搜档网
当前位置:搜档网 › 雷达测速(窄波雷达)

雷达测速(窄波雷达)

雷达测速(窄波雷达)
雷达测速(窄波雷达)

测速抓拍系统

沈阳腾翔科技有限公司

一、概述

1.1前言

近年来,随着城市机动车数量的不断增长,在带来诸多便利的同时,也存在着一些问题。车辆违法行为层出不穷,交通事故频频发生,都给城市交通管理造成了一定的难度。在“向科技要警力、向科技要效率”的今天,充分利用高科技手段,开发和研制出可以纠正遏制交通违法行为,有效实现交通管理,提高交通运输效率的产品显的十分必要。目前国内外虽有类似产品先后被研发出并面世,但都或多或少存在着不足之处。产品大多采取标清摄像机加视频采集卡的方式实现对违法车辆的记录,虽然价格低廉,但稳定性欠缺,故障率较高,增加了维护成本和工作量。国外产品较为稳定,但功能相对比较单一,价格十分昂贵,不适宜全面推广,大多只应用在一些要求非常严格的高端智能测速抓拍领域。

针对上述情况,公司推出了新一代窄波高清一体化测速抓拍取证系统。它相对第一代测速仪有了很大的改进,像素200万、500万可选,采取触摸屏操作,操作简便明了。同时二代测速系统设计更加简单轻便,更加灵活,并且增加了一些智能调节功能。该系统紧密结合公安业务需求,综合吸收了国内外产品的优点,采用全嵌入式结构,系统稳定可靠、功能强大、安装方便,适宜全面推广。系统的设计还充分利用了公司在安防监控行业的技术优势,实现了安防监控与智能交通的完美结合,随着该系统的推出,将真正的解放警力,提高交警的工作效率,实现“科技强警”。

1.2设计依据

1.《中华人民共和国道路交通安全法》

2.《中华人民共和国道路交通安全法实施条例》

3.《公路交通安全实施设计技术规范》 (JTJ074-2003)

4.《公路车辆智能监测记录系统通用技术条件》( GA/T497-2009)

5.《公安交通指挥系统工程建设通用程序和要求》(GA/T651-2006)

6.《公安交通管理外场设备基础施工通用要求》(GA/T652-2006)

7.《公安交通指挥系统工程设计制图规范》(GA/T515-2004)

8.《安全防范工程技术规范》(GB50348—2004)

9.《安全防范系统雷电浪涌防护技术要求》(GA/T670-2006)

10.《交通电视监视系统工程验收规范》(GA/T514-2004)

11.《机动车超速自动监测系统》(JJG527-2007)

12.《机动车雷达测速仪》(JJG528-2004)

13.《道路交通安全违法行为图像取证技术规范》(GA/T832-2009)

14. 国家和地方相关标准的规定

1.3设计原则

1、标准化:

测速抓拍系统按照公安部相关标准规范规定的技术要求进行设计,同时,在采用高清摄像技术方面又进行了功能和性能上的扩展。

2、可扩展性和兼容性:

由于用户以后的需求会不断增加,系统建设的规模将随之扩大,在设计上,既要在功能上推陈出新,又要兼容旧的系统,以保护用户的投资,因此我们采用模块化设计,模块间数据传输均采用标准的传输协议,任何一个模块的升级短期内都不会影响到其它模块的正常应用。

3、可用性:

我们的方案在充分考虑用户实际情况,针对大多数用户的需要,设计出可满足各种需要的方案,并充分考虑了人为不可抗拒的其他因素造成故障的可能性;同时,也必须摒弃已经安装应用的老的测速系统出现的各种影响系统稳定性的技术。

4、易用性:

测速仪采用一体化设计,模块化的设计使安装使用非常方便。用户只需简单的接线,并按相应的调试程序进行安装调试就可达到最佳的应用效果。所有超速抓拍、实时上传、录像、黑名单、等工作均可轻松实现。

5、合理性:

严格以系统工程学及其它先进理论指导设计,使系统的各部分合理配置,有机融合并尽可能的发挥设备潜力和软件功能,最大限度地提高性能价格比。

6、先进性:

充分利用科技进步成果,采用先进设备和软件,使系统具有完备的功能,并

且易于升级换代,在保证其先进性的前提下具有较长的生命周期。

7、实用性:

系统功能充分满足用户的实际需求,人机界面友好,易于使用、管理、维护、扩展。

8、可行性:

系统设计、选材、选型符合国家和地方政府的法规政策,与用户及上级管理部门的管理制度相适应,与用户在经济承受能力方面的实际情况相吻合。

9、可靠性:

采取选用高集成设备,采用自动检测、自动报警、自动监控和容错等技术来保证可靠性。

10、安全性:

系统具有防病毒,防误操作特性,有较强的抗干扰、抗静电能力,同时提供数据备份、恢复措施。系统还将提供用户等级权限保护,有效排除人为因素的干扰。

二、工作原理及系统结构

测速仪的工作原理为多普勒雷达原理:当雷达发射一固定频率的脉冲波对空扫描时,如遇到活动目标,回波的频率与发射波的频率出现频率差,称为多普勒频率。根据多普勒频率的大小,可测出目标对雷达的径向相对运动速度。

测速抓拍系统主要由CCD图像采集单元、液晶显示屏、平板测速雷达、电源模块、锂电池、大容量存储硬盘、报警模块以及最主要的工业抓拍主机等组成,并有USB2.0、RS232、以太网等各种丰富的数据接口,锂电池一次充电可连续

工作8小时以上,完全可以满足正常的测速抓拍需求。系统组成结构图如下:

系统组成结构图

实物图1

实物图2

2.1雷达单元

测速仪工作原理为雷达所发射的高频信号从处于在其作用范围内的移动目标反射时改变频率值(多普勒效应)。这种多普勒频移正比于移动目标的速度。系统对车辆的图像抓拍是指系统运用各种触发方式对机动车辆进图像拍摄,选择可靠的抓拍触发方式是系统具有高抓拍率的保证。

SIA VDR-N-S型平板雷达,具有测速精度高,能提供狭窄的辐射场型,保证狭窄的探测区域。被监控的目标车进入狭窄的探测区域之后,雷达测速仪发送触发信号。在90%的情况下雷达在发送触发信号的时刻,对应的车辆所在的位置会在±1.5m的狭窄的探测区域之内。当被监控的目标车离开探测区域的时候,该雷达测速仪会确认目标车已离开探测区域,并发送目标车的速度和车长。这种工作模式保证触发信号和速度值属于同一辆车,保证了测速仪的捕获率。

SIA VDR-N-S型平板雷达技术参数如下:

SIA VDR-N-S型平板雷达

振荡频率:24.15GHz

发射功率:小于10mW

无线波瓣宽度:5度(-3db)

雷达反应时间:小于0.1秒

电源电压:直流10.5-14.5V

功耗:DC12V时,电流小于700mA

外型尺寸:115×96×67mm

重量:小于1.5kg

工作温度范围:-40~80摄氏度

相对湿度范围:0~90%(非凝结状态)

2.2摄像单元

采用大恒逐行扫描2/3"CCD机芯,具有1628×1236的图像分辨率。当检测到有超速车辆经过时,摄像单元拍摄1-3张高清照片可选,并在前端本地进行存储。摄像单元集成了最新的镜头设计技术,在偏振镜的帮助下,通过特殊的光学镀膜处理可使得在同一个照片中清晰的显示司机面容和车辆牌照。

2.3显示单元

高清晰高亮度的显示单元保证了在阳光照射下仍可以看清系统操作界面,采用密封面板使得系统具有可靠的防尘、防潮性能;触摸屏设计使得在野外实际操作时简单方便;平均无故障工作时间3万小时充分保证质量的稳定性。轻触式操作按键,可对亮度、对比度、色度等项目进行调整以满足各种使用要求。在非现场处罚使用条件下,调试完成后可按轻触式电源开关关闭显示器电源,以便节省电量。

显示单元技术参数如下:

■前面板:防尘航空铝面板

★安装方式:面板式安装

★输入信号:LVDS

★控制:前面板OSD

★电源供应:DC 12V电源

★系统支持:MS DOS, Linux Windows 98/SE, Windows NT4.0, Windows 2000, Windows XP

★尺寸(宽X高X厚):220X200X150mm

★视角:+75~-75°(H), +75~-60°(V)

★工作温度:0℃~60℃(32°F~140°F)

★储存温度:-20℃~60℃(-4°F~140°F)

★储存湿度:10%~95%@40℃

★振动:10~150Hz,0.15mm 10循环1G

★冲击:30G锋值加速度(11毫秒,周期)

★防水:前面板IP65认证

■LCD

★低工作电压和低功耗

★显示尺寸:6.5" TFT

★亮度:350cd/㎡

■触摸屏

★类型:类比式

★分辨率:连续

★透光率:79%以上

★控制:USB

★功耗:<5V@100Ma

★驱动:支持Linux windows 98/NT/2000/ME/XP

★寿命:100万次

2.4照明单元

在环境光线较弱或者夜晚时,要使数码相机拍摄到清晰的照片,需使用辅助光源进行补光,通常辅助光源可以选择恒定照明灯或者闪光灯。在夜间,闪光灯还可以有效抑止汽车大灯对成像质量的影响,在强光照射下(例如晴天正午),系统会自动调整摄像机的成像模式,抑止强光影响,保证图片曝光正常,成像清晰。

