搜档网
当前位置:搜档网 › 三角函数图像平移与伸缩变换(学生版)陈妍

三角函数图像平移与伸缩变换(学生版)陈妍

三角函数图像平移与伸缩变换(学生版)陈妍
三角函数图像平移与伸缩变换(学生版)陈妍

三角函数图像题

异名三角函数平移变换

1.要得到函数x y cos 2=

的图象,只需将函数)4

2sin(2π

+

=x y 的图象上所有的点的

( )(A)横坐标缩短到原来的

21倍(纵坐标不变),再向左平行移动8

π

个单位长度 (B)横坐标缩短到原来的

21倍(纵坐标不变),再向右平行移动4

π个单位长度 (C)横坐标伸长到原来的2倍(纵坐标不变),再向左平行移动

4

π

个单位长度 (D)横坐标伸长到原来的2倍(纵坐标不变),再向右平行移动

8

π

个单位长度

2. 将函数()y f x =的图象上各点的横坐标扩大为原来的2倍(纵坐标不变),再将整个图

形沿x 轴正向平移3π

,得到的新曲线与函数3sin y x =的图象重合,则()f x =( ) A. 3sin(2)3x π+ B. 3sin()23x π+ C. 23sin(2)3x π-

D. 23sin()23

x π

+

3.为得到函数πcos 23y x ??

=+ ??

?

的图像,只需将函数sin 2y x =的图像( ) A .向左平移

12个长度单位

B .向右平移

12个长度单位 C .向左平移5π

6

个长度单位

D .向右平移5π

6

个长度单位

4.要得到函数sin y x =的图象,只需将函数cos y x π??

=-

?3??

的图象( ) A .向右平移π

6个单位 B .向右平移

π

3个单位 C .向左平移π

3

个单位

D .向左平移π

6

个单位

5.为了得到函数)6

2sin(π-=x y 的图象,可以将函数x y 2cos =的图象( )

(A)向右平移

6π个单位长度 (B)向右平移3π

个单位长度 (C)向左平移6π个单位长度 (D)向左平移3

π

个单位长度

6.(2017年1卷9)已知曲线C 1:y =cos x ,C 2:y =sin (2x +

),则下面结论正确的是 A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移

个单位长度,得到曲线C 2

B .把

C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移

个单位长度,得到曲线C 2

C .把C 1上各点的横坐标缩短到原来的

倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C 2

D .把C 1上各点的横坐标缩短到原来的

倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C 2 二.增减性与值域(高考原题)

7.(2015年1卷8)函数=的部分图像如图所示,则的单调递减区间为( ) (A )(B ) (C ) (D ) 8.(2019年2卷9)下列函数中,以2π为周期且在区间(4π,2

π

)单调递增的是 A. f (x )=│cos 2x │ B. f (x )=│sin 2x │ C. f (x )=cos│x │

D. f (x )= sin│x │

9.(2019年1卷11)关于函数()sin |||sin |f x x x =+有下述四个结论: ①f (x )是偶函数;②f (x )在区间(

2

π

,π)单调递增;③f (x )在[,]ππ-有4个零点;④f (x )的最大值为2.其中所有正确结论的编号是( )

A. ①②④

B. ②④

C. ①④

D. ①③

10. (2018)已知()sin (0)363f x x f f ωωπππ??????=+>= ? ? ?

??????

,,且()f x 在区间63ππ?? ???,有最小值,无最大值,则ω=__________.

3

π6

π12

12π612π12

()f x cos()x ω?+()f x 13(,),44k k k Z ππ-

+∈13

(2,2),44

k k k Z ππ-+∈13(,),44k k k Z -

+∈13

(2,2),44

k k k Z -+∈

直角坐标系中的平移变换与伸缩变换

1.1 直角坐标系中的平移变换与伸缩变换 目标:平移变换与伸缩变换的应用与理解 一.直角坐标系 1.直线上,取定一个点为原点,规定一个长度为单位长度,规定直线的一个方向为正方向。这样我们就建立了直线上的坐标系 (即数轴)。它使直线上任意一点P 都可以由惟一的实数x 来确定。 2.平面上,取定两条互相垂直的直线作为x 、y 轴,它们的交点作为坐标原点,并规定好长度单位和这两条直线的正方向。这样我们就建立了平面直角坐标系。它使平面上任意一点P 都可以由惟一的二元有序实数对),(y x 来确定。 3.在空间中,选择三条两两垂直且交于一点的直线,以这三条直线分别作为x 、y 、z 轴,它们的交点作为坐标原点,并规定好长度单位和这三条直线的正方向。这样我们就建立了空间直角坐标系。它使空间中任意一点P 都可以由惟一的三元有序实数对),,(z y x 来确定。 事实上,直线上所有点的集合与全体实数的集合一一对应;平面上所有点的集合与全体二元有序数对),(y x 的集合一一对应;空间中所有点的集合与全体三元有序数对),,(z y x 的集合一一对应. 二.平面直角坐标系中图形的平移变换 1.平移变换 在平面内,将图形F 上所有点按照同一个方向,移动同样长度,称为 图形F 的平移。若以向量a 表示移动的方向和长度,我们也称图形F 按向量a 平移. 在平面直角坐标系中,设图形F 上任意一点P 的坐标为),(y x ,向量),(k h a = ,平移后的对应点为),(y x P '''. 则有:),(),(),(y x k h y x ''=+ 即有:?? ?' =+'=+y k y x h x . 因此,我们也可以说,在平面直角坐标系中,由???' =+'=+y k y x h x 所确定的变换 是一个平移变换。

