搜档网
当前位置:搜档网 › 土壤中的氮素及其转化

土壤中的氮素及其转化

土壤中的氮素及其转化
土壤中的氮素及其转化

土壤中的氮素及其转化

1?土壤中氮素的来源和含量

1.1来源

①施入土壤中的化学氮肥和有机肥料;②动植物残体的归还;③生物固氮;

④雷电降雨带来的N03—N。

1.2含量

我国耕地土壤全氮含量为0.04%~0.35%之间,与土壤有机质含量呈正相关

2.土壤中氮素的形态

3.土壤中氮素的转化

3.1有机氮的矿化作用

定义:在微生物作用下,土壤中的含氮有机质分解形成氨的过程。

过程:有机氮'氨基酸k NH4J N +有机酸

结果:生成NH4+-N (使土壤中有机态的氮有效化)

3.2 土壤粘土矿物对NH4+的固定

定义:①吸附固定(土壤胶体吸附):由于土壤粘土矿物表面所带负电荷而引起的对NH4 +的吸附作用

②晶格固定(粘土矿物固定):NH4 +进入2:1型膨胀性粘土矿物的晶层间而被固定的作用

过程:

结果:减缓NH4+的供应程度(优点?缺点?

3.3氨的挥发

定义:在中性或碱性条件下,土壤中的NH4+转化为NH3而挥发的过程

过程:

结果:造成氮素损失 3.4硝化作用

定义:通气良好条件下,土壤中的NH4+在微生物的作用下氧化成硝酸盐的现象

过程:

结果:形成NO-N

禾I」:为喜硝植物提供氮素

弊:易随水流失和发生反硝化作用

3.5无机氮的生物固定

定义:土壤中的铵态氮和硝态氮被植物体或者微生物同化为其躯体的组成成分而被暂时固定的现象。

过程:

结果:减缓氮的供应,可减少氮素的损失

3.6反硝化作用

定义:嫌气条件下,土壤中的硝态氮在反硝化细菌作用下还原为气态氮从土

壤中逸失的现象

过程:

结果:造成氮素的气态挥发损失,并污染大气

3.7硝酸盐的淋洗损失

NO3-不能被土壤胶体吸附,过多的硝态氮容易随降水或灌溉水流失。

结果:氮素损失,并污染水体

4.小结:土壤有效氮增加和减少的途径

增加途径:①施肥(有机肥、化肥);②氨化作用;③硝化作用(喜硝作物力④

生物固氮;⑤雷电降雨

降低途径:①植物吸收带走;②氨的挥发损失;③硝化作用(喜铵作物弱④ 反硝化作用;⑤硝酸盐淋失;⑥生物和吸附固定(暂时)

氮肥的种类、性质和施用

氮肥的种类很多,根据氮肥中氮素的形态,常用的氮肥一般可分为三大类。

①铵态氮肥,如氨水、硫酸铵、碳酸氢铵、氯化铵等;②硝态氮肥,如硝酸钠、硝酸钙、硝酸钾等;③酰胺态氮肥,如尿素。另外还有一类不同于以上的是长效氮肥(缓释/控释氮肥),如合成有机肥料(脲甲醛,脲乙醛等)和包膜肥料等。

1.铵态氮肥

共同性质:①易溶于水,易被作物吸收;②易被土壤胶体吸附和固定;③可发生硝化作用;④碱性环境中氨易挥发。

2.硝态氮肥

共同性质:①易溶于水,易被作物吸收(主动吸收);②不被土壤胶体吸附, 易随水流失;③易发生反硝化作用;④促进钙镁钾等的吸收;⑤吸湿性大,具助燃性(易燃易爆);?硝态氮含氮量均较低。

土壤氮素的形态及其转化过程

土壤氮素的形态及其转化 过程 This model paper was revised by the Standardization Office on December 10, 2020

土壤氮素的形态及其转化过程 摘要:氮是植物生长发育所必需的大量元素,对植物的产量和品质影响很大。土壤中氮素的形态及其转化过程和结果则直接决定了氮对植物生长的有效性的大小,了解土壤中氮素存在的形态和其转化过程,对于科学合理经济的肥料施用具有现实的启示作用。 关键词:氮素;形态;转化过程 土壤中氮素的含量受自然因素和人为因素的双重影响,较高的氮素含量表明土壤肥力也较高。自然条件下,土壤没有受到人为因素的影响,有机质日积月累,土壤中氮的含量也较高。耕地土壤氮素含量及转化过程则更强烈的受到人为耕作、施肥、不同作物等因素的影响,因而相对表现的复杂一些。 一、土壤中氮素的形态 1.无机态氮 无机态氮包括固定态NH4+、交换性NH4+、土壤溶液中的NH4+、硝态氮(NO3-)、亚硝态氮等,这其中以NH4+离子和NO3-离子最容易被植物吸收利用,农业生产中常常用到的碱解氮,也叫水解氮或速效氮,就属于无机态氮中的一部分。无机态氮并不是全部都能被植物所直接吸收利用,它们中的大部分是被粘土矿物晶层所固定了的固定态铵,不能作为速效氮存在。固定态铵只有在土壤中经过相

应的转化,转化为铵离子或硝酸离子、硝酸盐类的含氮物,才能为作物利用。 2.有机态氮 有机态氮构成了土壤全氮的绝大部分。它们与有机质或粘土矿物相结合,或与多价阳离子形成复合体。有机态氮大都难以分解,并不能为作物所直接吸收利用。但有机态氮的含量高低依然是衡量土壤肥力高低的重要指标,有机态氮的含量高,可被转化的氮素水平也相应的高,其作为植物氮素营养‘库’的存在是有很大的作用的。 二、土壤中氮素的转化过程 1.氮素的矿化与生物固持作用 氮素的矿化作用,简单的说就是有机态的、不易分解的氮素及含氮化合物在土壤中微生物的参与下分解转化为无机态氮的过程,是一个氮的速效化的过程,也是一个可利用氮素增加的过程。氮的固持作用,就是土壤中的无机态氮在土壤微生物的作用下转化为细胞体中有机态氮的过程,其对于农业生产上的实质就是可利用的速效氮的减少过程。 2.铵离子的固定与释放 铵离子的固定,其实质就是土壤溶液中的能自由移动的、可交换的铵离子被土壤胶体所吸附,变成不可交换的铵离子的过程,固定了的铵离子不能再被交换到土壤溶液