三、系统功能

3.1车辆捕获功能

系统设备采用工业化设计,一体化结构,使用方便,性能稳定可靠,设备具有隐蔽性,可在不同路段进行固定、移动两种方式进行执法拍摄。200万高清图片,满足单台设备同时抓拍1-6车道的需求。

3.2车辆图像抓拍功能

根据用户设定的限速值等参数(测速范围为5km/h~250km/h),系统能自动测量通过车辆的瞬时速度,可自动区分车辆行驶方向。根据不同路段规定设置限速值,准确拍摄超速车辆2张全景图片,所抓拍的图片能清晰显示车辆的车牌号码、车辆颜色、通行时间、地点、车速、限速、超速百分比以及行驶方向等。

3.3系统自动调节相机曝光功能

系统能够根据光线变化自动调节相机曝光, 在环境无雾包括雨雪天、晚间无路灯照明等情况下,采用频闪辅助光源进行补光,保证系统可在多种条件下清晰的抓拍违章车辆图像,包括车牌颜色、车辆类型及驾驶人员的面貌特征等。

3.4违法车辆数据的保存

系统对违法车辆进行抓拍时,每次拍摄1-3幅图片可选,拍摄形成的图像文件以JPEG格式本地保存,可存储上百万条数据信息。

3.5系统抓拍范围

系统抓拍车道范围达到6车道以上,测速范围为5km/h~250km/h,抓拍捕获率99%,并支持双向车道超低速车辆测速。

3.6多种人机交互接口

为便于操作使用,系统提供鼠标和触摸屏两种人机界面,采用全中文人性化的操作界面,界面设计简介易懂。为配合户外复杂的工作环境,设备采用触摸屏设计,并且可以通过液晶屏实时的观看到抓拍到的违法车辆图像及超速车辆通过的时间、速度等违法信息,也可通过LCD显示屏实时监控车道的动态信息。3.7大、小车型设置及报警功能

系统可以根据路段情况及大、小车型设置超速限值,当通过车辆的速度超过设定限值时,系统可现场报警,如配备无线传输模块也可远程报警。

3.8本地存储功能

系统配备500G大容量工业硬盘,可存储上百万张违法数据图片。

3.9违法数据统计检索功能

系统提供超速车辆统计功能,可统计出某一时间段内的超速违法车辆数量,并以报表的形式输出,为交通的有效管理提供依据,提高交通通行效率。同时提供信息检索功能,按不同权限对数据库进行操作,并提供模糊查询、数据备份。

3.10自动维护功能

系统具备自动维护功能,自动维护周期可根据需要进行配置,自动维护时对设备的参数重新初始化后可恢复到之前工作状态。

3.11软件功能及优势

系统基于高效的车牌识别软件具有超速自动抓拍并且可以设定大小车分别限速功能和限速值与起拍值分别设定功能,并且具有黑名单比对功能。车牌识别率高达百分之九十五以上。软件实现了实时视频观测和图片预览功能并可实时进

行录像、手动抓拍压线违停等所有其它违章行为。具有车流量统计、违法查询、抓拍统计防止人为删改等功能。

3.12USB自动备份功能

考虑到违法数据的获取方便,系统除具备通过网络的方式下载违法车辆图片或者视频文件外,还设计了USB下载功能,用户可根据需要方便的下载违法图片或者视频文件到USB移动硬盘或者U盘。只要将USB存储设备插入主机即可自动完成图片下载工作,无需复制粘贴操作。

3.14数据传输和远程维护功能

通过以太网、CDMA/GPRS及3G等技术实现数据传输、远程访问和远程系统维护功能,可观察设备内部温度、关键部件运行状态。

3.15用户管理功能

对用户权限进行等级划分,并可根据用户级别增加、删除和修改用户权限,不同等级的用户拥有不同的操作权限。在进行系统参数设置、图片删除、系统升级等关键操作时,必须进行用户权限校验。

3.16窄波束雷达测速更准,杜绝电子狗侦测

系统采用俄罗斯进口窄波平板雷达,测速精度完全符合国标要求,窄波束保证雷达不易被“电子狗”侦测到,并可同时监测来向和去向车辆。窄波束雷达之所以被称之为窄波雷达,是因为其自身雷达发射波瓣角非常窄,也被称之为单车道雷达测速仪,是从其运用的角度而言,因其波瓣角比较窄,雷达有效测量范围,只限定在一个车道,有效的避免了相邻车道的车辆速度干扰,所以被称之为单车道雷达,而其又被称之为平板雷达,是用户从外观上给出的直观的名称,普通雷达的发射天线是喇叭型,而窄波束雷达测速仪的发射天线是平板型的,比起普通的宽波雷达,其优越性在于其能有效的避免相邻车道车辆的速度干扰,确保执法取证的正确性、严肃性、唯一性。

3.17工业级器件及高可靠性接插件

功耗低,连接可靠,保证了系统在恶劣条件下全天候无故障运行系统在硬件电路设计上采用工业级器件,整机功耗低、性能可靠,锂电池工作时间可达8h。在连接器件的选择上,系统采用进口高可靠性接插件,如采用雷莫接插件和航空连接器件,进一步保证了设备的可靠性。

3.18多种组网方式

系统可以采用有线网进行组网,并可以使用CDMA/GRPS/3G等无线网络组建网络,最大程度的减少了对安装位置的依赖。下载数据方便,支持光纤有线无线及U盘等方式

3.19锂电供电,超低功耗

整机正常情况下平均功耗20W左右,标配1块锂电可正常使用10小时以上。

3.20固定式和便携式可相互转换

测速抓拍仪将高清抓拍摄像机、控制主机、液晶显示屏、电源、测速雷达、存储硬盘等设计为一体,整个系统结构紧凑。系统一体化的设计可使用户方便的在固定式和便携式间相互转换。

移动转固定式使用

4.10图片防篡改

系统采用200万像素高清CCD摄像抓拍单元对违法车辆进行抓拍取证,图片上记录车辆速度、抓拍时间、抓拍地点、行驶方向、防伪码、设备编号等信息;并且图片内嵌水印功能,任何对图片的篡改都可以被检测到,最大程度的保证了图片的有效性。

4.11实点及虚点结合的方式节省造价

根据国际上测速仪的使用经验,实点及虚点的合理比例为4:1,平均25公里布置一个实点,平均5公里布置一个虚点,在每个箱体前后500米各立一块警示牌,一年之内就可以治理好该路段的超速问题,降低事故。全嵌入式一体机在任何一个箱体内轮换都非常方便,为整个项目大大的节约了成本,提升了效果。

同时配套使用简单实用的车流量统计分析系统,通过分析触发信号生成的log文件中记录的经过监测点的所有车辆的时间、速度等信息,能够统计分析出详尽的总流量、违法流量等统计图表和报表。了解这些信息为设备在实点虚点轮换提供决策依据,最大可能的用现有设备扩大警示范围,发挥利用效能。

五、系统性能指标

5.1嵌入式超速抓拍仪

◆抓拍捕获率:≥99%;

◆测速范围:5—250km/h;

◆测速误差:<100km/h时,误差不超过-1km/h~0km/h,

≥100km/h时,误差不超过-3%~0%;

◆雷达精度:±1km/h;

◆雷达震荡频率:24.15GHz;

◆雷达发射功率:≤10mW;

◆无线波瓣宽度:5度(-3dB);

◆雷达反应时间:<0.1秒;

◆摄像机:200万CCD逐行扫描;

◆快门速度:1/50秒~ 1/10000秒;

◆镜头接口:C类型;

◆监控车道:1~6车道;

◆抓拍延时:0.2秒;

◆记录模式:1-3(可选)张/车;

◆存储图像容量:500G;

◆抓拍图片分辨率:1628*1236;

◆支持功能:增加测距(距离抓拍点的位置)、测车长的功能。

◆图片压缩方式:JPEG;

◆报警输入:2路;

◆报警输出:1路;

◆数据接口:闪光灯接口1个,USB2.0接口2个,10/1000M以太网口1

个,CDMA/GPRS/可选;

◆传输方式:USB、INTER可选;

◆主机功耗:<25W;

◆工作电压:DC12V;

◆平均无故障时间:MTBF≥30000h;

◆平均修复时间:MTTR≤30min;

◆接地电阻:≤4Ω;

◆工作温度:-30℃~+80℃;

◆相对湿度:<95%,无冷凝;

◆尺寸:220*200*150(长*高*宽,单位:毫米);

◆重量:4.2kg;

5.2频闪闪光灯

◆闪光灯光源寿命:300万次;

◆回电时间(全光):≤0.1s;

◆色温:5500K±200K;

◆照射角度:≥55°;

◆闪光灯防护等级:IP65;

◆接地电阻:≤4Ω;

◆工作温度:-30℃— +70℃;

◆相对湿度:<95%;

◆工作电压:AC220V±20%;