三角函数的平移、伸缩变换测试题(人教A版)(含答案)

三角函数的平移、伸缩变换(人教A版) 一、单选题(共14道,每道7分) 1.将函数的图象上所有的点向左平移个单位长度,再把图象上各点的横坐标伸长到原来的2倍,纵坐标不变,则所得图象的解析式为( ) A. B. C. D. 答案:B 解题思路: 由题意, 函数经平移,得到, 该函数横坐标再经变换,得到. 故选B 试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换 2.由的图象向左平移个单位长度,再把所得图象上所有点的横坐标伸长到原来的2倍,纵坐标不变,得到的图象,则为( ) A. B. C. D. 答案:D

解题思路: 将变换的过程倒推, 函数横坐标经变换,即横坐标缩短为原来的, 得到; 再将该函数图象向右平移个单位长度,得到 . 故选D. 试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换 3.将函数的图象向右平移个单位长度,再将所得图象的所有点的横坐标缩短为原来的,纵坐标不变,得到的函数解析式为( ) A. B. C. D. 答案:D 解题思路: 由题意, 函数经平移,得到 ; 再经横坐标变换后,得到, 故选D. 试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换

4.将函数的图象上每点的横坐标缩短为原来的,再将所得图象向左平移个单位长度,得到的函数解析式为( ) A. B. C. D. 答案:B 解题思路: 由题意, 函数横坐标经变换得到, 该函数再经平移,得到, 故选B. 试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换 5.将函数的图象上每点的横坐标伸长到原来的2倍,再将所得图象向右平移个单位长度,纵坐标不变,得到的函数解析式为( ) A. B. C. D. 答案:C 解题思路: 由题意, 函数横坐标经变换,

(完整版)一次函数图象的平移及解析式的变化规律

一次函数图象的平移及解析式的变化规律 我们在研究两个一次函数的图象平行的条件时,曾得出“其中一条直线可以由另外一条直线通过平移得到”的结论,这就涉及到一次函数图象平移的问题. 函数的图象及其解析式,是从“形”和“数”两个方面反映函数的性质,也是初中数学中数形结合思想的重要体现.在平面直角坐标系中,当一次函数的图象发生平移(平行移动)时,与之对应的函数解析式也随之发生改变,并且函数解析式的变化呈现出如下的变化规律: 一次函数()0≠+=k b kx y 的图象平移后其解析式的变化遵循“上加下减,左加右减”的规律: (1)上下平移,k 值不变,b 值“上加下减”:将一次函数()0≠+=k b kx y 的图象向上平移m 个单位长度,解析式变为()0≠++=k m b kx y ;将一次函数()0≠+=k b kx y 的图象向下平移m 个单位长度,解析式变为()0≠-+=k m b kx y . (2)左右平移,k 值不变,自变量x “左加右减”:将一次函数()0≠+=k b kx y 的图象向左平移n 个单位长度,解析式变为()()0≠++=k b n x k y ,展开得()0≠++=k b kn kx y ;将一次函数()0≠+=k b kx y 的图象向右平移n 个单位长度,解析式变为()()0≠+-=k b n x k y ,展开得()0≠+-=k b kn kx y . 注意: (1)无论一次函数的图象作何种平移,平移前后,k 值不变,b 值改变.设上下平移的单位长度为m ,则b 值变为m b ±;设左右平移的单位长度为n ,则b 值变为kn b ±. (2)上面的规律如下页图(51)所示.

三角函数图象的平移和伸缩

三角函数图象的平移和 伸缩 -CAL-FENGHAI.-(YICAI)-Company One1

三角函数图象的平移和伸缩 函数sin()y A x k ω?=++的图象与函数sin y x =的图象之间可以通过变化A k ω?,,,来相互转化.A ω,影响图象的形状,k ?,影响图象与x 轴交点的位置.由A 引起的变换称振幅变换,由 ω引起的变换称周期变换,它们都是伸缩变换;由?引起的变换称相位变换,由k 引起的变换 称上下平移变换,它们都是平移变换. 既可以将三角函数的图象先平移后伸缩也可以将其先伸缩后平移. 变换方法如下:先平移后伸缩 sin y x =的图象???0)或向右(0)平移个单位长度 得sin()y x ?=+的图象() ωωω ?????????→横坐标伸长(0<<1)或缩短(>1) 1 到原来的纵坐标不变 得sin()y x ω?=+的图象()A A A >?????????→纵坐标伸长(1)或缩短(0<<1) 为原来的倍横坐标不变 得sin()y A x ω?=+的图象(0)(0) k k k >

