搜档网
当前位置:搜档网 › 软件无线电发射机的实现与仿真(三)的论文

软件无线电发射机的实现与仿真(三)的论文

软件无线电发射机的实现与仿真(三)的论文
软件无线电发射机的实现与仿真(三)的论文

软件无线电发射机的实现与仿真(三)的

论文

本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意!

由于频率与相位有一定的关系,为便于分析,可将式(4-56)改写为

=a(n)cos[ n+ ] (4-57)

式中,表示载波的角频率。所以=a(n)cos[ ]cos( n)-a(n)sin[ ]sin( n)

= cos( n)- sin( n) (4-58)

式中

= a(n)cos[ ] (4-59)

= a(n)sin[ ] (4-60)

这就是我们希望获得的同相和正交两个分量,根据、,就可以对各种调制样式进行解调,三大类解调的算法如下:

调幅(am)解调:

a(n)= (4-61)

调相(pm)解调:

= (4-62)

(4-63)

调频(fm)解调

(4-64)

在利用相位差分计算瞬时频率,即= - 时,由于计算要进行除法和反正切运算,这对于非专用数字信号处理器来说是较复杂的,在用软件实现时也可以用下面的方法来计算瞬时频率:

=

= (4-65)

对于调频信号,其振幅近似恒定,设=1,则

(4-66)

式(4-66)就是利用、直接计算的近似公式。这种方法只有乘减运算,计算比较简便。最后得到的软件无线电数字正交解调的通用模型,如图所示。

shape \* mergeformat

图数字正交解调的通用模型

模拟调制信号解调算法

1. am解调

信号表达式:

s(n)=a(n)cos( ) ( (4-67)式中,;为调制信号;为载波初始相位。

对信号进行正交分解,得到同相和正交分量:

同相分量:

=a(n)cos (4-68)

正交分量:

= a(n)cos (4-69)

对同相和正交分量平方之和开方:

= +m(n) (4-70)

减去直流分量就可得到调制信号m(n)。这种方法具有着较强的抗载频适配能力,即本地载波与信号载波之间允许一定得频率偏差。当由于传输信道或其他一些原因而造成本地载波与信号的载频之间存在频差和相差时,同相分量和正交分量可表示为:

(4-71)

(4-72)

式中,= - ;= - ;、表示差频和差相可以是常量也可以是随机变量。为本地载波的角频率: 是本地载波的初始相位。

对同相与正交分量平方之和开平方得:

= +m(n) (4-70)

所以,am信号用正交解调算法解调时,不要求载频严格的同频同相。从以上分析过程中可知,理论上失配可以任意大,但由于失配时,同相和正交分量相当于调制在以失配频率为载频的载波上,严重失配时,信号会超出数字信道而发生失真。

2. dsb解调

信号表达式:

s(n)=m(n)cos (4-74)

对信号进行正交分解得:

同相分量:

=m(n) (4-75)

正交分量:

=0 (4-76)

解调时要求本地载频与信号载频同频同相,此时,同相分量输出就是解调信号。同频同相本地载频的提取,可以利用数字科斯塔斯环获得。数字科斯塔斯环既可以用软件实现也可以利用专门的数字信号处理硬件来实现。

3. ssb解调

信号表达式:

s(n)=m(n)cos sin (4-77)

对信号正交分解得:

同相分量:

=m(n) (4-78)

正交分量:

= (n) (4-79)

4. fm解调

信号表达式:

s(n)= cos[ + ] (4-80)

式中,k为比例因子,为常数。

对信号进行正交分解得;

同相分量:

= cos[ ] (4-81)

正交分量:

= sin[ ] (4-82)

对正交与同相分量之比值反正切运算:

=arctg

= (4-83)

然后,求相位差分,即可求得调制信号:

- =m(n) (4-84)

为了讨论方便,这里及以下对比例因子k及常数忽略。

fm信号用正交解调方法解调时,也具有较强的抗载频失配(指失配差频和差相是常量,非随机变量)能力,本地载波与信号的载波存在频差和相差时,同相分量和正交分量可表示为:

= cos[ + ] (4-85)

= sin[ + ] (4-86)

同样对正交与同相分量之比值反正切及差分运

算,就可得到调制信号:

arctg -arctg

=[ + + ]-[ + + ] (4-87)

= +m(n)

当载波失配差频和差相是常量时,解调输出只不过增加了一个直流分量,减去直流分量就可得到调制信号m(n)。

数字调制信号的解调算法

1. ask解调

信号表达式:

s(n)= cos( + ) (4-88)

式中,为输入码元,且=0、1;g(n一m)是幅度为1,宽度为码元传输速率倒数的矩形脉冲门函数。

ask的解调算法与am解调一样:对信号进行正交分解,得同相和正交分量:

同相分量:

= cos( ) (4-89)

正交分量:

= sin( ) (4-90)

对同相与正交分量平方之和开方:

a(n)= = (4-91)

计算a(n)后,再对a(n)进行抽样判决,就可恢复

出调制码元信号。

ask的正交解调性能与am一样,具有较强的抗载频失配能力。

2. mask解调

信号表达式:

s(n)= cos( + ) (4-92)

式中,为输入码元,且。

解调方法与ask一样,对信号进行正交分解,得同相和正交分量:

同相分量:

= cos( ) (4-93)

正交分量:

= sin( ) (4-94)

按照式(4-91)计算瞬时幅度a(n):

a(n)= (4-95)

计算出a(n)后,再进行抽样多电平幅度判决,就可恢复出调制码元信号。

mask解调性能与ask一样,具有较强的抗载频失配能力。

3. fsk解调

信号表达式:

s(n)= cos (4-96)

式中,为载波角频率间隔,为输入的码元,= +1,-1 。

fsk解调类似于fm解调,对信号进行正交分解,得同相和正交分量:

同相分量:

= cos( n) (4-97)

正交分量:

= sin( n) (4-98)

按照式(4-64)计算瞬时频率f(n):

n)= arctg -arctg

= (4-99)

在计算出瞬时频率f(n)后,对f(n)经抽样门限判决,即可恢复出传输的数据。

4. mfsk解调

信号表达式:

s(n)= cos[( + )n] (4-100)

式中,为输入码元,且。

mfsk解调类似于fsk解调,对信号进行正交分解,得同相和正交分量:

同相分量:

= cos( n) (4-101)

正交分量:

= sin( n) (4-102)

按照式(4-99)计算瞬时频率f(n):

f(n)= (4-103)

在计算瞬时频率f(n)后,对f (n)抽样多电平门限判决,即可恢复出数据。

5. msk解调

信号表达式:

s(n)= (4-104)

