搜档网
当前位置:搜档网 › 建立空间直角坐标系的几种方法

建立空间直角坐标系的几种方法

建立空间直角坐标系的几种方法
建立空间直角坐标系的几种方法

建立空间直角坐标系的几种方法

坐标法是利用空间向量的坐标运算解答立体几何问题的重要方法,运用坐标法解题往往需要建立空间直角坐标系.依据空间几何图形的结构特征,充分利用图形中的垂直关系或构造垂直关系来建立空间直角坐标系,是运用坐标法解题的关键.下面举例说明几种常见的空间直角坐标系的构建策略.

一、利用共顶点的互相垂直的三条棱构建直角坐标系

例1 已知直四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2,底面ABCD 是直角梯形,∠A 为直角,AB ∥CD ,AB =4,AD =2,DC =1,求异面直线BC 1与DC 所成角的余弦值.

解析:如图1,以D 为坐标原点,分别以DA 、DC 、DD 1所在直线为x 、y 、z 轴建立空间直角坐标系,则C 1(0,1,2)、B (2,4,0),

∴1(232)BC =-- ,

,,(010)CD =- ,,. 设1BC 与CD 所成的角为θ,

则11cos 17BC CD BC CD

θ== . 二、利用线面垂直关系构建直角坐标系

例2 如图2,在三棱柱ABC -A 1B 1C 1中,AB ⊥侧面BB 1C 1C ,E 为棱CC 1上异于C 、C 1的一点,EA ⊥EB 1

.已知AB =BB 1=2,BC =1,∠BCC 1=3

π.求二面角A -EB 1-A 1的平面角的正切值.

解析:如图2,以B 为原点,分别以BB 1、BA 所在直线为y 轴、z 轴,过B 点垂直于平面AB 1的直线为x 轴建立空间直角坐标系.

由于BC =1,BB 1=2,AB

,∠BCC 1=3

π, ∴在三棱柱ABC -A 1B 1C 1中,有B (0,0,0)、A (0,

)、B 1(0,2,0)

、102c ?-????

,、1302C ????

?,,.

设0E a ?????

,且1322a -<<, 由EA ⊥EB 1,得10EA EB = ,

即20

a a

???

--

?

?

???

2

33

(2)20

44

a a a a

=+-=-+=,∴

13

22

a a

????

--=

? ?

????

1

2

a=或

3

2

a=(舍去)

.故

1

22

E

??

?

?

??

,,.

由已知有

1

EA EB

111

B A EB

,故二面角A-EB1-A1的平面角θ的大小为向量11

B A

与EA

的夹角.

11

(00

B A BA

==

1

2

EA

?

=-

?

故11

11

cos

EA B A

EA B A

θ==

,即tan

2

θ=

三、利用面面垂直关系构建直角坐标系

例3如图3,在四棱锥V-ABCD中,底面ABCD是正方形,侧面VAD是正三角形,平面VAD⊥底面ABCD.

(1)证明AB⊥平面VAD;

(2)求面VAD与面VDB所成的二面角的余弦值.

解析:(1)取AD的中点O为原点,建立如图3所示的空间直角坐标系.

设AD=2,则A(1,0,0)、D(-1,0,0)、B(1,2,0)、

V

,∴AB

=(0,2,0),VA

=(1

由(020)(100

AB VA==

,,,,得

AB⊥VA.

又AB⊥AD,从而AB与平面VAD内两条相交直线VA、AD都垂直,∴AB⊥平面VAD;

(2)设E为DV

的中点,则

1

2

E

?

-

??

3

2

EA

?

=-

??

,,

3

2

2

EB

?

=

??

,,

,(10

DV=

∴32(1002EB DV ?=-= ??

,,, ∴EB ⊥DV .

又EA ⊥DV ,因此∠AEB 是所求二面角的平面角.

∴cos 7EA EB EA EB EA EB

== ,.

故所求二面角的余弦值为7

. 四、利用正棱锥的中心与高所在直线构建直角坐标系

例4 已知正四棱锥V -ABCD 中,E 为VC 中点,正四棱锥底面边长为2a ,高为h .

(1)求∠DEB 的余弦值;

(2)若BE ⊥VC ,求∠DEB 的余弦值.

解析:(1)如图4,以V 在平面AC 的射影O 为坐标原点建立空间直角坐标系,其中O x ∥BC ,O y ∥AB ,则由AB =2a ,OV =h ,有B (a ,a ,0)、C (-a ,a ,0)、D (-a ,-a ,0)、V (0,0,h )、222a a h E ??

- ???

,, ∴3222a h BE a ??=-- ??? ,,,3222a h DE a ??= ???

,,. ∴22

226cos 10BE DE a h BE DE a h BE DE

-+==+ ,, 即22

22

6cos 10a h DEB a h -+=+∠; (2)因为E 是VC 的中点,又BE ⊥VC ,

所以0BE VC = ,即3()02

22a h a a a h ??----= ??? ,,,,, ∴22

230222

a h a --=

,∴h =. 这时222261cos 103a h BE DE a h -+==-+ ,,即1cos 3

DEB =-∠.

引入空间向量坐标运算,使解立体几何问题避免了传统方法进行繁琐的空间分析,只需建立空

间直角坐标系进行向量运算,而如何建立恰当的坐标系,成为用向量解题的关键步骤之一.下面以高考考题为例,剖析建立空间直角坐标系的三条途径.

五、利用图形中的对称关系建立坐标系

图形中虽没有明显交于一点的三条直线,但有一定对称关系(如正三棱柱、正四棱柱等),利用自身对称性可建立空间直角坐标系.

例5已知两个正四棱锥P -ABCD 与

Q -ABCD 的高都为2,AB =4.

(1)证明:PQ ⊥平面ABCD ;

(2)求异面直线AQ 与PB 所成的角;

(3)求点P 到平面QAD 的距离.

简解:(1)略;

(2)由题设知,ABCD 是正方形,且AC ⊥BD .由(1),PQ ⊥平面ABCD ,故可分别以直线CA DB QP ,,为x ,y ,z 轴建立空间直角坐标系(如图1),易

(2)(02)AQ PB =--=- ,,,1cos 3

AQ PB AQ PB AQ PB <>== ,. 所求异面直线所成的角是1arccos

3

. (3)由(2

)知,点(0((004)D AD PQ -=--=- ,,,. 设n =(x ,y ,z )是平面QAD 的一个法向量,则00AQ AD ?=??=?? ,,n n

得00z x y +=+=?

