搜档网
当前位置:搜档网 › 浅谈“物理模型”的作用及其建立

浅谈“物理模型”的作用及其建立

浅谈“物理模型”的作用及其建立
浅谈“物理模型”的作用及其建立

浅谈“物理模型”的作用及其建立

布鲁纳的发现法学习理论认为:“认识是一个过程,而不是一种产品”。探究式学习法是学习物理的一种重要的认知方法;它以学生的需要为出发点,以问题为载体,从学科领域或现实社会生话中选择和确定研究主题,创设类似于科学的情境,通过学生自主、独立地发现问题、实验探究、操作、调查、信息搜集与处理、表达与交流等探索活动,获得知识技能,发展情感与态度,培养探索精神和创新能力的学习方式。在这探究式学习的过程中,最难的一点在于如何创设科学的物理情境;这个科学物理情境的创建过程就是“物理模型”的建立过程。所以说要想学好中学物理,就要学会对生活中的现象多观察,多思考,并能从中学会如何建立“物理模型”。

一、什么是“物理模型”

自然界中任何事物与其他许多事物都有这千丝万缕的联系,并处在不断的变化当中。面对复杂多边的问题,人们在着手研究时,总是遵循这样一条重要的法则,即从简到繁,从易到难,循序渐进,逐次深入;基于这样一种思维,人们创建了“物理模型”,物理模型是指:物理学所分析的、研究的问题往往很复杂,为了便于着手分析与研究,物理学中常采用“简化”的方法,对实际问题进行科学抽象处理,用一种能反应原物本质的理想物理(过程)或遐想结构,去描述实际的事物(过程),这种理想物质(过程)或假象结构称之为“物理模型”。

物理模型的建立是人们认识和把握自然的一个典范,是前人的一种创举。

二、物理模型的种类和特点

1、中学中常见物理模型的种类

(1)研究对象理想化模型,例如:质点、刚体、理想气体、恒压电源等;

(2)运动变化过程中理想化模型,如:“自由落体运动”、“简谐运动”、“热平衡方程”等等。这些都是把复杂的物理过程理想化了的“物理模型”。

2、物理模型的特点

(1)物理模型是形象性和抽象性的统一,物理模型的建立是舍弃次要因素,把握主要因素,化复杂为简单,完成由现象到本质,由具体到抽象的过程,而模型的本身又具有直观形象的特点。

(2)物理模型是科学性和假设性的辩证统一,物理模型不仅再现了过去

已经感知已过的直观形象,而且要以先前获得的科学知识为科学依据,经过批判、推理等逻辑上的一系列严格论证;所以具有深刻的理论基础,即具有一定的科学性;理想模型来源于现实,又高于现实,是抽象思维的结果,所以又具有一定的假设性,只有经过实验证实以后才被认可,才有可能发展为理论。

三、物理模型的作用

1、使复杂问题简单化。物理学研究对象是十分复杂的客观世界,其起作用的因素很多,需要把复杂问题简单化,模型方法恰好体现了抓主要矛盾,突出问题的本质,可以使研究工作大为简化。就拿物体从空中落下这样一个简单的问题来说,分析物体的受力情况,除重力外,还受到空气的阻力和浮力,而空气的阻力和浮力又与物体的形状大小、空气的密度温度等因素有关,并且重力的大小也不是恒定的,随着物体下落的高度而发生微小的变化。此外,地球的自转和气体的流动对物体的下落也有一定的影响。我们在研究落体运动时,只突出了恒定重力作用,而把其它影响全都忽略了(这样做本身也是合理的),这样落体运动性质就比较容易把握了。在讨论原子核的裂变机制时,把一个原子核用一个带电液滴来代表,便能够满意地说明裂变现象,这里抓做了主要矛盾表面张力和库仑斥力,而把原子核内部组分之间的相互作用细节忽略了。又如,固体是由许许多多的原子排列组成的,每个原子都有一个或多个价电子,这些电子的运动是一个多体的集体运动,这种多体运动描述起来非常复杂。而“能带理论”是一种近似的模型理论,它通过绝热近似、单电子近似和周期场近似这三个基本物理近似,把一个十分复杂的多体问题简化为一个单体问题,而且恰恰反映了事物的主要特征,计算结果与大部分实验结果符合得很好。

2、逐步逼近实际。应用模型方法研究物理问题,能使问题的本质突出、关系明朗,有利于问题的解决。但是,我们也应看到,次要因素虽然对问题的影响很小,但毕竟有一定的影响,所以忽略次要因素以后而得到的结果就必然是近似的,与实际是有一定差距的。弄清楚主要矛盾后,再考虑次要矛盾,如此一级级作近似,就可能逼近实际;而建立物理模型为研究实际事物(原型)提供了一个比较的标准,从而开辟了研究实际事物的特征和变化规律的途径。例如,在推导理想气体状态方程时,我们几乎把分子力完全忽略了,但在实际气体中它还是有影响

的。不过在气态中分子力的效应毕竟比较小,我们可把当作对理想气体模型的修正来处理。将理想气体方程式加以适当修正(压强中加上一个修正项,体积中减去一个修正项),即可得到比较符合实际气体行为的范德瓦尔斯方程式,这实际上是用气体较复杂的物理模型(范德瓦尔斯气体模型)代替理想气体模型。可以看出,范德瓦尔斯气体模型是在理想气体模型的基础上建立起来的,从理想气体模型到范德瓦尔斯气体模型是一个以理想化逐步逼近客观实体的过程。理想晶体模型是研究一切实际晶体的结构和性质的基础,若不以理想晶体模型为基础,就无法研究各种离子化合物的晶体结构,也无法研究形形色色的晶体缺陷和晶体生长的规律。玻尔理论考虑了原子中的最主要的相互作用,即原子核与电子的静电相互作用。与此相互作用对应的能量计算值与实验符合得很好,反映能量差值的光谱线得到了满意的解释。不过,如果仔细观察光谱线,人们发现其中还有精细结构。这就需要进一步考虑电子自旋引起的磁相互作用,它是产生原子精细结构的主要因素。更进一步,原子核并不是一个质点,有一定的几何大小,它的电荷有一个分布(电四极距),它还有自旋角动量I和磁矩μ。这些性质都将对电子的运动产生影响,从而使原子光谱进一步分裂,其分裂程度比精细结构还要小,故称之为超精细结构。于是,还需要考虑超精细相互作用,它包括磁偶极超精细相互作用和电四极超精细相互作用。

3、作出科学预言。作为对物理事物简化描述的物理模型,不仅能够解释物理现象和实验定律,而且也常常能够作出科学的预言,指明进一步研究的方向。例如在对热机效率的研究中,人们发现实际热机的效率总是小于可逆卡诺热机的效率,这就启发人们在设计热机时,尽量使其接近于可逆卡诺热机,以提高热机的效率。在固体理论的研究中,常常以没有“缺陷”的理想晶体作为研究对象。当时从应用量子力学对理想晶体进行计算的结果,发现理想晶体的强度竟比通常金属材料大一千倍。物理学家认为,理想晶体的强度比实际晶体的强度大一千倍,那么,常见的金属材料强度之所以减弱就是因为材料中有许多“缺陷”,假如能减少材料中的这些“缺陷”,那就能大大提高金属材料的强度,从而大大节约金属。实践证明,物理学家的预言是正确的。

四、“物理模型”的建立

探究、构建物理模型,对于某些简单的问题并不困难,如:“小球从楼顶自

由落下”,即为一个“质点的自由落体运动模型”;“带电粒子垂直进入匀强磁场”,

即为“质点作匀速圆周运动模型”等,但更多的问题中给出的现象、状态、过程

及条件并不显而易见,隐含较深,必须通过对问题认真探究、细心的比较、分析、

判断等思维后才能构建起来。一般说来,构建物理模型的途径有四种:

1、 探究物理过程,构建准确的物理模型

例:两块大小不同的圆形薄板(厚度不计),质量分别为M 和m ,(M=2m ),半

径分别为R 和r ,两板之间用一根长为L=0.4m 的轻质绳相连结,开始时,两

板水平叠放在支架C 上方高h=0.2m 处,如图示a 示。以后,两板一起自由

下落支架上有一个半径为R ′(r <R ′<R )的圆孔,两板中心与圆孔中心在

同一直线上,大圆板碰到支架后跳起,机械能无损失。小圆板穿过圆孔,两

板分离,试求当细绳绷紧的瞬间两板速度(如图示b )(取g=10m/s 2)

点评:本题的整个过程可分为以下几个阶段:

(1)两板自由下落。(此时两板作为一个整体可抽象为一个质点模型;其自

由下落运动过程作为一个自由落体运动模型)

(2)大圆板与支架相碰,且无能量损失,该瞬间的行为可作为一次“弹性

碰撞”运动模型,而小圆板继续下落。

(3)细绳绷紧瞬间,两板通过绳的相互作用获得共同速度,可作为一个“完

全非弹性碰撞运动模型。

求解:

两板落至支架C 时的速度: s m gh v /22.010220=??==

大圆板与支架C 碰后以速度为初速度竖直跳起,设至细绳绷紧前历时t 1,绷

紧前的速度为v 1,上跳高度为(离支架的C 的高度)为h 1,则:

v 1= v 0-g t 1 ………………………………………………………………① a C m M h L b

C m M

v 12=v 02-2gh 1 …………………………………………………………………②

小圆板穿过圆孔时的速度为v 0,设落至细绳绷紧前历时t 2,速度为v 2,下落

高度(离支架C 的高度)为h 2,则:

v 2= v 0+g t 2 …………………………………………………………………③

v 22=v 02-2gh 2 …………………………………………………………………④

据题意有:t 1=t 2,h 1+h 2=L =0.4m ,故

由①③两式有: v 1+v 2=2v 0=4m/s …………………………………⑤

由②④两式有: v 22-v 12=2gL =2×10×0.4=8(m/s )2 ………………⑥

由⑤⑥两式可得绳绷紧前两板速度大小分别为:

v 1=1m/s

v 2=3m/s 方向:v 1向上

v 2向下 由于细绳绷紧时间极短,重力的冲量可忽略,故绷紧过程中系统动量守恒。

设两板共同速度为u ,取竖直方向为正,由动量守恒定律有:

mv 2-Mv 1=(m +M)v 得

)/(3

1221312s m m m m m M m Mv mv u =+?-?=+-= 即该瞬间两板获得向下的共同速度为s m /3

1。 2、 紧扣关键词句,探究物理实质,构建物理模型。

例2、如图示,一个U 型导体框架,宽度为L=1m ,其所在平面与水平面成α

=30°角其电阻可忽略不计。设匀强磁场与U 型框架的平面垂直,磁感应强

度B=0.2T ,今有一根导体棒ab ,其质量m=0.2kg ,有效电阻R=0.1Ω,跨放

在U 型框架上,并能无摩擦滑动,求导体ab 下滑的最大速度v m 。

点评:题中求“最大速度”几个字,是提示物理模型的关键性词句,最大,

即不可增加,也就是导体ab 将以此速度沿导轨斜向下作匀速直线运动。

据此,通过自己的抽象思维,大家可以在头脑中构建这样一幅物理图景:导

体ab 开始下滑时,速度v 0=0,在斜轨上受下滑力(重力沿斜面分力),产生

的加速度最大;随着下滑速度的增大→导体中感应电动势增加→感应电流增

加→磁场对导体的安培力也增加,由于安培力与下滑力反向,故导体的加速

度越来越小,而速度仍然越来越大,当下滑速度大到使安培力和下滑力平衡

时,加速度为零,速度不再增加而以此最大速度作匀速直线运动。

求解:

据上述模型分析,导体ab 平衡的条件为:

mgsinα=F 安

而F 安=BIL , I=ε/R , 又 ε=BLv

)/(5.21

2.05.01.0102.0sin 2222s m l B mgR v m =????==∴α

3、 探究问题的本质特征,构建物理模型。

例3、如图示,在竖直平面内,放置一个半径R 很大的圆形光滑轨道,O 为

其最低点,在O 点附近P 处放一质量为m 的滑块,求滑块由静止开始滑至O

点时所需的时间。

点评:滑块m 向圆弧最低处滑动不同于沿斜面的滑动,这是一个很复杂的变

速曲线运动,显然,牛顿定律不能求解,但滑块的运动轨迹是一段圆弧,其

运动与受力单摆相同,则只要滑块满足从P 点到O 点的

圆弧对应的圆心角很小,小于10°,则完全可以把滑块

的运动等效为“单摆的运动模型”。

求解:

由单摆的周期公式有,滑块由P 点滑到O 点的时间为

g R T t 24π==

4、 探究隐含条件,构建物理模型。

例4.如图所示,AD 光滑与竖直线成θ角,D 正好在以AB 为直径的圆上,一

个物体从A 到D 所用的时间t ,滑到C 点、E 点时间又是多少呢?是否相等?

α

a b B P O

物体从A 到D 的过程中:22

1at s = ① θcos 2R s = ②

θcos g a = ③ 由以上三式求得:g R t 2

=。

从表达式发现物体滑下的时间,只与R 、g 有关,而R 、g 是常量。所以

得到结论,物体从圆的顶点沿不同的光滑轨道滑到圆上的任何一点,时间都

相同。用这个结论来解题,有时可以免去许多繁锁的三角函数运算,简单直

观。

如右图,倾角为α的斜面上方有一定点A ,现要使一质

点从A 点由静止沿一光滑斜槽到达斜面,则当斜槽和竖直

方向夹角θ为多大时,质点从A 点到达斜面所用时间最短?

分析与解:

这道题如果用常规方法作,需要用到许多三角函

数公式,比如两角和与差、正弦定理等等。现在用上面的

结论来做,如图,在过A 点的竖直线上找到圆心O ,使得以OA 为半径的圆O

与斜面相切于P 点。因为从A 点到圆弧上的各点时间相等,但只有AP 到达了斜面,所以沿AP 方向滑下,到达斜面的时间最短。 由于OP 垂直斜面,OP 与竖直方向的夹角为α。