六、测速抓拍系统现场实景案例图片

侧装式DASLZ-15(B)测速电子警察产品报价清单

项目名称项目特征单

数量

嵌入式抓拍工业控制主机1.采用TI公司6467双核(ARM+DSP)处理器;

2.网络接口2个,100M/1000M自适应;

3.串行接口6个,标准RS-232/RS-485接口;

4.16路IO输入输出,输入输出可编程控制;

https://www.sodocs.net/doc/6314516010.html,B2.0接口7个;

6.内置硬件看门狗电路,能够死机自动重

启;

7.双核四线程1.8GHz主频CPU,2GB内存处理器,500G.SA TA

硬盘接口;

8.DC12V电源供应;

9.功耗≤20W

台 1

窄波多车道雷达 1.触发位置可调;

2.测速距离范围≧500m;

3.天线波束宽度2.2m;

4.速度误差≦±0.1km/h;

5.测速范围5km/h - 300km/h;

6.雷达定位车辆的一致性:≦±0.1m;

7.DC12V电源供应;

8.反应时间:10-25ms

台 1

200万像素工业高清摄像机.传感器为1/1.8" Progressive Scan CCD;

2.分辨率为200万像素;1628*1236像素比

3.内置高性能DSP处理器;

4.最低照度0.3Lux@(F1.2,AGC ON);

5.快门1微妙至125毫秒可调;

6.镜头接口为C/CS接口;

7.高清视频压缩标注:Motion-JPEG压缩视频

流;

8.图像格式:JPEG

9.帧率全分辨率15帧,800x560 30帧

10.支持SD/SDHC存储;

11.支持TCP/IP,HTTP,DHCP,UDP,DHCP,PPPoE

协议;

12.支持视频检测,外部IO触发,网络触发,

车牌识别,红绿灯状态输入,补光灯同

步;

13.1个RJ45 10M/100M自适应以太网口,1个

RS-232/RS-485接口;

台 1

14.4路外触发输入;

15.3路(光耦隔离)闪光灯同步输出控制;

16.供电电压12VDC

个 1 百万像素高清镜头 1.12-36mm手动可调焦距;

2.光圈手动可调;

主机箱三防金属机箱个 1 全自动超速抓拍、录像、车牌识别软件组套套 1 超速自动抓拍软件

及车牌识别软件

FMCW毫米波防撞雷达系统

FMCW毫米波防撞雷达系统 汽车防碰撞系统对提高汽车行驶安全性十分重要,该系统的研究一直倍受重视。从1971年开始,相继出现过超声波、激光、红外、微波等多种方式的主动汽车防碰撞系统,但是以上系统均存在一些不足,未能在汽车上大量推广应用。随着各国高速公路网的快速发展,恶性交通事故不断增加,为减少事故,先后采用行驶安全带、安全气囊等保护措施,但这些技术均为被动防护,不能从根本上解决问题。毫米波是指波长介于1~10mm之间的电磁波,其RF带宽大,分辨率高,天线部件尺寸小,能适应恶劣环境,所以毫米波雷达系统具有重量轻、体积小和全天候等特点,“主动汽车毫米波防碰撞雷达系统”成为近年来国际上研究与开发的热点,并已有产品开始投入市场,前景十分看好。 本文介绍了主动汽车防碰撞毫米波雷达的原理,报导了我们研制出的SAE-100型毫米波防碰撞雷达样机。 汽车防撞毫米波雷达系统原理 主动汽车防碰撞是以雷达测距、测速为基础的。防撞雷达系统实时监测车辆的前方,当有危险目标(如行驶前方停止或慢行的车辆)出现,雷达系统提前向司机发出报警,使司机及时作出反应,同时雷达输出信号到达汽车控制系统,根据情况进行自动刹车或减速。 毫米波防撞雷达系统有调频连续波(FMCW)雷达和脉冲雷达两种。对于脉冲雷达系统,当目标距离很近时,发射脉冲和接收脉冲之间的时间差非常小,这就要求系统采用高速信号处理技术,近距离脉冲雷达系统就变的十分复杂,成本也大幅上升。因而汽车毫米波雷达防撞系统常采用结构简单、成本较低、适合做近距离探测的调频连续波雷达体制。 毫米波FMCW雷达系统结构 FMCW汽车雷达系统如图1所示,包括天线、收发模块、信号处理模块和报警模块或汽车制动装置。 射频收发前端是雷达系统的核心部件。国内外已经对前端进行了大量深入研究,并取得了长足的进展。已经研制出各种结构的前端,主要包括波导结构前端,微带结构前端以及前端的单片集成。国内研制的射频前端主要是波导结构前端。一个典型的射频前端主要包括线性VCO、环行器和平衡混频器三部分,如图2所示。前端混频输出的中频信号经过中频放大送至后级数据处理部分。数据处理部分的基本目标是消除不必要信号(如杂波)和干扰信号,并对经过中频放大的混频信号进行处理,从信号频谱中提取目标距离和速度等信息。

固定流动电子狗测速原理

固定流动电子狗测速原理 什么是电子狗?反流动测速雷达的灵敏度越高是否越好?好启点为你介绍固定流动电子狗是怎样来测速的。 电子狗的使用是越来越广,简直是到了随处都可以看到电子狗身影的地步,而电子狗确实也不失大众所望,给车主带来很多便利,国内的电子狗的行业已经有长足的进步,而电子狗也迎来了它自己的春天。 电子狗是一种车载装置,作用是提前提醒车主电子眼或测速雷达的存在,以便车主减速行驶,可 减少甚至防止因为超速或违规而被罚款和扣分,让驾驶者安心驾驶,安全驾驶,尽得驾驶真趣,又叫安全驾驶预警机。 很多人都知道电子狗中有一款电子狗叫雷达流动测速电子狗的,它的反流动测速雷达是非常强悍的,雷达流动测速电子狗是一种检测雷达流动测速仪的设备,安装在汽内,可以在一定距离内检测到周围是否有雷达流动测速仪。在汽车在行使过程中,当汽车靠近雷达流动测速仪时雷达流动测速电子狗则会发出声音作为提示,司机可以降低车速。 那是不是反流动测速雷达的灵敏度越高越好呢?普遍上认为反流动测速雷达的灵敏度越高越好,但是考核反流动测速雷达的指标除了灵敏度外,还要考核反流动测速雷达的误报率。因为,在我们的周围存在许多电信号,随着灵敏度的提高,误报的比率也会提高。单纯在高速路行使还好,一旦进入城市就如同草木皆兵,到处都响,而城市的边缘是个模糊的概念,所以使用City模式会变得复杂。因此,并不是灵敏度越高越好,重要的是能够提供足够的预警距离,根据实际使用状况100-400米的范围就可以满足使用要求,从100公里减速到0通常需要60米左右的距离,而超速时并不需要加速到0,只要减速到正常水平有2、3秒时间就足够了,所以驾驶员也需要不断地提高使用技巧。 电子狗=固定+流动介绍: 目前市场大部分的电子狗都是固定+流动二合一电子狗。 一.固定:指凡是能看见的交警道路测速、拍照的所有不动的固定电子眼,包括:红绿灯照相、压线照相、电子监控等等!早期厂家通过在各固定电子眼的周边埋天线的方式发射信号,电子狗里面安装接收电路的方式来报警,由于需要定期给发射器换电池,其维护成本繁重!故该方式已淘汰! 目前电子狗的固定报警全采用GPS数据播报,厂家采集车队到全国各地的固定电子眼进行经、纬度坐标采集,进行统一编程,储蓄到电子狗的内存芯片里。顾客汽车的里电子狗与卫星通讯,准确找到目前的位置,当汽车行驶到前方电子眼的时候,储存器内的数据就会播报该电子眼的详细数据,例如:“前方为固定测速路段,限速80公里”等等。固定播报的优劣取决于各厂家采集电子眼数据的详细程度,另外每年新增的电子眼,也需要厂家定时去新增采集,目前国内有采集实力的厂家为:好启点、征服者、先知、善领。 固定播报的优劣另外还取决于厂家是否定期升级网站数据,升级的越频繁,代表数据的更新程度越快!好启点飞机电子狗,全国数据即时采集,时时更新,数据更即时。 二.流动:指道路上面交警使用的流动警车雷达、流动架接雷达、手持测速雷达、固定测速雷达。这些设备都会通过发射雷达波测试目标车辆的速度,如果超度将被拍罚款和扣分!目前测速雷达所用的频段主要有:X、K、Ka、Ku、LASER等。由于这些测速设备没有固定的位置,无法采集坐标进行固定播报,但它们必须发射雷达波,因此电子狗内部就安装了接收雷达波的雷达模块,当汽车安装电子狗行驶在道路上,电子狗侦测到前方2000米处有流动雷达波测速,则立即报警。播报方式为:“侦测到。。。频段。。。滴、滴、滴。。。”流动效果的好坏有很大区别,好的雷达2000米就可以提前报警。而差的雷达可能离目标200米才报警!好启点采用韩国最新技术8G跳频雷达以及美国相控阵雷达芯片,让车主们原理罚单。 好启点飞机电子狗特点: 国家级保护商标西南销量第一 固定测速流动测速 100%私模产品独享尊贵 好启点品牌突破100万用户 好启点数据西南地区连续三年第一 功能升级独有免费增值服务