?,,取x =1

,得(11)-,,n =.点P 到平面QAD

的距离PQ d == n n

点评:利用图形所具备的对称性,建立空间直角坐标系后,相关点与向量的坐标应容易得出.第

(3)问也可用“等体积法”求距离.

空间直角坐标系整理

2.3.1 空间直角坐标系 一、教材知识解析 1、空间直角坐标系的定义:从空间某一个定点O 引三条互相垂直且有相同单位长度的数轴,这样就建立了空间直角坐标系O-xyz ,点O 叫做坐标原点,x 轴、y 轴和z 轴叫做坐标轴,这三条坐标轴中每两条确定一个坐标平面,分别称为xOy 平面、yOz 平面和xOz 平面。 2、右手直角坐标系及其画法: (1)定义:在空间直角坐标系中,让右手拇指指向x 轴的正方向,食指指向y 轴的正方 向,若中指指向z 轴的正方向,则称这个坐标系为右手直角坐标系。教材上所指的都是右手直角坐标系。 (2)画法: 将空间直角坐标系画在纸上时,x 轴与y 轴、x 轴与z 轴均成135°,而z 轴垂直于y 轴,y 轴和z 轴的长度单位相同,x 轴上的单位长度为y 轴(或z 轴)的长度的一半,这样,三条轴上的单位长度在直观上大体相等。 3、空间中点的坐标表示:点在对应数轴上的坐标依次为x 、y 、z ,我们把有序实数组(x , y ,z )叫做点A 的坐标,记为A (x ,y ,z )。 二、题型解析: 题型1、在空间直角坐标系下作点。 例1、在空间直角坐标系中,作出M(4,2,5). 解:法一:依据平移的方法,为了作出M(4,2,5), 可以按如下步骤进行:(1)在x 轴上取横坐 标为4的点1M ;(2)将1M 在xoy 平面内沿与y 轴平行的方向向右移动2个单位,得到 点2M ;(3)将2M 沿与z 轴平行的方向向上 移动5个单位,就可以得到点M (如图)。 法二:以O 为一个顶点,构造三条棱长分别为4,2,5的长方体,使此长方体在点O 处的三 条棱分别在x 轴的正半轴、y 轴的正半轴、z 轴的正半轴上,则长方体与顶点O 相对的顶点即为所求的点M 。 法三:在x 轴上找到横坐标为4的点,过此点作与x 垂直的平面α;在y 轴上找到纵坐标为2 的点,过此点作与y 垂直的平面β;在z 轴上找到竖坐标为5的点,过此点作与z 垂直的平面γ;则平面αβγ,,交于一点,此交点即为所求的点M 的位置。 【技巧总结】:(1)若要作出点M 000(,,)x y z 的坐标有两个为0,则此点是坐标轴上的点,可 直接在坐标轴上作出此点; (2)若要作出点M 000(,,)x y z 的坐标有且只有一个为0,则此点不在坐标轴上,但在某一坐 标平面内,可以按照类似于平面直角坐标系中作点的方法作出此点。 (3)若要作出点M 000(,,)x y z 的坐标都不为0,则需要按照一定的步骤作出该点,一般有三 种方法:①在x 轴上取横坐标为0x 的点1M ;再将1M 在xoy 平面内沿与y 轴平行的方向向左(00y <)或向右(00y >)平移0||y 个单位,得到点2M ;再将2M 沿与z 轴平

空间立体几何建立直角坐标系

空间立体几何建立直角坐标系 1.[2015·浙江]如图,在三棱柱ABC -A 1B 1C 1中,∠BAC =90°,AB = AC =2,A 1A =4,A 1在底面ABC 的射影为BC 的中点,D 是 B 1C 1的中点。 (1)证明:A 1D ⊥平面A 1BC ; (2)求二面角A 1-BD -B 1的平面角的余弦值。 解析:(1)证明:设E 为BC 的中点,连接A 1E ,AE ,DE ,由题意得A 1E ⊥平面ABC ,所以A 1E ⊥AE 。 因为AB =AC ,所以AE ⊥BC 。 故AE ⊥平面A 1BC 。 由D ,E 分别为B 1C 1,BC 的中点,得DE ∥B 1B 且DE =B 1B ,从而DE ∥A 1A 且DE =A 1A ,所以A 1AED 为平行四边形。 故A 1D ∥AE 。 又因为AE ⊥平面A 1BC ,所以A 1D ⊥平面A 1BC 。 (2)方法一:作A 1F ⊥BD 且A 1F ∩BD =F ,连接B 1F 。 由AE =EB =2,∠A 1EA =∠A 1EB =90°, 得A 1B =A 1A =4。 由A 1D =B 1D ,A 1B =B 1B ,得△A 1DB 与△B 1DB 全等。 由A 1F ⊥BD ,得B 1F ⊥BD ,因此∠A 1FB 1为二面角A 1-BD -B 1的平面角。 由A 1D =2,A 1B =4,∠DA 1B =90°,得 BD =32,A 1F =B 1F =43 , 由余弦定理得cos ∠A 1FB 1=-1 8。 方法二:以CB 的中点E 为原点,分别以射线EA ,EB 为x ,y 轴的正半轴,建立空间直角坐标系E -xyz ,如图所示。