先伸缩后平移 sin y x =的图象(1)(01) A A A ><?????????→横坐标伸长或缩短到原来的纵坐标不变 得sin()y A x ω=的图象 (0)(0) ???ω >

函数 图像的平移变换与伸缩变换

函数()y f x =图像的平移变换与伸缩变换 在学习高中数学必修4的三角函数这部分内容的过程中,我们增加了三角函数的图像的变换这部分内容,主要要学习函数 y=Asin(x+)+m(A 0, 0)w j w 构的图像是由sin y x =的图像怎样变换得来的,这要涉及的变换有平移变换与伸缩变换。而我们在后来复习函数时,也要增加函数()y f x =的图像变换的内容。三角函数也属于函数,因此一般函数()y f x =的图像变换法则和方法对三角函数同样适用。所以为了使平移变换与伸缩变换这部分内容更具有一般性,我想站在一般函数的高度来研究函数图像的平移变换与伸缩变换。多年的教学生涯让我对这两种变换有了深刻的认识,能够高度概括这两种变换。现在我想把自己对这两种变换的认识写成论文,供大家借鉴使用,提出建设性意见。 大家知道,sin y x =的图像向上(下)平移10个单位,可得到 10sin y x -=(10sin y x +=),即s i n 10y x =+(sin 10y x =-)的图像;sin y x =的 图像向右(左)平移 10π,可得到sin()10y x p =-(sin()10 y x p =+)的图像;sin y x =的图像横向伸长至原来的2倍(横向缩至原来的12 ),可得到1sin 2 y x =(sin 2y x =)的图像;sin y x =的图像纵向伸长至原来的3倍(纵向缩短至原来的13),可得到1sin 3y x =(3sin y x =),即3s i n y x =(1sin 3y x =)的图像;我们可用表格把上述小题的变换内容与解析式的相应变化反

三角函数图象的平移和伸缩(后面有高考题练习)

三角函数图象的平移和伸缩 函数sin()y A x k ω?=++的图象与函数sin y x =的图象之间可以通过变化A k ω?,,,来相互转化.A ω,影响图象的形状,k ?,影响图象与x 轴交点的位置.由A 引起的变换称振幅变换,由ω引起的变换称周期变换,它们都是伸缩变换;由?引起的变换称相位变换,由k 引起的变换称上下平移变换,它们都是平移变换. 既可以将三角函数的图象先平移后伸缩也可以将其先伸缩后平移. 变换方法如下:先平移后伸缩 sin y x =的图象???0)或向右(0) 平移个单位长度 得sin()y x ?=+的图象()ωωω ?????????→横坐标伸长(0<<1)或缩短(>1) 1 到原来的纵坐标不变 得sin()y x ω?=+的图象()A A A >?????????→纵坐标伸长(1)或缩短(0<<1) 为原来的倍横坐标不变 得sin()y A x ω?=+的图象(0)(0) k k k ><?????????→横坐标伸长或缩短到原来的纵坐标不变 得sin()y A x ω=的图象 (0)(0) ???ω >

超经典二次函数图象的平移和对称变换总结

二次函数图象的几何变换 内容基本要求略高要求较高要求 二次函数 1.能根据实际情境了解 二次函数的意义; 2.会利用描点法画出二 次函数的图像; 1.能通过对实际问题中 的情境分析确定二次函 数的表达式; 2.能从函数图像上认识 函数的性质; 3.会确定图像的顶点、 对称轴和开口方向; 4.会利用二次函数的图 像求出二次方程的近似 解; 1.能用二次 函数解决简 单的实际问 题; 2.能解决二 次函数与其 他知识结合 的有关问 题; 一、二次函数图象的平移变换 (1)具体步骤: 先利用配方法把二次函数化成2 () y a x h k =-+的形式,确定其顶点(,) h k,然后做出二次函数2 y ax =的图像,将抛物线2 y ax =平移,使其顶点平移到(,) h k.具体平移方法如图所示: (2)平移规律:在原有函数的基础上“左加右减”.

二、二次函数图象的对称变换 二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称 2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---; ()2 y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---; 2. 关于y 轴对称 2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+; ()2 y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++; 3. 关于原点对称 2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称 2 y ax bx c =++关于顶点对称后,得到的解析式是2 2 2b y ax bx c a =--+-; ()2 y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+. 5. 关于点()m n ,对称 ()2 y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+- 根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变

