搜档网
当前位置:搜档网 › 施氮肥量与土壤氮矿化速率的关系

施氮肥量与土壤氮矿化速率的关系

施氮肥量与土壤氮矿化速率的关系
施氮肥量与土壤氮矿化速率的关系

施氮肥量与土壤氮矿化速率的关系

土壤中氮素绝大多数为有机质的结合形态。无机形态的氮一般占全氮的1%~5%。土壤有机质和氮素的消长,主要决定于生物积累和分解作用的相对强弱、气候、植被、耕作制度诸因素,特别是水热条件,对土壤有机质和氮素含量有显著的影响。土壤中有机态氮可以半分解的有机质、微生物躯体和腐殖质,而主要是腐殖质。有机形态的氮大部分必须经过土壤微生物的转化作用,变成无机形态的氮才能为植物吸收利用[1]。无机态氮主要是铵态氮和硝态氮,还有少量亚硝态氮的存在,是植物吸收氮素的主要形态[2]。氮素的矿化作用(Nitrogenmineralization)是指土壤有机质碎屑中的氮素,在土壤动物和微生物的作用下,由难以被植物吸收利用的有机态转化为可被植物直接吸收利用的无机态的过程。铵态氮可经硝化作用生成另一种无机氮——硝态氮。氮矿化速率决定了土壤中用于植物生长的氮素的可利用性[3],是森林生态系统氮素循环最重要的过程之一,氮矿化研究对于揭示生态系统功能、生物地球化学循环过程的本质有重要意义。

土壤氮矿化作用被认为是土壤中氮素循环的一个很重要的过程,受到土壤学家和生态学家的关注。森林生态系统土壤中铵态氮、硝态氮的动态,氮矿化的速率以及影响因子的研究对森林生态系统的营养循环、氮素循环具有重要的意义。近年来,国内外学者对森林生态系统土壤铵态氮和硝态氮含量分布状况以及矿化作用给予了高度重视。

在森林土壤氮素的转换与循环、土壤氮素矿化速率及影响因素、温度湿度条件对土壤氮矿化影响以及掉落物质量对土壤氮矿化的影响等方面开展了大量的研究工作[4]。我国在森林土壤、耕作土壤施肥和温带典型草地土壤以及土壤动物微生物等方面也展开了一些研究[5]。但亚热带森林群落施氮肥对土壤氮矿化速率影响的研究报道仍较少见。基于此,以亚热带森林中2种常见森林群落(樟树Cinnamomumcamphora与湿地松Pinuselliottii)作为本试验的研究对象,采用树脂芯法测定土壤氮矿化速率,分析施氮肥量与土壤氮矿化速率的关系。

1实验地概况

试验地位于湖南省长沙市森林植物园(113°02′~113°03′E,28°06′~28°07′N),属典型的亚热带湿润季风气候。7月最热,平均气温29.4℃,极端最高气温40.6℃;年均气温17.2℃,1月最冷,平均4.7℃,极端最低温度-11.3℃;年均日照时数1677.1h,全年无霜期270~300d;雨量充沛,年均降水量1422mm。园内植物种类达2200余种,植被以人工次生林为主。研究样地海拔50~100m,坡度为10°~20°,在园内选择树龄相同或相近的樟树和湿地松2种类型森林群落作为研究对象。2种森林群落主要组成成分分别为:樟树群落以樟树为主,林下植被有柘树Cudraniatricuspidata、白栎Quercusfabri、山矾Symplocoscaudate、毛泡桐Paulowwniatomaentosa、苦槠

Castanopsissclerophylla、糙叶树Aphanantheaspera,草本植物以商陆Phyto-laccaacinosa、淡竹叶Lophantherumgracile、酢浆草Oxaliscomiculata等;湿地松群落以湿地松为主,林下植被有喜树Camptothecaacuminate、杜荆Vitexagnuscastus、苦槠、樟树,草本植物有铁线蕨Adiantumcapillusveneris、酢浆草、鸡矢藤Paederiascandens、商陆等。

2研究方法

2.1试验方法

采用树脂芯方法[6]原位测定土壤铵态氮、硝态氮含量以及净硝化速率和净氮矿化速率。目前我国研究土壤氮素矿化的方法主要有埋袋培养法、厌气培养法、好气培养法、顶盖埋管法、树脂芯方法[7-8]等。树脂芯方法能够部分克服埋袋法土壤水分不如自然状态下具有波动性,对土壤干扰小。土壤的矿化产物可以随水分下渗离开土芯,从而减少了对土壤进一步矿化的抑制作用[9-10],具有较好的应用前景。2010年7月,在湖南省森林植物园的樟树和湿地松群落中,各设立10块固定样地,共20块。樟树每块样地为25m×25m,湿地松每块样地为10m×10m。样地分别施高纯度NH4NO3氮肥5gm-2(LN)、15gm-2(MN)、30gm-2(HN),另外各设置一个对照样地(CK)不作施肥处理。每个样地都取一个重复样,共设置40个管。树脂芯方法的实验

装置包括:PVC管(内径4.0cm,高15cm)、5g阴离子交换树脂(氯型,强碱性)袋、滤纸(2张)和石膏塞(直径略小于PVC管内径,厚度约0.4cm,中部打孔)[11-12]。采样前,先将地表凋落物去除,将2支PVC 管同时打入地下0~15cm土层,取出其中1支中的土壤带回实验室,其测定结果作为土壤含水率、铵态氮和硝态氮的初始值;将另外1支PVC管也取出,在不破坏土壤原状结构的情况下,用平口螺丝刀去除管底部约2cm厚的土壤,在腾出的空间中,首先放入1张滤纸(避免树脂袋和土壤直接接触),然后放置阴离子交换树脂袋,再放置1张滤纸,最后放上石膏塞并固定住,小心地把PVC管放入原处进行培养,30d后取回实验室测定结果。石膏塞被放置在树脂袋下部以避免PVC 管下方土壤溶液中的NO3--N被树脂交换吸附,同时石膏塞上的孔也能确保土壤溶液的及时排出[13-16]。NH4+-N用2molL-1KCl浸提—蒸馏法测定;NO3--N用酚二磺酸比色法测定;阴离子交换树脂吸附淋溶的NO3--N用紫外分光光度法测定[17]。

2.2数值计算与分析

CN=(CB铵+CB硝+CE硝)-(CA铵+CA硝);RN=(CB铵+CB硝+CE硝)-(CA 铵+CA硝)/t;R铵=(CB铵-CA铵)/t;R硝=(CB硝+CE硝-CA硝)/t。式中:CN为土壤净氮矿化量;CB铵为培养后铵态氮量;CB硝为培养后硝态氮量;CE硝为淋溶硝态氮量;CA铵为培养前铵态氮量;CA硝为培养前硝态氮量;RN为土壤净氮矿化速率;t为培养时间;R铵为土壤净