知识讲解空间直角坐标系基础

空间直角坐标系 【学习目标】 通过具体情境,感受建立空间直角坐标系的必要性,了解空间直角坐标系,会用空间直角坐标系刻画点的位置.通过表示特殊长方体(所有棱分别与坐标轴平行)顶点的坐标,探索并得出空间两点间的距离公式. 【要点梳理】 要点一、空间直角坐标系 1.空间直角坐标系 从空间某一定点O 引三条互相垂直且有相同单位长度的数轴,这样就建立了空间直角坐标系Oxyz ,点O 叫做坐标原点,x 轴、y 轴、z 轴叫做坐标轴,这三条坐标轴中每两条确定一个坐标平面,分别是xOy 平面、yOz 平面、zOx 平面. 2.右手直角坐标系 在空间直角坐标系中,让右手拇指指向x 轴的正方向,食指指向y 轴的正方向,如果中指指向z 轴的正方向,则称这个坐标系为右手直角坐标系. 3.空间点的坐标 空间一点A 的坐标可以用有序数组(x ,y ,z)来表示,有序数组(x ,y ,z)叫做点A 的坐标,记作A(x ,y ,z),其中x 叫做点A 的横坐标,y 叫做点A 的纵坐标,z 叫做点A 的竖坐标. 要点二、空间直角坐标系中点的坐标 1.空间直角坐标系中点的坐标的求法 通过该点,作两条轴所确定平面的平行平面,此平面交另一轴于一点,交点在这条轴上的坐标就是已知点相应的一个坐标. 特殊点的坐标:原点()0,0,0;,,x y z 轴上的点的坐标分别为()()(),0,0,0,,0,0,0,x y z ;坐标平面,,xOy yOz xOz 上的点的坐标分别为()()(),,0,0,,,,0,x y y z x z .

2.空间直角坐标系中对称点的坐标 在空间直角坐标系中,点(),,P x y z ,则有 点P 关于原点的对称点是()1,,P x y z ---; 点P 关于横轴(x 轴)的对称点是()2,,P x y z --; 点P 关于纵轴(y 轴)的对称点是()3,,P x y z --; 点P 关于竖轴(z 轴)的对称点是()4,,P x y z --; 点P 关于坐标平面xOy 的对称点是()5,,P x y z -; 点P 关于坐标平面yOz 的对称点是()6,,P x y z -; 点P 关于坐标平面xOz 的对称点是()7,,P x y z -. 要点三、空间两点间距离公式 1.空间两点间距离公式 空间中有两点()()111222,,,,,A x y z B x y z ,则此两点间的距离 ||d AB == 特别地,点(),,A x y z 与原点间的距离公式为OA = 2.空间线段中点坐标 空间中有两点()()111222,,,,,A x y z B x y z ,则线段AB 的中点C 的坐标为121212,,222x x y y z z +++?? ???. 【典型例题】 类型一:空间坐标系 例1.在正方体ABCD —A 1B 1C 1D 1中,E 、F 分别是BB 1、D 1B 1的中点,棱长为1,建立空间直角坐标系,求点E 、F 的坐标。 【答案】11,0,2E ? ? ???,11,,122F ?? ??? 【解析】 法一:如图,以A 为坐标原点,以AB ,AD ,AA 1所在直线分别为x 轴,y 轴,z 轴建立空

建立空间直角坐标系-解立体几何题

建立空间直角坐标系,解立体几何高考题 立体几何重点、热点: 求线段的长度、求点到平面的距离、求直线与平面所成的夹角、求两异面直线的夹角、求二面角、证明平行关系和垂直关系等. 常用公式: 1 、求线段的长度: 222z y x AB ++==()()()2 12212212z z y y x x -+-+-= 2、求P 点到平面α的距离: PN = ,(N 为垂足,M 为斜足,为平面α的法向量) 3、求直线l 与平面α所成的角:|||||sin |n PM ?= θ,(l PM ?,α∈M ,为α的法向量) 4、求两异面直线AB 与CD 的夹角:cos = θ 5、求二面角的平面角θ:|||||cos |21n n ?= θ,( 1n ,2n 为二面角的两个面的法向量) 6、求二面角的平面角θ:S S 射影 = θ cos ,(射影面积法) 7、求法向量:①找;②求:设, 为平面α内的任意两个向量,)1,,(y x =为α的法向量, 则由方程组?????=?=?0 n b n a ,可求得法向量.

高中新教材9(B)引入了空间向量坐标运算这一内容,使得空间立体几何的平行﹑垂直﹑角﹑距离等问题避免了传统方法中进行大量繁琐的定性分析,只需建立空间直角坐标系进行定量分析,使问题得到了大大的简化。而用向量坐标运算的关键是建立一个适当的空间直角坐标系。 一﹑直接建系。 当图形中有互相垂直且相交于一点的三条直线时,可以利用这三条直线直接建系。 例1. (2002年全国高考题)如图,正方形ABCD ﹑ABEF 的边长都是1,而且平面ABCD ﹑ABEF 互相垂直。点M 在AC 上移动,点N 在BF 上移动,若CM=BN=a (20<

高中数学必修二《空间直角坐标系》优秀教学设计

4.3空间直角坐标系 4.3.1空间直角坐标系 教材分析 本节课内容是数学必修2 第四章圆与方程的最后一节的第一小节。 课本之所以把“空间直角坐标系”的内容放在必修2的最后即第四章的最后,原因有三:一、“空间直角坐标系”的内容为以后选修中用空间向量解决空间中的平行、垂直以及空间中的夹角与距离问题打基础,做好准备;二、必修2第三、四章是平面解析几何的基础内容,本节“空间直角坐标系”的内容是空间解析几何的基础,与平面解析几何的内容共同体现了“用代数方法解决几何问题”的解析几何思想;三、本套教材从整体上体现了“螺旋式上升”的思想,本节内容安排“空间直角坐标系”,为以后的学习作铺垫,正是很好地体现了这一思想。 本小节内容主要包含空间直角坐标系的建立、空间中由点的位置确定点的坐标以及由点的坐标确定点的位置等问题。结合图形、联系长方体和正方体是学好本小节的关键。 课时分配 本小节内容用1课时的时间完成,主要讲解空间直角坐标系的建立以及空间中的点与坐标之间的联系。 教学目标 重点:空间直角坐标系,空间中点的坐标及空间坐标对应的点。 难点:右手直角坐标系的理解,空间中的点与坐标的一一对应。 知识点:空间直角坐标系的相关概念,空间中点的坐标以及空间坐标对应的点。 能力点:理解空间直角坐标系的建立过程,以及空间中的点与坐标的一一对应。 教育点:通过空间直角坐标系的建立,体会由二维空间到三维空间的拓展和推广,让学生建立发展的观点;通过空间点与坐标的对应关系,进一步加强学生对“数形结合”思想方法的认识。 自主探究点:如何由空间中点的坐标确定点的位置。 考试点:空间中点的确定及坐标表示。 易错易混点:空间中的点与平面内的点以及它们的坐标之间的联系与区别;空间直角坐标系中x轴上单位长度的选取。 拓展点:不同空间直角坐标系下点的坐标的不同;空间中线段的中点坐标公式。 教具准备多媒体课件和三角板 课堂模式师生互动、小组评分以及兵带兵的课堂模式。 一、引入新课 由数轴上的点和平面直角坐标系内的点的表示引入空间中点的表示。 ,x y 数轴Ox上的点M,可用与它对应的实数x表示;直角坐标平面内的点M可以用一对有序实数()表示。类似于数轴和平面直角坐标系(一维坐标系和二维坐标系),当我们建立空间直角坐标系(三维坐 x y z表示。 标系)后,空间中任意一点可用有序实数组(,,)