土壤中氮素转化过程及植物吸收方式(土壤部分初稿)说课材料

土壤中氮素转化过程及植物吸收方式(土壤 部分初稿)

土壤中氮素转化过程及植物吸收方式 我国耕地土壤全氮含量为0.04~0.35%之间,且土壤有机质含量呈正相关。其氮素来源包括:生物固氮、降水、农业灌溉和施肥等,而目前肥料是农田土壤氮肥的主要来源。下面就从土壤中氮素的主要表现形态和转化过程等进行详细的介绍: (一)土壤中氮素的主要形态 水溶性速效氮源 < 全氮的5% 包括游离氨基酸、胺盐及酰胺类化合物等有机氮水解性缓效氮源占50~70% 包括蛋白质及肽类、核蛋白类、氨基糖类(>98%) 非水解性难利用占30~50% 包括杂环态氮、缩胺类 离子态土壤溶液中 无机氮吸附态土壤胶体吸附 (1~2%) 固定态 2:1型粘土矿物固定 注明:其中无机氮包括:铵态氮(NH4+ — N)、硝态氮(NO3-— N)、亚硝态氮(NO2- — N)三种主要形态。 一般情况下,土壤中存在的主要是有机态氮,占土壤总氮的90~98%。

(二)土壤中氮素的转化过程 1.有机态氮的转化 土壤中的有机态氮是较复杂的有机化合物,必须要经过各种矿化过程,变为易溶的形态,才能发挥作物营养的功能。它的矿化量和矿化速率就成为决定土壤供氮能力的极其重要的因素。土壤有机氮的矿化过程是包括许多过程在内的复杂过程。 ①水解过程蛋白质在微生物分泌的蛋白质水解酶的作用下,逐步分解为各种氨基酸。 ②氨化过程氨基酸在多种微生物作用下分解成氨的过程称为氨化过程。如: RCH2OH+NH3+CO2+能量—水解—→ RCHNH2COOH+H2O RCHOHCOOH+NH3+能量—氧化—→ RCHNH2COOH+O2 RCOOH+NH3+CO2+能量——还原—→RCHNH2COOH+H2 由此可见,氨化作用可在多种多样条件下进行。无论水田、旱田,只要微生物活动旺盛,氨化作用都可以进行。

土壤中的氮素及其转化

土壤中的氮素及其转化 1.土壤中氮素的来源和含量 1.1 来源 ①施入土壤中的化学氮肥和有机肥料;②动植物残体的归还;③生物固氮; ④雷电降雨带来的NO3—N。 1.2 含量 我国耕地土壤全氮含量为0.04%~0.35%之间,与土壤有机质含量呈正相关。 2. 土壤中氮素的形态 3. 土壤中氮素的转化 3.1 有机氮的矿化作用 定义:在微生物作用下,土壤中的含氮有机质分解形成氨的过程。 过程:有机氮氨基酸NH4+-N+有机酸 结果:生成NH4+-N(使土壤中有机态的氮有效化)

3.2 土壤粘土矿物对NH4+的固定 定义:①吸附固定(土壤胶体吸附):由于土壤粘土矿物表面所带负电荷而引起的对NH4+的吸附作用 ②晶格固定(粘土矿物固定):NH4+进入2:1型膨胀性粘土矿物的晶层间而被固定的作用 过程: 结果:减缓NH4+的供应程度(优点?缺点?) 3.3氨的挥发 定义:在中性或碱性条件下,土壤中的NH4+转化为NH3而挥发的过程 过程: 结果:造成氮素损失 3.4硝化作用 定义:通气良好条件下,土壤中的NH4+在微生物的作用下氧化成硝酸盐的现象 过程: 结果:形成NO3--N 利:为喜硝植物提供氮素 弊:易随水流失和发生反硝化作用 3.5无机氮的生物固定 定义:土壤中的铵态氮和硝态氮被植物体或者微生物同化为其躯体的组成成分而被暂时固定的现象。 过程: 结果:减缓氮的供应,可减少氮素的损失 3.6反硝化作用

定义:嫌气条件下,土壤中的硝态氮在反硝化细菌作用下还原为气态氮从土壤中逸失的现象 过程: 结果:造成氮素的气态挥发损失,并污染大气 3.7硝酸盐的淋洗损失 NO3-不能被土壤胶体吸附,过多的硝态氮容易随降水或灌溉水流失。 结果:氮素损失,并污染水体 4. 小结:土壤有效氮增加和减少的途径 增加途径:①施肥(有机肥、化肥);②氨化作用;③硝化作用(喜硝作物);④生物固氮;⑤雷电降雨 降低途径:①植物吸收带走;②氨的挥发损失;③硝化作用(喜铵作物);④反硝化作用;⑤硝酸盐淋失;⑥生物和吸附固定(暂时) 氮肥的种类、性质和施用 氮肥的种类很多,根据氮肥中氮素的形态,常用的氮肥一般可分为三大类。 ①铵态氮肥,如氨水、硫酸铵、碳酸氢铵、氯化铵等;②硝态氮肥,如硝酸钠、硝酸钙、硝酸钾等;③酰胺态氮肥,如尿素。另外还有一类不同于以上的是长效氮肥(缓释/控释氮肥),如合成有机肥料(脲甲醛,脲乙醛等)和包膜肥料等。 1.铵态氮肥 共同性质:①易溶于水,易被作物吸收;②易被土壤胶体吸附和固定;③可发生硝化作用;④碱性环境中氨易挥发。