铵化速率;R硝土壤净硝化速率。数据统计采用单因子方差分析,进行净氮矿化量和净氮矿化速率的比较,分析软件和作图工具分别采用SPSS13.0和Excel2007。

3结果与分析

3.1土壤中无机氮含量的比较

对试验样地进行施氮肥处理后,樟树林施氮肥HN、MN、LN和对照(CK)处理土壤中的硝态氮(NO3--N)含量差异不显著(P>0.05),表明进行3种浓度的施氮肥处理后对樟树林土壤中的硝态氮含量没有影响或影响不大;湿地松林土壤中硝态氮含量差异极显著(PMN>LN>CK的规律(见图1)。而樟树和湿地松林土壤中铵态氮(NH4+-N)的含量均差异不显著(P>0.05),表明3种施氮肥处理后对樟树林和湿地松林土壤的铵态氮含量影响不大或没有影响。培养前2种森林群落土壤的铵态氮(NH4+-N)含量明显高于硝态氮(NO3--N)含量,3种施氮肥处理HN、MN、LN和对照处理樟树林土壤中铵态氮含量分别占总无机氮含量的99.36%、99.41%、99.37%和99.29%,湿地松林为92.27%、95.08%、97.02%和98.89%。这表明铵态氮(NH4+-N)是土壤无机氮存在的主要形式。

土壤检测标准

土壤检测标准 NY/T 1121-2006 土壤检测系列标准: NY/T 1121.1-2006 土壤检测第1部分:土壤样品的采集、处理和贮存NY/T 1121.2-2006 土壤检测第2部分:土壤pH的测定 NY/T 1121.3-2006 土壤检测第3部分:土壤机械组成的测定 NY/T 1121.4-2006 土壤检测第4部分:土壤容重的测定 NY/T 1121.5-2006 土壤检测第5部分:石灰性土壤阳离子交换量的测定NY/T 1121.6-2006 土壤检测第6部分:土壤有机质的测定 NY/T1121.7-2006土壤检测第7部分:酸性土壤有效磷的测定 NY/T1121.8-2006土壤检测第8部分:土壤有效硼的测定 NY/T1121.9-2006土壤检测第9部分:土壤有效钼的测定 NY/T 1121.10-2006 土壤检测第10部分:土壤总汞的测定 NY/T 1121.11-2006 土壤检测第11部分:土壤总砷的测定 NY/T 1121.12-2006 土壤检测第12部分:土壤总铬的测定 NY/T 1121.13-2006 土壤检测第13部分:土壤交换性钙和镁的测定 NY/T 1121.14-2006 土壤检测第14部分:土壤有效硫的测定 NY/T 1121.15-2006 土壤检测第15部分:土壤有效硅的测定 NY/T 1121.16-2006 土壤检测第16部分:土壤水溶性盐总量的测定 NY/T 1121.17-2006 土壤检测第17部分:土壤氯离子含量的测定 NY/T 1121.18-2006 土壤检测第18部分:土壤硫酸根离子含量的测定 NY/T 1119-2006 土壤监测规程 NY/T 52-1987 土壤水分测定法 NY/T 53-1987 土壤全氮测定法(半微量开氏法) NY/T 88-1988 土壤全磷测定法 NY/T 87-1988 土壤全钾测定法 NY/T 86-1988 土壤碳酸盐测定法 NY/T 1104-2006 土壤中全硒的测定 NY/T 296-1995 土壤全量钙、镁、钠的测定 NY/T 295-1995 中性土壤阳离子交换量和交换性盐基的测定 NY/T 889-2004 土壤速效钾和缓效钾

氮肥基础知识(一)

一、氮肥种类 1、碳酸氢铵(铵态氮):分子式为NH4HCO,含氮量17噓右,是化学性质不稳定的白色结晶,易吸湿分解,易挥发,有强烈的刺鼻、熏眼氨味(因分解出氨气NHO,湿度越大、温度越高,分解越快,易溶于水,呈碱性(pH8.2-8.4)。 碳酸氢铵是一种不稳定化合物,常压下,温度达到70C时全部分解。在气温20C时,露天存放1天、5天、10天的损失率分别为9% 48% 74%在潮湿的环境中易吸水潮解和结块(结块本身就是一种缓慢分解的表现)。在贮存和施用过程中,应采取相应措施,防止其挥发损失。适合于各类土壤及作物,宜作基肥施用,追肥时要注意深施覆土。 2、氯化铵(铵态氮):分子式为NHCI,含氮24-25%为白色结晶,易溶于水,吸湿性小,不结块,物理性状好,便于贮存。氯化铵呈酸性,也是生理酸性肥料。氯离子对硝化细菌有一定的抑制作用,施入土壤后氮的硝化淋失作用比其它氮肥要弱。因此,氯化铵是水田较好的氮肥。 3、硝酸铵(铵态氮、硝态氮):分子式为NMNQ,含氮33-35%。硝酸铵有结晶状和颗粒状两种,前者吸湿性很强,后者由于表面附有防湿剂,吸湿性略差一些。硝酸铵易溶于水,pH呈中性。硝酸铵既 含有在土壤中移动性较小的铵态氮,又含有移动性较大的硝态氮,二者

均能很好地被作物吸收利用。因此,硝酸铵是一种在土壤中不残留任何物质的良好氮肥,属生理中性肥料。硝酸铵宜作旱田作物 的追肥,以分次少量施用较为经济。不宜施于水田,不宜作基肥及种肥施用。 4、尿素(酰胺态氮):分子式为(NH2) 2CO含氮46%左右。普通尿素为白色结晶,吸湿性强。目前生产的尿素多为半透明颗粒,并进行了防吸湿处理。在气温10-20 C时,吸湿性弱,随着气温升高和湿度加大,吸湿性也随之增强。尿素属中性肥料,长期施用对土壤没有副作用。施入土壤后,经过土壤微生物分泌的尿酶作用,水解成碳酸铵被作物吸收利用。其水解过程为:(NH2) 2CO+2Q(NH4)2CO3。水解速度与土壤酸度、湿度、温度有关,也受土壤类型、熟化程度和施肥深度等因素的影响。通常情况下,尿素全部水解成碳酸铵的时间为:气温10C时约10天,气温20C时4-5天,气温30C时约2天。所以,尿素的肥效比较慢,作追肥时应适当提前。尿素适合于各类土壤及作物,可作基肥、追肥及叶面喷施用(喷施浓度为1-2%)。 二、三种形态的氮肥(铵态氮、硝态氮和酰胺态氮)在土壤中的转化特点 铵态氮肥施入土壤后,一部分被植物直接吸收利用,一部分被土壤胶体吸附,另一部分通过硝化作用将转化为硝态氮。