建立空间直角坐标系的几个常见思路

建立空间直角坐标系的几种常见思路 坐标法是利用空间向量的坐标运算解答立体几何问题的重要方法,运用坐标法解题往往需要建立空间直角坐标系.依据空间几何图形的结构特征,充分利用图形中的垂直关系或构造垂直关系来建立空间直角坐标系,是运用坐标法解题的关键.下面举例说明几种常见的空间直角坐标系的构建策略. 一、利用共顶点的互相垂直的三条棱构建直角坐标系 例1 已知直四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2,底面ABCD 是直角梯形,∠A 为直角,AB ∥CD ,AB =4,AD =2,DC =1,求异面直线BC 1与DC 所成角的余弦值. 解析:如图1,以D 为坐标原点,分别以DA 、DC 、DD 1所在直线为x 、y 、z 轴建立空间直角坐标系,则C 1(0,1,2)、B (2,4,0), ∴1(232)BC =--,,,(010)CD =-, ,. 设1BC 与CD 所成的角为θ, 则11317cos BC CD BC CD θ==. 二、利用线面垂直关系构建直角坐标系 例2 如图2,在三棱柱ABC -A 1B 1C 1中,AB ⊥侧面BB 1C 1C ,E 为棱CC 1上异于C 、C 1的一点,EA ⊥EB 1.已知2AB =,BB 1=2,BC =1,∠BCC 1=3 π.求二面角A -EB 1-A 1的平面角的正切值. 解析:如图2,以B 为原点,分别以BB 1、BA 所在直线为y 轴、z 轴,过B 点垂直于平面AB 1的直线为x 轴建立空间直角坐标系. 由于BC =1,BB 1=2,AB =2,∠BCC 1=3 π, ∴在三棱柱ABC -A 1B 1C 1中,有B (0,0,0)、A (0,0,2)、B 1(0,2,0)、3102c ??- ? ??? ,,、133022C ?? ? ?? ?,,. 设302E a ?? ? ??? ,,且1322a -<<, 由EA ⊥EB 1,得10EA EB =, 即3322022a a ????---- ? ? ? ???? ,,,,

空间向量之 建立空间直角坐标系的方法及技巧

空间向量之 建立空间直角坐标系的方法及技巧 空间向量之 建立空间直角坐标系的方法及技巧 . 一、利用共顶点的互相垂直的三条棱构建直角坐标系 例1 已知直四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2,底面ABCD 就是直角梯形,∠A 为直角,AB ∥CD ,AB =4,AD =2,DC =1,求异面直线BC 1与DC 所成角的余弦值. 解析:如图1,以D 为坐标原点,分别以DA 、DC 、DD 1所在直线为x 、y 、z 轴建立空间直角坐标系,则C 1(0,1,2)、B (2,4,0), ∴1(232)BC =--u u u u r ,,, (010)CD =-u u u r ,,. 设1BC u u u u r 与CD uuu r 所成的角为θ, 则11317cos BC CD BC CD θ==u u u u r u u u r g u u u u r u u u r . 二、利用线面垂直关系构建直角坐标系 例2 如图2,在三棱柱ABC -A 1B 1C 1中,AB ⊥侧面BB 1C 1C ,E 为棱CC 1上异于C 、C 1的一点,EA ⊥EB 1.已知2AB = ,BB 1=2,BC =1,∠BCC 1=3π.求二面角A -EB 1-A 1的平面角的正切值. 解析:如图2,以B 为原点,分别以BB 1、BA 所在直线为y 轴、z 轴,过B 点垂直于平面AB 1的直线为x 轴建立空间直角坐标系. 由于BC =1,BB 1=2,AB =2,∠BCC 1=3 π, ∴在三棱柱ABC -A 1B 1C 1中,有B (0,0,0)、A (0,0,2)、B 1(0,2,0)、3102c ??- ? ???,,、13302C ?? ? ??? ,,. 设30E a ?? ? ??? ,,且1322a -<<,

空间向量之建立空间直角坐标系的方法及技巧

空间向量之 建立空间直角坐标系的方法及技巧 . 一、利用共顶点的互相垂直的三条棱构建直角坐标系 例1 已知直四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2,底面ABCD 是直角梯形,∠A 为直角,AB ∥CD ,AB =4,AD =2,DC =1,求异面直线BC 1与DC 所成角的余弦值. 解析:如图1,以D 为坐标原点,分别以DA 、DC 、DD 1所在直线为x 、y 、z 轴建立空间直角坐标系,则C 1(0,1,2)、B (2,4,0), ∴1(232)BC =--,,,(010)CD =-, ,. 设1BC 与CD 所成的角为θ, 则11317cos 17 BC CD BC CD θ==. 二、利用线面垂直关系构建直角坐标系 例2 如图2,在三棱柱ABC -A 1B 1C 1中,AB ⊥侧面BB 1C 1C ,E 为棱CC 1上异于C 、C 1的一点,EA ⊥EB 1.已知2AB = ,BB 1=2,BC =1,∠BCC 1=3π.求二面角A -EB 1-A 1的平面角的正切值. 解析:如图2,以B 为原点,分别以BB 1、BA 所在直线为y 轴、z 轴,过B 点垂直于平面AB 1的直线为x 轴建立空间直角坐标系. 由于BC =1,BB 1=2,AB =2,∠BCC 1=3 π, ∴在三棱柱ABC -A 1B 1C 1中,有B (0,0,0)、A (0,0,2)、B 1 (0,2,0)、3102c ??- ? ???,,、13302C ?? ? ??? ,,.