得到 2αθ=

五、总结

从以上可以看出,认真审题,细致分析,明确物理情景,建立合适的“物理

模型”,能使我们解题思路更加清晰化,快速求得正确答案,同时又能加深对所

学知识的理解。学会“物理模型”的建立需要掌握物理基本概念、基本规律、基

本定理的基础,平时分析问题时多加耐心的思考,把一个复杂的过程学会分解成

我们熟悉的过程模型,学会找出主要因素,抓住问题的本质,相信一段时间以后,

你一定对物理这门学科更加得心应手。

浅谈物理学中的抽象和概括

浅谈物理学中的抽象和概括 浅谈物理学中得抽象和概括 1 咨询题得提出 抽象和概括是一种抽象思维方法.许多物理咨询题得提出、物理概念得产生、物理规律得建立、物理理论得形成基本上抽象和概括得结果.由此可见,抽象和概括在物理学得形成进展、完善过程中起着举足轻重得作用.本文从抽象和概括得概念、作用和局限性等几方面做了详细得阐述. 2 抽象和概括得概念 抽象和概括是物理学中抽象思维能力得一种,“物理抽象是在观看、实验得基础上,通过物理概念、物理推断和物理推理得形式,对已获得得物理事实进行加工处理而形成得对物理对象、物理现象、物理过程得本质和规律得认识.”[1]所谓概括,确实是在抽象得基础上,把所有反映物理事物本质得属性结合为一个整体,形成关于物理事物整体得和一般得认识,进而把这种一般得认识推广到同类事物,把握同类事物得共同性和一般性. 抽象性与概括性得统一,是物理抽象思维得一个重要特点,只有通过抽象和概括,才能简化物理对象,形成理想化得过程;在实验和理论分析得基础上得出定量得物理规律. 3 抽象和概括在物理学中得作用 物理学中通过表面现象,揭示内在本质,从而把实际得物质模型化,把复杂得物理咨询题简单化,把具体得物理咨询题理想化,这种简化得过程从思维学得角度上来讲,确实是抽象思维得过程. 31 提炼物理模型论文联盟 “物理模型是依照研究咨询题和内容在一定条件下,对研究客体得抽象,物理模型是物理学中重要得抽象方法之一,它关于差不多规律和差不多理论得建立起着不可替代得作用.WcOm在物理学中,物理模型要紧分三种类型:“客体模型、条件模型和过程模型”.客体模型是客观存在得实际物体通过简化、抽象建立起得物理模型.例如在研究力学中物体得运动时得质点模型.电学中得点电荷、光学中得点光源、弹簧振子、刚体等等,基本上客体模型.条件模型是客观物体在运动变化过程中,对制约物体运动得条件进行取舍,抓住决定条件,忽略次要条件,如此建立起来得理想化条件确实是条件模型.如在平面上运动得物体,若摩擦力f与合力f相比非常小,那个平面称为光滑平面,“光滑平面”确实是条件模型.另外在物理学中得细绳、轻质细杆、稳定电源等等基本上条件模型.过程模型是在一定条件下对具体得运动过程及限制这些过程得条件进行抽象,形成“过程模型”.例如研究地面附近自由落体运动,下落得物体视为“质点”,从静止开始下落得过程中,忽略空气得阻力、浮力、风力、风向等作用,只受到恒定得重力作用,质点在如此理想化条件下运动得过程确实是“自由落体运动”.这确实是一个理想化得过程模型.在热学中,准静态过程也是一个理想化得过程模型.在物理学中理想化条件下得过程模型非常多,如匀速直线运动、简谐振动等等. 在物理学中,正是从实际物体、物理过程、条件中抽象和概括出这些物理模型,才使人们对物质世界得认识不断深化,不断想真理逼近,推动着物理学得进展,从某种意义上讲,各种理想物理模型得建立,正是物理学向深度和广度进展得重要标志之一. 32 总结物理概念、定律 物理概念、定律是物理学得理论基础,只有通过抽象和概括,才能形成物理概念,简化物理对象,形成理想化得过程,在实验和理论分析得基础上,得出定量得物理定律.例如:力得概念是通过抽象和概括一类事物得共同本质属性形成得,如:人推车,马拉犁,即力是物体对物体得作用.简谐振动得规律则是在研究单摆和弹簧振子这些理想模型得运动时概括出来得.可见,物理学中得许多概念、定律是通过抽象思维得加工,在实验得基础上概括出来得. 33 用抽象和概括得方法学习物理学

第1节 模型、符号的建立与作用 教案

第1节模型、符号的建立与作用 一、教学目标 1.了解用符号和模型来表示复杂的事物或过程的科学方法。 2.举例说出学习和生活中所见过的符号和模型。 3.学会用模型解释简单的科学现象和过程。 二、教学重点和难点 1.了解用符号和模型来表示复杂事物或过程这一科学方法。 2.了解模型的各种不同类型及作用。 3.能用物质粒子模型解释水的状态变化,体验建立模型的思想。 三、教学准备 1.随身听、饮料罐 2.地球仪、细胞模式图、细胞模型、眼球模型、水分子模型 四、教学方法 1.演示法 2.谈话法 课时安排:一课时 五、教学过程 (一)引入 1.观察与思考。(展示一部随身听给学生看)请大家看一下这部随身听,你能告诉老师如何使用它吗?(学生说出使用方法)这部随身听上并没有汉字,而且你也没有看过说明书,你怎么知道它的使用方法呢?(根据机身上的符号,特别是按键上的符号)2.讲述。在生活中,我们经常会用到一些类似的符号来表示事物,有时我们也会用到模型来表示事物。这是一种非常有用的科学方法。今天我们就来学习 《模型、符号的建立与作用》。 (二)符号 1.列举。你能说出在以前的学习中,我们曾用过的符号吗?(学生回答:如“速度v”、“冷锋、暖锋”等。让学生对以前所学知识进行归纳,同时也可 以培养他们思维的发散性) 你能说出在生活中,我们用到过哪些符号吗?你能简要画出来吗?(学生回答并画简图:交通标志、厕所标志、电源标志等)2.读图并思考。请同学们看课本上图1-1,结合刚才大家所举的例子,思 考为什么人们常用符号来表示事物呢? (1)分析交通标志,得出结论:用符号能简单明了地表示事物。 (2)分析电流表符号,得出结论:用符号可避免由于事物外形不同而引起的 混乱。 (3)分析时间符号,得出结论:用符号可以避免由于表达事物的文字语言不 同而引起的混乱。 3.提问。请大家分析并说出下列符号所代表的含义。(展示饮料罐上的请勿乱丢的提示、开关上的“开”与“关”、交通标志等)4.实践。学习了符号作用,同学们能否结合生活实际课外自己设计制作一 些标志符号呢? (三)模型

物理模型在中学物理教学中的作用和意义

学号20095040104 学院物理电子工程学院 专业物理学 年级2009级 姓名杨超 论文题目物理模型在中学物理教学中的作用和意义 指导教师刘慧职称高级实验师

2013年05月01日

目录 摘要 (1) Abstract (1) 引言 (1) 1物理模型的概念 (2) 2物理模型的种类 (2) 2.1 理想化物理模型和探索性物理模型 (2) 2.2 对象模型、过程模型和理论模型 (2) 3物理模型在中学教育中的作用 (5) 3.1 物理模型可以培养学生正确的科学思维方法 (5) 3.2 物理模型具有教师传播知识和学生获取知识的桥梁作用 (5) 3.3 物理模型具有软化教学过程的作用 (6) 4物理模型在中学物理教学中的意义 (6) 4.1 物理模型能够促进学生适应新一轮课程改革 (6) 4.2 物理模型能够促进知识迁移创新学习 (6) 4.3 物理模型能够满足高考改革的需求 (6) 5培养学生构建物理模型的能力 (6) 5.1 引导学生主动掌握建立物理模型的方法 (6) 5.2 模式化构建模型步骤 (7) 5.3 充分利用教学资源降低构建模型的难度 (7) 5.4 重视思维程序训练 (7) 结束语 (8) 参考文献 (8)

物理模型在中学物理教学中的作用和意义 学生姓名:杨超学号:20095040104 学院:物理电子工程学院专业:物理学 指导教师:刘慧职称:高级实验师 摘要:在我国的传统物理教学中,教师比较注重知识的传授,教学活动的开展都是围绕如何有效地传授物理知识。在这样的环境下,学生的知识掌握比较牢固,但随着教育改革的深入,对学生解决实际问题和探索性问题能力的要求越来越高,传统的教育模式已经无法满足学生能力提高的需要。针对这一现象,本论文提出应该重视物理模型在中学物理教学中的作用和意义。本文主要介绍了物理模型的概念、分类以及在中学物理教学中的作用和意义,最后还介绍了培养学生构建物理模型能力的方法。 关键词:物理模型;作用和意义;模型构建 Roles and significances of physical models in middle school teaching Abstract:Traditional physical education in our country pays more attention to imparting knowledge, so the whole teaching process was just around how to teach effectively. In this situation, the students could master the knowledge well. However, as the education reform further, the demand ever higher in solving practical or exploratory problems. Traditional education has been unable to meet the students’ needs of improving the ability. Aiming at this phenomenon, This essay presents that it’s necessary to think highly of the roles and significances of physical models in middle school teaching. This essay mainly introduces the physical models’concept and classification, the roles and significances of physical models are also highlighted. At last, it introduces the ways to improve the students’ ability of constructing physical models. Key words:physical models;roles and significances;models constructing 引言 物理学的研究对象遍及整个物质世界,大到天体,小至基本粒子,无奇不有,无所不在。面对具体复杂的物体,研究它们形形色色的运动,如果不采取科学思维方法,人