春季不同时期施用氮肥对小麦浚2016产量性状及产量的影响

春季不同时期施用氮肥对小麦浚2016产量性状及产量的影响 摘要以小麦新品种浚2016为材料,在高水肥条件下,按照春季不同的追氮肥时期进行4个处理的综合试验,通过对产量结果的方差分析和对成穗数、结实小穗、穗粒数、千粒重等的分析, 关键词小麦;浚2016;施肥;产量性状;产量 浚2016为小麦新品种,2011年5月通过河南省农作物品种审定委员会审定(审定编号:豫审麦2011004)[1]。该品种适应性强、株型紧凑、秆低抗倒、拔节前生长发育较慢、拔节后生长快、分蘖力和成穗率中等、穗大粒多、千粒重高。2012—2013年度安排了春季不同时期施用氮肥对小麦品种浚2016产量性状及产量影响的试验。 1 材料与方法 1.1 试验概况 3 结论与讨论 试验结果表明,小麦品种浚2016在高产栽培条件下,小麦药隔后期追施氮肥,可保证小麦抽穗前和抽穗后的氮素供应。在不同的施氮肥处理中,药隔后期追施氮肥有利于提高浚2016成穗数、结实小穗数、穗粒数、千粒重,从而提高产量。已有的研究表明,拔节后追氮肥会造成小麦后期贪青晚熟,但在本试验中,药隔后期追施尿素没有出现贪青晚熟现象,且产量处于较高水平,可能与浚2016在高水肥栽培条件下起身拔节期要求达到一定的氮素供应强度有关。由此可见,浚2016高产栽培条件追施氮肥的最佳时期是在拔节后(药隔后期),追施尿素300 kg/hm2为宜[5-6]。 4 参考文献 [1] 孙希增,郭智萍.高产稳产大穗抗倒小麦新品种浚2016的选育及栽培技术[J].农业科技通讯,2011(9):118-119. [2] 南京农业大学.田间试验和统计方法[M].2版.北京:中国农业出版社,1999:191-197. [3] 李大同,朱华翠,徐春宏.兴化市安丰镇小麦氮肥施用试验研究[J].现代农业科技,2014(4):22-23. [4] 王新民,韩燕来,谭金芳,等.不同灌水条件下缓释氮肥在冬小麦上的肥效研究[J].河南农业科学,2001(3):17-19.

氮肥施用量对水稻生长的影响

氮肥施用量对水稻生长的影响 摘要通过无氮、精确施氮和常规施肥做精确施氮试验,以确定氮肥的施用量对水稻生长的影响。结果表明:株高与施氮量有显著关系,随施氮量的增加而绿度值呈增加趋势;茎蘖数、有效穗数随施氮量的增加而增加,但施氮到一定量时呈持续缓慢增加;穗粒数随施氮量的增加而增加,但到一定量后不增加反而下降;施氮量对粒重的影响表现为随施氮量的增加而粒重下降。据此可知,从无氮施肥到精确施氮是有增产空间的,但并非越多越好,只有做到氮肥用量适宜,才能减少浪费。 关键词氮肥;水稻;生长;影响 为了真正提高农民种植水稻的净收益,必须尽快建立水稻精确施氮技术指导体系,努力提高氮肥利用率,减少肥料浪费,降低污染系数,发展高产、高效、安全的生态水稻生产。为此,大丰市土肥站在白驹镇狮子口村茅林玉家的责任田里做了精确施氮试验。 1材料与方法 前茬作物为小麦,品种为9023,基肥施45%的枫叶牌氮磷钾比例为18-17-10的复合肥450kg/hm2,腊肥施46.3%尿素300kg/hm2,拔节孕穗肥施46.3%尿素150kg/hm2,生长中后期,喷施兴砍牌安利素750g/hm2,相隔6~7d喷1次,计2次。小麦实际产量为7 425kg/hm2。 本次试验共设3个处理,分别为:无氮对照(No),面积33.3m2,施五氧化二磷60kg/hm2,氧化钾90kg/hm2作基肥,整个生育期不施氮肥;精确施氮(Nj),面积66.7m2,施纯氮84kg/hm2,五氧化二磷60kg/hm2,氧化钾90kg/hm2作基肥,分蘖肥施氮66kg/hm2,穗肥施氮135kg/hm2,相当于尿素294 kg/hm2,分2次施,第1次在倒4叶施尿素144kg/hm2,第2次在倒2叶施尿素114kg/hm2;常规施肥(Nc),面积333.3 m2,施氮67.5kg/hm2,五氧化二磷67.5kg/hm2,氧化钾67.5 kg/hm2作基肥,分蘖肥施172.5kg/hm2,穗肥施氮69kg/hm2。 处理No、处理Nj、处理Nc使用同一水稻品种徐稻4号,按照统一密度和栽插方式,行距25cm,株距14cm,34.5万穴/hm2,小区筑埂分条,并用塑料薄膜包裹,沟系配套,不得漫灌,防止串水、渗肥、小区内肥力均匀,地势高低一致,防止病虫草害的管理措施一致,6月21日移栽,水稻移栽时秧龄6.1叶,成熟期为10月28日,观测项目包括株高、剑叶面积、茎蘖动态、叶色、地上部分

几种氮肥施用中注意的问题

氮肥的种类不同,在土壤中的转化特点不同。 硫铵、碳铵和氯化铵中NH4+的转化相同,除被植物吸收外,一部分被土壤胶体吸附,另一部分通过硝化作用将转化为NO3-;硫铵和氯化铵中阴离子的转化相似,只是生成物不同,酸性土壤中两都分别生成硫酸和盐酸,增加土壤酸度;石灰性土壤中则分别生成硫酸钙和氯化钙,使土壤孔隙堵塞或造成钙的流失,使土壤板结,结构破坏;二者在水田中的转化亦有所不同,氯化铵的硝化作用明显低于硫铵,且不会像硫铵一样产生水稻黑根,因此在水田中往往氯化铵的肥效高于硫铵;碳铵中的碳酸氢根离子则除了作为植物的碳素营养之外,大部可分解为CO2和H2O,因此,碳铵在土壤中无任何残留,对土壤无不良影响。 硝态氮肥如硝酸铵施入土壤后,NH4+和NO3-均可被植物吸收,对土壤无不良影响。NH4+除被植物吸收外,还可被胶体吸附,NO3-则易随水淋失,在还原条件下还会发生反硝化作用而脱氮。 酰胺态氮肥如尿素施入土壤后,首先以分子的形式存在,在土壤中有较大的流动性,且植物根系不能直接大量吸收,以后尿素分子在微生物分泌的脲酶的作用下,转化为碳酸铵,碳酸铵可进一步水解为碳酸氢铵和氢氧化铵。所以尿素施在土壤的表层也会有氨的挥发损失,特别在石灰性土壤和碱性土壤上损失更为严重。尿素的转化速度主要