三角函数图像的平移变换专项练习

三角函数图像的平移变换专项练习 1.为了得到函数)6 3sin(π +=x y 的图象,只需把函数x y 3sin =的图象 ( ) A 、向左平移 6π B 、向左平移18π C 、向右平移6π D 、向右平移18 π 6、将函数)(sin )(R x x x f y ∈?=的图象向右平移4 π 个单位后,再作关于x 轴的对 称变换,得到函数x y 2sin 21-=的图象,则)(x f 可以是_______。 1、要得到函数)4 2sin(3π +=x y 的图象,只需将函数x y 2sin 3=的图象( ) (A )向左平移 4π个单位 (B )向右平移4π 个单位 (C )向左平移8π个单位 (D )向右平移8 π 个单位 2、将函数y=sin3x 的图象作下列平移可得y=sin(3x+ 6 π )的图象 (A) 向右平移 6π 个单位 (B) 向左平移6π 个单位 (C )向右平移18π 个单位 (D )向左平移18 π 个单位 3.将函数sin y x =的图象上每点的横坐标缩小为原来的1 2 (纵坐标不变),再把 所得图象向左平移6π 个单位,得到的函数解析式为( ) ()sin 26A y x π?? =+ ?? ? ()sin 23B y x π? ?=+ ?? ? ()sin 26x C y π??=+ ??? ()s i n 212x D y π??=+ ??? 4、把函数x y cos =的图象上所有的点的横坐标缩小到原来的一半,纵坐标保持不变,然后把图象向左平移4 π 个单位长度,得到新的函数图象,那么这个新函数的解析式为 (A )??? ??+=42cos πx y (B )??? ??+=42cos πx y (C )x y 2sin = (D )x y 2sin -= 5.要得到函数x y cos 2=的图象,需将函数)42sin(2π +=x y 的图象( ) (A)横坐标缩短到原来的21倍(纵坐标不变),再向左平行移动8π 个单位长度 (B)横坐标缩短到原来的 21倍(纵坐标不变),再向右平行移动4 π个单位长度

三角函数的平移及伸缩变换(含答案)

三角函数的平移及伸缩变换 一、单选题(共8道,每道12分) 1.将函数的图象上所有点的纵坐标不变,横坐标缩小到原来的,再把图象上各点向左平移个单位长度,则所得的图象的解析式是( ) A. B. C. D. 答案:C 解题思路: 试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换 2.已知函数y=f(x)图象上每个点的纵坐标保持不变,横坐标伸长到原来的2倍,然后再将整 个图象沿x轴向左平移个单位,沿y轴向下平移1个单位,得到函数,则y =f(x)的表达式时( ) A. B. C. D.

答案:B 解题思路: 试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换 3.已知函数,若f(x)的图象向左平移个单位所得的图象与f(x)的图象向右平移个单位所得的图象重合,则的最小值是( ) A.2 B.3 C.4 D.5 答案:C 解题思路:

试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换 4.已知函数的最小正周期为,将的图象向左平移个单位长度,所得图象关于y轴对称,则的一个值是( ) A. B. C. D. 答案:D 解题思路:

试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换 5.偶函数的图象向右平移个单位得到的图象关于原点对称,则的值可以是( ) A.1 B.2 C.3 D.4 答案:B 解题思路:

试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换 6.已知函数的周期为π,若将其图象沿x轴向右平移a个单位(a >0),所得图象关于原点对称,则实数a的最小值是( ) A.π B. C. D. 答案:D

三角函数的平移与伸缩变换

三角函数的平移与伸缩变换 1、为了得到函数)3 2sin(π-=x y 的图象,只需把函数)6 2sin(π +=x y 的图 象向____平移_____个单位长度. 2、设,0>ω函数2)3 sin(++=π ωx y 的图象向右平移 3 4π 个单位后与原图象重合则ω的最小值是__________. 3、将函数x y sin =的图象上所有的点向右平行移动 10 π 个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得函数图象的解析式是_____________. 4、将函数x x x f cos sin 3)(-=的图象向左平移m 个单位(m>0),若得到图象对应的函数为偶函数,则m 的最小值是_____________. 5、把函数)2 ||,0)(sin(π ?ω?ω<>+=x y 的图象向左平移3 π 个单位长度, 所得曲线的一部分图象如图所示,则( ) A. 6 ,1π?ω== B. 6 ,1π ?ω-== C. 6 ,2π?ω== D. 6 ,2π ?ω-== 6、已知函数)0,0(2cos )(2>>+=?ωA x A x f 的最大值为6,其相邻两条对称轴间的距离为4,求.________)20()6()4()2(=+???+++f f f f 7、右图是函数))(sin(R x x A y ∈+=?ω在区间 )6 5,6(ππ- 上的图象,只要将 (1)x y sin =的图象经过怎样的变换? (2)x y 2cos =的图象经过怎样的变换? 8、把x y sin =作何变换可得.1)6 3sin(8-+=π x y 17π12 π3 x y o 1-1 5π6 -π6y x o