森林土壤氮素养分研究进展

森林土壤氮素研究进展 摘要氮素是林木生长所必需的大量营养元素之一,也是林木生长最重要的养分限制因子。土壤氮素是林木吸取氮素的主要来源。文章从氮素的化学结构、空间变异特征、氮沉降以及氮素矿化特征等方面土对土壤氮素的研究进展进行了综述。并展望了今后土壤氮素的研究方向。 关键词化学机构;有机氮;变异特征;矿化;氮沉降 1土壤中氮的含量和氮的形态 土壤中氮的含量范围为0.02%—0.05%,表层土壤和心底土壤的含氮量相差很大。心底土含氮量一般在0.1%以下,甚至只有0.02%;而表土的含氮量比较高,耕地土壤表层含氮量一般为0.05—0.3%,少数肥沃的耕地、草原、林地的表层土壤甚至可以达到0.5—0.6%以上,而冲刷严重、贫瘠的荒地表层土则可低至0.05%以下。有机质土壤的含氮量较矿质土高,如腐泥土、泥炭土等的含氮量可以高达1—3.5%,当然,也有一些高位泥炭土含氮量在1%以下。但是总的情况是含有机质高的土壤,其含氮量也比较高,两者有着密切的关系[1]。 在陆地生态系统中的氮以不同的形态存在于大气圈、岩石圈、生物圈、和水圈,并在各圈层之间相互转换,大气中氮以分子态氮(N2)和各种氮氧化物(NO2、N2O、NO等)形式存在。其中生物不能吸收利用的惰性氮气(N2)占大气体积的78%,它们在微生物作用下通过同化作用或物理、化学作用进入土壤,转换为土壤和水体的生物有效氮—铵态氮(NH4-N)和硝态氮(NO3-N)[2]。 氮在土壤中以无机氮和有机氮形态存在,有机氮是土壤氮素的主要组成成分,占土壤总氮的90%左右[3]。氮素的化学机构与供氮能力有关,我国研究学者通过先进化学仪器,初步查明,腐殖物质中氮素约70%以上以酰胺态氮存在,脂肪和杂环态氮均各占15%以下,杂环态氮主要是吲哚和吡咯类,吡啶类没有或者数量甚少。非酸解氮中,部分可能为抗酸解的酰胺[4—5]。 传统上,人们一直认为植物只能吸收无机态氮素,而不能吸收有机态氮,土壤中的有机态氮必须经土壤微生物矿化为无机态氮后才能被植物吸收。然而研究发现,在高寒苔原及北方森林生态系统中,无机氮含量少,既植物氮摄取量远高于土壤无机氮,这表明其他氮源为植物营养也很重要[20]。报道称生长在苔草的莎草科(Cyperaceae)植物白毛羊胡子草(Eriophorum vaginatum)可以迅速吸收游离氨基酸,它吸收的氮至少60%来自氨基酸[3]。 2土壤中氮的空间变异特征 森林生态系统中,在垂直尺度上,全氮和碱解氮在不同层次土壤中,存在明显差异性。一般而言,自表层至下层,含量依次下降。就碱解氮,A层土壤变异系数明显高于B、C层[6-7]。 由于森林演替和植被类型植被干扰程度及地形等多重因素的影响,森林土壤全氮及碳氮比在空间的分布有着明显的变异特征。演替过程中,有机氮,全氮其平均值随生态系统由人工林、次生演替早起林、次生演替中后期林顺向演替,平均值先增加后减少[8]。 人工林土壤全氮异质性相对较低,空间分布较次生林更趋于均匀化。次生林则表现出较强的空间自相关变异性[8]。 不同森林类型土壤全氮,有效氮质量分数均表现出阔叶林中明显高于针叶林。土壤全氮在针阔混交林中变异强度最大,但变异的空间相关性较差,而在阔叶和针叶纯林中变异强度有所下降,但是变异的空间相关性较好[9]。土壤氮素空间异质性的产生受多个环境因子的影响[10]。当然土壤资源的异质性特征也可导致森林空间分布异质性及格局产生,同时,树木的

4.1污染物在土壤中的迁移转化

第四章土壤环境化学——污染物在土壤中的迁移转化 本节内容要点:土壤污染源、主要污染物,氮和磷的污染及其迁移转化,土壤的重金属污染及其迁移转化,土壤的农药污染及其迁移转化,土壤中温室气体的释放、吸收及传输等。 人类活动产生的污染物进入土壤并积累到一定程度,引起土壤质量恶化的现象即为土壤污染。土壤与水体和大气环境有诸多不同,它在位置上较水体和大气相对稳定,污染物易于集聚,故有人认为土壤是污染物的“汇”。 污染物可通过各种途径进入土壤。若进入污染物的量在土壤自净能力范围内,仍可维持正常生态循环。土壤污染与净化是两个相互对立又同时存在的过程。如果人类活动产生的污染物进入土壤的数量与速度超过净化速度,造成污染物在土壤中持续累积,表现出不良的生态效应和环境效应,最终导致土壤正常功能的失调,土壤质量下降,影响作物的生长发育,作物的产量和质量下降,即发生了土壤污染。土壤污染可从以下两个方面来判别:(1)地下水是否受到污染;(2)作物生长是否受到影响。 土壤受到污染后,不仅会影响植物生长,同时会影响土壤内部生物群的变化与物质的转化,即产生不良的生态效应。土壤污染物会随地表径流而进入河、湖,当这种径流中的污染物浓度较高时,会污染地表水。例如,土壤中过多的N、P,一些有机磷农药和部分有机氯农药、酚和氰的淋溶迁移常造成地表水污染。因此,污染物进入土壤后有可能对地表水、地下水造成次生污染。土壤污染物还可通过土壤植物系统,经由食物链最终影响人类的健康。如日本的“痛痛病”就是土壤污染间接危害人类健康的一个典型例子。 1)土壤污染源 土壤污染源可分为人为污染源和自然污染源。 人为污染源:土壤污染物主要是工业和城市的废水和固体废物、农药和化肥、牲畜排泄物、生物残体及大气沉降物等。污水灌溉或污泥作为肥料使用,常使土壤受到重金属、无机盐、有机物和病原体的污染。工业及城市固体废弃物任意堆放,引起其中有害物的淋溶、释放,也可导致土壤及地下水的污染。现代农业大量使用农药和化肥,也可造成土壤污染。例如,六六六、DDT等有机氯杀虫剂能在土壤中长期残留,并在生物体内富集;氮、磷等化学肥料,凡未被植物吸收