式中,t为码元持续时间; 为输入码元,且=+1,-1。

=

是为保证相位连续而加入的相位常数。

msk信号的解调同fm,对信号进行正交分解,得同相和正交分量:

同相分量:

= cos (4-105)

正交分量:

= sin (4-106)

按照式(4-64)计算瞬时频率f(n):

f(n)= arctg -arctg

= (4-107)

在计算出瞬时频率f(n)后,对f(n)抽样判决,即可恢复出码元。

6. gmsk解调

gmsk信号与msk信号相比,仅对输入数据多加了一个预调制滤波器。因此,可按msk信号那样解调后,再经一个滤波器= ( 为预调制滤波器频率响应),即可求得码元。

7. sfsk解调

信号表达式:

s(n)= cos (4-108)

sfsk信号解调方法同msk解调,对信号进行正交分解后,按照式(4-107)计算瞬时频率。在计算出瞬时频率f(n),对f(n)抽样判决,即可恢复出码元。

8. psk解调

信号表达式:

s(n)= cos[ + ] (4-109)

式中,= , 。

对信号进行正交分解后,得同相和正交分量:

同相分量:

= cos( ) (4-110)

正交分量:

= sin( ) (4-111)

按照式(4-62)求得瞬时相位:

= (4-112)

在计算出瞬时相位后,对抽样判决,即可恢复数据。在解调时需要本地载波与信号载波严格的同频同相,同频同相可由数字科斯塔斯环获得。

9. mpsk解调

信号表达式:

s(n)= cos[ + ](4-113)

式中,,。

mpsk信号解调方法同psk。在计算出瞬时相位后,对抽样进行多电平门限判决,即可恢复出码元数据。

10. qpsk解调

信号表达式:

s(n)= cos( )+ sin( ) (4-114)

式中,为双极性数据。

对信号进行正交分解,得到同相和正交分量:

同相分量:

= (4-115)

正交分量:

= (4-116)

由信号形式可知,i, q分量即为恢复出的并行数据,经抽样判决,恢复出码元数据后,在并串变换,就可恢复出串行码元数据。

解调

信号表达式:

s(n)= cos( )+ sin( ) (4-117)

式中,, = 。

对信号进行正交分解,得到同相和正交分量:

同相分量:

= (4-118)

正交分量:

= (4-116)

对同相、正交分量两路信号进行抽样判决,即可恢复出并行数据,经并串变换后可得所传输的数据。

第五章基于多相结构的实信号信道化发射机实信号多信道发射机模型信道划分与低通滤波器组为建立实信号多信道发射机的数学模型,首先,对实信号的数字谱做如下信道划分:

(5-1)

式中,为第i信道的归一化中心角频率,i为数据内插率。

基带信号经内插低通滤波,再与复本振相乘,可实

现将第i个信道的数字谱搬移到频带的目的。经过复本振后,信号变为

复信号,故i路合成信号需取实部后再输出。为

使i个采样率为的基带信

号能够压缩在实信号所表示的频谱范围内传输,内插因子取为2i。其实现结

构如图所示。

shape \* mergeformat

图实信号输出信道化发射机的直接实现

图中每个低通滤波器的带宽均不大于,并且对应的原型理想低通滤波器的频率响应为

(5-2)

真实信道中心频率

引用系统采样频率,第i信道的归一化中心角频率公式可重写为

(5-3)

式中,

当, 这是不允许的。因此,后面的个信道的计算公式为

(5-4)

式中,

需要指出,由式(5-3 )得到的实信号信道存在着对应的镜频,并且信道总数受数据内插倍数i的限制。图为对应4个实信道的频谱分配图

图实信号的信道划分示意图

注意实信号的频谱应为正值,由式( 5-3 ) , ( 5-4 )可推出真实信道的中心频率为

(5-5)

(5-6)

进一步由式(5-5 ) , ( 5-6)容易求出相邻信道中心频率距离为.

基于多相滤波器的实信号信道化发射机建模

由图可得:

并定义:

代入式(5-6)可得:

把代入式(5-8)可得:

(5-9)

定义:= =dft

代入式(5-9 )可得:

则有:

= (5-12)

最后得:

y(n)= (5-13)

式中,=mod(n/i),mod表示取余数。

整个实现过程如图所示。

图实信号信道化软件无线电发射机数学模型

对于基于多相滤波器的实信号信道化发射机模型的几点说明:

(1)多相滤波器的设计步骤

实现多相滤波器设计的步骤是:(1)根据原型理想低通滤波器的频率响应确定所需要的滤波器类型和阶数n ; (2)求出对应的冲击响应h(n)(3 )由下式确定多相滤波器:

m=0,1,2,…,i-1 (5-14)

若根据频率响应求得的滤波器阶数n不是i的整数倍,则需要进行反向设计,即设定滤波器的阶数n 为i的整数倍后再重新计算各阶系数。利用matlab中的remezord函数可以方便求出采用最佳逼近最大最小准则算法所需的原型滤波器阶数n。

(2) dft可以由快速算法fft来完成。

第六章软件无线电发射机系统仿真

本章将构建一个基于多相滤波器的实信号信道化发射机仿真系统并用matlab软件进行仿真,以验证其可行性。

基于多相滤波器的信道化发射机系统仿真

在基于多相滤波器的实信号信道化发射机仿真设

计中,信道数、内插倍数和信道频率的划分是密切相关的,因此,仿真设计时进行了综合考虑,且用快速傅立叶变换对信号进行处理,不断提高系统工作效率。仿真采用matlab软件的m文件来实现。

仿真系统结构示意图

基于多相滤波器的8信道信道化发射机仿真结构如图所示。基本参数如下:信道数:8

调制模式:am

shape \* mergeformat

图多信道信道化发射机仿真结构

图中,i=8为输入信号对应的信道号,y(n)为输出信号。

仿真系统参数说明

(1)信道数

信道化发射机主要用在对某一带宽内的所有信道进行发射的场合,所以其信道数应很大,但考虑到计算机的实际运算能力,信道数不能设置过大,而且在系统仿真中信道数量的增加只会增加计算负担,对于验证系统可行性没有多大贡献。由于信道化滤波器的最先一步运算为fft2变换,所以信道数最好为2的整数次幂,这样可以提高工作效率。基于以上考虑,信道数设置为8。

(2)调制波形

语音信号虽具有形象直观的优点,但它的频谱和时域波形都比较杂乱,不能清晰地反映数字信道的问题所在,所以本节不选择语音信号。am调制对于信道衰减敏感,本节选择一些常见波形作为调制波形,可以很容易判断发射机的性能。