(精心整理)三角函数之平移

三角函数图像的平移、变换 一、 引入 以简单函数为例,讲解“左加右减、上加下减”。讲清横移的实质是把所有x 替换为x+a ; 二、三角函数图像的平移之历年高考真题 1、(2010全国卷2理)(7)为了得到函数sin(2)3y x π=- 的图像, 只需把函数sin(2)6 y x π =+的图像( )向左平移4π个长度单位 (B )向右平移4 π 个长度单位 (C )向左平移2π个长度单位 (D )向右平移2π 个长度单位 2、(2010四川理)(6)将函数sin y x =的图像上所有的点向右平行移动10 π 个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图像的函数解析式是 (A )sin(2)10y x π=- (B )sin(2)5y x π =- (C )1sin()210y x π=- (D )1sin()220 y x π =- 3、(2010天津文)(8) 5y Asin x x R 66ππω??? =∈???? 右图是函数(+)()在区间-,上的图象,为了得到这个函数的图象,只 要将y sin x x R =∈()的图象上所有的点 (A)向左平移3 π 个单位长度,再把所得各点的横坐标缩短到原来的 1 2 倍,纵坐标不变 (B) 向左平移3 π 个单位长度,再把所得各点的横坐标伸长到原 来的2倍,纵坐标不变 (C) 向左平移6 π 个单位长度,再把所得各点的横坐标缩短到原来的12倍,纵坐标不变 (D) 向左平移6 π 个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变 4、(2009山东卷理)将函数sin 2y x =的图象向左平移4 π 个单位, 再向上平移1个单位,所得图象的函数解 析式是( ).A.cos 2y x = B.2 2cos y x = C.)4 2sin(1π++=x y D.2 2sin y x =

三角函数的平移与伸缩变换_整理

函数)sin(A ?ω+=x y 的图像 (1)物理意义:sin()y A x ω?=+(A >0,ω>0),x ∈[0,+ ∞)表示一个振动量时,A 称为振幅,T = ωπ 2, 1 f T = 称为频率,x ω?+称为相位,?称为初相。 (2)函数sin()y A x k ω?=++的图像与sin y x =图像间的关系: ① 函数sin y x =的图像纵坐标不变,横坐标向左(?>0)或向右(?<0)平移||?个单位得()sin y x ?=+的图像; ② 函数()sin y x ?=+图像的纵坐标不变,横坐标变为原来的 1 ω ,得到函数 ()sin y x ω?=+的图像; ③ 函数()sin y x ω?=+图像的横坐标不变,纵坐标变为原来的A 倍,得到函数 sin()y A x ω?=+的图像; ④ 函数sin()y A x ω?=+图像的横坐标不变,纵坐标向上(0k >)或向下(0k <),得到()sin y A x k ω?=++的图像。 要特别注意,若由()sin y x ω=得到()sin y x ω?=+的图像,则向左或向右平移应平移| |? ω 个单位。 ?对)sin(?+=x y 图像的影响 一般地,函数)sin(?+=x y 的图像可以看做是把正弦函数曲线上所有的点向____(当?>0时)或向______(当?<0时)平移?个单位长度得到的 注意:左右平移时可以简述成“______________” ω对x y ωsin =图像的影响 函数x y ωsin =)10(≠>∈ωω且R x ,的图像可以看成是把正弦函数上所有的点的横坐标______)1(>ω或_______)10(<<ω到原来的ω 1 倍(纵坐标不变)。 A 对x y sin A =的影响

函数图像的平移变换练习题

A 组 基础对点练 1.如图的曲线是幂函数y =x n 在第一象限内的图象.已知n 分别取±2,±1 2四个值,与 曲线C 1,C 2,C 3,C 4相应的n 依次为( ) A .2,12,-1 2,-2 B .2,12,-2,-1 2 C .-12,-2,2,1 2 D .-2,-12,1 2 ,2 解析:C 1,C 2对应的n 为正数,且C 1的n 应大于1; 当x =2时,C 4对应的值小,应为-2. 答案:A 2. 如图,在不规则图形ABCD 中,AB 和CD 是线段,AD 和BC 是圆弧,直线l ⊥AB 于E ,当l 从左至右移动(与线段AB 有公共点)时,把四边形ABCD 分成两部分,设AE =x ,左侧部分面积为y ,则y 关于x 的大致图象为( ) 解析:直线l 在AD 圆弧段时,面积y 的变化率逐渐增大,l 在DC 段时,y 随x 的变化率不变;l 在CB 段时,y 随x 的变化率逐渐变小,故选D. 答案:D 3.函数y =xa x |x | (0<a <1)的图象的大致形状是( ) 解析:函数定义域为{x |x ∈R ,x ≠0},且y =xa x |x |=? ??? ? a x ,x >0,-a x ,x <0.当x >0时,函数是一 个指数函数,其底数0<a <1,所以函数递减;当x <0时,函数递增,所以应选D.

答案:D 4.函数f (x )=ln ??? ?x -1 x 的图象是( ) 解析:自变量x 满足x -1x =x 2-1 x >0,当x >0时可得x >1,当x <0时可得-1<x <0, 即函数f (x )的定义域是(-1,0)∪(1,+∞),据此排除选项A 、D 中的图象.当x >1时,函数x -1 x 单调递增,故f (x )=ln ????x -1x 单调递增. 答案:B 5. (2018·武昌调研)已知函数f (x )的部分图象如图所示,则f (x )的解析式可以是( ) A .f (x )=2-x 2 2x B .f (x )=cos x x 2 C .f (x )=-cos 2x x D .f (x )=cos x x 解析:A 中,当x →+∞时,f (x )→-∞,与题图不符,故不成立;B 为偶函数,与题图不符,故不成立;C 中,当x →0+ 时,f (x )<0,与题图不符,故不成立.选D. 答案:D 6.函数f (x )的图象向右平移1个单位长度,所得图象与曲线y =e x 关于y 轴对称,则f (x )=( ) A .e x + 1 B .e x - 1 C .e -x +1 D .e -x -1 解析:与曲线y =e x 关于y 轴对称的图象对应的函数为y =e - x ,将函数y =e - x 的图象向左平移1个单位长度即得y =f (x )的图象,∴f (x )=e -(x +1) =e -x -1 ,故选D. 答案:D 7.函数f (x )=2ln x 的图象与函数g (x )=x 2-4x +5的图象的交点个数为( )