浅谈构建物理模型在解题中的作用

浅谈构建物理模型在解题中的作用 大多数学生进入高中学习以后,感到物理是一门比较难学的科目,解题时往往感到无从下手,这是由于物理的基本概念和规律建立的基础是理想化过程模型和理想化实体模型,因此在解答物理问题时应首先创设物理情景,构建物理模型。 物理概念和规律具有高度的抽象性和客观性,而物理习题由于是描述一些理想物体的基本运动或基本状态,所以物理习题具有理想性、具体性和形象性。为了沟通概念规律与习题的联系,解题中就应创设具有这种联系的“图景”,通过物理图景,构建物理模型,这样可以使物理过程变得更为形象和清晰,对启发学生思维,正确理解物理概念,分析物理问题起到良好的辅助作用。同时使学生形成科学的思维方法和掌握科学的研究方法。 模型最能反映现象和事物的本质,建立模型就是找出、抓住现象和事物的本质和主要矛盾,抽象出物理本质,研究和解决事物的主要矛盾,这样,解决问题时就会取得事半功倍的效果。 为了便于研究物理问题和对物理现象进行客观描述,现就以下几个方面作出分析: 一、简化确定“研究对象”是建立正确物理模型的基础 “研究对象”是参与所研究的物理对象的客体。由于实际参与的客体众多,影响因素复杂,因此在建立物理模型时,首先要对客体进行简化,抓住其主要特征,舍弃其次要因素,因此,要建立正确的物理模型,首先应具有将实际的物理问题简化成理想模型的能力。 对于多个物理客体参与的物理问题,我们要认真分析各个“研究对象”

之间的相互联系,从现状和所求结果入手,找出关键的客体,作为研究对象,它们是物理模型中的“主角”。 比如,对一列水平横波的研究。如果研究质点的振动,可选取某个质点(如振源)为研究对象;要研究波的周期性,可选取水平距离是波长整数倍的两个质点来研究;要研究质点的振动与波动的关系,就要选取某个质点和波动的形态为对象,就可得到这样一幅简单、清晰的物理图景:质点在竖直方向作简谐振动,波在水平方向作匀速运动,质点的振动方向决定了波的传播方向,在质点完成一次全振动的时间内,波恰好向前移动了一个波长。 下面举例说明物理模型在解题中的实际应用。 例一、(见图1)劲度度系数为k 的弹簧一端固定于 墙壁,另一端连着质量为M 的物体,物体静止于光滑水 平面的O 点上,现有一质量为m 的子弹以水平速度v 0 射进且留在物体中,试问最少需要多少时间物体又到达O 点?物体的最大位移是多少? 解:开始时取子弹和物体组成的系统为研究对象,忽略子弹的转动,认为子弹射进物体的过程为平动,从而建立质点系统模型。因为从子弹开始射进物体到停留在物体中这一过程时间极短,弹簧的形变微小到可以忽略,所以可认为在此过程中,沿水平方向系统所受合力为零,系统的变化为完全非弹性碰撞,从而可建立完全非弹性碰撞过程模型。系统动量守恒,故有: (m+M)v=mv 0 由此可得系统的初速度:v=mv 0/(m+M) 又系统获得速度v 的过程短暂,它们的位移微小到可以忽略,故可以认为系统虽已具有速度v 但还处在平衡位置O 点处.此后,选取子弹、物体和

初二八年级科学下册 第一节---模型、符号的建立与作用

第一节模型符号的建立与作用 〖教材分析〗:在第一册第4章学习的基础上,本章引言直接用“肉眼看不见的分子和原子是用什么方法表示的?这一问题引出建立模型的思想,从某种意义上讲,符号也是一种模型。教科书以学生已接触过的一些常见符号为例,通过图示的对比,让学生体验科学符号的意义和作用,这里体现了综合学科的特点。在自然科学研究中,对客观对象进行了一定的观察实验和对所获得的科学事实进行初步的概括后,常常要利用想象、抽象、类比等方法,建立一个适当的模型来反映和代替客观的对象,并通过研究这个模型来揭示客观对象的形态、特征和本质,这样的方法就是模型方法。 〖教学目的〗 1、知道符号和模型在科学学习中的作用:简化事物、直观形象 2、知道一些常见的、重要的符号的表示方法和模型的表示方法 3、能用水的分子符号表示水的三态的变化过程 〖教学难点〗符号与模型的建立 〖知识重点〗液态水和气态水的模型的表示 〖教学准备〗地球仪、眼球模型、制作课件 〖课时安排〗一课时 〖教学过程〗 展示一些符号:Ω≤℃㎏ 想一想这些是什么?分别表示什么? 引出课题:第1章第1节模型符号的建立和作用 新课教学: 一、符号 其实我们不仅在科学研究中用到符号,在日常生活中我们也常用到很多符号, 1、说出下列符号表示的意思。 2、学生活动:举出一些符号的例子,看谁能举出的多。 思考:为什么要引用那么多的符号呢?学生讨论 教师做引导: 分析课件中的交通标志,可知:符号(简单明了)地表示事物。 分析电流表、电压表、电灯符号,可知:用符号可避免由于事物外形不同而引起的混乱。分析图1-1右符号,可知:用符号可避免由于表达事物的文字语言不同而引起的混乱。 总结:符号的作用:能简单明了地表示事物,还可避免由于事物外形不同和表达的文字语文不同而引起的混乱。 3、活动:自己设计符号表示一些事物,如你心目中的太阳和月亮。 学生设计(指导尽可能简单,让人一目了然) 如何设计地球的符号,并让学生回忆除了用符号表示外,还可以如何表示,引出模型 二、模型 思考:请你说说什么是模型,并列举几个模型的例子: 学生一般能讲出狭义的模型概念:用各种材料制成的某种物体的或放大或缩小的复制品。如:航模、船模、车模[来源:Z。xx。https://www.sodocs.net/doc/635095450.html,] 提问:我们在以前的学习中,我们都用过哪些模型呢?

最新高中物理模型解题法的构建

浅谈高中物理的模型构建 思维定势是人们在思维活动中所倾向的特定的思维模式。它是指人们按照某种固定的思路和模式去考虑问题,表现为思维的倾向性和专注性。它有消极的一面,消极的思维定势是指人将头脑中已有的、习惯了的思维模式生搬硬套到新的物理情景中去,不善于变换认识的角度和改变解决问题的方式。但是它也有积极的一面,积极的思维定势有利于物理概念的形成和对物理规律的理解。构建物理模型一定程度上可以说是利用了思维定势积极的一面。 物理学科的研究对象是自然界物质的结构和最普遍的运动形式,对于那些纷繁复杂事物的研究,首先就需要抓住其主要的特征,而舍去那些次要的因素,形成一种经过抽象概括了的理想化的“模型”,这种以模型概括复杂事物的方法,是对复杂事物的合理的简化。如运动员的跳水问题是一个“竖直上抛”运动的物理模型;人体心脏收缩使血液在血管中流动可简化为一个“做功”的模型等等。物理模型是同类通性问题的本质体现和核心归整。 高中物理模型可以分为三类,即实物模型、过程模型、试题模型。接下来分别详细阐述: 一、实体模型 它是用来代替由具体物质组成的,代表研究对象的实体系统。这一类模型在中学物理中最为常见,如力学中有质点、刚体、杠杆、轻质弹簧、单摆、弹簧振子;热学中有弹性球分子模型、理想气体、黑体;电学中有点电荷、试验电荷、理想导体、绝缘体、理想电表、纯电阻、无限长螺线管;光学中的薄透镜、光的波粒二象性模型、原子物理中原子的核式结构模型等。 这种模型教材中较常见,是研究问题时,抓住事物的主要因素,忽略次要因素建立起来的实物模型,对理解的概念起着不可估量的作用。 例1、如图所示,四个完全相同的弹簧都处于水平位置,它们的右端受到大小皆为F的拉力作用,而左端的情况各不相同:①中弹簧的左端固定在墙上,②中弹簧的左端受大小也为F 的拉力作用,③中弹簧的左端拴一小物块,物块在光滑的桌面上滑动,④中弹簧的左端拴一小物块,物块在有摩擦的桌面上滑动.若认为弹簧的质量都为零,以l1、l2、l3、l4依次表示四个弹簧的伸长量,则有:()