实验结果与分析

整个仿真程序(matlab程序)如下。

a=[];f=[];

i=8;n1=200;fs=;fs=fs*2*i;kf=;

for k=1:i

for r=1:(n1+i)

m(k,r)=a(k)*(+*cos(2*pi*f(k)/fs*(r-1)));

end

end

[n0,f0,m0,w]=remezord([8,],[1 0],[ ],fs);

b=remez(287,f0,m0,w);

figure(1)

polt(20*lof10(abs(fft(b))));

grid;

for r=1:36

for k=1:i

h(k,r)=b((r-1)*i+k);

end

end

for r=1:(n1+i)

for k=1:i

mk(k)=m(k,r);

end

mfft=fft(mk);

for k=1:i

x0(k,r)=mfft(k)*exp(j*pi/(2*i)*(k-1)); end

end

for r=1:(n1+i)

for k=1:i

x00(k,(2*r-1))=x0(k,r);

x00(k,2*r)=0;

end

end

for k=1:i

for r=1:(n1+i)

x00k(r)=x00(k,r);

end

for rk,n)=y(k,(n-1)/i+1);

else y00(k,n)=;

end

end

end

for n=i:(n1*i-i)

yout(n-i+1)=y00(1,n)+y00(2,n-1)+y00(3,n-2)+y00(4,n-3) +y00(5,n-4)+y00(6,n-5)+y00(7,n-6)+y00(8,n-7);

end

point=512;

yy(1:point)=yout(101:(100+point));

for n=1:point

yy(n)=(y(n)+*randn)*(*cos(2*pi*(n-1)/point)+*cos(4*pi *(n-1)/point));

l(n)=fs/point*(n-1);

end

yy1=real(yy);

pp1=abs(fft(yy1));

ppm1=max(pp1);

figure(3)

plot(l(1:256),20*log10(pp1(1:256)/ppm1));

grid on;

pp=abs(fft(yy));

ppm=max(pp);

figure(2)

plot(1,20*log10(pp/ppm));

i=8,=25khz 时的8个调幅(am)信号的信道化发射机仿真结果见图

图8路信道化软件无线电发射机仿真结果

由实验结果验证了本文给出的数学模型的可行性和正确性。

本章讨论了系统仿真的总体设计构想,主要完成了利用matlab完成8信道信道化发射机系统仿真,系统仿真已达到预期目标。

总结

软件无线电成为21世纪无线通信领域一个重要发展方向.软件无线电是以开放体系结构为基础,在硬件的平台上应用软件工程技术来实现具有最大灵活性和适应性的各种无线通信方式和功能的系统。软件无线电己成为当前新一代无线通信的关键技术之一。本文在深入研究了采样率变换技术的基础上,建立了基于多相滤波结构的信道化发射机模型。

电子工程训练课程实验报告无线蓝牙小车

题目:基于STC15W4K32S4的蓝牙智能小车 课程名称: 学院(系): 专业: 班级: 学号: 实验序号: 学生姓名: 成绩: 2016 年11月4日

成绩评定

电子安装实验室安全守则 (请在下一页手抄一份安全守则) 1、每次实验前,认真预习准备,仔细阅读实验安全守则,严格按照 安全规范进行实验,确保实验安全; 2、桌面要保持整洁,不允许有杂物,禁止将水杯、瓶装水放在桌面; 3、电烙铁在使用前,必须检查电源线有无烫损漏线情况,一经发现, 立即找老师进行安全处理; 4、电烙铁长时间不使用,应将电源线拔掉;电烙铁使用后,应放回 烙铁架中,以免烫伤物品; 5、实验结束后,必须拔掉电烙铁的电源线;已经加热的电烙铁,必 须冷却后再放入抽屉中; 6、焊锡中含铅,不要含在口中,实验结束后要洗手; 7、稳压电源在使用前,应先调好要使用的电压,再进行线路连接, 并确保连接的极性正确; 8、抢救触电人员时,应首先切断电源或用绝缘物体挑开电源线,使 触电者脱离电源,千万不要用手拖拉触电人员,以免连环触电; 9、实验结束后,必须关闭桌面电源开关,将桌面收拾干净,工具物 品整理好。

题目: 1 设计要求 以STC15W4K32S4单片机为核心,设计焊接并且调试一个实际的单片机控制系统,通过蓝牙实现用手机控制小车的动作状态。 (一)焊接:在实现基本功能的前提下焊接好设计的系统,尽量使其稳定焊点稳定,焊接美观。 (二)最小系统与电源:利用7505稳压芯片实现输入电压转为五伏稳压电源输出。 (三)功能实现:实现用手机自制app或者蓝牙串口助手控制小车前进方向以及行驶速度。 2 设计分析及系统方案设计 围绕STC15W4K32S4单片机,把系统的设计规划分为两部分 硬件部分: (一)设计并且绘制原理图 (二)按照原理图焊接电路板 软件部分: (一)编写实验程序 (二)系统调试 将单片机的p0口用于驱动lcd1602,p4.5,p2.7,p2.3,p2.2用于输出pwm控制电机。P3.0与p3.1用于与主机通信并且用于蓝牙串口通信。 3 各功能模块硬件电路设计 (一)最小系统 由于STC15W4K32S4的性能已经进行了优化,所以不同于以往所接触的单片机,它的晶振已经集成化,不用再搭建最小系统电路。 (二)电源电路 将输入电压转为5v稳压电源输出 (三)LCD液晶屏电路