取决于脲酶活性,而脲酶活性受土壤温度的影响最大,通常10℃时尿素转化需7-10天,20℃时需4-5天,30℃时只需2天。因为尿素在土壤中需要转化为铵态氮以后,才能大量被植物吸收利用,故尿素作追肥时,要比其它铵态氮肥早几天施用,具体早几天为宜,应视温度状况而定。 氮肥合理施用的基本目的在于减少氮肥损失,提高氮肥利用率,充分发挥肥料的最大增产效益。由于氮肥在土壤中有氨的挥发、硝态氮的淋失和硝态氮的反硝化作用三条非生产性损失途径,氮肥的利用率是不高的,据统计,我国氮肥利用率在水田为35%-60%,旱田为45%-47%,平均为50%,约有一半损失掉了,既浪费了资源,又污染了环境,所以合理施用氮肥,提高其利用率,是生产上亟待解决的一个问题。 氮肥的合理分配应根据土壤条件、作物的氮素营养特点和肥料本身的特性来进行。 土壤条件:土壤条件是进行肥料区划和分配的必要前提,也是确定氮肥品种及其施用技术的依据。首选必须将氮肥重点分配在中、低等肥力的地区,碱性土壤可选用酸性或生理酸性肥料,如硫铵、氯化铵等;酸性土壤上应选用碱性或生理碱性肥料,如硝酸钠、硝酸钙等。盐碱土不宜分配氯化铵,尿素适宜于一切土壤。铵态氮肥宜分配在水稻地区,并深施在还原层,硝态氮肥宜施在旱地上,不宜分配在雨量偏多的地区或水稻区。“早发田”要掌握前轻后重、少量多次的原则,

不同氮肥施用量对水稻产量及品质的影响

各种营养元素中,氮素是影响水稻产量的最活跃的因素,氮素营养状况与水稻的生理特性、产量形成等有密切的关系。柳金来等研究表明,当氮素施用水平由低逐渐增高时,产量随氮素用量的增加相应的提高,但是当氮素用量达到一定水平时,再增加氮素,产量提高并不显著,甚至造成减产。因此,对在相同基础地力下,研究不同氮肥施用量对水稻产量和品质的影响,以确定水稻准确定量的施肥技术,从而为减少氮肥的投入,提高氮肥利用率提供参考。 1 内容与方法 1.1 试验基本情况 供试水稻品种选用三江2号。试验地设在建 三江大兴农场科技示范园区水田区,土质为草甸 白浆土,有机质4.42%,碱解氮161.4mg /kg ,速效磷29.8mg /kg ,速效钾131.25mg /kg ,pH 值6.3。前茬为水稻,秋翻。 1.2试验设计 试验共设6个处理,处理1:46%尿素9kg / 667m 2,二铵7kg /667m 2,33%硫酸钾9.8kg /667m 2;处理2:46%尿素10kg /667m 2,二铵7kg /667m 2,33%硫酸钾9.8kg /667m 2;处理3:46%尿素11kg /667m 2,二铵7kg /667m 2,33% 硫酸钾9.8kg /667m 2;处理4:46%尿素12kg / 667m 2,二铵7kg /667m 2,33%硫酸钾9.8kg /667m 2;处理5:46%尿素13kg /667m 2,二铵7kg /667m 2,33%硫酸钾9.8kg /667m 2;处理6:46%尿素14kg /667m 2,二铵7kg /667m 2,33%硫酸钾9.8kg /667m 2。1.3试验方法 试验采取单因素小区对比法,8行区,行长 9.95m ,小区面积23.9m 2,3次重复。4月5日播 不同氮肥施用量对水稻产量及品质的影响 张 岩,马士学,王青菊,韩松炎,史国庆 (建三江大兴农场,黑龙江 佳木斯 156303) 摘 要:以三江2号为供试材料,研究不同氮肥施用量对水稻植株生长、抗病性、产量及品质的影响。结果表明:植株的叶 片、茎鞘和穗的干物重大致上随着施氮量的增加而不断增多,当达到14kg /667m 2时,干物质积累量略有下降。瘪粒数随施氮量的增加而增多,结实率和实测产量以中氮水平为高。糙米率、精米率和整精米率都不是以最低氮和最高氮水平为最高,而是中氮水平处理最高,水稻外观品质垩白率和垩白度都是低氮水平较低。关键词:水稻;氮肥;施用量;产量;品质收稿日期:2009-06-15 作者简介:张岩(1978-),男,硕士。 Effect of Nitrogen Fertilizer Amount on Yield and Quality in Rice ZHANG Yan ,MA Shi-xue ,WANG Qing-ju ,HAN Song-yan ,SHI Guo-qing (Jiansanjiang Daxing Farm,Jiamusi Heilongjiang 156303,China) Abstract:Taking Sanjiang No.2as entry,the effects of nitrogen fertilizer on plant growth,disease resistance,yield and quality in rice were studied and the results showed that the weights of leaves,stem and sheath and panicle increased with the increase of nitrogen application,but decreased when the nitrogen amount was 14kg/667m 2.Shriveled grains increased as the nitrogen amount increased and the kernel-setting rate reached the highest at mediate level of nitrogen amount.Brown rice rate,polished rice rate and head rice rate were the highest at mediate level of nitrogen amount and chalky grain rate and chalkiness degree decreased as the nitrogen amount increased. Key words:Rice;Nitrogen fertilizer;Application amount;Yield;Quality 中图分类号:S 147.22 文献标志码:A 文章编号:1673-6737(2009)05-0016-03 16--

氮肥种类

氮肥种类

一、氮肥与磷肥的种类 (一)氮肥种类 1、碳酸氢铵:分子式为NH4HCO3,含氮17%左右,是化学性质不稳 定的白色结晶,易吸湿分解,易挥发,有强烈的刺鼻、熏眼 氨味,湿度越大、温度越高分解越快,易溶于水,呈碱性反 应(pH8.2-8.4)。 碳酸氢铵是一种不稳定的化合物,常压下、温度达到70℃时 全部分解。在气温20℃时,露天存放1天、5天、 10天的损 失率分别为9%、48%、74%。在潮湿的环境中易吸水潮解和结 块(结块本身就是一种缓慢分解的表现)。在贮存和施用过程 中,应采取相应的措施,防止其挥发损失。适合于各类土壤 及作物,宜作基肥施用,追肥时要注意深施覆土。 2、尿素:分子式为(NH2)2CO,含氮46%左右。普通尿素为 白色结晶,吸湿性强。目前生产的尿素多为半透明颗粒,并 进行了防吸湿处理。在气温10-20℃时,吸湿性弱,随着气温 的升高和湿度加大,吸湿性也随之增强。尿素属中性肥料, 长期施用对土壤没有副作用。施入土壤后,经土壤微生物分 泌的尿酶作用,易水解成碳酸铵被作物吸收利用。其水解过 程为:(NH2)2CO+2H2O→(NH4)2CO3水解速度与土壤酸度、湿 度、温度有关,也受土壤类型、熟化程度和施肥深度等因素 的影响。通常情况下,尿素全部水解成碳酸铵的时间是:气