建立理想模型法

建立理想模型法 Document number【980KGB-6898YT-769T8CB-246UT-18GG08】

初中物理建立理想模型法简介 王台中学王建国 百度+自己的总结,请有选择地参考。 把复杂问题简单化,摒弃次要条件,抓住主要因素,只考虑起决定作用的主要因素,对实际问题进行理想化处理,构建理想化的物理模型,这是一种重要的物理思想。在此基础上,有时为了更加形象地描述所要研究的物理现象、物理问题,还需要引入一些虚拟的内容,借此来形象、直观地表述物理情景。 题型分为两类 一、理想模型是从无到有建立的,例子如下 ※光线、磁感线都是虚拟假定出来的,但它们却直观、形象地表述物理情境与事实,方便地解决问题。通过磁感线研究磁场的分布,通过光线研究光的传播路径和方向。(光的性质波动性、粒子性、沿直线传播)(磁场的性质:对处于其中的磁体、电流、运动电荷有力的作用) ※电路图。(电路的一些性质:电流按照从电源正极流出通过外部电路流回负极、流过用电器会做功、电流有大小、导线有粗细、) ※匀速直线运动,就是一种理想模型。在生活实际中严格的匀速直线运动是无法找到的,但有很多的运动情形都近似于匀速直线运动,按匀速直线运动来处理,大大简化了难题,得到的结果又具有极高的精度,在允许的误差范围内与实际相吻合。(运动物体方向和快慢随时间发生变化) ※杠杆也是一种理想模型,杠杆在实际使用时,由于受力的作用,都会引起或大或小的形变,可忽略不计,因此,我们就把杠杆理相化,认为它无形变。(物体有形状,硬棒,能绕固定点转动) ※原子核式结构模型 ※力的示意图或力的图示 二、把实际物体看作已建立的实体模型 ※斜拉索式大桥看作是杠杆模型。(抓住的主要因素:硬、能绕固定点转动。) ※汛期,江河中的水有时会透过大坝下的底层从坝外的地面冒出来,形成“管涌”,“管涌”的物理模型是连通器。(抓住的主要因素:上部开口,底部连通) ※水面看作镜面(抓住的主要因素:表面光滑) 考题往往问抓住了什么主要因素,忽略了什么次要因素,该如何回答呢? 答:主要因素就是该模型的定义,次要因素自己想。 你可以把问题改一改,就可以看出主、次要因素,例如改成:哪些物体还可以看作某某模型这些物体的共同特征就是主要因素,不同特征就是次要因素。 某高人对高中物理的基本理想化模型分类

浅谈物理模型在教学中的作用

谈物理教学中的物理模型构建 安徽省天城中学黄飞(231480) 【摘要】物理模型教学中将最基础最典型的物理知识、物理问题介绍给学生,并通过建立物理模型,将研究方法也展示给学生,引导学生思考、感悟以至升华。培养能力是落实课改的措施,知识是能力的载体。这就需要我们在教学中注意对学生进行物理模型的总结归纳。 【关键词】物理模型物理模型教学科学性策略性理想化 物理是高中理科中学生普遍感觉到比较难的一门学科。物理课堂教学既是科学又是艺术,有其自身的科学性和策略性。高中物理学习,主要是学生个体智力活动的过程与教师课堂教学的高效结合的过程。学习物理,模型的建立非常重要,不管是那方面的物理学,最重要的是建立物理模型。特别是力学与运动学,遇到一个物理问题我们首先要将它联想到一个相关的物理模型。将复杂的;抽象的问题化为简单的;直观的问题。 下面是高中物理教学中经常用到的几种物理模型 (1)研究对象的理想化模型 例如:质点物理模型,它忽略了物体的形状、大小、转动等性能,突出它所处的位置和质量的特性,用一有质量的点来代替。如当物体本身的大小在所研究的问题中可以忽略或对研究问题没有影响,能当作质点来处理;质点的概念是一种科学的抽象,是理想化模型。这种抽象正是抓住问题的实质,只要我们在教学过程中注意培养学生抓住主要矛盾,忽略次要矛盾,逐步建立这种物理模型。以后遇到类似质点的客观实体比如:刚体、点电荷、点光源、理想气体、匀强电磁场等物理模型,学生就会自己分析学习了。 (2)物理状态和物理过程的理想化模型 例如:运动学中的匀速直线运动、自由落体运动;动力学中的完全弹性碰撞;电学中的稳恒电流, (3)理想化实验物理模型 在实验的基础上,抓住主要矛盾,忽略次要矛盾,根据逻辑推理法则,对过程进一步分析、推理,找出其规律。例如,伽利略的理想实验为牛顿第一定律的产生奠定了基础。 (4)研究对象的条件的模型 当研究动量守恒定律时,当系统的内力远大于外力时,系统的动量守恒;当研究带电粒子在电场中运动时,因粒子所受的重力远小于电场力,可以舍去重力的作用,使问题得到简化。力学中的光滑面;电学中的匀强电场、匀强磁场等等,都是把物体所处的条件理想化了。 培养学生建立和正确使用物理模型不仅有利于学生将复杂问题简单化、明了化,使抽象的物理问题更直观、具体、形象、鲜明,突出了事物间的主要矛盾;而且对学生的思维发展、解题能力的提高起着重要的作用。可以把以有物理模型的知识和将来探索的新知识相类比,起到模型的迁移,到达事半功倍的效果。 1.动能转换内能类型 例1.如图所示,倾角为θ 轨相连,连接处是光滑的圆弧。水平导轨上 存在有磁感强度为B的竖直向上的磁场。同 时水平导轨上有质量为m、电阻为R的导体 棒b。一根与b完全一样的导轨a自斜面高为h处开始下滑,运动过程中,a、b始终不

浅谈物理模型的作用及其建立

浅谈物理模型的作用及其 建立 Last revision on 21 December 2020

浅谈“物理模型”的作用及其建立 布鲁纳的发现法学习理论认为:“认识是一个过程,而不是一种产品”。探究式学习法是学习物理的一种重要的认知方法;它以学生的需要为出发点,以问题为载体,从学科领域或现实社会生话中选择和确定研究主题,创设类似于科学的情境,通过学生自主、独立地发现问题、实验探究、操作、调查、信息搜集与处理、表达与交流等探索活动,获得知识技能,发展情感与态度,培养探索精神和创新能力的学习方式。在这探究式学习的过程中,最难的一点在于如何创设科学的物理情境;这个科学物理情境的创建过程就是“物理模型”的建立过程。所以说要想学好中学物理,就要学会对生活中的现象多观察,多思考,并能从中学会如何建立“物理模型”。 一、什么是“物理模型” 自然界中任何事物与其他许多事物都有这千丝万缕的联系,并处在不断的变化当中。面对复杂多边的问题,人们在着手研究时,总是遵循这样一条重要的法则,即从简到繁,从易到难,循序渐进,逐次深入;基于这样一种思维,人们创建了“物理模型”,物理模型是指:物理学所分析的、研究的问题往往很复杂,为了便于着手分析与研究,物理学中常采用“简化”的方法,对实际问题进行科学抽象处理,用一种能反应原物本质的理想物理(过程)或遐想结构,去描述实际的事物(过程),这种理想物质(过程)或假象结构称之为“物理模型”。 物理模型的建立是人们认识和把握自然的一个典范,是前人的一种创举。 二、物理模型的种类和特点 1、中学中常见物理模型的种类 (1)研究对象理想化模型,例如:质点、刚体、理想气体、恒压电源等; (2)运动变化过程中理想化模型,如:“自由落体运动”、“简谐运动”、“热平衡方