稻田土壤氮素流失机制研究

稻田土壤氮素流失机制研究 摘要:本文通过查阅大量文献,总结了稻田土壤中氮素流失的过程机制和影响因素,并进一步探究了抑制或减缓稻田土壤氮素流失的方法,为稻田氮素流失的相关研究提供基础资料。 关键词:稻田;氮素流失;机制 Study on the mechanism of soil nitrogen losing in paddy field Abstract:Through consulting a large number of documents, this article summarizes the process of soil nitrogen losing mechanism and the influencing factors in the paddy fields, then explore the methods to inhibit or slow the nitrogen losing in the paddy fields; the goal is to providing a basic material for related research. Key words: paddy field; nitrogen losing; mechanism 氮素是动植物生长所需的主要元素。土壤中氮素的丰缺及供给状况直接影响着农作物的生长水平[1]。随着世界人口的日益增加, 对粮食的需求量也越来越大, 该元素在维持农业系统的可持续性和经济活力中扮演着重要的角色。由于其易于以气体形式挥发, 易于淋失和迁移, 因此氮素会大量流失, 进而影响水和空气的质量[2]。 为提高土壤的氮素水平,人们在农业生产中广泛使用大量的氮素化肥。目前中国已成为世界上氮肥年用量最多的国家之一[3],单位面积的施用量也高于世界平均水平。由于施肥方法或农业管理措施不当,导致氮素损失加剧[4],严重影响了氮肥利用率,中国氮肥利用率仅为30% ~50%[5]。研究表明,农田中氮素损失的途径主要包括:氨的挥发、反硝化脱氮、铵的固定、径流冲刷和硝态氮的淋失等。其中,硝态氮的淋失是损失的重要方面[6],淋失量可达5%~41.9%[7]。 水稻是我国南方的主要粮食作物之一, 同时也是消耗氮素较多, 流失

土壤氮转化过程对环境的适应性

土壤氮转化过程对环境的适应性 蔡祖聪 土壤与农业可持续发展国家重点实验室;中国科学院南京土壤研究所;江苏南京市北京东路71 号;210008 施用氮肥是提高作物产量、保证粮食安全必不可少的措施。从1995年到2005年的十年间,世界化肥氮生产量从100百万吨增加到121百万吨(Galloway et al., 2008)。如同人类大量利用矿质能源、开垦土地等造成大气CO2浓度持续升高,引发全球变暖的环境问题那样,氮肥施用量的持续增加导致的环境问题也已经成为全球性的问题。 氮是植物的必需元素。对于非豆科植物,主要依靠吸收土壤中的氮作为维持生理活动、合成氨基酸和蛋白质。但是,可以被非豆科植物吸收利用的活性氮(Nr)并不是土壤的原始成分,它是在土壤发育过程逐渐积累起来的。有机氮是土壤积累的活性氮的最主要形态,一般占土壤氮的95%以上。土壤保持有机氮的能力远远于大保持无机氮的能力。由于植物一般只能吸收利用土壤中的无机氮,所以,有机氮只有通过矿化转化成为无机氮以后才能被植物吸收。土壤保持不同形态的无机氮(主要为铵态氮和硝态氮)的能力受环境条件,特别是水分条件的影响。为了将无机氮保持在土壤中,在不同的环境条件下,土壤通过调节氮在不同形态之间的转化速率,将无机氮保持在可被土壤保持的形态。但是,人类活动极大地干扰了土壤保持无机氮的策略,使土壤保持无机氮的能力下降,向环境扩散增加。所以,人类活动导致的环境氮污染,不仅是由于活性氮消耗量增加,而且也是由于人类活动对土壤保氮策略的干扰。前者已经受到高度的关注,但对后者的研究还极其有限。 Climate Change Adaptation for Conservation of Freshwater Ecosystems Jamie PITTOCK WWF Research Associate; Fenner School for Environment & Society, Australian National University; James Pittock Consulting Freshwater ecosystems are at the centre of the crisis in biodiversity loss, for reasons that mostly exclude climate change. For instance, the 2005 Millennium Ecosystem