三角函数图象的平移和伸缩

3 得 y =A sin( x + )的图象? 向 ?上平 ( ? 移 k k ? 个 )或 单 向? 位 下长 ? (k 度 ?) → 得 y = A sin(x + )+k 的图象. y = sin x 纵坐标不变 横坐标向左平移 π/3 个单位 纵 坐标不变 横坐标缩短 为原来的1/2 y = sin(x + ) y = sin(2 x + ) 横坐标不变 纵坐标伸长为原 来的3倍 先伸缩后平移 纵坐标伸长(A 1)或缩短(0A 1) y =sin x 的图象 ??? ??????→ y = 3sin(2x + 三角函数图象的平移和伸缩 函数y = A sin(x + ) + k 的图象与函数 y = sin x 的图象之间可以通过变化 A , , ,k 来相互转 化. A ,影响图象的形状, ,k 影响图象与x 轴交点的位置.由A 引起的变换称振幅变换,由 引起的变 换称周期变 换,它们都是伸缩变换;由 引起的变换称相位变换,由k 引起的变换称上下平移变换,它们都 是平移变换. 既可以将三角函数的图象先平移后伸缩也可以将其先伸缩后平移. 变换方法如下:先平移后伸缩 向左( >0)或向右( 0) y = sin x 的图象 ??平 ? 移 ? 个单 ? 位长 ? 度 ?→ 得 y = sin(x +)的图象 横坐标伸长(0<<1)或缩短 (>1) 到原来的1(纵坐标不变) 得 y = sin(x +)的图象 纵坐标伸长(A 1)或缩短(0

横坐标伸长(0 1)或缩短(1) ????????→ 到原来的 1 (纵坐标不变) 向左( 0)或向右( 0) 得 y = A sin(x ) 的图象 ???平移 ?个 ? 单位 ??→ 得 y = A sin x ( x + )的图象??平 ?移 k ?个单 ?位长 ?度 ?→得 y = A sin( x +)+k 的图象. 纵坐标不变 y = sin x 横坐标缩短 为原来的1/2 纵坐标不变 横坐标 向左平移 π/6 个单位 横坐标不变 y = 3sin(2x + ) 纵坐标伸长为原 3 来的3倍 例1 将y = sin x 的图象怎样变换得到函数y = 2sin 2x + π +1的图象. 解:(方法一)①把y = sin x 的图象沿x 轴向左平移π个单位长度,得y = sin x + π 的图象;②将所得 图象的 横坐标缩小到原来的1,得y =sin 2x +π 的图象;③将所得图象的纵坐标伸长到原来的 2 倍,得 y = 2sin 2x + π 的图象;④最后把所得图象沿y 轴向上平移1个单位长度得到y = 2sin 2x + π +1的图象. 方法二)①把y = sin x 的图象的纵坐标伸长到原来的2倍,得y = 2sin x 的图象;②将所得图象的横坐 标缩小到原来的1 ,得y = 2sin2x 的图象;③将所得图象沿x 轴向左平移π个单位长度得y = 2sin2 x + π 的 2 8 8 图象;④最后把图象沿y 轴向上平移1个单位长度得到y = 2sin 2x + π +1的图象. 得 y = A sin x 的图象 y = sin2 x y = sin(2x + )

三角函数图像平移与伸缩变换(学生版)陈妍

三角函数图像题 异名三角函数平移变换 1.要得到函数x y cos 2= 的图象,只需将函数)4 2sin(2π + =x y 的图象上所有的点的 ( )(A)横坐标缩短到原来的 21倍(纵坐标不变),再向左平行移动8 π 个单位长度 (B)横坐标缩短到原来的 21倍(纵坐标不变),再向右平行移动4 π个单位长度 (C)横坐标伸长到原来的2倍(纵坐标不变),再向左平行移动 4 π 个单位长度 (D)横坐标伸长到原来的2倍(纵坐标不变),再向右平行移动 8 π 个单位长度 2. 将函数()y f x =的图象上各点的横坐标扩大为原来的2倍(纵坐标不变),再将整个图 形沿x 轴正向平移3π ,得到的新曲线与函数3sin y x =的图象重合,则()f x =( ) A. 3sin(2)3x π+ B. 3sin()23x π+ C. 23sin(2)3x π- D. 23sin()23 x π + 3.为得到函数πcos 23y x ?? =+ ?? ? 的图像,只需将函数sin 2y x =的图像( ) A .向左平移 5π 12个长度单位 B .向右平移 5π 12个长度单位 C .向左平移5π 6 个长度单位 D .向右平移5π 6 个长度单位 4.要得到函数sin y x =的图象,只需将函数cos y x π?? =- ?3?? 的图象( ) A .向右平移π 6个单位 B .向右平移 π 3个单位 C .向左平移π 3 个单位 D .向左平移π 6 个单位 5.为了得到函数)6 2sin(π-=x y 的图象,可以将函数x y 2cos =的图象( ) (A)向右平移 6π个单位长度 (B)向右平移3π 个单位长度 (C)向左平移6π个单位长度 (D)向左平移3 π 个单位长度