浅谈物理模型的学习及理解

浅谈物理模型的学习及理解 我们知道,建立物理模型是物理学研究问题的基本方法之一。对于任意一个实际物体,因其自身的形状、体积、组成的均匀性等多方面的情况,使其在一个实际环境中的物理表现就不具有多少规律性,而物理学的分析问题的基本方法,如受力分析等,对此当然既不能定量描述,甚至也不能定性地分析。这是我们每个学习了基本物理学知识的人必然都形成的观念。 那么,我们如何学习和理解物理模型呢?我想物理模型的建立是为了突出问题的实质,从而进一步建立理论,能在实验室中进行有针对性的验证或探索等。从中,我们进一步能体会物理模型(或说概念)本身的重要性。但需要过分地基于模型本身进行“深挖”和无休止地讨论吗?我感到这种问题是不能确定性地回答的,套用物理学的一个出发点,即具体问题应具体分析。 1.一些“定势”的影响 我们新课标人教版教材物理1中(现已经删除)有一习题,大致内容是:高速飞行的子弹射穿一个吊着的苹果,在射穿苹果的短暂过程中,问子弹能被看成是“质点”吗?答案是不能。有老师指出,在穿透苹果的短暂时间内,子弹整体作平动,即子弹上各点的运动情况相同,因此,子弹可看成质点。 我本人写过一道题:物理学研究问题一般是通过建立物理模型进行的,质点就是一个物理模型。关于质点,以下说法正确的是 A.研究地球的自转时,把地球当作质点 B.研究火车通过隧道所用的时间时,把火车当作质点 C.研究宇宙飞船在轨道上的运动时,把飞船当作质点 D.研究跳水运动员的空中运动情况时,把运动员当作质点 有老师提出B答案也是正确的。 我们仔细思考上面的问题,其实所要表述的思想是明确的,我们都明白其中的物理问题,应该说这两题的考核目标达到了。当然,仅仅从一个题目求解的角度来看,老师的质疑也是合理的。如果我们把题目的要求改为“在以下各问题的分析处理中,所采取的方法合理的是?”的话,那么,无论是从概念上分析,还是从物理问题的阐述的层面上看,就都有意义了。 2.平面运动的研究 透过以下的介绍,有助于我们合理地理解、把握物理模型的建立和运用。

重点高中物理建模论文

重点高中物理建模论文

————————————————————————————————作者:————————————————————————————————日期:

运动模型的应用 内容摘要:中学物理教材中无论哪一部分的内容都是以物理模型为基础向学生传达物理知识的。物理模型是中学物理知识的载体,通过对其进行分析与讲解,是学生获得物理知识的一种基本方法,更是培养学生创造思维能力的重要途径。本文拟从习题教学中浅谈提高运动模型的建模能力。 关键词:运动模型、匀速圆周运动 学好物理,关键是学习物理思想和物理方法。常有高中学生说,物理听课易懂,做题难。难就难在对物理模型的应用上,也就是学生在解题过程中往往存在一些问题,读不懂题或做题过程思维混乱。这在很大程度上是由于学生不良解题习惯、建模能力差造成的。据对学生的调查,发现大多数学生的解题模式是: 一般来说,较为有效的解决物理问题的思维流程应该是通过审题先确定研究对象,对其进行抽象建立物理模型,再应用模型知识求解。此过程大致可以归纳为: 求解 读题 想公式

如果在解题过程中快速准确地建立起与题目相符合的物理模型是至关重要的。这个解题流程学生容易模仿,如果说正确识别或建立物理模型是正确解题的前提,那么在解决具有物理过程的物理习题时,学生头脑中对物理过程的一个清晰的图景则是解决此类物理问题的关键和保证。下面以力学中运动模型的应用为例。 一、 基本模型 1. 两种直线运动模型 匀速直线运动:00,v v t v x == 匀变速直线运动:at v v at t v x +=+=02210,(特例: 自由落体运动:gt v gt h ==,221 ) 2. 两种曲线运动模型 平抛运动: 水平方向为匀速直线运动 竖直方向为自由落体运动 匀速圆周运动:r T m r mw r mv ma F F n 22 22n 4π=====合(天体运动:物理解释 数学演算 数学抽象 科学抽象 一个具体的物理问题 物理模型 数学方程(物理问题的数学表达式) 方程的数学解 物理问题之解

2020—2021学年浙教版八年级科学下册2.1-模型、符号的建立与作用讲学稿

模型、符号的建立与作用 教学目标 1、体验使用符号、建立模型的思想。 2、能用物质粒子模型来解释物质的三态变化 重点和难点 重点:了解符号和模型用来表示复杂事物或过程这一科学方法; 难点:了解模型的各种不同类型及作用 一、课前预习 1、我们曾用过许多模型,用来观察;通过来了解不同生物等等。 2、人们通过一定的科学方法;建立一个适当的来反映和代替客观对象,并通过研究这个模型来揭示客观对象的、和,这样的方法就是。 3、列举你所知道的符号及所表示的意义: 符号意义;符号意义; 符号意义;符号意义; 二、新课教学 一、模型 【提问】(1)请你说说什么是模型,并列举几个模型的例子:如船模、航模等; (2)在我们以前的学习中,我们都用过哪些模型呢?如:地球仪 【思考】 (1)我们为什么要用地球仪呢? 因为地球太大了,难以认识,为更好研究它,将它制成模型。 (2)我们为什么要用眼球模型呢? 因为眼球结构复杂,难以表达; (3)我们为什么要用细胞模型呢? 因为细胞太小,难以观察,所以人们画出了细胞模式图; 小结:(1)模型并不仅仅指我们可以看到的用各种材料制成的某种物体的放大或缩小的复制品,如航模、各种建筑模型等,它可以是一幅图,如地图、一张表或是一个计算机软件。 (2)有的模型不是简单地表示一个具体的事物,而是一个过程,如描述水的三态变化的示意图“水的三态变化模型” (3)有的模型是具体形象的,如航模,也有的是非常抽象的,如一个数学方程,甚至是某些特定的词,如“黑箱” 二、符号 【提问】:日常生活中为什么要用符号来表示事物? (1)、分析交通标志,可知:符号能简单明了地表示事物; (2)、分析电流表、电压表、电灯符号,可知:用符号可避免由于事物外形不同而引起的混乱。(3)、分析厕所、医院符号,可知:用符号可避免由于表达事物的文字语言不同而引起的混乱。小结:用符号能简单明了地表示事物,可避免由于事物外形不同而引起的混乱,避免由于表达事物的文字语言不同而引起的混乱。 三、课堂练习 1、写出你所学过的符号,看谁能写得多? 2、说出下列符号表示的意义: S v G I

物理模型的建构在初中生物教学中的应用

物理模型的建构在初中生物教学中的应用 物理模型的建构在初中生物教学中的应用 物理模型的建构在初中生物教学中的应用 2015-05-26 生物论文 物理模型的建构在初中生物教学中的应用 物理模型的建构在初中生物教学中的应用 吕国庆 (江苏省常州市新北区实验中学) 摘要:探讨在初中生物教学中常见的几种物理模型的建构。物理模型的设计非常有利于生物教学的有效开展,提高学生的学习效率,培养学生的各种技能和科学素养。 关键词:物理模型;创新;生物 人们认识客观世界的时候,直观化、形象化,更便于人们探索科学世界的客观规律。物理模型建构的研究旨在教学活动中建构学生的建模意识,物理模型建构的创新研究实质上是培养学生的创造性思维能力,因为建模活动本身就是一项创造性思维活动。能够培养学生的想象力,思维能力,假想、变换、构造等能力,这些能力正是创造性思维所具有的最基本的特征。“创新是一个民族的灵魂,是一个国家兴旺发达的不竭动力,创新的关键是人才,人才的成长靠教育。”要真