氮在地下水中迁移转化规律

氮在地下水系统中的迁移转化挤数学模型 摘要:近年来,我国部分地区地下水硝酸盐污染态势十分严峻,特别是集约化种植区由于施用大量氮肥导致的硝酸盐污染更为严重。为控制污染,应掌握地下水硝酸盐污染的空间变异规律与分布特征。采用地统计学方法.结果表明,不同区域地下水硝态氮含量存在一定的差异,存在明显的趋势效应以及变异性,且含量随地下水深度增加而减少。通过相关性分析,获得与地下水硝态氮含量相关性最高的两个因子(土壤有机质含量和全氮含量),并作为协克里金(Cokriging)插值方法中的协同因子,地下水硝酸盐污染进行插值。经比较分析,协克里金法比普通克里金法(OrdinaryKriging)的精度高,减少了80%的平均误差。协克里金法空间插值结果表明,空间分布规律表现在从西南到东北逐渐升高的方向性效应,而地下水硝态氮含量较高的区域主要分布在潍坊、青岛、烟台种植区,如青岛的平度、莱西,潍坊的寿光等农业较发达的种植区。 关键词:地下水硝酸盐污染;空间变异;地统计;协克里金法 Abstract:In recent years, groundwater nitrate pollution in some regions of China is very serious. Especially,nitrate pollution in intensive cultivation areas is more serious for the application of a large number of nitrogen fertilizer. The objective of this preliminary research is to investigate the potential of application geo statistical method to explore spatial variability of groundwater nitrate pollution in Shandong intensive farming regions in China. Detailed sample data of groundwater nitrate nitrogen were collected in 175 farming sites representing the typical cropping systems in the study area. Semi-variole of the geo-statistical method was used to analyze the groundwater nitrate nitrogen spatial variability based on the 175 sample sites data. The results indicated that there was an obvious variability and trend effect that gradually increasing from the southwest to the northeast. Furthermore, the concentration decreased with the increase in the depth of groundwater. For obtaining the spatial variation of groundwater nitrate nitrogen in the whole study area, cokriging method was utilized to interpolate the groundwater nitrate nitrogen pollution with two synergy factors(e.g. soil organic matter content and total nitrogen content)which were the most obvious relevant with groundwater nitrate nitrogen concentration. Compared with ordinary cringing method, cokriging method achieved higher precision with a decrease of 80% of the average error. Cokriging spatial interpolation results showed that areas with higher nitrate nitrogen concentration in groundwater mainly distributed in Weifang, Qingdao, and Yantai intensive farming regions, due to the excessive use of nitrogen fertilizer in these regions. The result suggested that the cokriging spatial interpolation was an effective approach of obtaining the groundwater nitrate nitrogen spatial variability in intensive farming regions. The possible reasons for the

土壤氮素循环及其模拟研究进展

土壤氮素循环模型及其模拟研究进展 * 唐国勇 1,2 黄道友1 童成立 1** 张文菊 1,3 吴金水 1 (1中国科学院亚热带农业生态研究所亚热带农业生态重点实验室,长沙410125;2中国科学院研究生院,北京100039;3 华中农业大学资源环境学院,武汉430070) 摘要 N 既是植物必需的营养元素,又是造成环境污染的重要元素.正确模拟土壤中N 循环已经成为科学家共同关注的热点问题.简述了土壤N 循环的基本过程,重点介绍了13种土壤N 循环模型和6个土壤N 循环过程的模拟,并讨论了模拟中存在的参数化问题. 关键词 土壤N N 循环 模型 模拟 文章编号 1001-9332(2005)11-2208-05 中图分类号 S153.6 文献标识码 A Research advances in soil nitrogen cycling models and their simulation.T AN G Guo yong 1,2,HU AN G Daoyou 1,T ON G Cheng li 1,ZHA NG Wenju 1,3,WU Jinshui 1(1Key L abor ator y of S ubtr op ical A gro ecology ,I nstitute of Subtrop ical A gr icultur e,Chinese A cademy of Sciences,Changsha 410125,China;2Gr aduate School of Chinese A cademy of Sciences ,Beij ing 100039,China;3College of Resources and Env ironment,H uaz hong A gricultural Univer sity ,W uhan 430070,China). Chin.J.A p pl.Ecol .,2005,16(11):2208~2212. N itrogen is one of the necessary nutrients for plant,and also a pr imar y element leading to environmental pollu tion.M any researches hav e been concerned about t he contr ibution of agr icultur al act ivities to env ironmental pollu tion by nitrogenous compounds,and the focus is how to simulate soil nitrog en cycling pr ocesses correctly.In this paper,the pr imary soil nitro gen cycling processes were rev iewed in brief,w ith 13cycling models and 6simulated cycling processes introduced,and t he parameterization o f models discussed.Key words Soil nitro gen,Nitro gen cycle,M odel,Simulation. *中国科学院知识创新工程重要方向项目(KZCX3 S W 426)、国家 自然科学基金重点项目(40235057)和国家重点基础研究发展资助项目(2002CB412503).**通讯联系人. 2005-01-10收稿,2005-05-08接受. 1 引 言 N 是植物必需的营养元素,也是评价土壤质量和土地生产力的重要指标.为了获得高产,需要施用大量的氮肥.据统计[32],仅1996年全世界氮肥(折纯N)使用总量就高达8 50!107t,但N 累积利用率不高.据估计,施入土壤中的N 大约有35%通过各种途径损失掉[6,32].此外,氮肥的使用还可能造成环境污染,诸如温室气体(主要是氮氧化物)和致酸雨气体(氨气)的排放、地下水硝酸盐超标、水体富营养化等[20].如2000年,比利时80%的饮用水中硝酸盐含量超标[10].目前,土壤N 循环的研究已经成为土壤学家、环境学家、农学家等共同关注的热点问题之一. 土壤N 循环是N 生物地球化学循环中的重要环节,其模拟是作物估产、环境评价、农田管理、决策制定和长期预测的重要依据,对提高氮肥利用率、防止或减轻环境污染具有重要的理论和实践意义.20世纪60年代,就有基于单个过程的土壤N 循环方面的报道[25,28].40多年来,北美和欧洲一些国家建立了大量的土壤N 循环模型.我国在这方面研究还比较薄弱[3,15,24].本文拟通过简要概述土壤N 循环过程,重点介绍13种土壤N 循环模型和6个土壤N 循环过程的模拟,并讨论模型模拟中的参数化问题,以期为深入研究土壤N 循环及其模拟提供一定的参考和借鉴. 2 土壤N 循环的基本过程 土壤中含N 化合物种类多,理化、生物学性质各异.一般可将土壤中N 划分为有机氮和无机氮,以有机氮为主.在土壤微生物等因子的作用下,N 在土壤中发生一系列复杂的循环.主要循环过程有:有机氮矿化、腐殖化、硝化、反硝化、氨挥发、N 沉降、硝酸盐淋失、生物固氮、铵离子晶格固定和释放、土壤粘粒吸附和解吸、植物吸收等过程.土壤N 循环过程的研究是建立土壤N 循环模型以及N 生物地球化学循环模型的基础. 3 土壤N 循环模型的研究概况 目前,农业中数学模型并无统一的分类,可从不同角度进行划分.根据建模的方法可分为经验模型和机理模型;从土壤有机氮角度可分为单组分和多组分模型;从模拟循环过程的数目方面可分为单过程和多过程模型;此外,根据模型模拟的元素也可分为独立N 模型和综合模型的N 子模型. 经验模型通常依据实验测定或调查的N 循环分量与气 应用生态学报 2005年11月 第16卷 第11期 CHIN ESE JO UR NAL OF A PPL IED ECOLO GY,Nov.2005,16(11)?2208~2212