函数图象的平移与对称变换.doc

专题:函数图象的平移与对称变换 一.知识结构 1.利用描点法作函数的图象的基本步骤: ①确定函数的定义域 ②简化函数的解析式 ③讨论函数的性质(奇偶性、单调性、最值等) ④画出函数的图象 2.图象的平移变换 ①)(a x f y -=( 0>a )的图象可由)(x f y =的图象沿x 轴向右平移a 个单位得到;)(a x f y +=( 0>a )的图象可由)(x f y =的图象沿x 轴向左平移a 个单位得到 ②h x f y ±=)()0(>h 的图象可由)(x f y =的图象沿y 轴向上或向下平移h 个单位得到 注意: (1)可以将平移变换化简成口诀:左加右减,上加下减 (2)谁向谁变换是)()(a x f y x f y -=→=还是)()(x f y a x f y =→-= 3.图象的对称变换 ①)(x f y =与)(x f y -=的图象关于y 轴对称 ②)(x f y =与)(x f y -=的图象关于x 轴对称 ③)(x f y =与)(x f y --=的图象关于原点对称 ④)(x f y =的图象是保留)(x f y =的图象中位于上半平面内的部分,及与x 轴的交点,将的)(x f y =图象中位于下半平面内的部分以x 轴为对称翻折到上半面中去而得到。 ⑤)(x f y =图象是保留中位于右半面内的部分及与y 轴的交点,去掉左半平面内的部分,而利用偶函数的性质,将右半平面内的部分以y 轴为对称轴翻转到左半平面中去而得到。 ⑥奇函数的图象关于原点成中心对称图形,偶函数的图象关于y 轴成轴对称图形 二.题型选编 题组一:利用描点法作函数的图象 1.作出函数|5||2|)(--+=x x x f 的图象; 2.作出函数2 213)(-+=x x x f 的图象; 3.作出函数34)(2+-=x x x f 的图象; 题组二:利用图象的变换解决相应的问题 1.设函数)(x f y =图象进行平移变换得到曲线C ,这时)(x f y =图象上一点)1,2(-A 变

高一三角函数图象的平移和伸缩

1 三角函数图象的平移和伸缩 函数sin()y A x k ω?=++的图象与函数sin y x =的图象之间可以通过变化A k ω?,,,来相互转化.A ω,影响图象的形状,k ?,影响图象与x 轴交点的位置.由A 引起的变换称振幅变换,由ω引起的变换称周期变换,它们都是伸缩变换;由?引起的变换称相位变换,由k 引起的变换称上下平移变换,它们都是平移变换. 既可以将三角函数的图象先平移后伸缩也可以将其先伸缩后平移. 变换方法如下:先平移后伸缩 sin y x =的图象???0)或向右(0) 平移个单位长度 得sin()y x ?=+的图象() ωωω ?????????→横坐标伸长(0<<1)或缩短(>1) 1 到原来的 纵坐标不变 得sin()y x ω?=+的图象()A A A >?????????→纵坐标伸长(1)或缩短(0<<1) 为原来的倍横坐标不变 得sin()y A x ω?=+的图象(0)(0) k k k ><?????????→横坐标伸长或缩短到原来的纵坐标不变 得sin()y A x ω= 的图象(0)(0) ???ω >

《函数图像的平移变换》专题

《函数图像的平移变换》专题 2014年( )月( )日 班级 姓名 【一次函数图像的平移】 画x x f 2)(=、22)(+=x x f 、22)(-=x x f 的图像 备用图 思考:已知x x f 2)(=,那么=+)1(x f ,=-)1(x f 。 对比上图,我们发现: ①函数22)1(+=+x x f 可以看作x x f 2)(=向 平移 单位得到,也可以看做x x f 2)(=向 平移 单位得到。 ②函数2-2)1-(x x f =可以看作x x f 2)(=向 平移 单位得到,也可以看做 x x f 2)(=向 平移 单位得到。 ?? ? ? ?<>?+?)平移 时,图像向()平移 时,图像向()00()(a a a x f x f ?? ? ? ?<>?+?)平移 时,图像向()平移 时,图像向(00)()(a a a x f x f 【反比例函数图像的平移】