软件无线电技术论文

软件无线电技术 摘要:现行的面向具体用途来设计不同频段、不同制式的无线电通信电台及组网的思想已经远远不能满足现代无线电通信的实际需要,因此软件无线电系统及其技术,这种革新的通信理念与体制应运而生。文章对软件无线电技术的概念、功能和关键技术等进行了介绍,并阐述了软件无线电的应用和发展前景。 一.引言 软件无线电是近些年来随着微电子、信号处理、计算机等技术的高速发展应运而生的一种新的无线电技术。它最初起源于军事通信,是为了解决多军联合作战时通信互通互联问题而提出来的。经过这几年的迅速发展,软件无线电早已从军事领域的阶段逐步发展成为移动通信发展的基石,特别是第3、4代移动通信系统。个人移动通信系统已从第一代模拟蜂窝系统发展到第二代数字蜂窝系统(GMS、CDMA),目前正在向第三代移动通信系统发展,而且第四代移动通信技术也已经悄然问世。随着越来越大的通信需求,一方面使通信产品的生存周期缩短,开发费用上升;另一方面,新老体制共存,各种通信系统之间的互联变得更加复杂和困难、由于通信技术的迅猛发展,新的通信体制与标准不断提出,通信产品的生存周期减少,开发费用上升,导致以硬件为基础的传统通信体制无法适应新的局面;同时,不同体制互通的要求日趋强烈,并且随着通信业务的不断增长,无线频段资源变得越来越拥挤,对现有通信系统的频带利用率及抗干扰能力提出了更高的要求。但是沿着现有通信体制的发展,很难对频带重新规划。所以寻求一种既能满新一代通信系统需求,由能兼容老体制,而且更具有扩展能力的新的个人移动通信系统体系结构成为人们努力的方向。而软件无线电正好提供了解决这一问题的技术途径成为第三代移动通信系统研究的热点。 二.软件无线电的概念及特性 软件无线电技术将硬件、软件、无线技术有机地结合在一起,组成灵活多样的多功能系统。它的基本思想是以一个通用、标准、模块化的硬件平台为依托,从通过软件编程来实现无线电台的各种功能,从基于硬件、面向用途的电台设计方法中解放出来。功能的软件化实现势必要求减少功能单一的、灵活性差的硬件电路,尤其是减少模拟环节,把数字化处理(A/D和D/A转换)尽量靠近天线。软件无线电强调体系结构的开放性和全面可编程性,通过软件更新改变硬件配置结构,实现新的功能。软件无线电采用标准的、高性能的开放式

软件无线电原理与应用思考题

《软件无线电原理与应用》思考题 第1章 概述 1. 软件无线电的关键思想 答:A/D 、D/A 尽量靠近天线 a) 用软件来完成尽可能多的功能 2. 软件无线电与软件控制的数字无线电的区别 答:软件无线电摆脱了硬件的束缚,在结构通用和稳定的情况下具有多功能,便于改进升级、互联和兼容。而软件控制的数字无线电对硬件是一种依赖关系。 3. 软件无线电的基本结构 答:书上第5页 第2章 软件无线电理论基础 1. 采样频率(fs)、信号中心频率(fo)、处理带宽(B)及信号的最低频率(f L )、最高频率(f H )之间的关系,最 低采样频率满足的条件 答:带通采样解决信号为(f L ~f H )上带限信号时,当f H 远远大于信号带宽B 时,若按奈奎斯特采样定理,其采样频率会很高,而采用带通信号则可以解决这一问题,其采样频率12n 4f 12n )f f (2f 0H L s +=++= ,n 取能满足2B f S ≥的最大正整数,B 2 12n f 0+=。 2. 频谱反折在什么情况下发生,盲采样频率的表达式 答:带通采样的结果是把位于(nB ,(n+1)B )不同频带上的信号都用位于(0,B )上相同的基带信号频谱来表示,在n 为奇数时,其频率对应关系是相对中心频率反折的,即奇数带上的高频分量对应基带上的低频分量,且低频高频对应高频分量。 盲区采样频率的表达式为: S Sm f 12n 22m f ++= m 取0,1,2,3……的盲区,当取n=m+1时,S Sm f )3 2m 11(f +-= 3. 画出抽取与内插的完整框图,所用滤波器带宽的选取,说明信号处理中为什么要采用抽取与内插, 抽取与内插有什么好处 答:抽取内插的框图见24页。其中抽取滤波器带宽D /π,内插滤波器带宽I /π。 图像

软件无线电(个人整理)

1. 软件无线电是什么
无线通信在现代通信中占据着极其重要的位置, 几乎任何领域都使用无线通信, 包括有 商业、气象、金融、军事、工业、民用等。我们可从通信系统、调制方式、多址方式等几方 面可看到无线通信系统种类的繁多。 类 别 通信系统 调制方式 多址方式 种 类
卫星通信系统、蜂窝移动通信系统、无线寻呼系统、短波通信系统、 微波通信系统等 AM、FM、LSB、USB、ISB、FSK、PSK、MSK、GMSK、QAM 等 时分多址(TDMA) 、频分多址( FDMA)和码分多址(CDMA)等
各种通信系统由于自身的特点而适用于各种特定的场合,例如: 短波电台适合远距离,其所需的发射功率不大,传输的“中继系统” —电离层不会被 摧毁;卫星通信能传播高质量的信息,所能提供的频带很宽 微波通信抗干扰能力强,适合大量的数据传输,但只能在点与点之间传输,传输距离 又有一定的限制 由于无线通信的设备简单、便于携带、易于操作、架设方便等特点,在军事和民用通信领域 中都是不可缺的重要通信手段。 然而, 电台往往是根据某种特定的用途而设计的, 功能单一, 有些电台的基本结构相似,而信号特征差异很大。比如,工作的频段不同,调制方式不同, 波形结构不同,通信协议不同,数字信息的编码方式、加密方式不同等等。电台之间的这些 差异极大地限制了不同电台之间的互通互连。 经过几十年的发展, 无线通信已有很大的发展, 通信系统由模拟体制不断向数字化体制过渡, 因此是否可能在数字化体制础上一个电台能满足多调制方式和多址方式, 从而根椐需要构成 多种通信系统呢。 我们先看一下一个数字蜂窝网接收站, 显示在图 1 中。 (注意: 为了说明软件无线电的概念, 这里给出了无线电的接收装置部分) 。
图 1:窄带无线接收装置

基于软件无线电的VHF海事对讲机设计与实现

基于软件无线电的VHF海事对讲机设计与实现随着通信技术的发展,通信系统的更新换代变得越来越频繁,为 了加快通信系统的构建,同时减少硬件系统的更换,用软件控制实现 无线电传输已成为人们研究的热点。软件无线电利用开放性和模块化的思想实现通信平台的可重构,通过可编程的软件控制进行信号处理,从而加快通信系统的搭建与系统升级。本课题来源于国家自然科学基金资助项目"海上认知无线电通信系统非授权频谱感知与资源分配算法研究"(N0.61501078),课题中信号的捕获与发射平台即为软件无线电平台,基于软件无线电的接收机和发射机的成功设计是信号捕获和资源分配算法研究的基础。本文对软件无线电平台的构建和应用进行了深入的研究,利用ZYNQ平台和AD9361射频平台搭建了软件无线电系统。并在软件无线电平台上实现了 VHF海事对讲机的设计。本文从理论分析和工程实现两方面对VHF海事对讲机进行了深入研究,主要包括基带处理模块和业务控制系统两部分。其中基带处理部分包括音频信号的采集和回放模块,基带信号的调制解调模块,立体声编解 码模块以及射频数据通道模块。业务控制部分则主要包括射频端驱动设计,用户API函数和用户界面的设计。本文最后在SoC平台上实现了整个工程的设计,首先对系统进行了合理的模块划分,然后在可编 程逻辑端用Vivado进行硬件功能设计,实现信号的采集与回放,编码与解码,调制与解调以及射频数据通道设计,并对每一部分进行仿真 与测试。在处理器端用SDK进行软件控制功能设计,实现了射频端的驱动设计。在PC端利用QT设计了用户控制界面,通过UART与PC端