正培养学生的’创新能力,自觉地在学习过程中构建物理模型,只有这样,才能使学生分析和解决问题的能力得到有效提高,也只有这样才能真正提高学生的创新能力。 那什么是物理模型呢?物理模型就是以实物或图画形式直接表达认识事物的特征。根据相似原理,把真实事物制成相关模型,其状态变量和原事物基本相同,可以模拟客观事物的某些功能和性质。物理模型包括:实物模型、模拟模型、图画。通过下面以三个具体实例来阐述本人对物理模型的理解与探索。 一、模拟模型建构能将抽象化的知识活化为具体直观 主题举例:植物细胞的模型模拟建构。 材料的选择:一次性方型塑料盒,透明塑料袋,带壳核桃或熟鸡蛋,清水和有颜色的水,气球,不能水溶的绿色胶囊若干,长粒香大米若干粒。 设计方案:学生根据自己对植物细胞的结构和功能的理解,小组成员利用教师所提供的材料制作模型,小组成员展示模型并介绍,同时接受其他小组成员点评,并答疑。 具体实施过程:一次性塑料盒充当细胞壁,透明塑料袋可充当细胞膜,带壳核桃或熟鸡蛋可充当细胞核,清水可充当细胞质,气球可充当液泡,有颜色的水可充当细胞液。 评价:在班级内部交流小组制作模型,从科学性、技术性、正确性等方面进行评价。小组成员根据班内成员的评价完善自己的设计。 解释:模拟模型,就是根据系统或过程的特性,按一定规律,用实物材料模拟系统原型的方法。形象大于思维,七年级学生对细胞的认识较浅显,由于细胞很

物理(心得)之浅谈物理模型与建模能力的培养

物理论文之浅谈物理模型与建模能力的培养 现在高考的重要指导思想是从知识立意向能力立意的转变,着重考查学生对知识的理解、迁移、应用能力。命题已向联系实际、与现代科技相结合的方向发展,考查学生学以致用的能力素质。这就需要学生把实际问题转化成物理模型来寻求解决方法。那么在教学中重视物理模型的教学及建模能力的培养就显得尤为重要。 一、物理模型 所谓物理模型就是为了便于抓住本质,解决问题,把复杂的物理过程或研究对象(事物),取其枝干,弃其蔓叶后,进行高度的概括,归结为一些简单的模型便于研究。 物理模型的特点 典型性。物理模型是从一类物理问题中,抓住主要的本质问题,删除干扰和次要因素,集基础知识与基本规律于一体,具有代表性的结晶。 方法性。物理模型不只是知识的结晶,同时也是思维的结晶。掌握好物理模型,除了加深对物理概念的理解之外,还可以从物理模型的建立,理解物理知识深刻的内涵及外延,体会将物理知识应用于解决实际问题的思路和逻辑方法入手。

美学性。物理模型能简明扼要地揭示物理问题,体现了它的形式美。物理模型是知识与思维的产物,是知识与能力的完美结合,体现了它的和谐美。随着学习的深入,对同一模型会有不同层次的体会和感悟,会为它丰富的内涵所折服,体现它的内在美。 物理模型的分类 物理模型一般有三类:一类是把研究对象视为抽象的理想模型。这类模型有:质点、刚体、弹性体、理想气体、弹簧振子、单摆、点电荷、点光源、薄透镜、卢瑟福模型等,牛顿的质点模型、玻尔的原子模型、理想气体模型等均属“对象模型”。它的特点是将研究对象简化成某种物理模型,从而使问题简化、直观、形象;另一类是把物理过程抽象为理想模型。此类模型重要的有:匀速直线运动、完全弹性碰撞、等温变化、恒定电流等,物理过程总是在一定条件下发生,将条件理想化以便突出主要的物理现象与过程,这便是条件模型方法。例如“光滑”、“均匀”、“轻质”等也属条件模型;还有一种是将物理过程发生的条件抽象模型化。过程模型是将复杂的过程抽象为简单的物理模型的方法。例如我们已学过匀速圆周运动,匀速直线运动,自由落体运动,简谐运动等均属过程模型。利用过程模型可将一个复杂的物理过程抽象为一个我们熟知的问题加以解决。 二、物理模型教学的意义 物理模型教学是课程改革的需要。课改的一对矛盾是丰富的教

建构物理模型的教学实例

龙源期刊网 https://www.sodocs.net/doc/635095450.html, 建构物理模型的教学实例 作者:曾小明李清华 来源:《理科考试研究·高中》2013年第01期 随着新课程标准的实施,高中物理教学中让学生学会探究和创新越发显得更重要,而这一切又离不开物理建模能力的培养.如何帮助学生树立建模意识,构建物理模型,运用建立起的 物理模型解决实际问题,是中学物理教学的一个重点,也是难点.因此教师在课堂教学中要积 极挖掘教材中可供学生自主构建物理模型的内容,大胆尝试,使课堂教学实现学习方式多样化,使学生具有不同的认知途径.从而在课堂教学中培养学生的创新精神和实践能力、树立终 身学习的意识、提高终身学习的能力等方面发挥作用,最终促进学生的全面发展. 高一物理教学中可对《单摆》这一节课(人教版选修3-4第十一章的第四节)进行物理模型处理,以简谐运动和圆周运动两个物理模型为主线进行教学. 一、教学目标分析 单摆是第十一章《简谐运动》继弹簧振子之后的又一个基本运动模型.它是机械振动的核 心内容,既是本章的中心,又是本章的教学重点,也是一个圆周运动的典型模型,因而是很多省份高考中考查的热点.这节课还用到了理想化方法、科学近似处理方法、控制变量法帮助学 生建构"单摆"这个物理模型. 二、情景创设 新教学之前,设计一个故事和一些演示实验使学生很快熟悉单摆的运动形式,为学生建立单摆模型提供必要的直观形象. 1.讲述故事(伽利略发现“摆”的等时性) 通过故事将“摆”的规律用于制作摆钟的技术,对学生是一次很好的模型教学的教育.学生将形成从建立到应用模型的直观感受. 2.小实验 演示实验①:单摆摆球的摆动;演示实验②:摆钟的摆动 在引入生动的故事的基础上,通过实验演示,向学生展现单摆的各部件,使学生初步认识单摆这个实体模型.另外也能使得学生很快熟悉单摆这种运动形式,为学生建立单摆振动模型 提供必要的直观形象. 三、构建单摆的理想化模型