土壤全氮的测定凯氏定氮法

土壤学实验讲义 (修订版) 吴彩霞王静李旭东 2012年10月

目录 实验一、土壤分析样品采集与制备 实验二、土壤全氮的测定—凯氏定氮法实验三、土壤速效钾的测定 实验四、土壤有效磷的测定 实验五、土壤有机质的测定 实验六、土壤酸度的测定

实验一土壤分析样品采集与制备 一、实验目的和说明 为开展土壤科学实验,合理用土和改土,除了野外调查和鉴定土壤基础性状外,还须进行必要的室内常规分析测定。而要获得可靠的科学分析数据,必须从正确地进行土壤样品(简称土样)的采集和制备做起。一般土样分析误差来自采样、分样和分析三个方面,而采样误差往往大于分析误差,如果采样缺乏代表性即使室内分析人员的测定技术如何熟练和任何高度精密的分析仪器,测定数据相当准确,也难于如实反映客观实际情况。故土样采集和制备是一项十分细致而重要的工作。 二、实验方法步骤 (一)土样采集 分析某一土壤或土层,只能抽取其中有代表性的少部份土壤,这就是土样。采样的基本要求是使土样具有代表性,即能代表所研究的土壤总体。根据不同的研究目的,可有不同的采样方法。 1.土壤剖面样品 土壤剖面样品是为研究土壤的基本理化性质和发生分类。应按土壤类型,选择有代表性的地点挖掘剖面,根据土壤发生层次由下而上的采集土样,一般在各层的典型部位采集厚约l0厘米的土壤,但耕作层必须要全层柱状连续采样,每层采一公斤;放入干净的布袋或塑料袋内,袋内外均应附有标签,标签上注明采样地点、剖面号码、土层和深度。 图1 土壤剖面坑示意图

2. 土壤混合样品 混合土样多用于耕层土壤的化学分析,一般根据不同的土壤类型和土壤肥力状况,按地块分别采集混合土样。一般要求是: (1)采样点应避免田边、路旁、沟侧、粪底盘以及一些特殊的地形部位。 (2)采样面积一般在20—50亩的地块采集一个混合样可根据实际情况酌情增加样品数。 (3)采样深度依不同分析要求而定,一般土壤表层取0-10cm,取样点不少于5点。可用土钻或铁铲取样,特殊的微量元素分析,如铁元素需改用竹片或塑料工具取样,以防污染。 (4)每点取样深度和数量应相当,集中放入一土袋中,最后充分混匀碾碎,用四分法取对角二组,其余淘汰掉。取样数量约1公斤左右为宜。 (5)采样线路通常采用对角线、棋盘式和蛇形取样法。 (6)装好袋后,栓好内外标签。标签上注明采样地点、深度、采集人和日期,带回室内风干处理 (二)土壤样品制备 样品制备过程中的要求: (1)样品处理过程中不能发生任何物理和化学变化,以免造成分析误差。 (2)样品要均一化,使测定结果能代表整个样品和田间状态。 (3)样品制备过程包括:风干一分选一去杂一磨碎一过筛—混匀一装瓶一保存一登记。 风干一将取回的土样放在通风、干燥和无阳光直射的地方,或摊放在油布、牛皮纸、塑料布上,尽可能铺平并把大土块捏碎,以便风干快些。 分选一若取的土样太多,可在土样均匀摊开后,用“四分法”去掉一部分,留下1000克左右供分析用。 去杂、磨细和过筛一将风干后土样先用台称称出总重量,然后将土样倒在橡皮垫上,碾碎土块,并尽可能挑出样品中的石砾、新生体、侵入体、植物根等杂质,分别放入表面皿或其它容器中;将土样铺平,用木棒轻轻辗压,将辗碎的土壤用带有筛底和筛盖的0.25mm 筛孔的土筛过筛,并盖好盖、防止细土飞扬。不能筛过的部分,再行去杂,余下的土壤铺开再次碾压过筛,直至所有的土壤全部过筛,只剩下石砾为止。(样品通过多大筛孔、应依不同分析要求而定)。 混匀装瓶一将筛过的土壤全部倒在干净的纸上,充分混匀后装入500~1000ml磨口瓶中保存。每个样品瓶上应贴两个标签,大标签贴在瓶盖上。书写标签用HB铅笔或圆珠笔填