画x x f 2)(= 、22)(+=x x f 、22)(+=x x f 的图像 备用图 思考:已知x x f 2 )(= ,那么=+)2(x f ,=+2)(x f 。 对比上图,我们发现: ①函数=+)2(x f 可以看作x x f 2 )(= 向 平移 单位得到。 ②函数=+2)(x f 可以看作x x f 2 )(=向 平移 单位得到。 ?? ? ? ?<>?+?)平移 时,图像向()平移 时,图像向()00()(a a a x f x f ?? ? ? ?<>?+?)平移 时,图像向()平移 时,图像向(00)()(a a a x f x f 【二次函数图像的平移】 画2)(x x f =、32)(2--=x x x f 、54)(2 --=x x x f 的图像

三角函数平移变换方法(重要)张

三角函数平移变换问题的简易判定 三角函数中的正弦、余弦在水平方向上的平移变换、涉及伸缩的平移变换问题是高考命题的热点之一,它主要以选择题的形式出现,为此本文将价绍能迅速、准确做出断定的简易方法. 先来看问题:sin()y A x ω?=+的图象可由sin()y A x ωθ=+(0,0A ω>>)的图象作怎样的变换得到? 易知sin()y A x ωθ=+的图象上所有的点都向左( 0?θω->)或向右(0?θ ω -<) 平移θ?ωω-个长度单位得到sin(())y A x ?θ ωθω -=+ +,即sin()y A x ω?=+的图象.而()?θωω---中的 θω- 、? ω -可分别看作令sin()y A x ωθ=+和sin()y A x ω?=+中“角”的位置的代数式值为0所求得的x 的值.显然点(,0)?ω-是所得图象上与原来图象上的点(,0)θω-对应,(,0)θ ω -是被移动的点 (本文约定被告移动的点为“起”),而(,0)? ω -是所得的点(本文约定移动得到的点为“终”),要从 点(,0)θω- 到点(,0)? ω -,得沿x 轴平移()?θωω---个长度单位,其余各对对应点也如此. 由此,我们得到三角函数平移变换问题的第一种类型及其简易判定方法: 类型一、两个都是“弦”,且振幅相同、变量系数相同的同名函数间的平移变换问题. 简易判定方法:在判断sin()y A x ω?=+是由sin()y A x ωθ=+(0,0A ω>>)经过怎样的变换得到时(余弦的亦然),令0x x θωθω+=?=- (起),且令0x x ? ω?ω +=?=-(终).为直观起见,可在x 轴上标出这两个点(注:要明确“起”和“终”),平移方向是由“起”指向“终”,平移的长度单位个数是()?θ ωω - --. 例1. 函数sin(2)6y x π =- 的图象可由函数sin(2)3 y x π =+的图象作怎样的变换得到? 解:令203 x π + =得6 x π =- (起),令206 x π - =,得12 x π =- (终)显然sin(2)6 y x π =- 的 图象可由sin(2)3 y x π =+ 的图象向右平移()1264 πππ - --=个单位得到. 我们再来看可转化为类型一的以下两种类型: 类型二、两个都是“弦”,且振幅相同、变量系数相同的异名函数间的平移变换问题.(此时只要用公式sin cos()2 π αα=-化为同名的,即转化为类型一的问题.)

2018年必修一-函数图象的平移和翻折

2018年必修一-函数图象的平移和翻折 一、图象的平移变换 ①)(a x f y -=( 0>a )的图象可由)(x f y =的图象沿x 轴向右平移a 个单位得到;)(a x f y +=( 0>a )的图象可由)(x f y =的图象沿x 轴向左平移a 个单位得到 ②h x f y ±=)()0(>h 的图象可由)(x f y =的图象沿y 轴向上或向下平移h 个单位得到 注意: (1)可以将平移变换化简成口诀:左加右减,上加下减 (2)谁向谁变换是)()(a x f y x f y -=→=还是)()(x f y a x f y =→-= 二、图象的对称变换 ①)(x f y =与)(x f y -=的图象关于y 轴对称 ②)(x f y =与)(x f y -=的图象关于x 轴对称 ③)(x f y =与)(x f y --=的图象关于原点对称 ④)(x f y =的图象是保留)(x f y =的图象中位于上半平面内的部分,及与x 轴的交点,将的)(x f y =图象中位于下半平面内的部分以x 轴为对称翻折到上半面中去而得到。 ⑤)(x f y =图象是保留中位于右半面内的部分及与y 轴的交点,去掉左半平面内的部分,而利用偶函数的性质,将右半平面内的部分以y 轴为对称轴翻转到左半平面中去而得到。 ⑥奇函数的图象关于原点成中心对称图形,偶函数的图象关于y 轴成轴对称图形

课堂练习 1、把函数y = 1 1 +x 的图像沿x 轴向右移动1个单位后所得图像记为C ,则图像C 的表 达式为( ) A. y= x -21 B. y=-x 1 C. y=x 1 D. y=21-x 2、函数y=|x|-1的图像是( ) A. B. C. D. 3、函数y=| 2 1(x-1)2 -3|的单调递增区间是 4、某人骑自行车沿直线旅行,先前进了a km,休息了一阵,又沿原路返 回b km(b

相关主题