进行数据交互,实现射频端参数的配置。最后通过在Zedboard开发板和AD-FMCOMMS2射频板下板测试验证了系统的可行性。

无线话筒实验报告讲解

无线话筒实验报告 一、实验目的 1. 了解无线话筒的构造与工作原理; 2. 掌握调频发射机整机电路的设计与调试方法,以及高频电路的调试中常见故障的分析与排除; 3. 以小功率调频发射机为例,学会如何将高频单元电路组合起来实现满足工程要求的整机电路的设计与调试技术; 4. 巩固理论知识,提高实际动手能力和分析能力; 5. 增强与同学之间的交流与合作能力。 二、实验仪器与工具 (1)直流稳压电源一台; (2)数字万用表一只; (3 )示波器(≥100MHz) 一台; (4)调频收音机(87~108Hz) 一台; (5)烙铁,镊子,斜口钳若干; 三、系统原理分析 调频系统的组成: 对于小功率的调频无线话筒,设计时在保证技术指标的前提下,应力求电路简单、性能稳定可靠。单元电路的级数尽可能少,以减小级间的相互感应、干扰和自激。本实验设计中采用的调频发射系统如下: 音频放大→高频振荡与频率调制→缓冲隔离→高频功放

图中的高频功放在发射功率较小时可工作于甲类状态(丙类状态要求有较大的功率激励)。 主要技术指标: ●发射功率P A:一般是指发射机输送到天线上的功率。只有当天线的长度L和发射频率的波长可以比拟时,天线才能有效地将信号发射出去。 ●工作频率或波段:发射机的工作频率是指其载波频率,应依据调制方式,在国家有关部门所规定的范围内选取。调频广播频段规定为87MHz~108MHz。 ●总效率:总效率=发射的总功率/消耗的总功率 ●输出阻抗:对调频广播而言,一般要求输出阻抗为50欧姆,对电视差转而言一般要求75欧姆 ●残波辐射:残波辐射是指杂波功率与有效输出功率之比 ●信杂比:信杂比是指已调波在规定的频偏情况下经理想解调后又用信号功率和载波功率之比 ●失真度:失真度是指已调波在规定的频偏情况下经理想解调后输出单音频信号的失真度 ●频率响应:频率响应是指已调波在规定的频偏情况下经理想解调后输出音频的幅频响应

软件无线电发射机的实现与仿真(三)的论文

软件无线电发射机的实现与仿真(三)的 论文 本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意! 由于频率与相位有一定的关系,为便于分析,可将式(4-56)改写为 =a(n)cos[ n+ ] (4-57) 式中,表示载波的角频率。所以=a(n)cos[ ]cos( n)-a(n)sin[ ]sin( n) = cos( n)- sin( n) (4-58) 式中 = a(n)cos[ ] (4-59) = a(n)sin[ ] (4-60) 这就是我们希望获得的同相和正交两个分量,根据、,就可以对各种调制样式进行解调,三大类解调的算法如下: 调幅(am)解调: a(n)= (4-61) 调相(pm)解调: = (4-62) (4-63)

调频(fm)解调 (4-64) 在利用相位差分计算瞬时频率,即= - 时,由于计算要进行除法和反正切运算,这对于非专用数字信号处理器来说是较复杂的,在用软件实现时也可以用下面的方法来计算瞬时频率: = = (4-65) 对于调频信号,其振幅近似恒定,设=1,则 (4-66) 式(4-66)就是利用、直接计算的近似公式。这种方法只有乘减运算,计算比较简便。最后得到的软件无线电数字正交解调的通用模型,如图所示。 shape \* mergeformat 图数字正交解调的通用模型 模拟调制信号解调算法 1. am解调 信号表达式: s(n)=a(n)cos( ) ( (4-67)式中,;为调制信号;为载波初始相位。 对信号进行正交分解,得到同相和正交分量: 同相分量:

无线电发射机检测方法和标准的介绍

第十六章无线电发射机检测方法和标准介绍 一、前言 无线电发射设备的检测工作是各级无线电管理机构日常工作中很重要的一个方面。对无线电发射设备的研制、生产、进口、销售等环节进行严格的控制,对维护正常的空中电波秩序,从源头上减少干扰源的产生是至关重要的。在设台前对无线电发射设备进行检测以及日常的年检是监测工作及进行合理的台站面局的基础性工作。 对各类无线电发射设备的工作频段、信号特征、杂散发射、占用带宽以及其它一些重要参数的充分掌握可以提高监测及查处干扰的效率和质量,是从事无线电管理的技术人员必备的基本素质。近年来,无线通信事业进入了飞速发展的阶段,各种新技术、新业务不断涌现,加上传统的各类无线电业务,无线电发射机的种类十分繁杂,相应的无线电管理文件、国际、国内的技术标准众多。本文力争从基本原理出发,对涉及到的一些共性的设备检测的方法做一说明,并尽量涵盖各级无线电管理机构所关心的检测项目。 二、技术各词解释 2.1频率容限 发射的特征频率偏离参考频率的最大允许偏差。单位为相对值或绝对值。 2.2发射功率 发射功率依据其测试位置或发射途径不同分为: ——端口传导功率(匹配状态) ——辐射功率(包括等效全向辐射功率和有效辐射功率,前者比后者大2.15dB) 根据发射类别或信号特征发射功率亦可分为: ——峰包功率(调制包络最高峰一个射频周期内的平均功率) ——平均功率(发射机在调制中以所遇到的最低频率周期相比足够长的时间内的功率) ——载波功率(无调制时载波的平均功率) 2.3必要带宽 对于给定的发射类别,恰好确保进行规定条件下要求的质量和速率的信息传输所需的带宽。 2.4占用带宽 此带宽外的上、下限频带所对应的发射功率分别为一确定发射总功率的β/2。一般取β/2为0.5%。 2.5非意愿发射(unwanted emission) 杂散发射域:在必要带宽外但不包括杂散域对应的频率范围,这里带外发射通常占主导地位。 带外发射:由调制处理产生的恰好落在必要带外的一个或多个频率发射,但不包括杂散发射。通常其落在距中心频率±250%必要带宽以内。必要带宽 以外的非意愿发射看作为带外发射。但对于非常窄或宽的必要带宽, 带外发射域和杂散发射域边界的限定需参考Rec.ITU-R SM.329-8 Annex 8。杂散发射域可能存在带外发射,同样,带外发射域也有可能 存在杂散发射。 杂散发射:落在必要带宽之外,但减少其电平不会影响相应的信息传输的一个或 多个频率发射,它包括除了带外发射外的谐波发射、寄生发射、