土壤中氮的形态和转化

土壤中氮的形态和转化 徐斌 一、土壤中氮的形态 土壤中的氮素形态分无机态及有机态两大类,但以有机态为主,按其溶解度大小和水解难易分为3类:第一,水溶性有机氮;第二,水解性有机氮;第三,非水解性有机态氮;它们在一般酸碱处理下不能水解,但可在各种微生物的作用下逐渐分解矿化。 土壤无机态氮很少,一般表土不超过全氮的1%-2%。土壤无机态氮主要是铵态氮和硝态氮。它们都是水溶性的,都能直接为植物吸收利用。铵态氮为阳离子,能为土壤胶体所吸收成为交换性阳离子,但也有一部分在进入粘粒矿物晶架结构中后,被闭蓄于晶层间的孔穴内成为固定态铵。 1.有机态氮 按其溶解度大小和水解难易分为3类: 第一、水溶性有机氮一般不超过全氮的5%。它们主要是一些游离的氨基酸、胺盐及酰胺类化合物,分散在土壤溶液中,很 容易水解,释放出离子,是植物速效性氮源。 第二、水解性有机氮占全氮总量的50%-70%。主要是蛋白质多肽和氨基糖等化合物。用酸碱等处理时能水解成为较简单 的易溶性化合物。 第三、非水解性有机态氮占全氮的30%-50%。它们在一般酸碱处理下不能水解,但可在各种微生物的作用下逐渐分解矿化。 2.无机态氮

土壤无机态氮很少,一般表土不超过全氮的1%-2%。土壤无机态氮主要是铵态氮和硝态氮及亚硝态氮。它们都是水溶性的,都能直接为植物吸收利用。 第一,硝态氮土壤中硝态氮主要来源于施人土壤中的硝态氮肥和微生物的硝化产物。 第二,铵态氮土壤中的铵态氮又分为三种,铵态氮为阳离子,能为土壤胶体所吸收成为交换性阳离子,但也有一部分在进入粘粒矿物晶架结构中后,被闭蓄于晶层间的孔穴内成为固定态铵。 第三,亚硝态氮土壤中的亚硝态氮是硝化作用的中间产物。二、土壤中氮的转化 土壤氮素形态较多,各种形态的氮素处于动态变化之中,不同形态的氮素互相转化,对于有效氮的供应强度和容量有重要意义。 1.有机态氮的转化 土壤中的有机态氮是较复杂的有机化合物,必须要经过各种矿化过程,变为易溶的形态,才能发挥作物营养的功能。它的矿化量和矿化速率就成为决定土壤供氮能力的极其重要的因素。土壤有机氮的矿化过程是包括许多过程在内的复杂过程。 ①水解过程蛋白质在微生物分泌的蛋白质水解酶的作用下,逐步分解为各种氨基酸。 ②氨化过程氨基酸在多种微生物作用下分解成氨的过程称为氨化过程。如: RCH2OH+NH3+CO2+能量—水解—→ RCHNH2 COOH+H2O RCHOHCOOH+NH3+能量—氧化—→ RCHNH2COOH+O2 RCOOH+NH3+CO2+能量——还原—→RCHNH2 COOH+H2

土壤氮素淋失

农田土壤氮素淋失 摘要:农田氮素的流失,不仅造成化肥的利用率降低,农业生产成本上升,还对水环境造成污染,引起水体富营养化。氮肥进人土壤后,其损失途径主要是氨挥发和反硝化。本文讨论了农田氮流失对水体富营养化的贡献、农田氮流失途径及影响因素,并且提出了如何防止氮素淋失、控制水体富营养化的措施。 关键词:氮;淋失;富营养化;措施 Nitrogen leaching In farmland Abstract:Nitrogen leaching in farmland results in the low availability of fertilizer and the pollution of water invironment, eventually cause eutrophic. After applying nitrogenous fertilizer,its main loss ways are ammonia volatilization and denitrification. In this article , we report the contribution of nitrogen leaching to the eutrophic and leaching ways and its influence factors,and propose the measures to prevent nitrogen leaching and eutrophic. Key words: nitrogen;leaching; eutrophic.;measures 氮素是人类提高粮食产量的巨大动力。自六十年代“绿色革命”以来,大量的化肥进入农田,肥料提供了植物生长必需的营养元素,对保持作物高产稳产起了重要的作用,但是由施肥不当或过量施肥带来的环境污染问题也越来越突出,加上不合理的农业管理措施,导致作物利用率降低,氮素损失加剧,其中淋失作用被认为是氮素损失的重要途径之一,且农田氮流失引起的水体富营养化问题目前已受到人们的普遍关注。 氮是构成生命的要素之一,但过量的吸收也会危及生命。四十年代就报道了饮水中的 NO 3-可以引起婴儿高铁血红蛋白症,俗称氰紫症[1],后来被证实是由NO 2 -氧化血红蛋白所致。 因此,WHO规定饮水中的NO 3 -最大允许含量(按纯N计)为10㎎/㎏,我国生活饮用水卫生标准规定为20㎎/㎏[2]。 化肥(尿素和硝铵)使用对浅层地下水污染的发展起始于本世纪六十年代。进人七十年代,一些农学家已建议限制化肥使用量,提高氮肥利用率[3]。近二十年来,全球氮素淋失有增无减。如美国中北和东北部的“玉米带”以及西部和东南部的灌溉农业区[4]、英格兰中、东部石灰岩和砂岩地区[5]、我国北京郊县[6]和太湖流域[7]的研究都表明了化肥使用与浅层地下水浓度升高的明显相关性,当前我国面临着提高粮食产量和保护水、大气环境的双重挑战,迎接挑战的有效方法就是深入了解土壤氮素淋滤迁移的机理,以及气候、土壤和水肥管理措施对氮素淋失的影响。 1 农田氮素循环 农业生态系统中的氮素循环是指,氮素通过不同途径进入农业生态系统,再经过许多相互联系的转化和移动过程后,又不同程度地离开这一系统,这一循环是开放性的,它与大气和水体等外界环境进行着复杂的交换[8]。 1.1农业生态系统的氮素输入 1.1.1 大气氮沉降大气氮沉降包括干湿沉降两种,干沉降主要以气态NO,N2O,NH3以及(NH4)2SO4粒子和吸附在其它粒子上的氮,其沉降速率取决于气象条件,其过程取决于风速、空气动力阻力和大气中气体与颗粒的化学、物理性质有关的表面性质等因素;湿沉降主