温10℃时约10天,气温20℃时4-5天,气温30℃时约2天。所以,尿素的肥效比较慢,作追肥时应适当提前。尿素适合于各类土壤及作物,可作基肥、追肥及叶面喷施用(喷施浓度为1-2%)。 3、氯化铵:分子式为NH4Cl,含氮24-25%,为白色结晶,易溶于水,吸湿性小,不结块,物理性状好,便于贮存。氯化铵呈酸性,也是生理酸性肥料。酸性土壤、盐碱地及忌氯作物(果树、烟草等)不宜施用氯化铵。氯离子对硝化细菌有一定的抑制作用,施入土壤后氮素的硝化淋失作用比其它氮肥要弱。因此,氯化铵是水田较好的氮肥。 施用氯化铵应结合浇水,争取将氯离子淋洗至下层土壤,以减轻它对作物的不利影响。氯化铵不宜作种肥施用。 4、硝酸铵:分子式为NH4NO3,含氮33-35%。硝酸铵有结晶状和颗粒状两种,前者吸湿性很强,后者由于表面附有防湿剂,吸湿性略差一些。硝酸铵易溶于水,pH呈中性。 硝酸铵既含有在土壤中移动性较小的铵态氮(NH4+-N),有含有移动性较大的硝态氮(NO3--N),二者均能很好地被作物吸收利用。因此,硝酸铵是一种在土壤中不残留任何物质的良好氮肥,属生理中性肥料。硝酸铵宜作旱田作物的追肥,以分次少量施用较为经济。不宜施于水田,不宜作基肥及种肥施用。

主要氮肥品种使用技术、施肥量确定方法、施肥效益评价

A (规范性附录)

附录B (规范性附录)

氮肥施肥量的确定方法 1 地力分区(级)配方法 根据土壤地力高低,分成若干等级,在不同地力等级区域内经过对比试验后,确定每个地力接近相同区域的氮肥在不同作物的不同生长时期施肥量的施肥方法。 2 目标产量配方法 根据种植区域内的耕作条件和产量最高限度,一般在某种作物近3年的平均产量的基础上再增加10%-15%作为目标产量,再根据作物吸收氮素规律和土壤养分供应量所确定的氮肥施用量和其他肥料配施的施肥方法。 3 养分平衡法 根据无肥区作物带走的养分量和土壤养分测定值计算出土壤供氮量、作物需要吸收的氮肥总量,再确定所需增加氮素养分的施肥方法。作物需要吸收的养分减去土壤可提供的养分就是应增施的氮肥养分量。氮肥施用量(a),用千克/公顷(kg/hm2)表示,按式(1)计算:a=(a1×a2-a3×2.25×a4)÷a5×a6 (1) 式中: a—氮肥施用量,kg/hm2; a1—作物单位产量的氮素养分吸收量; a2—作物目标产量,kg/hm2; a3—土壤供氮养分测定值(mg/kg); a4—校正系数(各地试验确定); a5—该种氮肥的氮素养分含量; a6—当地氮肥的当季利用率(百分数); 2.25—土壤耕层养分测定值折算成1hm2土壤养分含量系数。 4 地力差减法 根据目标产量和无肥区带走的氮素养分量确定所需施用氮素肥料的方法。氮肥施用量(b),用千克/公顷(kg/hm2)表示,按式(2)计算: b=b1×(b2-b3)÷(b4×b5) (1) 式中: b—氮肥施用量,kg/hm2; b1—作物单位产量的氮素养分吸收量; b2—作物目标产量,kg/hm2; b3—无肥区作物产量,kg/hm2; b4—该种氮肥的氮素养分含量; b5—当地氮肥的当季利用率(百分数)。 5 肥料效应函数法 不同产量与相应的施肥量存在着一定的函数关系,从而确定相关肥料适宜施肥量的施肥方法。 6 养分丰缺指标法 在不同地力水平上通过田间试验,得出土壤养分供应水平的丰缺、最高施肥量和作物产量之间的相关性,制定出养分的丰缺指标及其对应的作物产量,从而确定氮肥施用量的方法。 7 有机氮和无机氮施用量的计算方法 7.1 同效当量法

土壤活性有机碳的测定及其影响因素概述

Hans Journal of Soil Science 土壤科学, 2018, 6(4), 125-132 Published Online October 2018 in Hans. https://www.sodocs.net/doc/6616212426.html,/journal/hjss https://https://www.sodocs.net/doc/6616212426.html,/10.12677/hjss.2018.64016 Determination of Soil Active Organic Carbon Content and Its Influence Factors Xingkai Wang1, Xiaoli Wang1*, Jianjun Duan2, Shihua An1 1Agricultural College, Guizhou University, Guiyang Guizhou 2College of Tobacco, Guizhou University, Guiyang Guizhou Received: Sep. 29th, 2018; accepted: Oct. 16th, 2018; published: Oct. 23rd, 2018 Abstract Soil active organic carbon is an important component of terrestrial ecosystems and an active chemical component in soil. It is of great significance in the study of terrestrial carbon cycle. Many studies have shown that soil active organic carbon can reflect the existence of soil organic carbon and soil quality change sensitively, accurately and realistically. In recent years, soil ac-tive organic carbon has become the focus and hot spot of research on soil, environment and ecological science. Soil active organic carbon can be characterized by dissolved organic carbon (DOC), microbial biomass carbon (SMBC), mineralizable carbon (PMC), light organic carbon (LFC) and easily oxidized organic carbon (LOC). This paper reviews the determination methods and influencing factors of these five active organic carbons, and looks forward to the future research focus, laying the foundation for the scientific management of land and the effective use of soil nutrients. Keywords Soil Organic Carbon, Determination Methods, Influencing Factors 土壤活性有机碳的测定及其影响因素概述 王兴凯1,王小利1*,段建军2,安世花1 1贵州大学农学院,贵州贵阳 2贵州大学烟草学院,贵州贵阳 收稿日期:2018年9月29日;录用日期:2018年10月16日;发布日期:2018年10月23日 *通讯作者。