Ghz车载雷达原理与设计大报告

超高速通信电路与系统技术概论课程报告小组成员: 学院:信息科学与工程学院 指导老师: 二零一七年六月 24GHz车载雷达原理与设计 1.研究背景与车载雷达的发展与应用 1.1研究背景 自从1904年德国工程师里斯蒂安在柏林皇家专利会上取得了雷达设计的发明专利以后,雷达的发展可谓是日新月异。雷达最初的目的在于无线电检测和测距,辐射出能量并检测反射回来的波,根据时间差可计算出与目标物体之间的距离。现在技术较为成熟的是调频连续波雷达,一个频率连续变化的波,其中一部分波束信号作为参考物,另一部分波束信号辐射出去,经过目标物体局部反射后的信号与参考信号进行混频从而产生一个差频信号,通过信号处理则可以得到距离。这种技术不仅精度极高,同时成本较低,因此广为流行。 据调查统计,追尾是交通事故最主要的发生形式,尤其是高速公路上的超速现象和雨雪雾霾天气更是事故的导火索。交通事故大多数是驾驶员没有意识到前方车辆距离自身车辆太近或者完全来不及反应所造成的,如果驾驶员能提前0.5秒意识到危险的靠近,那么交通事故将减少至少一半。对此,目前已采取了许多措施,其中主要有安全带、安全气囊和保险杠等,但这都只是“治标不治本”。要想从根本上解决问题,汽车安全间距检测系统的存在必不可少。 汽车安全间距检测系统主要的作用为停车辅助和防止碰撞。停车辅助是指驾驶员在倒车时倒车雷达会帮助他们探测后视镜看不见的物体,通常是用来探测后方物体的距离,当距离过小存在危险时,警报会发出声响提醒驾驶员注意,通常距离越小警报声显得越危急。除此之外,碰撞避免是指在碰撞快要发生时发出警报提醒驾驶员及时作出应对,减少驾驶员的反应时间,极大程度地避免了碰撞的发生。该系统同样也是以雷达为基础,雷达如图1.1所示,它不断探测周围车辆的距离和速度,不仅会发出警报,必要时也会自动拐弯或是减速。由此可见,汽车安全间距检测系统对于减少交通事故的发生起着不可替代的关键作用。 图1-1防撞雷达示意图 由于交通事故率每一年都在上涨,汽车雷达得到了业内人士越来越多的关注,从上个世纪70年代至今,渐渐出现了超声波、激光、红外、微波等多种方式的汽车雷达系统。

雷达测速试验报告

雷达测距实验报告 1. 实验目的和任务 1.1 实验目的 本次实验目的是掌握雷达带宽同目标距离分辨率的关系,通过演示实验了解雷达测距基本原理,通过实际操作掌握相关仪器仪表使用方法,了解雷达系统信号测量目标距离的软硬件条件及具体实现方法。 1.2 实验任务 本次实验任务如下: (1)搭建实验环境; (2)获得发射信号作为匹配滤波的参考信号; (3)获得多个地面角反射器的回波数据,测量其各自位置,评估正确性; (4)获得无地面角发射器的回波数据,与(3)形成对比,并进行分析。 2. 实验场地和设备 2.1 实验场地和环境条件 本次实验计划在雁栖湖西校区操场进行,环境温度25℃,湿度40%。 实验场地如上图所示,除角反射器以外,地面上还有足球门、石块以及操场上运动的人等比较明显的目标。

2.2 实验设备 实验所需的主要仪器设备如下: (1) 矢量信号源SMBV100A ; (2) 信号分析仪FSV4; (3) S 波段标准喇叭天线; (4) 角反射器 (5) 笔记本电脑 2.3 设备安装与连接 设备连接关系图如下: 雷达波形文件雷达回波数据 时钟同步 计算机终端 SMBV100A 矢量信号源 FSV4信号分析仪 角反射器 交换机 图1 实验设备连接示意图 其中:蓝色连接线表示射频电缆,灰色连接线表示网线。 3. 实验步骤 3.1 实验条件验证 检查仪器工作是否正常,实验环境是否合适。 3.2 获取参考信号 1. 调节信号源参数,生成线性调频信号,作为匹配滤波的参考信号,然后通过射频电缆将信号源与频谱仪相连,利用频谱仪的A/D 对线性调频信号采样,并通过网线将数据传输给计算机,并保存为“b1.dat ”。参考信号的主要参数如下所示:

DSP多普勒雷达测速测距

DSP 实验课大作业设计 一 实验目的 在DSP 上实现线性调频信号的脉冲压缩、动目标显示(MTI )和动目标检测(MTD),并将结果与MATLAB 上的结果进行误差仿真。 二 实验内容 2.1 MATLAB 仿真 设定带宽、脉宽、采样率、脉冲重复频率,用MATLAB 产生16个脉冲的LFM ,每个脉冲有4个目标(静止,低速,高速),依次做 2.1.1 脉压 2.1.2 相邻2脉冲做MTI ,产生15个脉冲 2.1.3 16个脉冲到齐后,做MTD ,输出16个多普勒通道 2.2 DSP 实现 将MATLAB 产生的信号,在visual dsp 中做脉压,MTI 、MTD ,并将结果与MATLAB 作比较。 三 实验原理 3.1 脉冲压缩原理及线性调频信号 雷达中的显著矛盾是:雷达作用距离和距离分辨率之间的矛盾以及距离分辨率和速度分辨率之间的矛盾。雷达的距离分辨率取决于信号带宽。在普通脉冲雷达中,雷达信号的时宽带宽积为一常量(约为1),因此不能兼顾距离分辨率和速度分辨力两项指标。脉冲压缩(PC )采用宽脉冲发射以提高发射的平均功率,保证足够的最大作用距离,而在接收时则采用相应的脉冲压缩法获得窄脉冲,以提高距离分辨率,因而能较好地解决作用距离和分辨能力之间的矛盾。 一个理想的脉冲压缩系统,应该是一个匹配滤波系统。它要求发射信号具有非线性的相位谱,并使其包络接近矩形;要求压缩网络的频率特性(包括幅频特性和相频特性)与发射脉冲信号频谱(包括幅度谱和相位谱)实现完全的匹配。 脉冲压缩按信号的调制规律(调频或调相)分类,可分为以下四种: (1)线性调频脉冲压缩 (2)非线性调频脉冲压缩 (3)相位编码脉冲压缩 (4)时间频率编码脉冲压缩 本实验采用的是线性调频脉冲压缩。 线性调频信号是指频率随时间的变化而线性改变的信号。线性调频可以同时保留连续信号和脉冲的特性,并且可以获得较大的压缩比,有着良好的距离分辨率和径向速度分辨率,所以将线性调频信号作为雷达系统中一种常用的脉冲压缩信号。 接收机输入端的回波信号是经过调制的宽脉冲,所以在接收机中应该设置一个与发射信号频率匹配的滤波器,使回波信号变成窄脉冲,同时实现了宽脉冲的能量和窄脉冲的分辨能力。解决了雷达发射能量及分辨率之间的矛盾。 匹配滤波器是指输出信噪比最大准则下的最佳线性滤波器。根据匹配理论, 匹配滤波器的传输特性: 0)()(*t j e KS H ωωω-=

雷达测速抓拍系统设计方案

雷达测速抓拍系统设计方案 技 术 设 计 方 案 介 绍 设计单位:广州莱安智能化系统开发有限公司 网站:.cn 地址:广州市天河区中山大道建中路5号天河软件园海天楼3A06 用户服务中心:Tel: 联系人:周先生:陈先生: 欢迎来电索取详细方案或来电洽谈业务,免费提供设计方案,价格实惠 公司简介 广州莱安智能化系统开发有限公司成立于是2002年,专业从事数字网络视频监控系统、智能视频分析、机房动力环境监控、机房建设、雷达测速、闯红灯电子警察抓拍、电子治安卡口、智能控制等智能化系统开发的大型综合型企业,欢迎来电洽谈业务! 质量方针:以人为本、质量第一 公司成立至今,坚持以领先的技术、优良的商品、完善的售后服务、微利提取的原则服务于社会。我公司为您提供的产品,关键设备采用高质量进口合格产品,一般设备及材料采用国内大型企业或合资企业的产品,各种产品企业都通过ISO9001国际质量体系认证。有一支精良的安防建设队伍,由专业技术人员为您设计,现场有专业技术人员带领施工,有良好职业道德施工人员。我公司用户拥有优质的设计施工质量和优质的售后服务保障。 客户哲学:全新理念、一流的技术、丰富的经验,开创数字新生活 专注——维护世界第一中小企业管理品牌、跟踪业界一流信息技术、传播经营管理理念是莱安永恒不变的追求,莱安坚持“全新的