设302E a ?? ? ???,,且1322a -<<, 由EA ⊥EB 1,得10EA EB =, 即3322022a a ????---- ? ? ? ???? ,,,, 233(2)2044a a a a =+-=-+=,∴13022a a ????--= ? ???? ?, 即12a =或32a =(舍去).故3102E ?? ? ??? ,,. 由已知有1EA EB ⊥,111B A EB ⊥,故二面角A -EB 1-A 1的平面角θ的大小为向量11B A 与EA 的夹角. 因11(002)B A BA ==,,,31222EA ? ?=-- ? ??,, 故11112cos 3 EA B A EA B A θ= =,即2tan 2θ= 三、利用面面垂直关系构建直角坐标系 例3 如图3,在四棱锥V -ABCD 中,底面ABCD 是正方形,侧面VAD 是正三角形,平面VAD ⊥底面ABCD . (1)证明AB ⊥平面VAD ; (2)求面VAD 与面VDB 所成的二面角的余弦值. 解析:(1)取AD 的中点O 为原点,建立如图3所示的空间直角坐标系. 设AD =2,则A (1,0,0)、D (-1,0,0)、B (1,2,0)、 V (0,0,3),∴AB =(0,2,0),VA =(1,0,-3). 由(020)(103)0AB VA =-=, ,,,,得

空间向量之建立空间直角坐标系的方法及技巧

空间向量之建立空间直角坐标系的方法及技巧 、禾U用共顶点的互相垂直的三条棱构建直角坐标系 例1已知直四棱柱ABC D A i B i CD中,AA= 2,底面ABCD是直角梯形,/ A为直角,AB// CD AB= 4, AD= 2,DC= 1,求异面直线BC与DC所成角的余弦值. 解析:如图1, 以D为坐标原点,分别以DA DC DD所在直线为x、y、z轴建立空间直角 1 , 2)、B(2, 4, 0), ?- BC =(-2,3,2) , CD =(0, -1,0). 坐标系,则C (0, 设BC i与CD所成的角为v CD 3 '17 17 二、利用线面垂直关系构建直角坐标系 例2 如图2,在三棱柱ABC- ABC中,AB丄侧面BBCQ, E为棱CC上异于C C的一点, EAL EB.已知AB = J2 , BB = 2, BC= 1, / BCC=上.求二面角A- EB—A的平面角的正切值. 3 解析:如图2,以B为原点,分别以BB、BA所在直线为y轴、z轴,过B点垂直于平面AB 的直线为x轴建立空间直角坐标系. 由于BC= 1, BB= 2, AB= -/2,/ BCG=—, 3 ???在三棱柱ABC- ABC 中,有(0, 0, 0)、(0, 0, C 1 第3 / —,—,0 . I2 2丿輛〕〔3设E — , a, 0 且一丄

BA 丄EB ,故二面角 A- EB —A i 的平面角日的大小为向量 BA 与 EA 的夹角. 訳=BA = (0,0八 2) , EA 二 三、利用面面垂直关系构建直角坐标系 例3 如图3,在四棱锥 V — ABCD 中,底面ABCD 是正方形,侧面 VAD 是正三角形,平面 VAD 丄底面ABCD AB 丄 VA 又ABL AD 从而AB 与平面VAD 内两条相交直线 VA AD 都垂直,二 (2)设E 为DV 的中点,则 J-1显1 I 2 2丿 即「2,一皿] X ,2—aJ < 2 丿 +a (a —2)=a 2—2a+3=0,「. 'a —丄 | 4 I 2丿 3 4 即-2或a =| (舍去).故 E 佇,,0 . ■ 3i 3 去(3,0,_Q ,时,2, -纠 辽 2丿 I 2 2丿 ,DV =(1,0, 3). 由已知有EA _ EB i , 故 COS V = 灵晁^,即ta —子 EA'B 1A 1 (1)证明 AE 丄平面VAD (2)求面 VAD 与面VDB^成的二面角的余弦值. 解析:(1) 取AD 的中点O 为原点,建立如图3所示的空间直角坐标系. 设 AD= 2,则 A (1,0,0)、D (— 1,0,0)、B ( 1,2,0)、 V (0,0,爲),二 AB =(0, 2, 0) , VA =( 1,0, — V 3 ). 由 ABVA = (0,2,0壯1,0, - . 3) = 0,得 AB 丄平面VAD

建立空间直角坐标系的几种方法

建立空间直角坐标系的几种方法 坐标法是利用空间向量的坐标运算解答立体几何问题的重要方法,运用坐标法解题往往需要建立空间直角坐标系.依据空间几何图形的结构特征,充分利用图形中的垂直关系或构造垂直关系来建立空间直角坐标系,是运用坐标法解题的关键.下面举例说明几种常见的空间直角坐标系的构建策略. 一、利用共顶点的互相垂直的三条棱构建直角坐标系 例1 已知直四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2,底面ABCD 是直角梯形,∠A 为直角,AB ∥CD ,AB =4,AD =2,DC =1,求异面直线BC 1与DC 所成角的余弦值. 解析:如图1,以D 为坐标原点,分别以DA 、DC 、DD 1所在直线为x 、y 、z 轴建立空间直角坐标系,则C 1(0,1,2)、B (2,4,0), ∴1(232)BC =-- , ,,(010)CD =- ,,. 设1BC 与CD 所成的角为θ, 则11cos 17BC CD BC CD θ== . 二、利用线面垂直关系构建直角坐标系 例2 如图2,在三棱柱ABC -A 1B 1C 1中,AB ⊥侧面BB 1C 1C ,E 为棱CC 1上异于C 、C 1的一点,EA ⊥EB 1 .已知AB =BB 1=2,BC =1,∠BCC 1=3 π.求二面角A -EB 1-A 1的平面角的正切值. 解析:如图2,以B 为原点,分别以BB 1、BA 所在直线为y 轴、z 轴,过B 点垂直于平面AB 1的直线为x 轴建立空间直角坐标系. 由于BC =1,BB 1=2,AB ,∠BCC 1=3 π, ∴在三棱柱ABC -A 1B 1C 1中,有B (0,0,0)、A (0, )、B 1(0,2,0) 、102c ?-???? ,、1302C ???? ?,,. 设0E a ????? ,且1322a -<<, 由EA ⊥EB 1,得10EA EB = ,