第七章 土壤与植物氮素养分及化学氮肥 2

第七章土壤与植物氮素营养及化学氮肥 第一节土壤氮素营养 一、土壤中氮素的来源及其含量 (一)来源 1. 施入土壤中的化学氮肥和有机肥料 2. 动植物残体的归还 3. 生物固氮 4. 雷电降雨带来的NH4+-N和NO3--N (二)、土壤氮素的含量 1 土壤氮素的含量 1:不同作物种类含量不同:豆科》禾本科 2:同一作物不同器官含量不同:叶》籽粒》茎 3:同一作物不同发育时期含量不同 4:土壤供氮水平 北增加 西 东增加 增加 (三 )、土壤中氮的形态 ( 1)土壤无机态氮 交换性NH 4+、溶液中 NH 4+和NO3-最易被植物吸收,土壤无机氮还包括NO2-, (2)土壤有机态氮 已分离鉴定出的含氮化合物单体有氨基酸、嘌呤、嘧啶以及微量存在的叶绿素及维生素等。 (四)、土壤中氮的转化 2 、NO、N2O 生物固定 硝态氮 生物固定硝酸还原作用 或固定态铵 (一)有机态氮的矿化作用(氨化作用)与生物固持作用 1:矿化作用:在微生物作用下,土壤中的含氮有机质分解生成氨的过程。 过程: 异养微生物 解蛋白作用 氨化作用 氨化微生物 -N+有机酸 2:无机态氮的生物固定 以 解 决 吊 顶 层 配 资 料 试 卷 要 求 , 卷 配 置 技 术 是 指

(1):定义:土壤中铵态氮和硝态氮被微生物同化为其躯体组成成分而被暂时固定的现象(2):结果:减缓氮的供应 (3)土壤铵粘土矿物对NH4+的固定 1;定义 2:晶格固定 (四)硝化作用 1:定义:通气良好条件下,土壤中的NH4+或NH3在微生物的作用下氧化成硝酸盐的现象 2:影响硝化作用的因素: 土壤通气:,土壤反应,温度, (五)反硝化作用 1. 生物反硝化作用 (1)定义:嫌气条件下,土壤中的硝态氮在反硝化细菌作用下还原为气态氮从土壤中逸失的现象 2. 化学反硝化作用 (六)氨的挥发损失 1. 定义:在中性或碱性条件下,发生在土壤液相中的一种化学平衡,土壤中的NH4+转化为NH3而挥发的过程 (七)硝酸盐的淋洗损失 第二节作物的氮素营养 一、作物体内氮的含量和分布 影响因素: 植物种类:豆科植物>非豆科植物 品种:高产品种>低产品种 器官:种子>叶>根> 组织:幼嫩组织>成熟组织>衰老组织,生长点>非生长点 生长时期:苗期>旺长期>成熟期>衰老期,营养生长期>生殖生长期 2. 分布: 幼嫩组织>成熟组织>衰老组织, 生长点>非生长点 二、植物体内含氮化合物的种类(氮的生理功能) 1. 氮是蛋白质的重要成分(蛋白质含氮16~18%)--生命物质 2. 氮是核酸的成分(核酸中的氮约占植株全氮的10%)--合成蛋白质和决定生物遗传性的物质基础 3. 氮是酶的成分--生物催化剂 4.氮是叶绿素的成分(叶绿体含蛋白质45~60%)--光合作用的场所 5. 氮是多种维生素的成分(如维生素B1、B2、B6等)--辅酶的成分 6. 氮是一些植物激素的成分(如IAA、CK)--生理活性物质 7. 氮也是生物碱的组分(如烟碱、茶碱、可可碱、咖啡碱、胆碱--卵磷脂--生物膜) 氮素通常被称为生命元素 第三节氮肥的种类、性质和施用 一、铵(氨)态氮肥 养分标明量为铵盐(氨)形态氮的单质氮肥称为铵(氨)态氮肥。

土壤微生物量碳氮测定方法

1.23.1 土壤微生物碳的测定——TOC-V CPH有机碳分析仪 一、方法原理 土壤有机碳的测量方法主要有两种,即氯仿熏蒸培养法和氯仿熏蒸—直接浸提法。 1.氯仿熏蒸培养法[1]:土壤经氯仿熏蒸后再进行培养,测定培养时间内熏蒸与未熏蒸处理所释放CO2之差来计算土壤生物量碳。 2.氯仿熏蒸直接浸提法[2]:土壤经氯仿熏蒸后直接浸提进行,测定浸提液中的碳含量,以熏蒸和不熏蒸土壤中总碳的差值为基础计算土壤微生物含碳量。 直接提取法与氯仿熏蒸培养法相比,直接提取法具有简单、快速、测定结果的重复性较好等优点。直接提取法测定土壤微生物量的碳的方法日趋成熟。现在氯仿熏蒸—K2SO4提取法已成为国内外最常用的测定土壤微生物碳的方法。本实验以氯仿熏蒸直接浸提法为例介绍土壤微生物量碳氮的浸提与测定。 二、主要仪器 振荡机、真空干燥器、真空泵、TOC-V CPH有机碳分析仪。 二、试剂 1.氯仿(去乙醇):普通氯仿一般含有乙醇作为稳定剂,使用前要去除乙醇。将氯仿按照1︰2(v/v)的比例与蒸馏水一起放入分液漏斗中,充分振动,慢慢放出底部氯仿,重复3次。得到的无乙醇氯仿加入无水CaCl2,以除去氯仿中的水分。 2.0.5 mol·L-1 K2SO4浸提液:43.57g分析纯K2SO4定溶至1L。 四、操作步骤 称取过2mm筛的新鲜土样12.5g六份,置于小烧杯中。将其中三份小烧杯放入真空干燥器中,干燥器底部放3个烧杯,其中一个放氯仿,烧杯内放少许玻璃珠(防爆),另一个放水(保持湿度),再放一杯稀NaOH。抽真空时,使氯仿剧烈沸腾3-5 min,关掉真空干燥器阀门,在暗室放置24 h。熏蒸结束后,打开干燥器阀门,取出氯仿,在通风厨中使氯仿全部散尽。另三份土壤放入另一干燥器中,但不放氯仿。 将熏蒸的土样全部转移至150 mL三角瓶中,加入50mL 0.5 mol·L-1 K2SO4 (土水比为1:4),振荡30min,过滤。未熏蒸土样操作相同,同时做空白。 五、结果计算 土壤微生物量碳 =(熏蒸土壤有机碳-未熏蒸土壤有机碳)/0.45 式中:0.45——将熏蒸提取法提取液的有机碳增量换算成土壤微生物生物量碳所采用的转换系数(kEc)。 一般量容法采用的kEc值为0.38,仪器分析法kEc 取值0.45。 六、注意事项 1.氯仿致癌,操作时应在通风厨中进行。 2.打开真空干燥器时,要听声音,如没空气进去的声音,试验需重做。 3.应注意试剂的厂家,有些厂家的K2SO4试剂不宜浸提土壤微生物量碳。 4.浸提液应立即用TOC-V CPH有机碳分析仪测定或在-18℃下保存。 1.23.2土壤微生物量氮的测定 一、方法原理 土壤微生物态氮是土样在CHCl3熏蒸后直接浸提氮含量,并进行测定,以熏蒸和不熏蒸