理念、一流的技术、丰富的经验、优质的服务”,专注于核心竞争力的建设是莱安取得今天成功的根本,也必将是莱安再创辉煌的基础! 分享——“道不同,不相谋”,莱安在公司团队之间以及与股东、渠道伙伴、客户之间均倡导平等、共赢、和谐、协同的合作文化,在迎接外部挑战的过程中,我们共同期待发展和超越,共同分享激情与快乐!“合作的智慧”是决定莱安青春永葆的最终动力! 客户服务:以高科技手段、专业化的服务为客户创造价值 分布于神州大地各行业中的800万中小企业是中国最具活力的经济力量,虽然没有强势的市场影响力和雄厚的资金储备,但无疑,个性张扬的他们最具上升的潜力,后WTO时代市场开放融合,残烈的竞争使他们的发展更加充满变数。基于以上认识,在智能化设备管理市场概念喧嚣的热潮中,独辟“实用主义”产品哲学,莱安将客户视为合作关系,我们提供最为实用的产品和服务,赢得良好的口碑。我们认为,用户企业运做效率的提升是莱安实现社会价值的唯一途径。 承蒙广大用户的厚爱,我公司得以健康发展。在跨入新的世纪后,公司将加快发展速度,充分发挥已有资源,更多地开展行业用户的服务工作,开创新的发展局面。 我公司全体员工愿与社会各界携手共创未来!我们秉承真诚合作精神向广大客户提供相关的系统解决方案,设备销售及技术支持,价格合理,欢迎来人来电咨询、洽谈业务! 雷达测速抓拍系统设计方案 一、系统图 根据客户需求,本系统采用前端抓拍方式,前端配备抓拍机箱及主机,这是目前道路雷达测速抓拍系统的主流方式。本公司配置的主机可以监测抓拍两车道。每个超速监控点的每个方向只需配备2台特写摄像机,1台全景摄像机。 系统优势: 1、系统采用了单车道测速雷达,增强了可靠性,性能稳定性高。

24GHz汽车毫米波雷达实验报告

24GHz汽车毫米波雷达实验报告 是德科技射频应用工程师王创业1. 前言 汽车毫米波雷达越来越多的被应用在汽车上面,主要作为近距离和远距离探测,起到防撞、辅助变道、盲点检测等作用。随着器件工艺和微波技术的发展,毫米波雷达产品越来越小。俗话说:“麻雀虽小,五脏俱全”,同样汽车毫米波雷达作为典型的雷达产品,也包含收发天线、发射部分、接收部分、DSP部分。典型原理框图如图1所示。汽车毫米波雷达的性能指标主要体现在测速精度、定位精度、距离分辨率、多目标识别等方面,要实现这些性能和功能,首先要做好整体系统的设计和仿真,其次对于各功能部分的性能指标要严格把控测试,最后要在实际现场环境完成测试考核。 汽车毫米波雷达体制上面主要有线性调频连续波FMCW体制雷达、频移键控FSK体制雷达、步进调频连续SFCW体制雷达。不同体制雷达在产品实现复杂程度和应用上都是有区别的。FMCW体制雷达可以同时探测到运动目标和静止目标,但是不可以同时探测多个运动目标。电路需要比较大的带宽。

FSK体制雷达,可以同时探测并且正确区分开来多个运动目标,但是不可以正确测量静止目标。电路带宽比窄,系统响应捕获比较慢,成本比FMCW体制要低很多。SFCW体制雷达,可以同时探测多个静止和运动的目标,并且将各个目标正确区分开来。SFCW体制雷达具有更为复杂的调制波形,信号处理也更为复杂,产品实现成本高。 2.实验目的 在汽车毫米波雷达系统研制过程中,经常会碰到各式各样的问题,譬如系统波形的选择和设计、系统链路的设计、信号处理算法的选择、微波电路的设计调试、天线的设计。主要的问题主要体现在系统方案、处理算法模拟、微波电路指标调试及对系统性能的影响上。典型的例子,在FMCW雷达系统,雷达探测距离分辨率不仅与信号的调制带宽有关,还与FMCW调制的线性度有关。 利用是德科技平台化解决方案,即软件+硬件+工程师,可以很容易的实现雷达系统设计仿真、处理算法验证、微波电路设计测试、天线设计测试。基于以上的问题,该实验主要实现以下三个目的: 1)软件硬件结合,SystemVue+仪表实现各类信号的产生; 2)系统设计仿真、算法验证 3)VCO线性调制度分析 4)场景信号录制回放和信号分析 3.实验要求 该实验采用FMCW雷达体制,结合SystemVue软件和仪表实现以下功能: 1)汽车雷达信号产生 a.24GHz标准雷达信号产生:Triangle调制信号、Sawtooth调 制信号

多普勒雷达测速

多普勒雷达 多普勒雷达测速是一种直接测量速度和距离的方法。在列车上安装多普勒雷达,始终向轨面发射电磁波,由于列车和轨面之间有相对运动,根据多普勒频移效应原理,在发射波和反射波之间产生频移,通过测量频移就可以计算出列车的运行速度,进一步计算出列车运行的距离。克服了车轮磨损、空转或滑行等造成的误差,可以连续测速、测向和定位。 多普勒效应 当发射源(或接收者)相对介质运动时,接收者接收到的电磁波的频率和发射源的频率不同,这种现象被称为多普勒效应。 物体辐射的波长因为光源和观测者的相对运动而产生变化。在运动的波源前面,波被压缩,波长变得较短,频率变得较高(蓝移)。 在运动的波源后面,产生相反的效应。波长变得较长,频率变得较低(红移)。 波源的速度越高,所产生的效应越大。根据光波红/蓝移的程度,可以计算出波源循着观测方向运动的速度。 多普勒效应 假设原有波源的波长为λ,频率为f0,介质中波速为c则 (1)当波源静止不动Vs=0,观察者以V0相对波源移动(向波源方向) (2)当观察者静止不动V0=0,波源以Vs相对观察者移动(向观察者方向) (3)当波源移动速度为Vs,观察者移动速度为V0,相对运动,此时介质中的波长和观察者接收到的波的个数都有变化 多普勒雷达的测速原理 多普勒雷达法利用多普勒效应测量列车运行速度。在车头位置安装多普勒雷达,雷达向地面发送一定频率的信号,并检测反射回来的信号。由于列车的运动会产生多普勒效应,所以检测到的信号其频率与发送的信号频率是不完全相同的。如果列车在前进状态,反射的信号频率高于发射信号频率;反之,则低于发射信号频率。而且,列车运行速度越快,两个信号之间的频率差越大。通过测量两个信号之间的频率差就可以获取列车的运行方向和即时运行速度,对列车的速度进行积分就可得到列车的运行距离。 多普勒雷达的测速原理 雷达发射电磁波的频率为F,在介质中的传播速度为c,发射角为a1,当雷达以速度V平行于反射面运动(反射面静止),则在反射面接收到的波频率为f1 而此时反射面把波反射回去,相当于波源(静止),雷达接收反射回来的波,相当于观察者(平行反射面速度为V),由于雷达的运动,入射角为a2,则雷达接收到的波频率为f2 多普勒雷达的测速原理 发射波与接收波的频移为 由于雷达运动的速度V远远小于电磁波的速度c,可以近似认为入射角a2=a1,则频移将上式展为泰勒级数,并舍去高次项,可得 也就是说,发射波与入射波之间的频移fr与雷达的速度V沿发射波方向的分量的大小成正比。如果发射角a1固定,则频移fr就是与雷达速度V成正比,只要测量出频移fr 的值,就可以计算出雷达的运动速度V 误差来源 ?为了简化计算,减少处理难度,一般都会取简化后的公式来计算,然而,由于简化公式是通过舍入的方法进行简化得,简化公式与原公式之间存在一定误差,这样在使用简化公式之前就要先考虑这个误差对计算的影响。 ?列车运行的过程中,由于轨面不平整或其他原因,列车会产生振动,但列车的振动基本上都是车体的高频上下小幅度运动

嵌入式雷达测速系统解决方案

雷达测速文件编号:(由系统方案对外发布时统一管理) 嵌入式雷达测速系统 解决方案 版本号:Ver 1.0 编写人:应健 编写时间:2012.1.5 部门名:产品中心-智能交通 审核人: 审核时间:

·修订历史(Revision history)

目录 目录 (2) 1.概述 (5) 1.1前言 (5) 1.2设计依据 (5) 1.3设计原则 (6) 2系统优势 (8) 2.1全嵌入式结构稳定可靠 (8) 2.2精美制造工艺集成度高 (8) 2.3多种人机接口操作简便 (9) 2.4两张高清照片取证严谨 (10) 2.5高性能窄波雷达测速精确 (10) 2.6高可靠接插件质量保证 (11) 2.7全模块化设计维护便利 (12) 2.8多种组网方式灵活简便 (12) 2.9超低功耗设计节能减排 (12) 2.10固定便携转换操作简便 (13) 2.11图片防篡改设计安全可靠 (13) 2.12虚/实结合安装节省造价 (14) 3系统方案介绍 (15) 3.1原理简介 (15) 3.2系统组成 (16)

