包括起源,基本思路,实例分析,具体实现,和本算法代码。 (三),总程序源代码。 (四),课程设计心得

(一), 运行界面,运行结果说明: 运行代码显示界面: 对于S串可以手动输入字符串检索,也可以选择在计算机里建好的TXT文件,按任意键退出。 按2确认,键入一本书的TXT文件,运行如下 输入待搜索子串“史记”得到运行结果,各算法均返回子串在母串出现的位置

执行算法得运行结果,返回子串在母串所有出现位置。 结果显示运行时间用以统计时间效率: 另一段检索结果的时间截图结果显示如下: (二),各算法的具体分析 一.穷举算法(Brute force)算法: . 1.算法起源: 此算法思路简单,容易想到,没有确定的提出者‘

KMP算法实验

入 侵 检 测 试 验 实验名称:_ KMP算法实验专业班级: _ 网络工程13-01 学号:_ 姓名:

一、问题描述 模式匹配两个串。 二、设计思想 这种由D.E.Knuth,J.H.Morris和V.R.Pratt同时发现的改进的模式匹配算法简称为KM P算法。 注意到这是一个改进的算法,所以有必要把原来的模式匹配算法拿出来,其实理解的关键就在这里,一般的匹配算法: int Index(String S,String T,int pos)//参考《数据结构》中的程序 { i=pos;j=1;//这里的串的第1个元素下标是1 while(i<=S.Length && j<=T.Length) { if(S[i]==T[j]){++i;++j;} else{i=i-j+2;j=1;}//**************(1) } if(j>T.Length) return i-T.Length;//匹配成功 else return 0; } 匹配的过程非常清晰,关键是当‘失配’的时候程序是如何处理的?为什么要回溯,看下面的例子: S:aaaaabababcaaa T:ababc aaaaabababcaaa ababc.(.表示前一个已经失配) 回溯的结果就是 aaaaabababcaaa a.(babc) 如果不回溯就是 aaaaabababcaaa aba.bc 这样就漏了一个可能匹配成功的情况 aaaaabababcaaa ababc 这是由T串本身的性质决定的,是因为T串本身有前后'部分匹配'的性质。如果T为a bcdef这样的,大没有回溯的必要。

改进的地方也就是这里,我们从T串本身出发,事先就找准了T自身前后部分匹配的位置,那就可以改进算法。 如果不用回溯,那T串下一个位置从哪里开始呢? 还是上面那个例子,T为ababc,如果c失配,那就可以往前移到aba最后一个a的位置,像这样: ...ababd... ababc ->ababc 这样i不用回溯,j跳到前2个位置,继续匹配的过程,这就是KMP算法所在。这个当T[j]失配后,j应该往前跳的值就是j的next值,它是由T串本身固有决定的,与S串无关。 《数据结构》上给了next值的定义: 0 如果j=1 next[j]={Max{k|1aaab ->aaab ->aaab 像这样的T,前面自身部分匹配的部分不止两个,那应该往前跳到第几个呢?最近的一个,也就是说尽可能的向右滑移最短的长度。 到这里,就实现了KMP的大部分内容,然后关键的问题是如何求next值?先看如何用它来进行匹配操作。 将最前面的程序改写成: int Index_KMP(String S,String T,int pos) { i=pos;j=1;//这里的串的第1个元素下标是1 while(i<=S.Length && j<=T.Length) {

《KMP 字符串模式匹配算法》教学课例

《KMP字符串模式匹配算法》教学课例 程玉胜 安庆师范学院计算机与信息学院 KMP字符串模式匹配是数据结构课程中一个重要的知识点,也是一个难点(学过KMP 算法的同学100%认为:KMP是数据结构课程中最难的部分)。为了消除他们对KMP算法学习的恐惧心理,激发他们的学习兴趣,调动其积极性,显得尤为重要。 基于以上,我们根据学生的认知特点和接受水平,对教材内容进行了重新构建,并按照数据结构中?时间复杂度?概念,增加了不同模式匹配算法的运行时间,动态逼真的显示了算法的?时间?性能,获得了较好的教学效果。 一、教学目标 知识目标:让学生了解KMP算法应用的普遍性。如:在目前众多的文字处理软件中得到广泛应用,如Microsoft Word中的?查找?或?替换?操作。而这种操作实现的机制,同学们特别是计算机专业的学生很少去想过。 能力目标:要求学生体验一个完整的抽象数据类型(ADT)的实现方法和过程,并学会判断、计算算法优劣的方法。 价值目标:消除恐怖的学习心态,让学生感悟数据结构算法实际应用价值,从而激发学习的兴趣,形成积极主动式学习的态度。 二、教材分析 使用教材是清华大学严蔚敏教授并由清华大学出版社出版的《数据结构(C语言版)》,该教材难度较大,其实验方法特别是ADT方法在教材中介绍较少,而且KMP算法更是从理论分析的角度介绍了匹配算法和next的计算,自学难度很大;虽然该节知识点属于?**(表示难度较大,可以不讲)?,但是其又是考研的一个热点,所以我们又不得不讲。 三、教学重点、难点 教学重点:KMP算法中的next和改进的nextval计算 教学难点:KMP算法中如何计算next值 四、教具准备 卡片:多个字符串,字符串指针 强力磁吸:6个 五、互动式教学过程