浅谈物理模型在物理教学中的作用

浅谈物理模型在物理教学中的作用 论文关键词:物理模型,物理教学,作用 一、物理模型在物理学中无处不在。 物理学中的各种基本概念,如物质、长度、时间等都是物理模型。因为它们都是以各自相应的现实原型为背景,加以抽象出来的最基本的物理概念。那些反映特定问题或特定具体事物结构的物理模型,如质点、点电荷、理想气体、理想变压器、匀变速直线运动,简谐运动等,是理想化的物理模型。那些用形象化的手段、采用示意图或制作出与实体相似的模拟,如用铁屑模拟磁感线、直流电机的构造示意图、发电机模型等,则是模拟式物理模型。那些由概念与概念推断出的各种结论及在实验基础上产生的物理规律,往往以字母的形式,通过数学的手段描述出来,如欧姆定律、牛顿第二定律、法拉第电磁感应定律等,可称之为数学化的物理模型。由此可见,物理模型在物理学中无处不在。从某种意义上讲,物理学也是一 门模型科学。 二、物理模型在物理教学中的作用 物理教学是物理教师引导学生建立物理模型,并学会应用物理模型解决物理问题的教学。可见物理模型在物理教学中的作用是非常重要的,笔者根据自己的教学经验认为,物理模型 在物理教学中有如下作用: 1、建立和正确使用物理模型可以提高学生理解和接受新知识的能力。例如,在教学运动学中建立“质点”模型,使学生对这一模型有充分的认识和足够的理解,为以后学习质点的运动、万有引力定律、物体的平动和转动,以及电学中的“点电荷”模型、光学中的“点光源” 模型等奠定了良好的基础。使学生学习这些新知识时容易理解和接受。 2、建立和正确使用物理模型有利于学生将复杂问题简单化、明了化,使抽象的物理问 题更直观、具体、形象、鲜明,突出了事物间的主要矛盾。 3、建立和正确使用物理模型对学生的思维发展、解题能力的提高起着重要的作用。可 以把复杂隐含的问题化繁为简、化难为易,起到事半功倍的效果。 4、建立和正确使用物理模型有利于减负增效。物理学的难教难学,让许多师生困惑、苦恼。究其原因,教师不善于帮助学生建立物理模型或建立物理模型的意识淡薄是重要原因。学生头脑中有形象化的实物模型和抽象化的诸多物理模型,并能灵活的提取、应用、置换、迁移物理模型,是学生学好物理的充要条件。学生对物理概念、规律的理解不深不透,说明学生头脑中的物理模型是含糊不清的。即便强行建立了概念、规律的物理模型,但在具体应用时又感到手足无措。在应试教育甚行,题海战术泛滥的氛围中,如何跳出题海,提高学习效率,笔者以为,正确理解物理概念和规律是前提。在遇到具体的习题时,要善于寻找模型解决实际问题,再在解决实际问题的基础上建立新的物理模型。 5、建立和正确使用物理模型有有利于培养学生的创造思维能力。因为建模活动本身就是一项创造性的思维活动。它可以培养学生的想像能力,直觉思维能力,猜测、转换、构造等能力,这些能力正是创造性思维所具有的最基本的特征。这也适应当前新课改的需要,也 是提高学生技能、适应现代化科技发展的需要。 总之,在物理教学中,物理老师要善于帮助学生建立物理模型,并使学生学会利用物理模型解决实际问题。只有这样,物理学才不再枯燥难学,而物理学丰富的内涵和独特的思维方法在物理模型的建立与应用的过程中必将被学生所理解与应用、信服与欣赏。所以,物理 教师一定要重视物理模型在教学中的重要价值。

企业建立能力素质模型的意义_作用

企业建立能力素质模型的意义_作用

企业建立胜任素质模型工作的价值、作用和意义 关于对建立胜任素质模型的思考之一 企业为什么要开展胜任素质模型工作? ----企业建立胜任素质模型工作的价值、作用和意义---- 在面临金融危机的今天,全球化、信息化以及市场需求的多样性与多变性,使得企业之间的竞争日益激烈。目前,越来越多的研究和实践表明,企业要想获取持续竞争优势必须高度重视人力资源的开发、利用与管理。企业的高层管理者作为企业人力资源的重要组成部分,由于其在企业经营管理决策活动中的特殊地位,其作用显得尤为重要。因此,采用什么标准来科学地选拔、培养和使用企业高层管理者,受到了越来越多企业高层领导(老板)的极大关注和高度重视。在传统的人力资源管理中,一般是通过职位分析来确定中高层管理者所需要具备的任职要求(包括知识、技能、能力和其他特点),这种任职资格是满足岗位的基本要求,而不是取得高绩效的素质能力要求,因此采取任职资格的方式选拨人才已远远不能满足企业在市场竞争和发展中的要求了,将会被在胜任素质模型之基础上进行中高层管理者的甄别、选拔、评价、培养和任用所取代,这将是人力资源管理新理论、新工具和新方法所带来的必然发展趋势。 我国正处在社会经济转型期,面对来自全球金融海啸的巨大冲击,甄别、选拔、任用和培养懂市场、善经营和会管理的高层管理人员已成为企业成功实施战略性的结构调整和市场竞争的关键所在。因此,采用科学的方法来确定高层管理人员的甄别、选拔、评价和任用的标准也就成为当务之急、迫切需要解决的难题。揭示中国企业中高层管理者的胜任素质模型,为企业中高层管理人员的甄别、选拔、培训和评价及任用提供理论和方法的依据。麦克米兰有研究表明,对各行业成功的管理者而言,

浅谈物理概念教学汇总

浅谈物理概念教学 一、物理概念的特点 物理概念准确地反映了物理现象及过程的本质属性,它是在大量的观察、实验基础上,获得感性认识,通过分析比较、归纳综合,区别个别与一般、现象与本质,然后把这些物理现象的共同特征集中起来加以概括而建立的,是物理事实本质在人脑中的反映。任何一个物理概念的学习又会与其他概念相联系,概念之间的这种关联着的逻辑关系,是构成物理规律和公式的理论基础。物理概念不仅是物理基础理论知识的一个重要组成部分,也是学生通过逻辑推理方法,构建知识体系的基本元素,学生学习物理知识的过程,就是要不断地建立物理概念,弄清物理规律。如果概念不清,就不可能真正掌握物理基础知识,不可能有效构建物理模型,不可能形成清晰的思维过程。在解决物理问题时,常常表现出选择题选不全,计算题审题时,由于对某些概念理解不到位,导致挖掘不出有效信息、不能快速建立未知量与已知量之间的联系,解题效率低下。因此,在中学物理教学中,概念教学是一个重点,也是一个难点,搞好物理概念的教学,使学生的认识能力在形成概念的过程中得到充分发展,是物理教学的重要任务。 二、影响高中物理概念学习的主要因素 1、教材因素 初中物理教材与高中教材相比较,对知识和思维能力的要求都有一个较大的跨越,存在一个较大的台阶。高中物理教材所讲述的知识不仅要求采用观察、实验,更多的要求具备分析归纳和综合等抽象思维能力,要求能熟练的应用数学知识解决物理问题。对于多个研究对象、多个状态、多个过程的复杂的问题,从物理现象到构建物理模型,从物理模型到数学化的描述,建立一系列的方程,学生接受难度大。初中、高中物理教材对知识的表述也有很大差别。初中物理教材文字叙述比较浅显通俗,学生容易看懂和理解,而高中物理教材对物理概念和规律的表述严谨简捷。对物理问题的分析、推理、论述科学严密,学生不易读懂、阅读难度大。另外,高中教材与所需数学知识的衔接不当,也对学生的物理学习造成了困难。如学生尚未学到极限的概念,在学习瞬时速度时就难以理解;高一新生没有三角函数知识,就不能灵活处理力的合成与分解;没有函数图像的知识,用图像法研究各种问题就会比较困难。由于学科之间的横向联系的失调,也加大了高一物理学习难度,使高一学生成绩分化。2、学生因素 高中物理概念有些是从直观的实验直接得出的,有些概念则需要学生从已有的物理概念出发,或从建立的理想模型出发,通过观察、分析、归纳和推理建立起来。虽然高中学生具有一定的认知能力及逻辑思维能力,但由于他们物理基础知识有限,物理思维方法不足,个别高中学生由于在以往的学习过程中形成了被动接受知识的习惯,积极主动思考问题的能力较差,不善于将陌生、复杂、困难的问题转化为熟悉、简单、容易的问题,不善于将实际问题转化为物理问题,不善于根据具体问题灵活选择方法,学习物理概念时习惯于机械记忆,盲目练习,往往被个别表面现象所迷惑,形成一些片面的、肤浅的概念。主要表现在解决物理问题时对于隐含条件的分析,临界状的把握,多过程的衔接等分析不完整,顾此失彼,答案不全面,条理不清楚。如个别学生不理解加速度及电阻率的概念,造成“加速度大速度就大;电阻率大电阻一定大”的错误认识。 3、教师因素 教师在教学过程中,往往将大量的时间用于备课做题,缺乏分析研究学生的现有知识状况、接受知识的能力,对于学生的知识能力有时估计过高,自己常常觉得有些物理概念很简单,学生自己一看就懂,没有必要花费时间去探讨、挖掘物理概念的内涵和外延,造成学生在最初就没有真正理解有些概念,致使学生不易建立各个物理概念之间的联系。为了更有效

相关主题