3.2.1雷达单元 (17) 3.2.2 摄像单元 (18) 3.2.3 显示单元 (19) 3.2.4 补光单元 (20) 3.2.5 操作单元 (21) 3.3系统部署结构 (22) 3.4系统组网设计 (24) 3.5系统供电设计 (29) 3.6数据接入设计 (32) 4系统功能 (46) 4.1车辆捕获功能 (46) 4.2图像抓拍功能 (46) 4.3车牌信息识别功能 (46) 4.4曝光自动调节功能 (48) 4.5测速范围设置功能 (48) 4.6车型设置及报警功能 (48) 4.7本地存储功能 (48) 4.8数据检索功能 (48) 4.9日志查询功能 (49) 4.10自动维护功能 (49) 4.11软件升级功能 (49) 4.12USB备份功能 (49) 4.13远程维护功能 (49) 4.14用户管理功能 (49) 5系统技术指标 (51) 6系统配置 (52) 6.1便携式测速仪清单(单套) (52) 6.2固定式测速仪清单(单套) (52) 7实际案例 (53) 7.1 浙江省高速总队项目 (53) 7.1.1项目简介 (53) 7.1.2实拍图片 (54) 7.2广西省高速总队项目 (56) 7.2.1项目简介 (56) 7.2.2实拍图片 (57)

一种毫米波防撞雷达频域恒虚警处理新方法

第12卷第21期2012年7月1671—1815(2012)21-5158-05 科学技术与工程 Science Technology and Engineering Vol.12No.21Jul.2012 2012Sci.Tech.Engrg. 一种毫米波防撞雷达频域恒虚警处理新方法 陆小凯 曹 宁 (河海大学计算机与信息学院,南京211100) 摘要针对毫米波防撞雷达中目标信号检测虚警率高的问题,提出一种基于有序统计量在瑞利分布杂波背景下的频域恒 虚警检测(OS -CFAR )的方法。该方法通过对雷达差频信号的频谱进行检测,对检测后的信号进行杂波对消,使系统从雷达中频信号的频谱中检测出目标信号的谱线并滤除杂波。准确检测目标的同时去除干扰,从而降低目标信号检测虚警率。仿真结果证实了该方法适用于多目标干扰环境,能有效对抗杂波干扰,具有良好的虚警控制能力,提高了雷达系统的有效性。关键词 防撞雷达 恒虚警 信号检测杂波对消中图法分类号 TN958.5; 文献标志码 A 2012年4月9日收到 第一作者简介:陆小凯(1988—),男,江苏兴华人,硕士研究生,研究方向:毫米波防撞雷达信号处理关键技术。 随着我国高速公路的飞速发展,汽车碰撞事故越来越多。据统计,车辆碰撞追尾事故占公路交通事故总量的90%左右 [1] 。汽车防撞雷达系统,作为 汽车主动安全控制研究领域的一大热点[2] ,可以辅 助汽车驾驶者对影响公路交通安全的人、车、道路环境进行实时监控,在危急情况下主动干涉驾驶、辅助驾驶者做出正确处理,防止汽车相撞事故。由于毫米波具有分辨率高、截获概率低、天线部件尺寸小以及抗干扰能力强等一系列优点,汽车防撞雷 达系统广泛采用调频连续波(FMCW )体制 [3,4] 。近年来,美国、日本和德国在车载防撞雷达领域已有部分成果,先后成功研制了多种频率的FM-CW 汽车防撞雷达系统[5]。在毫米波汽车防撞雷达信号处理领域,没有固定的方法可循。目前常用的方法是对原始信号进行平均、滤波及频谱分析等 [6] 。在实际使用中,由于道路环境的千变万化, 信号往往会淹没在噪声中。在信号检测时,难免出现虚警现象 [7] 。针对这个问题,本文提出一种基于 有序统计量的频域恒虚警检测(OS-CFAR )和杂波对消的方法。该方法可以对目标进行比较准确的判别同时去除干扰目标,从而降低虚警率,提高了 雷达系统的抗干扰能力。 1防撞雷达系统概述 毫米波防撞雷达的基本原理是将发送信号和 回波信号进行混频,该差频信号中含有目标信息,对该信号进行处理分析即可得到目标的相对距离和相对速度 [8] 。其原理图如图1所示 。 图1 FMCW 原理示意图 图1中, f c 为调制信号的中心频率,B 为调制带宽, t d 为接收信号和发射信号的延迟时间,T m 为调制周期。当目标相对静止时,回波与发射波形仅存在一个时间上的延时。当目标相对运动时,除时间上的延时外,还包含一个多普勒频偏f d 。差频信号在调频上升段和下降段的频率分别为f b +和f b -,可

雷达测速与测距 ()

雷达测速与测距 GZH 2016/3/29 系统流程图 模块分析 1 脉冲压缩 1.1 原理分析 雷达的基本功能是利用目标对电磁波的散射而发现目标,并测定目标的空 间位置。雷达分辨力是雷达的主要性能参数之一。所谓雷达分辨力是指在各 种目标环境下区分两个或两个以上的邻近目标的能力。一般说来目标距离不 同、方位角不同、高度不同以及速度不同等因素都可用来分辨目标,而与信 号波形紧密联系的则是距离分辨力和速度(径向)分辨力。两个目标在同一角 度但处在不同距离上,其最小可区分的距离称为距离分辨力,雷达的距离分 辨力取决于信号带宽。对于给定的雷达系统,可达到的距离分辨力为 (1.1) 其中c为光速,为发射波形带宽。 雷达的速度分辨率可用速度分辨常数表征,信号在时域上的持续宽度越大, 在频域上的分辨率能力就越好,即速度分辨率越好。 对于简单的脉冲雷达,,此处,为发射脉冲宽度。因此,对 于简单的脉冲雷达系统,将有 (1.2)在普通脉冲雷达中,由于信号的时宽带宽积为一常数(约为1),因此不 能兼顾距离分辨力和速度分辨力两项指标。 雷达对目标进行连续观测的空域叫做雷达的探测范围,也是雷达的重要 性能数,它决定于雷达的最小可测距离和最大作用距离,仰角和方位角的探 测范围。而发射功率的大小影响作用距离,功率大则作用距离大。发射功率 分脉冲功率和平均功率。雷达在发射脉冲信号期间 内所输出的功率称脉冲功 率,用Pt表示;平均功率是指一个重复周期Tr内发射机输出功率的平均值, 用Pav表示。它们的关系为 (1.3) 脉冲压缩(PC)雷达体制在雷达脉冲峰值受限的情况下,通过发射宽脉 冲而获得高的发能量,以保证足够的最大作用距离,而在接收时则采用相应

多普勒雷达测速

多普勒雷达测速 集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

多普勒雷达多普勒雷达测速是一种直接测量速度和距离的方法。在列车上安装多普勒雷达,始终向轨面发射电磁波,由于列车和轨面之间有相对运动,根据多普勒频移效应原理,在发射波和反射波之间产生频移,通过测量频移就可以计算出列车的运行速度,进一步计算出列车运行的距离。克服了车轮磨损、空转或滑行等造成的误差,可以连续测速、测向和定位。 多普勒效应 当发射源(或接收者)相对介质运动时,接收者接收到的电磁波的频率和发射源的频率不同,这种现象被称为多普勒效应。 物体辐射的波长因为光源和观测者的相对运动而产生变化。在运动的波源前面,波被压缩,波长变得较短,频率变得较高(蓝移)。 在运动的波源后面,产生相反的效应。波长变得较长,频率变得较低(红移)。 波源的速度越高,所产生的效应越大。根据光波红/蓝移的程度,可以计算出波源循着观测方向运动的速度。 多普勒效应 ,介质中波速为c则 假设原有波源的波长为λ,频率为f (1)当波源静止不动Vs=0,观察者以V0相对波源移动(向波源方向) (2)当观察者静止不动V0=0,波源以Vs相对观察者移动(向观察者方向) (3)当波源移动速度为Vs,观察者移动速度为V0,相对运动,此时介质中的波长和观察者接收到的波的个数都有变化 多普勒雷达的测速原理 多普勒雷达法利用多普勒效应测量列车运行速度。在车头位置安装多普勒雷达,雷达向地面发送一定频率的信号,并检测反射回来的信号。由于列车的运动会产生多普勒效应,所

以检测到的信号其频率与发送的信号频率是不完全相同的。如果列车在前进状态,反射的信号频率高于发射信号频率;反之,则低于发射信号频率。而且,列车运行速度越快,两个信号之间的频率差越大。通过测量两个信号之间的频率差就可以获取列车的运行方向和即时运行速度,对列车的速度进行积分就可得到列车的运行距离。 多普勒雷达的测速原理 雷达发射电磁波的频率为F,在介质中的传播速度为c,发射角为a1,当雷达以速度V平行于反射面运动(反射面静止),则在反射面接收到的波频率为f1 而此时反射面把波反射回去,相当于波源(静止),雷达接收反射回来的波,相当于观察者(平行反射面速度为V),由于雷达的运动,入射角为a2,则雷达接收到的波频率为f2 多普勒雷达的测速原理 发射波与接收波的频移为 由于雷达运动的速度V远远小于电磁波的速度c,可以近似认为入射角a2=a1,则频移将上式展为泰勒级数,并舍去高次项,可得 也就是说,发射波与入射波之间的频移fr与雷达的速度V沿发射波方向的分量的大小成正比。如果发射角a1固定,则频移fr就是与雷达速度V成正比,只要测量出频移fr的值,就可以计算出雷达的运动速度V 误差来源 ?为了简化计算,减少处理难度,一般都会取简化后的公式来计算,然而,由于简化公式是通过舍入的方法进行简化得,简化公式与原公式之间存在一定误差,这样在使用简化公式之前就要先考虑这个误差对计算的影响。 ?列车运行的过程中,由于轨面不平整或其他原因,列车会产生振动,但列车的振动基本上都是车体的高频上下小幅度运动