氮肥合理施用准则(发布稿)

65.080 B13 DB51 氮肥合理施用准则 Rules for nitrogen fertilizer application 四川省质量技术监督局 发布

DB51/T617—2007 目次 前言................................................................................. II 1 范围 (1) 2 规范性引用文件 (1) 3 术语和定义 (1) 4 氮肥类型 (2) 5 施用原理 (2) 6 施用依据 (2) 7 施用技术 (3) 8 效益评价 (3) 附录A (规范性附录)氮肥施用总量的确定和计算方法 (4) 附录B (规范性附录)施肥的效益评价 (6) I

DB51/T617—2007 II 前言 本标准附录A、附录B为规范性附录。 本标准由四川省农业厅提出并归口。 本标准由四川省质量技术监督局批准。 本标准起草单位:四川省农业厅土壤肥料与生态建设处、四川省农业科学院土壤肥料研究所。本标准主要起草人:陈琦、孙锡发、曹旭辑、曹均成、熊俊秋。

DB51/T617—2007 氮肥合理施肥准则 1 范围 本标准规定了氮肥类型、施用原理、施用依据、施用技术、效益评价。 本标准适用于四川省具有氮(N)标明量、以提供植物所需氮养分为主要功效的大量元素肥料。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB 2400 尿素 GB 2945 硝酸铵 GB 3559 农业用碳酸氢铵 GB 535 硫酸铵 GB/T 2946 氯化铵 GB/T 6278 肥料和土壤调理剂术语 NY/T 496 肥料合理施用准则通则 3 术语和定义 下列术语和定义适用于本标准。 3.1 肥料fertilizer 以提供植物所需养分为主要功效的物料。 3.2 大量元素macronutrient 对氮、磷、钾元素的通称。 3.3 氮肥nitrogen fertilizer 具有氮(N)标明量、以提供植物所需氮养分为主要功效的大量元素肥料。 3.4 磷肥phosphate fertilizer 具有磷(P2O5)标明量,以提供植物磷养分为其主要功效的大量元素肥料。 3.5 钾肥potassium fertilizer 具有钾(K2O)标明量,以提供植物钾养分为其主要功效的大量元素肥料。 3.6 有机肥料organic fertilizer 主要来源于植物和(或)动物,施于土壤以提供植物营养为其主要功效的含碳物料。 3.7 植物养分plant nutrient 植物生长所必需的矿质元素。 3.8 肥料养分nutrient from fertilizer 肥料中可供植物吸收的养分。 3.9 施肥量fertilizer rate, fertilizer dose 施于单位面积耕(林)地或单位质量生长介质中的肥料养分(包括土壤调理剂)的质量或体积。 3.10 植物的土壤氯容量chloride capacity of soil and plant 作物耐氯临界值减去土壤含氯量的差值。 1

土壤肥力鉴定指标

精心整理 在农业生产中,通常用高产或低产来说明一块地的肥力,这是很不全面的。必需有一些主要的鉴定指标。在土壤学中,常用的土壤肥力鉴定指标有以下几项: 1、土壤酸碱度:用“p H”符号表示,适宜大多数作物的酸碱度(pH )值为6.5~7.5。 2、土壤有机质:以百分数(%)表示,有机质含量高的土壤供肥能力大。大田:有机质含量高于5 3%; 4的,的,属 5 6、土壤质地:土壤质地是指土壤大小土粒的搭配情况,以一定体积的土壤中,不同直径土壤颗粒的重量,所占土壤重量的百分数表示。粘土的直径小于0.001毫米土粒的含量大于30%;壤土的直径为0.01~0.05毫米土粒的含量大于40%;砂土的直径为0.05~1.0毫米土粒的含量大于50%。 土壤肥力指标体系 土壤营养(化学)指标 土壤物理性状指标 土壤生物学指标 土壤环境指标 1.全氮 2.全磷 3.全钾 4.碱解氮 5.有效磷 6.有效钾 1.质地 2.容重 3.水稳性团聚体 4.孔隙度(总孔隙度、毛管孔隙度、非毛管孔隙度) 5.土壤耕层温度变幅 1.有机质 2.腐殖酸(富里酸、胡敏酸) 3.微生物态碳 4.微生物态氮 5.土壤酶活性(脲酶、蛋白酶、过氧化氢酶、转化酶、磷酸酶等) 1.土壤pH 2.地下水深度 3.坡度 4.林网化水平

7.阳离子交换量 8.碳氮比6.土层厚度 7.土壤含水量 8.粘粒含量 一、华北平原 黄土地棕壤 冬小麦、棉花、花生 中、低产田,有机质含量不高,缺磷少氮 褐土 三、 北部 树种: 针叶林――红松、落叶松 落叶阔叶林――白桦、紫椴 四、四川盆地紫色土 丘陵地区 粮、棉、油菜、

土壤贫瘠怎么改善和提高肥力.doc

土壤贫瘠怎么改善和提高肥力 补充土壤有机质 土壤有机质含量是衡量土壤肥力的一个重要指标,土壤有机质含量丰富,能够均衡长久地供给作物生长发育所必需的营养元素。农家肥、秸秆、菌肥或菌剂等都可以补充土壤有机质。 农家肥 目前自制发酵的有机肥,更受广大农户喜爱。鸡粪是很多农户的首选,因为鸡粪当中有机质含量很高,但鸡粪未充分腐熟而被使用,也会产生很大危害。 未充分发酵或腐熟的粪肥直接施用于作物,就会发生“二次发酵”。当发酵部位距根较近或作物植株较小时,发酵产生的热量、甲烷、氨等有害气体会影响作物生长,导致“烧根、烧苗”,严重时会造成植株死亡。 粪肥中含有大肠杆菌、线虫等病菌虫害,直接使用会导致病虫害侵染作物,影响作物健康。所以在自制有机肥时必须充分发酵、腐熟后再使用。 秸秆 秸秆的主要成分是碳,对于温室大棚可以使用秸秆补充有机质。尤其是7-10年的温室,使用秸秆的效果非常好。 由于连年使用大量元素,温室土壤中氮的含量超标,使用秸秆可以调节土壤碳氮比。