字符串匹配的KMP算法

字符串匹配是计算机的基本任务之一。 举例来说,有一个字符串"BBC ABCDAB ABCDABCDABDE",我想知道,里面是否包含另一个字符串"ABCDABD"? 许多算法可以完成这个任务,Knuth-Morris-Pratt算法(简称KMP)是最常用的之一。它以三个发明者命名,起头的那个K就是著名科学家Donald Knuth。 我用自己的语言,试图写一篇比较好懂的KMP算法解释。 1.

首先,字符串"BBC ABCDAB ABCDABCDABDE"的第一个字符与搜索词"ABCDABD"的第一个字符,进行比较。因为B与A不匹配,所以搜索词后移一位。 2. 因为B与A不匹配,搜索词再往后移。 3. 就这样,直到字符串有一个字符,与搜索词的第一个字符相同为止。 4.

接着比较字符串和搜索词的下一个字符,还是相同。 5. 直到字符串有一个字符,与搜索词对应的字符不相同为止。 6. 这时,最自然的反应是,将搜索词整个后移一位,再从头逐个比较。这样做虽然可行,但是效率很差,因为你要把"搜索位置"移到已经比较过的位置,重比一遍。 7.

一个基本事实是,当空格与D不匹配时,你其实知道前面六个字符是"ABCDAB"。KMP算法的想法是,设法利用这个已知信息,不要把"搜索位置"移回已经比较过的位置,继续把它向后移,这样就提高了效率。 8. 怎么做到这一点呢?可以针对搜索词,算出一张《部分匹配表》(Partial Match Table)。这张表是如何产生的,后面再介绍,这里只要会用就可以了。 9. 已知空格与D不匹配时,前面六个字符"ABCDAB"是匹配的。查表可知,最后一个匹配字符B对应的"部分匹配值"为2,因此按照下面的公式算出向后移动的位数:

(完整word版)KMP算法详解

KMP字符串模式匹配详解KMP字符串模式匹配通俗点说就是一种在一个字符串中定位另一个串的高效算法。简单匹配算法的时间复杂度为O(m*n);KMP匹配算法。可以证明它的时间复杂度为O(m+n).。 一.简单匹配算法 先来看一个简单匹配算法的函数: int Index_BF ( char S [ ], char T [ ], int pos ) { /* 若串S 中从第pos(S 的下标0≤pos

C语言 字符串匹配算法

字符串匹配算法(一)简介收藏 注:本文大致翻译自EXACT STRING MATCHING ALGORITHMS,去掉一些废话,增加一些解释。 文本信息可以说是迄今为止最主要的一种信息交换手段,而作为文本处理中的一个重要领域——字符串匹配,就是我们今天要说的话题。(原文还特意提及文本数据数量每18个月翻一番,以此论证算法必须要是高效的。不过我注意到摩尔定律也是18个月翻番,这正说明数据的增长是紧紧跟随处理速度的,因此越是使用高效的算法,将来待处理的数据就会越多。这也提示屏幕前的各位,代码不要写得太快了……) 字符串匹配指的是从文本中找出给定字符串(称为模式)的一个或所有出现的位置。本文的算法一律输出全部的匹配位置。模式串在代码中用x[m]来表示,文本用y[n]来,而所有字符串都构造自一个有限集的字母表Σ,其大小为σ。 根据先给出模式还是先给出文本,字符串匹配分为两类方法: ?第一类方法基于自动机或者字符串的组合特点,其实现上,通常是对模式进行预处理; ?第二类方法对文本建立索引,这也是现在搜索引擎采用的方法。 本文仅讨论第一类方法。 文中的匹配算法都是基于这样一种方式来进行的:设想一个长度为m的窗口,首先窗口的左端和文本的左端对齐,把窗口中的字符与模式字符进行比较,这称为一趟比较,当这一趟比较完全匹配或者出现失配时,将窗口向右移动。重复这个过程,直到窗口的右端到达了文本的右端。这种方法我们通常叫sliding window。 对于穷举法来说,找到所有匹配位置需要的时间为O(mn),基于对穷举法改进的结果,我们按照每一趟比较时的比较顺序,把这些算法分为以下四种: 1.从左到右:最自然的方式,也是我们的阅读顺序 2.从右到左:通常在实践中能产生最好的算法 3.特殊顺序:可以达到理论上的极限 4.任意顺序:这些算法跟比较顺序没关系(例如:穷举法) 一些主要算法的简单介绍如下: 从左到右 采用哈希,可以很容易在大部分情况下避免二次比较,通过合理的假设,这种算法是线性时间复杂度的。它最先由Harrison提出,而后由Karp和Rabin全面分析,称为KR算法。 在假设模式长度不大于机器字长时,Shift-Or算法是很高效的匹配算法,同时它可以很容易扩展到模糊匹配上。MP是第一个线性时间算法,随后被改进为KMP,它的匹配方式很类似于自动机的识别过程,文本的每个字符与模式的每个字符比较不会超过logΦ(m+1),这里Φ是黄金分隔比1.618,而随后发现的类似算法——Simon算法,使得文本的每个字符比较不超过1+log2m,这三种算法在最坏情况下都只要2n-1次比较。(抱歉限于我的水平这一段既没看懂也没能查证,大家就看个意思吧) 基于确定性有限自动机的算法对文本字符刚好只用n次访问,但是它需要额外的O(mσ)的空间。 一种叫Forward Dawg Matching的算法同样也只用n次访问,它使用了模式的后缀自动机。 Apostolico-Crochemore算法是一种简单算法,最坏情况下也只需要3n/2次比较。 还有一种不那么幼稚(Not So Naive)的算法,最坏情况下是n平方,但是预处理过程的时间和空间均为常数,而且平均情况下的性能非常接近线性。 从右到左 BM算法被认为是通常应用中最有效率的算法了,它或者它的简化版本常用于文本编辑器中的搜索和替换功能,对于非周期性的模式而言,3n是这种算法的比较次数上界了,不过对于周期性模式,它最坏情况下需要n的二次方。