雷达测速仪有哪些特点

我国河流湖泊众多,水网密布,而要测量水流的流速,记录水文数据资料,就需要用到测速仪。雷达测速仪就是众多测速仪中的一种,雷达测流运用的原理是多普勒效应。多普勒效应是为纪念奥地利物理学家克里斯琴约翰.多普勒而命名的。在声学领域中,当声源与接收体(即探头和反射体)之间有相对运动时,回声的频率将有所变化,此种频率的变化称之为频移,即多普勒效应。如下图所示,当雷达流速仪与水体以相对速度V发生对运动时,雷达流速仪所收到的电磁波频率与雷达自身所发出的电磁波频率有所不同, 此频率差称为多普勒频移。通过解析频移与V的关系,得到流体表面流速。 雷达测速仪被广泛应用在河道、灌渠、防汛等水文测量;江河、水资源监测;环保排污、地下水道管网监测;城市防洪、山区暴雨性洪水监测;地质灾害预警监测等诸多领域。 今天我们主要来看看雷达测速仪的特点,主要有如下几个特点: 1、非接触、安全低损、少维护、不受泥沙影响; 2、能胜任洪水期高流速条件下的测量; 3、具有防反接、防雷保护功能; 4、系统功耗低,一般太阳能供电即可满足测流需要; 5、多种接口方式,既有数字接口又具有模拟接口,方便接入系统; 6、无线传输功能(可选),可将数据无线传输到3.5km以外;

7、测速范围宽,测量距离远达40m; 8、多种触发模式:周期、触发、查询、自动; 9、安装特别简单,土建量很少; 10、全防水设计,适合野外使用。 非接触雷达测流方式测速时设备不受污水腐蚀,不受泥沙影响,少受水毁影响,土建简单,便于维护,保障人员安全,特殊的天线设计使得功耗超低,大大降低了供电需求。不仅可用于平时流速监测,而且特别适合承担急难险重观测任务。 航征科技是目前国内具有自主知识产权的雷达方案提供商, 拥有多项专利和软件著作权。航征面向水文、水利、环境保护、城市排水管网等行业用户, 提供雷达流速流量在线监测解决方案。航征分别在上海、无锡建立了运营和研发测试中心,拥有完整的技术研发体系和阵容强大的科研队伍,与清华大学、国防科技大学、上海交通大学等知名院校达成长期战略合作,有多位业内专家作为公司的技术后盾,立志成为全球优秀的智能传感解决方案提供商。

雷达测速(窄波雷达)

精心整理测速抓拍系统 设 计 方 案 沈阳腾翔科技有限公司

一、概述 1.1前言 近年来,随着城市机动车数量的不断增长,在带来诸多便利的同时,也存在着一些问题。车辆违法行为层出不穷,交通事故频频发生,都给城市交通管理造成了一定的难度。在“向科技要警力、向科技要效率”的今天,充分利用高科技手段,开发和研制出可以纠正遏制交通违法行为,有效实现交通管理,提高交通运输效率的产品显的十分必要。目前国内外虽有类似产品先后被研发出并面世,但都或多或少存在着不足之处。产品大多采取标清摄像机加视频采集卡的方式实现对违法车辆的记录,虽然价格低廉,但稳定性欠缺,故障率较高,增加了维护成本和工作量。国外产品较为稳定,但功能相对比较单一,价格十分昂贵,不适宜全面推广,大多只应用在一些要求非常严格的高端智能测速抓拍领域。 针对上述情况,公司推出了新一代窄波高清一体化测速抓拍取证系统。它相对第一代测速仪有了很大的改进,像素200万、500万可选,采取触摸屏操作,操作简便明了。同时二代测速系统设计更加简单轻便,更加灵活,并且增加了一些智能调节功能。该系统紧密结合公安业务需求,综合吸收了国内外产品的优点,采用全嵌入式结构,系统稳定可靠、功能强大、安装方便,适宜全面推广。系统的设计还充分利用了公司在安防监控行业的技术优势,实现了安防监控与智能交通的完美结合,随着该系统的推出,将真正的解放警力,提高交警的工作效率,实现“科技强警”。 1.2设计依据 1.《中华人民共和国道路交通安全法》 2.《中华人民共和国道路交通安全法实施条例》 3.《公路交通安全实施设计技术规范》(JTJ074-2003) 4.《公路车辆智能监测记录系统通用技术条件》(GA/T497-2009) 5.《公安交通指挥系统工程建设通用程序和要求》(GA/T651-2006) 6.《公安交通管理外场设备基础施工通用要求》(GA/T652-2006) 7.《公安交通指挥系统工程设计制图规范》(GA/T515-2004) 8.《安全防范工程技术规范》(GB50348—2004)

激光测速与雷达测速的原理比较

激光测速与雷达测速的原理与比较 多谱勒效应和雷达测速 你一定有这样的经验,当你站在马路旁边,即使没有去注视路面上车辆的行驶的情况,单凭耳朵的听觉判断,你能感到一辆汽车正在驶过来,或者离你而去. 这里面当然依靠汽车行驶的声音是渐强还是渐弱,但细细想想,主要还是根据汽车行驶的车轮声或喇叭声调的变化. 原来,车辆驶近时,声音要变尖,也就是说,音调要高些;开过以后,远离的时候,声音会越来越低. 为什么会这样呢?原来,声音的形成,首先是由于发声体的振动,然后在它周围的空气中形成了一会疏一会密的声波,传到耳朵里,使耳膜随着它同样地振动起来,人们就听到了声音. 耳膜每秒钟振动的次数多,人就感到音调高;反之,耳膜每秒钟振动的次数少,人就感到音调低. 照这样说,声源发出什么声,我们听到的就是什么调. 问题的关键在于汽车在怎样的运动. 汽车匀速驶来,轮胎与地面摩擦产生的声波传来时“疏”、“密”、“疏”、“密”是按一定规律,一定距离排列的,可当汽车向你开来时,它把空气中声波的“疏”和“密”压得更紧了,“疏”、“密”的距离更近了,人们听到的音调也就高了. 反之,当汽车离你远去时,它把空气中的疏密拉开了,听到的声音频率就小了,音调也就低了. 汽车的速度越大,音调的变化也越大. 在科学上,我们把这种听到音调与发声体音调不同的现象,称为“多谱勒效应”. 有趣的是,雷达测速计也正是根据多谱勒效应的原理研制出来的. 我们知道,小汽车可以开得很快,可是为了保证安全,在某些路段上,交通警察要对车速进行限制. 那么,在汽车快速行进时,交通警察是怎样知道它们行驶的速度呢?最常用的测速仪器叫雷达测速计,它的外形很像一支大型信号枪,它也有枪筒,手柄、板机等部件,在枪的后面有一排数码管. 把枪口对准行驶的车辆,一扣板机,一束微波就射向行驶中的车辆. 微波是波长很短的无线电波,微波的方向性很好,速度等于光速. 微波遇到车辆立即被反射回来,再被雷达测速计接收. 这样一来一回,不过几十万分之一秒的时间,数码管上就会显示出所测车辆的车速. 它所依据的原理依然是“多谱勒效应”. 雷达测速计发出一个频率为1000 MHz的脉冲微波,如果微波射在静止不动的车辆上,被反射回来,它的反射波频率不会改变,仍然是1000 MHz. 反之,如果车辆在行驶,而且速度大,那么,根据多谱勒效应,反射波频率与发射波的频率就不相同. 通过对这种微波频率微细变化的精确测定,求出频率的差异,通过电脑就可以换算出汽车的速度了. 当然,这一切都是自动进行的. 雷达测速计的测速范围大约在每小时24 km到199 km之间,测速范围比较大,精确度也相当高,车速在每小时100 km/h,误差不会超过1 km/h. 测速雷达朝向公路,可以测量车速,如果指向天空,就可以测云层的高度,测云层的速度. 当然,要测几十千米外,甚至上百千米外的飞机,也是这个原理,只不过要向它扫描的空间连续发射微波束,这些微波束遇到飞机再反射回来,已经极其微弱了,要想把它接收到,分辨清并计算出来,就很困难了,这就需要一个庞大的灵敏的雷达. 雷达测速与激光测速的比较

毫米波雷达测距原理

毫米波雷达测距原理(77GHz FMCW) 本章摘要:介绍什么是调频连续波(FMCW),它是如何进行测距的,测距分辨率分析,测距范围分析。 调频连续波测距的基本原理: 1、发射波TX为高频连续波,其频率随时间按一定规律规律变化。 2、发射波TX遇到物体之后反射,接收器接收到反射波RX。 3、信号的发射到接收,产生一定的时间间隔 t。由这个时间间隔,得到频率差值信号IF signal。 4、对频率差值信号,进行FFT变换,得到对应的频谱。频谱的峰值处对应的频率 f 和距离 d 具有对应关系,进而得到距离d。 5、测距分辨率的分析。 6、测距范围的分析。 上面只是调频连续波测距的整体逻辑,不太清楚没关系,下面逐步进行详细的分析: 一、调频连续波的发射信号TX 发射波为高频连续波,其频率随时间规律变化。一般为锯齿形,三角形,这里介绍锯齿形,其基本组成称为chirp,下面为其性质。 二、接收信号RX