空间立体几何建立直角坐标系资料

空间立体几何建立直角坐标系 1.[2015·浙江]如图,在三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=2,A1A=4,A1在底面ABC的射影为BC的中点,D是B1C1的中点。 (1)证明:A1D⊥平面A1BC; (2)求二面角A1-BD-B1的平面角的余弦值。 解析:(1)证明:设E为BC的中点,连接A1E,AE,DE,由题意得A1E ⊥平面ABC,所以A1E⊥AE。 因为AB=AC,所以AE⊥BC。 故AE⊥平面A1BC。 由D,E分别为B1C1,BC的中点,得DE∥B1B且DE=B1B,从而DE ∥A1A且DE=A1A,所以A1AED为平行四边形。 故A1D∥AE。 又因为AE⊥平面A1BC,所以A1D⊥平面A1BC。 (2)方法一:作A1F⊥BD且A1F∩BD=F,连接B1F。

由AE=EB=2,∠A1EA=∠A1EB=90°, 得A1B=A1A=4。 由A1D=B1D,A1B=B1B,得△A1DB与△B1DB全等。 由A1F⊥BD,得B1F⊥BD,因此∠A1FB1为二面角A1-BD-B1的平面角。 由A1D=2,A1B=4,∠DA1B=90°,得 BD=32,A1F=B1F=4 3, 由余弦定理得cos∠A1FB1=-1 8。 方法二:以CB的中点E为原点,分别以射线EA,EB为x,y轴的正

半轴,建立空间直角坐标系E -xyz ,如图所示。 由题意知各点坐标如下: A 1(0,0,14), B (0,2,0),D (-2,0,14),B 1(-2, 2,14)。 因此A 1B →=(0,2,-14),BD →=(-2,-2,14),DB 1→=(0,2,0)。 设平面A 1BD 的法向量为m =(x 1,y 1,z 1),平面B 1BD 的法向量为n =(x 2,y 2,z 2)。 由??? m ·A 1B →=0,m ·BD →=0, 即????? 2y 1-14z 1=0,-2x 1-2y 1+14z 1=0, 可取m =(0,7,1)。 由??? n ·DB 1→=0,n ·BD →=0,即????? 2y 2=0,-2x 2-2y 2+14z 2=0, 可取n =(7,0,1)。 于是|cos 〈m ,n 〉|=|m·n ||m |·|n |=18 。 由题意可知,所求二面角的平面角是钝角,故二面角A 1-BD -B 1的平 面角的余弦值为-18。

空间直角坐标系的建立

第二章解析几何初步 第3.1节空间直角坐标系的建立 本节教材分析 (1)三维目标 ①知识与技能:掌握空间直角坐标系的有关概念;会根据坐标找相应的点,会写一些简单几何体的有关坐标.通过空间直角坐标系的建立,使学生初步意识到:将空间问题转化为平面 问题是解决空间问题的基本思想方法;通过本节的学习,培养学生类比,迁移,化归的能力. ②过程与方法:建立空间直角坐标系的方法与空间点的坐标表示。 ③情感、态度与价值观:解析几何是用代数方法研究解决几何问题的一门数学学科,在教学过程中要让学生充分体会数形结合的思想,进行辩证唯物主义思想的教育和对立统一 思想的教育;培养学生积极参与,大胆探索的精神. (2)教学重点 在空间直角坐标系中确定点的坐标. (3)教学难点 通过建立适当的直角坐标系确定空间点的坐标,以及相关应用。 (4)教学建议 学生已经对立体几何以及平面直角坐标系的相关知识有了较为全面的认识,学习《空间直角坐标系》有了一定的基础.这对于本节内容的学习是很有帮助的.但部分同学仍然会在空 间思维与数形结合方面存在困惑. 本节课的内容是非常抽象的,试图通过教师的讲解而让学生听懂、记住、会用是徒劳的,必须突出学生的主体地位,通过学生的自主学习与和同学的合作探究,让学生亲手实践,这样学生才能获得感性认识,从而为后续的学习并上升到理性认识奠定基础.通过激发学生学习的求知欲望,使学生主动参与教学实践活动.创设学习情境,营造氛围,精心设计问题,让学生在整个学习过程中经常有自我展示的机会,并有经常性的成功体验,增强学生的学习信心,从学生已有的知识和生活经验出发,让学生经历知识的形成过程.通过阅读教材,并结合空间坐标系模型,模仿例题,解决实际问题. 新课导入设计 导入一 思路1.大家先来思考这样一个问题,天上的飞机的速度非常的快,即使民航飞机速度也非 常快,有很多飞机时速都在 1 000 km以上,而全世界又这么多,这些飞机在空中风驰电掣,速度

知识要点-空间直角坐标系

空间直角坐标系 ★知识梳理★ 1.右手直角坐标系 ①右手直角坐标系的建立规则:轴、轴、轴互相垂直,分别指向右手的拇指、食指、中指; ②已知点的坐标作点的方法与步骤(路径法): 沿轴正方向(时)或负方向(时)移动个单位,再沿轴正方向(时)或负方向(时)移动个单位,最后沿轴正方向(时)或负方向(时)移动个单位,即可作出点 ③已知点的位置求坐标的方法: 过作三个平面分别与轴、轴、轴垂直于,点在轴、轴、轴的坐标分别是,则就是点的坐标 2、在轴上的点分别可以表示为, 在坐标平面,,内的点分别可以表示为; 3、点关于轴的对称点的坐标为 点关于轴的对称点的坐标为; 点关于轴的对称点的坐标为; 点关于坐标平面的对称点为; 点关于坐标平面的对称点为; 点关于坐标平面的对称点为; 点关于原点的对称点。 4. 已知空间两点,则线段的中点坐标为 5.空间两点间的距离公式 已知空间两点, 则两点的距离为, 特殊地,点到原点的距离为; 5.以为球心,为半径的球面方程为 特殊地,以原点为球心,为半径的球面方程为