在使用秸秆时一定要做好病虫害防治,因为很多病原菌是在作物残体上存活的。 菌肥或者菌剂 粪肥分解慢,我们可以使用菌肥或菌剂,通过微生物来促进有机质的分解,为作物提供养分。 另外有益菌群还可以起到“以菌抑菌”的作用,抑制土壤中有害菌群的危害。 使用菌肥或菌剂调节土壤,是一个持续缓慢的过程,不要期待使用一次就能起到改良土壤的作用,只有坚持使用,才会给你意想不到的结果。 减少化肥的使用 连年种植、大量或过量使用化肥导致土壤板结、土质酸化,土壤问题越来越严重。化肥由于养分含量和浓度都比较高,所以在施用时应遵循少量多次原则。 建议施用水溶肥,水溶肥作为新型环保肥料,使用方便,可喷施、冲施并可和喷滴灌结合使用。在提高肥料利用率、节约农业用水、减少生态环境污染、改善作物品质以及减少劳动力等方面有明显优势。 土壤肥力不够,可以用以上方法进行补充,改善土壤,提高土壤有机质,种植作物才能获得丰产和稳产。

氮肥的种类、性质和施用

氮肥的种类、性质和施用 <一> 氮肥的种类和性质 根据化合物形态分:铵态氮肥、硝态氮肥、酰胺态氮肥。 一、铵态氮肥: 含有铵根离子(NH4+)或氨(NH3)的含氮化合物。包括碳酸氢铵(NH4CO3)、硫酸铵((NH4)2SO4)、氯化铵(NH4Cl)、氨水(NH4OH)、液氨(NH3)等。 1.共同特点: (1)易溶于水,是速效养分,作物能直接吸收利用,肥效快。 (2)NH4+被土壤胶体吸附形成交换性养分,移动性小,不易淋失。 (3)遇碱性物质分解产生氨气挥发损失。在使用时,不能和碱性肥料混合使用;在储运时防止挥发(密封、开袋后使用);石灰性土壤深施覆土。 (4)在通气良好的土壤中,易发生硝化作用形成硝态氮。 (5)肥效比硝态氮肥慢但长,可作追肥,也可作基肥。 2.常用的铵态氮肥: (1)氯化铵:分子式NH4Cl,含N 24~25%。肥料水溶液呈弱酸性反应;物理性状较好,吸湿性略大于硫酸铵,属于生理酸性肥料。适宜作基肥、追肥,不宜作种肥。施用时忌氯作物不要施用,稻田可长期施用。 (2)硫酸铵:分子式(NH4)2SO4,一般称为标准氮肥。含N 20~21%。肥料水溶液呈弱酸性反应;物理性质好(不吸湿、不结块),属于生理酸性肥料,长期单独施用会使土壤酸化。适宜作基肥、追肥和种肥,适宜各种作物,喜硫作物施用效果更好。施用时不宜长期单独施用,石灰性土壤或水田要深施,水田不宜长期施用。 (3)碳酸氢铵:分子式NH4HCO3,含氮17%左右。肥料水溶液呈碱性反应;化学性质不稳定,易分解挥发损失氨,易发生潮解、结块,不残留任何副成分,被称为“气肥”。可作基肥、追肥,不宜作种肥。施肥时一不离土,二不离水。二、硝态氮肥: 含有硝酸根离子(NO3-)的含氮化合物。包括硝酸铵、硝酸钠、硝酸钙等。 1.共同特点: (1)白色结晶,易溶于水,属速效性氮肥。

施氮肥量与土壤氮矿化速率的关系

施氮肥量与土壤氮矿化速率的关系 土壤中氮素绝大多数为有机质的结合形态。无机形态的氮一般占全氮的1%~5%。土壤有机质和氮素的消长,主要决定于生物积累和分解作用的相对强弱、气候、植被、耕作制度诸因素,特别是水热条件,对土壤有机质和氮素含量有显著的影响。土壤中有机态氮可以半分解的有机质、微生物躯体和腐殖质,而主要是腐殖质。有机形态的氮大部分必须经过土壤微生物的转化作用,变成无机形态的氮才能为植物吸收利用[1]。无机态氮主要是铵态氮和硝态氮,还有少量亚硝态氮的存在,是植物吸收氮素的主要形态[2]。氮素的矿化作用(Nitrogenmineralization)是指土壤有机质碎屑中的氮素,在土壤动物和微生物的作用下,由难以被植物吸收利用的有机态转化为可被植物直接吸收利用的无机态的过程。铵态氮可经硝化作用生成另一种无机氮——硝态氮。氮矿化速率决定了土壤中用于植物生长的氮素的可利用性[3],是森林生态系统氮素循环最重要的过程之一,氮矿化研究对于揭示生态系统功能、生物地球化学循环过程的本质有重要意义。 土壤氮矿化作用被认为是土壤中氮素循环的一个很重要的过程,受到土壤学家和生态学家的关注。森林生态系统土壤中铵态氮、硝态氮的动态,氮矿化的速率以及影响因子的研究对森林生态系统的营养循环、氮素循环具有重要的意义。近年来,国内外学者对森林生态系统土壤铵态氮和硝态氮含量分布状况以及矿化作用给予了高度重视。

在森林土壤氮素的转换与循环、土壤氮素矿化速率及影响因素、温度湿度条件对土壤氮矿化影响以及掉落物质量对土壤氮矿化的影响等方面开展了大量的研究工作[4]。我国在森林土壤、耕作土壤施肥和温带典型草地土壤以及土壤动物微生物等方面也展开了一些研究[5]。但亚热带森林群落施氮肥对土壤氮矿化速率影响的研究报道仍较少见。基于此,以亚热带森林中2种常见森林群落(樟树Cinnamomumcamphora与湿地松Pinuselliottii)作为本试验的研究对象,采用树脂芯法测定土壤氮矿化速率,分析施氮肥量与土壤氮矿化速率的关系。 1实验地概况 试验地位于湖南省长沙市森林植物园(113°02′~113°03′E,28°06′~28°07′N),属典型的亚热带湿润季风气候。7月最热,平均气温29.4℃,极端最高气温40.6℃;年均气温17.2℃,1月最冷,平均4.7℃,极端最低温度-11.3℃;年均日照时数1677.1h,全年无霜期270~300d;雨量充沛,年均降水量1422mm。园内植物种类达2200余种,植被以人工次生林为主。研究样地海拔50~100m,坡度为10°~20°,在园内选择树龄相同或相近的樟树和湿地松2种类型森林群落作为研究对象。2种森林群落主要组成成分分别为:樟树群落以樟树为主,林下植被有柘树Cudraniatricuspidata、白栎Quercusfabri、山矾Symplocoscaudate、毛泡桐Paulowwniatomaentosa、苦槠

相关主题