1、合成器生成chirp信号。 2、发射天线发射信号TX。 3、接收天线接收反射回来的信号RX。 4、经过mixer,得到发射信号TX与接收信号RX之间的差值信号IF signal。过程如下: 三、时间差值 t,以及差值信号 IF signal ?由于雷达到障碍物之间有一定的距离,从信号发射,到返回接收,有一定的距离,这个距离就产生了接收时间差值t =2d/c,其中d 为雷达到障碍物的距离,c 为光速。 ?将发射/接收信号放在一个图里面,就得到如下的图。从图中可以看出,接收信号与发射信号一样,只是延迟了时间 t。 ?它俩经过mixer得到差值信号 IF signal ,其频率为 f= s*t,s为chirp的斜率,s = B/Tc。 ?由 t =2d/c,f= s*t,s = B/Tc 可以得出障碍物的距离 d 与 IF signal 信号频率 f 之间的关系式: d = f * c * Tc / (2B)。所以分析出了频率f,就可以得到距离d。 四、对IF signal 进行FFT变换,得到对应的频率 f,然后求得距离d

雷达测速仪使用说明书

VELOCITY(10-1911CM)型手持式雷达测速仪 简要说明: 人类乐忠于速度,但问题是很难去测量它!如今,难题已成为了历史!BUSHNELL最新推出了VELOCITY型性能优越的雷达测速仪!以其外型轻巧、操作简便、迅速受到广大测速爱好者的欢迎。超大清晰的LCD显示屏,读数清晰方便!享受无穷测速乐趣! 操作方法: 正确安装电池后,合上电池后盖,轻按显示屏下方电源开关,沿物体运动方向瞄准物体并按下操作键,即时,运动物体的速度便会实时显示在显示屏上面! 单位切换: 当用户想要进行单位切换时,只需将液晶显示屏下方的电源按钮及仪器下方的发射按钮同时按下,即可进行MPH(英里/小时)于KPH(公里/小时)的单位切换。 测速范围汽车:10-200 英里/小时(即:16-320公里/小时) 高尔夫、网球等:10-110英里/小时(即:16-177公里/小时)测量距离汽车: 0~450米 高尔夫、网球等:0~27米 精度+/- 1.0 MPH (+/-2.0KPH) 单位显示:英里/小时(MPH)或公里/小时(KPH) 显示:LCD数显 尺寸:109x213x512mm

注意事项: 1.若雷达与被测的目标在同一方向上,则测试的速度是准确的,由于实际测试过程存 在夹角的问题,会产生测试的误差,随着角度的增加,误差也在增大,这种现象被称为余弦效应。 故在测量物体速度时,请尽量与被测物体的运动路线保持一致或者尽量减小发射波路线与运动物体路线间的夹角。使测量更加精确稳定! 2. 原仪器不带电池,用户可自配。 3.电池寿命根据电池性能及使用频率而定。 4.保修条款: 所有型号的产品自售出之日起,均享受一年的免费维修服务,但是人为造成的误操作或者使用不当除外。此外,保修期内的维修,客户需负担产品邮寄到美国总公司的运费,维修之后返回客户所需的邮寄费用由我们承担。 对于保修期之外的维修服务,对每台仪器还将收取相关的维修费用。

汽车防撞雷达系统的设计

-126- 度高的酒精误差小,这也是设计的该酒精浓度探测仪适合与检测酒后驾车的原因,因为人在饮酒后,从呼吸道呼出的酒精气体浓度一般都不是很高。因此,经过适当的改进,可以用于 检测酒后驾车。 参考文献 [1]彭军.传感器与检测技术[M].西安:西安电子科技大学 大学出版社,2003. [2]高伟.51单片机原理及应用[M].北京:国防工业出版社,2008. 汽车防撞雷达系统的设计 德州学院汽车工程学院 寻 莹 【摘要】随着我国汽车行业不断发展,公路交通随着出车流密集化和驾驶员非职业化,交通事故越来越多。本文设计的汽车防撞雷达系统,就是当汽车与障碍物的距离较近时即可向司机预先发出报警信号,可及时有效的防止交通事故的发生。【关键词】单片机;报警系统;防撞雷达 1.引言 随着人民经济水平的提高,汽车已经走进我们的家庭中。但汽车相撞的交通事故发生增加了人民财产的损失。为了减少这种损失,设计一种能够提前预知前方行驶车辆的速度和距离的安全避撞装置是非常必要的。该汽车防撞雷达系统是以MCS-51系列单片机为核心器件,结合比较常规的超声波测距器件和霍尔车速传感器以及价格低廉的电子元件组成,包括硬件设计和软件设计两部分。本系统具有低误差、高精度和低成本的特点。 2.系统总体设计原理 设计的基本思路:通过对速度和距离的感知与计算,判断驾驶状态是否安全,并报警提醒驾驶员。系统总体方框图如图1所示。利用AT89S51单片机为核心器件并结合常规的超声波测距探头和霍尔车速传感器以及价格低廉的电子元件完成的。硬件电路由超声波信号发生电路、超声波信号接收电路、、单片机控制电路以及显示电路组成。测量获得的距离、速度信息都传递给单片机,单片机根据设计的计算模型,分析计算所获得的各种信息来判断与前方障碍物距离是否安全,并决定是否需要 图1?系统总体方框图 当40kHz的超声波发送脉冲信号由单片机送出,(其脉冲宽度及发送间隔均由软件控制),经多路选择开关按序分别送到前左、前右、后左、后右4路发送换能器上,由接收电路接收反射波,通过多级放大,整形后,待将交流信号整形输出一个方波信号时,由单片机检测此信号,从而检测出前进和倒车方向障碍物距离,通过显示单元显示距离和方位,起到提示和警戒的作用。 3.硬件电路设计 控制系统采用单片机为主控部件。单片机本身是一个最小的应用系统,但由于应用系统中有一些功能器件无法集成到芯片内部,需在片外加接相应的外围电路。汽车防撞系统的硬件电路是由超声波信号发生电路、超声波信号 接收电路、感应信号放大及处理电路、中央处理单元电路、测速电路等其他电路组成。 3.1 主控芯片 本设计选用AT89S51为主控芯片,充分利用了AT89S51的片内资源,即可在很少外围电路的情况下构成功能完善的超声波测距系统,而且AT89S51的性价比较高。AT89S51的主要技术参数如表1所示。 3.2 超声波信号发射电路 超声波信号发射电路如图2所示,包括超声波信号的产生、多路选择及换能器等。超声波探头选用压电超声波换能器。压电超声波换能器是利用压电材料的压电效应来工作的。当它的两极外加脉冲信号,其频率等于压电晶片的固有振荡频率时,压电晶片将会发生共振,并带动共振板振动产生超声波,这时它就是一超声波发生探头;如没加电压,当共振板接受到超声波时,将压迫压电振荡器作振动,将机械能转换为电信号,这时它就成为超声波接受探头。超声波发射换能器与接受换能器其结构 稍有不同。 图2?超声波信号发射电路 3.3 超声波信号接收电路 超声波信号接收电路如图3所示,由接收换能器、多路选择开关、放大及控制等电路组 成。 4.软件设计 主程序包括初始化和各个子程序的调用,最后把结果用LCD显示出来,并作出判断。系统主程序流程图如图4所示。 显示子程序流程图如图5所示。超声波发射极和接收极距离较近,当发射极发射超声波以后,有部分超声波没经过障碍物反射就直接绕射到接收极上,这部分信号是无用的,会引起系统误测。设计中采用延时技术来解决这个问题,并设定延时时间为1ms,即在发射极发射超声波1ms内,通过软件关闭所有中断,接收电路对此期间接收到的任何信号不予理睬,1ms后立即启动中断程序,这时接收到的信号才有效,并在接受到回波信号的同时,中断程序停。此时中断程序所记录的CPU发送脉冲信号的前沿到回波脉冲信号之间的时间才是需要的。因此,系统存在测量盲区。最后把测量结果存储并通过LCD液晶显示电路显示出来,完 图4?系统主程序流程图 图5?显示子程序流程图 表1?AT89S51的主要技术参数 (1)与MCS-51产品指令系统完全兼容;(2)4K字节可编程FLASH存储; (3)1000次擦/写循环;(4)4.0~5.5V的工作电压范围;(5)全静态工作:0Hz-24KHz;(6)三级程序存储器保密锁定; (7)128*8位内部RAM;(8)32条可编程I/O线;(9)两个16位可编程定时/计数器;(10)6个中断源;(11)2个全双工串行通信口;(12)可直接驱动LCD;(13)5个中断优先级;(14)2层中断嵌套中断;(15)片内时钟振荡器;(16)看门狗(WDT)电路; (17)低功耗空闲和掉电保护。

相关主题