★重难点突破★ 重点:了解空间直角坐标系,会用空间直角坐标系表示点的位置,会推导和使用空间两点间的距离公式 难点:借助空间想象和通过与平面直角坐标系的类比,认识空间点的对称及坐标间的关系 重难点: 在空间直角坐标系中,点的位置关系及空间两点间的距离公式的使用 1.借助空间几何模型进行想象,理解空间点的位置关系及坐标关系 问题1:点到轴的距离为 [解析]借助长方体来思考,以点为长方体对角线的两个顶点,点到轴的距离为长方体一条面对角线的长度,其值为 2.将平面直角坐标系类比到空间直角坐标系 问题2:对于任意实数,求的最小值 [解析]在空间直角坐标系中,表示空间点到点的距离与到点的距离之和,它的最小值就是点与点之间的线段长,所以的最小值为。 3.利用空间两点间的距离公式,可以解决的几类问题 (1)判断两条相交直线是否垂直 (2)判断空间三点是否共线 (3)得到一些简单的空间轨迹方程 ★热点考点题型探析★ 考点1: 空间直角坐标系 题型1:认识空间直角坐标系 [例1 ](1)在空间直角坐标系中,表示() A.轴上的点 B.过轴的平面 C.垂直于轴的平面 D.平行于轴的直线 (2)在空间直角坐标系中,方程表示 A.在坐标平面中,1,3象限的平分线 B.平行于轴的一条直线

圆的方程及空间直角坐标系(讲义)

圆的方程及空间直角坐标系(讲义) ? 知识点睛 一、圆的方程 1. 圆的标准方程:________________________, 圆心:_________,半径:________. 2. 圆的一般方程:_______________________( _____________,半径:_____________. 二、位置关系的判断 (1)点与圆 由两点间的距离公式计算点到圆心的距离d ,比较d ,r 大小. ①已知点P (x 0,y 0)与圆的标准方程(x -a )2+(y -b )2=r 2, 则计算2d =___________________,比较2d ,2r 大小. ②已知点P (x 0,y 0)与圆的一般方程220x y Dx Ey F ++++=, 则计算______________________,与0比较大小. (2)直线与圆 ①利用点到直线的距离公式求圆心到直线的距离d ,比较 d ,r 大小. ②联立直线与圆方程,得到一元二次方程,根据?判断: 000?? , 直线与圆相离, 直线与圆相切,直线与圆相交. (3)圆与圆 利用两点间的距离公式求圆心距d ,结合两圆半径和d 三、常见思考角度 1. 直线与圆位置关系常见考查角度 (1)过定点求圆的切线方程 ①判断该点与圆的位置关系(若点在圆内,则无切线). ②根据切线的性质求切线方程. 若点在圆上,则利用切线垂直于过切点的半径求切线方程; 若点在圆外,则分别讨论____________________,设点斜式利用求解. (2)直线与圆相交求弦长 结合垂径定理和勾股定理,半径长r ,圆心到直线的距离d ,弦长l 满足关系

空间直角坐标系教案

【课题】4.3.1空间直角坐标系 【教材】人教A版普通高中数学必修二第134页至136页. 【课时安排】1个课时. 【教学对象】高二(上)学生.【授课教师】*** 一.教材分析: 本节内容主要引入空间直角坐标系的基本概念,是在学生已学过的二维平面直角坐标系的基础上进行推广,为以后学习用空间向量解决空间中的平行、垂直以及空间中的夹角与距离问题、研究空间几何对象等内容打下良好的基础。 空间直角坐标系的知识是空间解析几何的基础,与平面解析几何的内容共同体现了“用代数方法解决几何问题”的解析几何思想;通过空间直角坐标系内任一点与有序数组的对应关系,实现了形向数的转化,将数与形紧密结合,提供一个度量几何对象的方法。其对于沟通高中各部分知识,完善学生的认知结构,起到了很重要的作用。 二.教学目标: ?知识与技能 (1)能说出空间直角坐标系的构成与特征; (2)掌握空间点的坐标的确定方法和过程; (3)能初步建立空间直角坐标系。 ?过程与方法 - - 优质资料

(1)结合具体问题引入,诱导学生自主探究; (2)类比学习,循序渐进。 情感态度价值观 (1)通过实际问题的引入和解决,让学生体会数学的实践性和应用性,感受数学刻画生活的作用,进而拓展自己的思维空间。 (2)通过用类比的数学思想方法探究新知识,使学生感受新旧知识的联系,并加深领会研究事物从低维到高维的方法与过程。 (3)通过对空间坐标系的接触学习,进一步培养学生的空间想象能力。三.教学重点与难点: 教学重点:空间直角坐标系相关概念的理解;空间中点的坐标表示。 教学难点:右手直角坐标系的理解,空间中点与坐标的一一对应。 四.教学方法:启发式教学、引导探究 五.教学基本流程: ↓ ↓ ↓ ↓ - - 优质资料

空间直角坐标系试题(含答案)

一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求 的,请把正确答案的代号填在题后的括号内(每小题5分,共50分). 1.在空间直角坐标系中,已知点P (x ,y ,z ),给出下列4条叙述: ①点P 关于x 轴的对称点的坐标是(x ,-y ,z ) ②点P 关于yOz 平面的对称点的坐标是(x ,-y ,-z ) ③点P 关于y 轴的对称点的坐标是(x ,-y ,z ) ④点P 关于原点的对称点的坐标是(-x ,-y ,-z ) 其中正确的个数是 ( ) A .3 B .2 C .1 D .0 2.若已知A (1,1,1),B (-3,-3,-3),则线段AB 的长为 ( ) A . B . C . D . 3.已知A (1,2,3),B (3,3,m ),C (0,-1,0),D (2,―1,―1),则 ( ) A .||A B >||CD B .||AB <||CD C .||AB ≤||CD D .||AB ≥||CD 4.设A (3,3,1),B (1,0,5),C (0,1,0),AB 的中点M ,则||CM ( ) A . 4 B . 532 C . 2 D . 2 5.如图,三棱锥A -BCD 中,AB ⊥底面BCD ,BC ⊥CD ,且AB =BC =1,