详解KMP算法中Next数组的求法

详解KMP算法中Next数组的求法 例如: 1 2 3 4 5 6 7 8 模式串 a b a a b c a c next值0 1 1 2 2 3 1 2 next数组的求解方法是:第一位的next值为0,第二位的next 值为1,后面求解每一位的next值时,根据前一位进行比较。首先将前一位与其next值对应的内容进行比较,如果相等,则该位的next 值就是前一位的next值加上1;如果不等,向前继续寻找next值对应的内容来与前一位进行比较,直到找到某个位上内容的next值对应的内容与前一位相等为止,则这个位对应的值加上1即为需求的next值;如果找到第一位都没有找到与前一位相等的内容,那么需求的位上的next值即为1。 看起来很令人费解,利用上面的例子具体运算一遍。 1.前两位必定为0和1。 2.计算第三位的时候,看第二位b的next值,为1,则把b和1对应的a进行比较,不同,则第三位a的next的值为1,因为一直比到最前一位,都没有发生比较相同的现象。 3.计算第四位的时候,看第三位a的next值,为1,则把a和1对应的a进行比较,相同,则第四位a的next的值为第三位a的next 值加上1。为2。因为是在第三位实现了其next值对应的值与第三位的值相同。

4.计算第五位的时候,看第四位a的next值,为2,则把a和2对应的b进行比较,不同,则再将b对应的next值1对应的a与第四位的a进行比较,相同,则第五位的next值为第二位b的next值加上1,为2。因为是在第二位实现了其next值对应的值与第四位的值相同。 5.计算第六位的时候,看第五位b的next值,为2,则把b和2对应的b进行比较,相同,则第六位c的next值为第五位b的next 值加上1,为3,因为是在第五位实现了其next值对应的值与第五位相同。 6.计算第七位的时候,看第六位c的next值,为3,则把c和3对应的a进行比较,不同,则再把第3位a的next值1对应的a与第六位c比较,仍然不同,则第七位的next值为1。 7.计算第八位的时候,看第七位a的next值,为1,则把a和1对应的a进行比较,相同,则第八位c的next值为第七位a的next 值加上1,为2,因为是在第七位和实现了其next值对应的值与第七位相同。

KMP算法源码

#define _CRT_SECURE_NO_DEPRECA TE #include #include #include #include using namespace std; #define N 100 void cal_next(char * str, int * next, int len) { int i, j; next[0] = 0; for (i = 1; i < len; i++) { j = next[i - 1]; while (str[j] != str[i] && (j > 0))//直到对称子串中再无最长前后缀 { j = next[j-1]; //或者在对称子串中找到一个之前满足条件的最长前缀 } if (str[i] == str[j]) { next[i] = j + 1; } else { next[i] = 0; } } } int KMP(char * str, int slen, char * ptr, int plen, int * next) { int s_i = 0, p_i = 0; int i; printf("%s\n",str); printf("%s\n",ptr); while (s_i < slen && p_i < plen) { if (str[s_i] == ptr[p_i]) {

s_i++; p_i++; continue; } else { if (p_i == 0) { s_i++; } else { p_i = next[p_i-1]; //取当前匹配不到之前的字符串的最大相等前缀的最后一个字符 } } for (i = 0; i < s_i - p_i; i++) { putchar(' '); } printf("%s\n",ptr); } return (p_i == plen) ? (s_i - plen) : -1;//返回第一次找到子串的下标位置 } int main() { char str[N] = { 0 }; char ptr[N] = { 0 }; int slen, plen; int next[N]; int ret; printf("请输入主串:"); scanf("%s",str); printf("请输入模式串:"); scanf("%s",ptr); slen = strlen(str); plen = strlen(ptr); cal_next(ptr, next, plen); printf("\nnext:");

相关主题