软件无线电发展现状

<<移动通信>.>>2002年第 4期 软件无线电发展现状 罗序梅信息产业部电子七所 1 前言 — 软件无线电是实现无线通信新体系结构的一种技术,在经过近几年的发展之后,其重要性和可 行性正逐步被越来越多的人所认识和接受。软件无线电技术的重要价值体现在:硬件只是作为 无线通信的基本平台,而许多的通信功能则是通过软件来实现的,这就打破了长期以来设备的 通信功能实现仅仅依赖于硬件的发展格局。所以有人称,软件无线电技术的出现是通信领域继 固定到移动,模拟到数字之后的第三次革命。本文主要介绍全球软件无线电技术研究动态、对 实现软件无线电台至关重要的器件技术的发展以及软件无线电台商用前景。 2 全球软件无线电技术研究动态 软件无线电技术具有结构的开放性、软件的可编程性、硬件的可重构性以及功能和频段的… 多样性等特点,无论在军事还是在商用通信中都有着巨大的应用潜力。也正是因为这些独特的 优势,引发了全球对软件无线电技术的关注和研发热潮。除美国在 90年代初开始实施易通话计 划并成功地研制出多功能多频段电台外,欧洲、日本、中国等全球其它地区也纷纷开展了各自 的软件无线电技术项目。 欧洲委员会已将软件无线电技术列为重要的研发项目,大量与软件无线电技术相关的研究项目正在其 ACTS计划中进行。受潜在的商业利益所驱动,其研究重点集中在第三代标准上, 这包括 FIRST(灵活的综合无线电系统和技术)、FRAMES(未来无线电宽频段多址系统)和 · SORT等项目。前两个项目利用软件无线电台样机研究开发下一代无线接口。其中

FIRST项目 主要是评估实现软件重构空中接口的问题。目前最公开的工作集中在 RF结构最佳划分方法及 数字处理的实现上。 SORT主要是开展有关第三代系统( UMTS)在地面和卫星接入方面的硬件 重构问题的研究,演示灵活而有效的软件可编程电台,实施该项目的目标是:

短距离无线通信实验报告

3.5 无线数据传输控制实验 3.5.1 实验目的 1. 在ZX2530A 型CC2530 节点板上运行自己的程序。 2 .通过发送命令来实现对其它节点的外设控制。 3.5.2 实验内容 实验中一个节点通过射频向另一个节点发送对LED 灯的控制信息,点亮LED 灯或让LED 熄 灭,节点接收到控制信息后根据控制信息点亮LED 或让LED 熄灭。 3.5.3 实验设备及工具 1.硬件:ZX2530A 型CC2530 节点板、USB 接口的仿真器,PC 机Pentium100 以上。 2.软件:PC 机操作系统WinXP、IAR 集成开发环境、串口监控程序。 3.5.4 实验原理 LED 灯连接到CC2530 端口P1_0,程序中应在初始化过程中对LED 灯进行初始化,包括端口 方向的设置和功能的选择,并给端口P1_0 输出一个高电平使得LED 灯初始化为熄灭状态。无线 控制可以通过发送命令来实现,在main.c文件中中添加宏定义#define COMMAND 0x10,让发送

数据的第一个字节为COMMAND,表明数据的类型为命令,同时,发送节点检测用户的按键操作当 检测到用户有按键操作时就发送一个字节为COMMAND 的命令。当节点收到数据后,对数据类型进 行判断,若数据类型为COMMAND,则翻转端口P1_0 的电平(在初始化中已将LED 灯熄灭)。即可, 实现LED 的状态改变。 3.5.5 实验步骤 1. 打开工程,在“物联网光盘\无线射频实验\5 无线控制”文件夹下 2. 将节点类型变量NODE_TYPE 设置为0,编译工程,并下载到ZX2530 节点板中,作为接收节点。 3. 将节点类型变量NODE_TYPE 设置为1,编译工程,并下载到ZX2530 节点板中,作为发送节点。 4. 复位接收节点和发送节点。 5.按下发送节点板上的key1 按键,观察接收节点上led 显示情况 6. 在主程序中添加一个宏定义#define LED_MODE_BLINK 0x02,在对数据的解析中添加对 LED_MODE_BLINK 的解析,让LED 灯每隔250 毫秒闪烁一次,让发送节点发送的数据为 LED_MODE_BLINK (代替LED_MODE_ON,紧接在COMMAND

软件无线电的应用

软件无线电的应用 软件无线电的应用 摘要:软件无线电技术正日益广泛地应用于现代通信的各个领域。 关键词:软件无线电;数字信号处理;调制解调;数字广播;世界数字广播 软件无线电是随着计算机技术、高速数字处理技术的迅速发展而发展起来的,其基本思想就是将宽带A/D/A变换器尽可能地靠近天线,将电台的各种功能尽量在一个开放性、模块化的平台上由软件来确定和实现。该平台的调制方式、码速率、载波频率、指令数据格式、调制码型等系统工作参数具有完全的可编程性 1 用软件无线电技术实现卫星控制平台 传统的卫星测控平台存在着性能不完善,调制方式、副载波、码速率组态不灵活,体积偏大等问题。研制和开发通用化、综合化、智能化的测控平台,通过注入不同的软件,实现对调制载频、调制方式、传输码速率等参数的改变,应用于各种轨道卫星平台的遥测遥控任务。 软件无线电技术正日益广泛地应用于现代通信的各个领域。随着A/D/A器件与DSP处理器的迅速发展,使得软件无线电技术广泛地应用于陆上移动通信、卫星移动通信与全球定位系统等。 用软件无线电技术实现卫星控制平台包括软件无线电通用平台 的DSP技术和DSP实现信号调制和解调。其中软件无线电通用平台的DSP技术又包括 TMS320C6701 DSP芯片,DSP技术在软件平台中的应用,调制器与解调器。DSP实现信号调制和解调又包括信号调制,信号解调。 软件无线电通用测控平台是卫星测控平台发展的方向,可以很好地解决原来平台开发成本高、周期长、通用性差的问题。以新一代DSP芯片TMS320C6000作为软件无线电平台的核心,可以很好地满足需要,且有较大的冗余度,利用升级。