CD =2,点E 为CD 的中点,则AE 的长为( ) A B C .2 D 6.点B 是点A (1,2,3)在坐标平面yOz 内的射影,则OB 等于 ( ) A .14 B .13 C .32 D .11 7.已知ABCD 为平行四边形,且A (4,1,3),B (2,-5,1),C (3,7,-5),则点D 的坐标为 ( ) A .(2 7 ,4,-1) B .(2,3,1) C .(- 3,1,5) D .(5,13,-3) 8.点),,(c b a P 到坐标平面xOy 的距离是 ( ) A .22b a + B .c C .c D .b a + 9.已知点)11,2,1(-A ,)3,2,4(B , )15,,(y x C 三点共线,那么y x ,的值分别是 ( ) A .2 1 ,4 B .1,8 C .2 1-,-4 D .-1,-8 10.在空间直角坐标系中,一定点到三个坐标轴的距离都是1,则该点到原点的距离是( ) A . 2 6 B .3 C . 2 3 D . 3 6

建立空间直角坐标系,解立体几何题

建立空间直角坐标系,解立体几何高考题 立体几何重点、热点: 求线段的长度、求点到平面的距离、求直线与平面所成的夹角、求两异面直线的夹角、求二面角、证明平行关系与垂直关系等. 常用公式: 1、求线段的长度 : 222z y x AB ++==()()()2 12212212z z y y x x -+-+-= 2、求P 点到平面α的距离: PN = ,(N 为垂足,M 为斜足,为平面α的法向量) 3、求直线l 与平面α所成的角:|||||sin |n PM ?= θl PM ?,α∈M ,为α的法向量) 4、求两异面直线AB 与CD 的夹角:cos = θ 5、求二面角的平面角θ:|||||cos |21n n ?= θ,( 1n ,2n 为二面角的两个面的法向量) 6、求二面角的平面角θ:S S 射影 = θ cos ,(射影面积法) 7、求法向量:①找;②求:设, 为平面α内的任意两个向量,)1,,(y x =为α的法向量, 则由方程组?????=?=?0 n b n a ,可求得法向量. 高中新教材9(B)引入了空间向量坐标运算这一内容,使得空间立体几何的平行﹑ 垂直﹑角﹑距离等问题避免了传统方法中进行大量繁琐的定性分析,只需建立空间直角坐标系进行定量分析,使问题得到了大大的简化。而用向量坐标运算的关键就是建立一个适当的空间直角坐标系。 一﹑直接建系。 当图形中有互相垂直且相交于一点的三条直线时,可以利用这三条直线直接建系。 例1、 (2002年全国高考题)如图,正方形ABCD ﹑ABEF 的边长都就是1,而且平面ABCD ﹑ABEF 互相垂直。点M 在AC 上移动,点N 在BF 上移动,若

建立空间直角坐标系的几种方法

建立空间直角坐标系的几种方 法 坐标法是利用空间向量的坐标运算解答立体几何问题的重要方法,运用坐标法解题往往需要建立空间直角坐标系.依据空间几何图形的结构特征,充分利用图形中的垂直关系或构造垂直关系来建立空间直角坐标系,是运用坐标法解题的关键.下面举例说明几种常见的空间直角坐标系的构建策略. 一、利用共顶点的互相垂直的三条棱构建直角坐标系 例1 已知直四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2,底面ABCD 是直角梯形,∠A 为直角,AB ∥CD ,AB =4,AD =2,DC =1,求异面直线BC 1与DC 所成角的余弦值. 解析:如图1,以D 为坐标原点,分别以DA 、DC 、DD 1所在直线为x 、y 、z 轴建立空间直角坐标系,则C 1(0,1,2)、B (2,4,0), ∴1 (232)BC =--u u u u r ,,,(010)CD =-u u u r ,,.

设 1BC u u u u r 与CD uuu r 所成的角为θ, 则11317cos BC CD BC CD θ==u u u u r u u u r g u u u u r u u u r . 二、利用线面垂直关系构建直角坐标系 例2 如图2,在三棱柱ABC -A 1B 1C 1中,AB ⊥侧面BB 1C 1C ,E 为棱CC 1上异于C 、C 1的一点,EA ⊥EB 1.已知2AB =,BB 1=2,BC =1,∠BCC 1=3 π.求二面角A -EB 1-A 1的平面角的正切值. 解析:如图2,以B 为原点,分别以BB 1、BA 所在直线为y 轴、z 轴,过B 点垂直于平面AB 1的直线为x 轴建立空间直角坐标系. 由于BC =1,BB 1=2,AB =2,∠BCC 1=3 π, ∴在三棱柱ABC -A 1B 1C 1中,有B (0,0,0)、A (0,0,2)、B 1(0,2,0)、3102c ??- ? ???,,、13302C ?? ? ??? ,,. 设30E a ?? ? ???,,且1322 a -<<, 由EA ⊥EB 1,得10EA EB =u u u r u u u r g ,

常见建立空间直角坐标系的方法

常见建立空间直角坐标系的方法 一、利用共顶点的互相垂直的三条棱构建直角坐标系 例1 已知直四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2,底面ABCD 是直角梯形,∠A 为直角,AB ∥CD ,AB =4,AD =2,DC =1,求异面直线BC 1与DC 所成角的余弦值. 解析:如图1,以D 为坐标原点,分别以DA 、DC 、DD 1所在直线为x 、y 、z 轴建立空间直角坐标系,则C 1(0,1,2)、B (2,4,0), ∴1(232)BC =--,,,(010)CD =-,,. 设1BC 与CD 所成的角为θ, 则11317cos BC CD BC CD θ==. 二、利用线面垂直关系构建直角坐标系 例2 如图2,在三棱柱ABC -A 1B 1C 1中,AB ⊥侧面BB 1C 1C ,E 为棱CC 1上异于C 、C 1的一点,EA ⊥EB 1.已知AB =,BB 1=2,BC =1,∠BCC 1=3 π.求二面角A -EB 1-A 1的平面角的正切值. 解析:如图2,以B 为原点,分别以BB 1、BA 所在直线为y 轴、z 轴,过B 点垂直于平面AB 1的直线为x 轴建立空间直角坐标系. 由于BC =1,BB 1=2,AB BCC 1=3 π, ∴在三棱柱ABC -A 1B 1C 1中,有B (0,0,0)、A (0, 、B 1 (0,2,0)、102c ?-????,、1302C ? ???? ,,. 设0E a ????? ,且1322a -<<, 由EA ⊥EB 1,得1 0EA EB =, 即320a a ???--- ? ???? ,,

相关主题