土壤中氮素转化过程及植物吸收方式土壤部分初稿

土壤中氮素转化过程及植物吸收方式 我国耕地土壤全氮含量为 0.04?0.35 %之间,且土壤有机质含量呈正相关。其 氮素来源包括: 生物固氮、降水、农业灌溉和施肥等,而目前肥料是农田土壤氮 肥的主要来源。 绍: 下面就从土壤中氮素的主要表现形态和转化过程等进行详细的介 (一) 土壤中氮素的主要形态 水溶性速效氮源 <全氮的5%包括游离氨基酸、胺盐及酰胺类化合物等 有机氮水解性缓效氮源占50?70%包括 蛋白质及肽类、核蛋白类、氨基糖类 (>98%)非水解性难利用占30?50%包括杂环态氮、缩胺类 注明:其中无机氮包括: 铵态氮(NH 4+ — N )、硝态氮(N6 — N )、亚硝态氮(NQ - — N )三种主要形 态。 般情况下,土壤中存在的主要是有机态氮,占土壤总氮的 90~98% 土壤中氮的形态 「水溶件 速效氮源 < 全氮的5% 右机氮{水解 性缓效氮源占40%-60% (>98%) I 非水斛性 难利用占40%-50% 土壤溶液中 土壤胶体吸附 2: 1型粘上矿物固定有机氮 矿化作用 1川尢什川 上无机氮 离子态 无机氮 吸 附 (1?2%)固定态 土壤溶液中 吸附态 土壤胶体吸附 :1型粘土矿物固定 「离子态 无机氮寸 吸附态 固建态

(二)土壤中氮素的转化过程 1. 有机态氮的转化 土壤中的有机态氮是较复杂的有机化合物,必须要经过各种矿化过 程,变为易溶的形态,才能发挥作物营养的功能。它的矿化量和矿化速 率就成为决定土壤供氮能力的极其重要的因素。土壤有机氮的矿化过程 是包括许多过程在内的复杂过程。 ① 水解过程 蛋白质在微生物分泌的蛋白质水解酶的作用下,逐步 分解为各种氨基酸。 ② 氨化过程 氨基酸在多种微生物作用下分解成氨的过程称为氨 化过程。如: RCHOI+ NH 3 + CQ + 能量 一水解一-> RCHNH 2COOH- H 2O RCHOHCOOHN" + 能量 一氧化一-> RCHNHCOO + Q RCOO + NH3 + CQ + 能量—— 还原一-> RCHN 2COO + H 2 由此可见,氨化作用可在多种多样条件下进行。无论水田、旱田,只要 微生物活动旺盛,氨化作用都可以进行。 氨化 作用 产生 的铵 态氮能 被植 物和 微生 物 吸收 利用 ,是 农作 物的 优良 氮素 营 养 。未 被作物 吸收 利用 的铵 ,可被 土壤 胶体 吸收 保 存。但在 旱地 通气 良好 的条 件下,铵态 氮可 进一 步为微 生物 转化 。 r 钱态氮 风素在土塢中变化的示意图 ” NO, N :0 硝态氮上 吸附杰镀或 水体中的 固定态皴 硝态氮 有 机 态 氮

2020年(生物科技行业)生物脱氮过程中氮的转化途径的初探

(生物科技行业)生物脱氮过程中氮的转化途径的初 探

生物脱氮过程中氮的转化途径的初探 摘要近些年来,出现了壹些新的脱氮的工艺,对生物脱氮的原理的研究也进壹步深入,这使脱氮的理论不断地得到发展和完善。本文结合实验室小型SBR试验的结果,围绕脱氮过程中N2O的产生中对脱氮途径进行了介绍,其目的在于使人们对这些不同的途径有更深的认识。其中很有必要的壹项工作便是对这些脱氮途径作出了明确的定义,且将它们进行了区分。最后对壹些尚未能解释的问题以及壹些假设作了讨论。 1.简介 对氮元素转化途径的研究起源于农业中对氮肥在土壤中的转化的探讨。土壤系统中氮元素总的输入和输出的不平衡使科学家们困惑了50多年(e.g.Allison,1995),同样的情况也出当下许多水处理的脱氮工艺中,这使得人们对氮元素其它转化途径的研究产生了兴趣。最初人们对生物脱氮的认识是NH3或NH4+在微生物的作用下转化为NO2-以及NO3-,后俩者再转化为N2而达到氮的去除,当下见来这种认识是比较粗略的。 对脱氮其它途径的研究实际上能够归结为对脱氮过程中间产物以及他们产生的环境条件和微生物机理的研究。这些中间产物包括NO、N2O以及N2。N2O是壹种对环境影响极大的温室气体,它的主要去向是在大气的同温层中原子态的氧反应生成NO,NO对臭氧层会造成破坏(Bliefert,1994)。这就使得许多水处理工艺虽然实现了水体中脱氮但却有可能对大气造成影响。 2.实验结果的分析 实验室中SBR反应器是壹个有效容积为4L的有机玻璃柱,每个周期10.5小时,实验工序为:进水→厌氧搅拌3hr→曝气8hr→厌氧搅拌1.5hr→沉淀1hr→排水,每个周期排水2L进水2L,曝气阶段溶解氧控制在2.5~3.0mg/L。在通过对照试验基本排除了游离氨被吹脱的可能之后,采用试验进水CODcr为720mg/L,NH4+-N为110mg/L,在系统稳定运行之后对壹周期各阶段内水相中各种氮化合物的浓度进行跟踪试验。实验期间每间隔1hr测定

相关主题