无线调幅发射机课程设计

高频电子线路课程设计 ——无线调幅发射机 学号: 姓名: 专业班级: 指导老师: 完成日期: 摘要 高频电子线路系统地介绍了通信系统,特别是无线通信系统中的最基本电路及他们的功能,给出了定性

及定量分析这些电路性能的方法。这些电路包括了发射机及接收机中的选频放大电路、混频电路、功放电路、振荡电路、调制及解调电路、锁相环电路、自动增益控制电路及频率合成电路。 本课程的基本知识教学目标与能力目标是:通过理论和实践教学,使学生了解晶体管工作于高频时的工作原理,特性参数及微变等效电路,掌握高频单元电路的线路组成、基本工作原理、分析方法、技术要求及一些典型集成电路的实际应用,并且具备一定的理论水平和足够的实践技能,以及使用先进仿真软件的能力,为进一步学习、掌握电子、通讯技术的专业知识和职业技能打下基础。 高频电子线路是一门理论性、工程性和实践性都很强的课程。学生通过本课程的学习,不但应该掌握必要的基础理论知识,而且还应在分析问题、解决问题和实际动手能力等方面得到锻炼和提高。对于这些能力的培养,理论教学与实践教学环节必须密切联系、互相配合,才会取得比较好的效果。在本课程教学中应从以下几个方面来加强这些能力的培养: 1 .在分析问题的方法上,由常用基本电路入手,讲清基本原理,然后适当综合,再应用到实用电路的分析中去。 2 . 注意与实践课的配合,在理论课中讲清基本原理、典型电路和基本应用电路,在实践课中学习有关电路的测试、调整的原理和方法以及器件的参数选择等。 3 .增加必要的例题和实用电路的分析。例题着重于问题的分析过程和解题方法的介绍,对电路实例的分析则力求由浅入深。 无限调幅发射机由电路原理仿真和主振荡电路的设计与仿真,缓 冲放大电路的设计仿真,集电极调幅电路的设计与仿真。 目录 摘要 ......................................................................... 1 第一章 选题意义 .............................................................. 3 第二章 总体方案 .............................................................. 4 2.1 无线调幅发射机工作原理 ............................................... 4 2.2 无线调幅发射机方框图和系统仿真 ....................................... 4 第三章 各部分设计与原理分析 .................................................. 8 3.1 主振荡电路的设计与仿真 ............................................... 8 3.2 缓冲放大电路的设计与仿真 ............................................ 10 3.3 集电极调幅电路的设计与仿真 ........................................... 3 3.4 总电路图 ............................................................ 14 第四章 参数选择 .............................................................. 3 第五章 实验结果 .............................................................. 3 第六章 结论 ............................................第七章 心得体会 ........................................ 第八章 参考资料 ........................................致谢 ................................................... 第一章 选题意义 本课程设计是关于一个无线电调幅发射机电路的设计,通过本课程设计,可以巩固已学的高频电子线路理论知识,建立无线电发射机的整机概念,了解发射机整机各单元电路之间的关系及相互影响,能够设计出符合设计目标的电路。通过课程设计,可以培养设计电路的能力,培养自主学习的能力,培养应用EDA 软件仿真的能力,培养严谨的学习态度,同时将激发自己学习通信的兴趣,将全面提升自己的能力。 无线电调幅发射机电路包括四个电路子模块:高频载波发生电路,音频信号放大电路,高频功率放大电路,集电极调幅电路。本课程设计的具体指标要求如下表1.1和表1.2所示: 表 1.1 高频载波发生电路设计指标 路的电源电压要求可由电源电路变换得到。第二章 总体方案 2.1 无线调幅发射机工作原理 该无线电调幅发射机的主要任务是完成音频信号(20Hz-20KHz)对高频载波的调制,将其变为在某一中心频率(13.6MHz)上具有一定带宽、适合通过天线发射的 电磁波。发射机包括三个部分:高频部分,低频部分和 电源部分。 高频部分一般包括主振荡器、缓冲放大、倍频器、中间放大、功放推动级与末级功放。主振器的作用是产生频率稳定的载波。为了提高频率稳定性,主振级可以 采用改进型的电容三端振荡器——克拉泼电路,并在它后面加上缓冲级,以削弱后级对主振器的影响。 低频部分包括话筒、低频电压放大级、低频功率放大级与末级低频功率放大级。低频信号通过逐渐放大,

软件无线电的主要原理及技术

软件无线电的主要原理及技术 嘉兆科技 本文主要介绍了软件无线电的概念、主要原理、关键技术及在生活中的广泛应用。它是以开放性、标准化、模块化、通用性、可扩展的硬件为平台,通过加载各种应用软件来实现不同用户,不同应用环境的不同需求,是以现代通信理论为基础,以数字信号处理为核心,以微电子技术为支撑的新的无线电通信体系结构,是数字无线电的高级形式。首先介绍了软件无线电的理论基础,即带通采样理论,多速率处理信号技术,高效信号滤波,数字正交变换理论,这些都是软件无线电实现的理论基础,然后是其关键技术,宽带智能天线技术,A/D转换技术,数字上/下变频技术,数字信号处理部分,这些技术是实现软件无线电的关键和核心所在。最后,对其应用领域也进行了描述,指出其在个人移动通信,军事通信,电子站,雷达和信息加电中的巨大潜力。 软件无线电这个术语最早是美军为了解决海湾战争中多国部队各军种进行联合作战时遇到的互通互操作问题而提出的新概念。陆,海,空三军简单就工作频段来分,解决了互不干扰问题,但三军联合作战时互通,互联,互操作问题难以解决,于是1992年提出了软件无线电的最初设想,并于1995年美国国防高级研究计划局提出了SPEAKEASY计划,称之为易通话计划,其最终目的是开发一种能适应联合作战要求的三军统一的多频段,多模式电台,即MBMMR电台。进而实现联合战术无线电系统(简称JTRS),它是在MBMMR的基础上提出的一种战术通信系统。 软件无线电以开放性,标准化,模块化,通用性,可扩展的硬件为平台,通过加载各种应用软件来实现不同用户,不同应用环境的不同需求,实现各种无线电功能,选用不同软件可实现不同功能,软件可以升级更新,硬件也可像计算机升级换代,可称为超级计算机。它是以现代通信理论为基础,以数字信号处理为核心,以微电子技术为支撑的新的无线电通信体系结构,是数字无线电的高级形式。 理想软件无线电的结构框图:

软件无线电系统综述

软件无线电系统综述 [摘要] 软件无线电的基本思想是以一个通用、标准、模块化的硬件平台为依托,通过软件编程来实现无线电台的各种功能。本文介绍了其系统的软硬件组成和发展情况。 [关键词]软件无线电GNU Radio USRP 一、引言 由于无线电系统,特别是移动通信系统的领域的扩大和技术复杂度的不断提高,投入的成本越来越大,硬件系统也越来越庞大。为了克服技术复杂度带来的问题和满足应用多样性的需求,特别是军事通信对宽带技术的需求,提出在通用硬件基础上利用不同软件编程的方法。软件无线电将把无线电的功能和业务从硬件的束缚中解放出来。 二、软件无线电系统简介 软件无线电的基本思想是以一个通用、标准、模块化的硬件平台为依托,通过软件编程来实现无线电台的各种功能,从基于硬件、面向用途的设计方法中解放出来。功能的软件化实现势必要求减少功能单一、灵活性差的硬件电路,尤其是减少模拟环节,把数字化处理(A/D和D/A变换)尽量靠近天线。软件无线电强调体系结构的开放性和全面可编程性,通过软件更新改变硬件配置结构,实现新的功能。软件无线电采用标准的、高性能的开放式总线结构,以利于硬件模块的不断升级和扩展。 上图表示一个典型的软件无线电处理流程图。为了理解无线电的软件模块,首先需要理解和其关联的硬件。在这个图中的接收路径上,能够看到一个天线,一个RF前端,一个模拟数字转换器ADC和一堆代码。ADC是一个连接连续模拟的自然世界和离散的数字世界的桥梁。 三、软件无线电软件平台GNU Radio GNU Radio是一种运行于普通PC上的开放的软件无线电平台,其软件代码设计完全公开。基于该平台,用户能够以软件编程的方式灵活地构建各种无线应用。 GNU Radio是一个对学习,构建和部署软件定义无线电系统的免费软件工具包。GNU Radio是一个无线电信号处理方案。它的目的是给普通的软件编制者提供探索电磁波的机会,并激发他们聪明的利用射频电波的能力。 它提供信号运行和处理模块,用它可以在易制作的低成本的射频(RF)硬件和通用微处理器上实现软件定义无线电。这套套件广泛用于业余爱好者,学术机构

软件无线电发射机的FPGA实现

软件无线电发射机的FPGA实现 一、引言 软件无线电是近几年在无线通信领域提出的一种新的通信系统体系结构,其基本思想是以开发性、可扩展、结构最简的硬件为通用平台,把尽可能多的通信功能用可升级、可替换的软件来实现。这一新概念一经提出,就得到了全世界无线电领域的广泛关注。由于它所具有的灵活性、开放性等特点,不仅在军、民无线通信中获得了应用,而且还被推广到其它领域。 FPGA (现场可编程门阵列) 是上世纪80年代中期出现的一类新型可编程器件。应用FPGA设计功能电路时,可以让人们的思路从传统的以单片机或DSP芯片为核心的系统集成型转向单一专用芯片型设计。FPGA技术的发展使单个芯片上集成的逻辑门数目越来越多,实现的功能越来越复杂,人们通过硬件编程设计和研制ASIC,可以极大地提高芯片的研制效率,降低开发费用。 基于上述优点,用FPGA实现软件无线电发射机,不仅降低了产品成本,减小了设备体积,满足了系统的需要,而且比专用芯片具有更大的灵活性和可控性。在资源允许下,还可以实现多路调制,并能对每一路发射信号的幅度和相位进行细调,这也是实现3G智能波束跟踪算法的基础。 本文在设计上使用了基于多相滤波和单MAC的成形滤波器和高效CIC插值滤波器,充分考虑了性能和资源占用率的关系,并用MATLAB仿真出各模块最佳的输入输出位数,从而实现了资源占用最少而性能最佳的目的。整个设计利用安立公司的PHS专用测试仪MT8801C对其频谱、眼图、星座图和其它各项发射指标进行测试,均达到或超过专用TSP芯片AD6623的效果。

二、软件无线电发射机数学模型 软件无线电发射机是软件无线电两大组成部分之一,它的主要功能是把需发射或传输的用户信息经基带处理上变频,调到规定的载频上,再通过功率放大后送至天线,把电信号转换为空间传播的无线电信号,发向空中或经传输介质送到接收方的接收端,由其进行接收解调。其基本组成如图1所示。本设计要做是用FPGA实现其中的基带调制和上变频部分。 众所周知,任何一个无线电信号可表示为 式中,a(t)、φ(t)分别表示该信号的幅度调制信息和相位调制信息,f0为信号载频。 对式(1)进行数字化,可得: 式中,Ts=1/fs为采样间隔。 式(2)通常简写为

软件无线电实验指导书

软件无线电技术 实验指导书 佟宁宁编 黑龙江工程学院电气与信息工程学院 2014年2月·哈尔滨

目录 实验一Quartus Ⅱ入门和译码器设计................................................................... - 2 - 实验二调制技术................................................................................................... - 13 - 实验三信道编码技术........................................................................................... - 18 - 实验四软件无线电的采样理论........................................................................... - 22 - 实验五信道化发射机实验................................................................................... - 25 -实验六软件无线电多速率信号处理技术 (28)

实验一Quartus Ⅱ入门和译码器设计 一、实验目的 1.初步掌握Quartus Ⅱ软件使用环境; 2.熟悉可编程器件的硬件设计流程; 3.了解EDA实验箱电路结构。 二、实验仪器设备、材料 1.EDA实验箱; 2.微型计算机、Quartus Ⅱ软件; 3.并口延长线。 三、预习内容 1.Quartus Ⅱ软件使用方法; 2.EPM7128SLC84-15芯片数据手册:MAX7000S CPLD DATASHEET(可到ALTERA 官方网站上下载PDF文档,首页网址为https://www.sodocs.net/doc/6715434463.html,/,数据手册下载链 接地址为https://www.sodocs.net/doc/6715434463.html,/literature/ds/m7000.pdf,在该数据手册里你可以 了解到典型CPLD的特性和应用指南; 3.译码器工作原理。 四、实验内容与步骤 (一)原理图设计输入: 1、软件的启动:单击“开始”进入“程序”选中“Quartus II ,打开“”Quartus II软件,如图1-1所示。 图1-1

无线课程设计实验报告

扩频实验报告 学院:电子信息工程学院 专业:通信工程 组员:12211008 吕兴孝 12211010 牟文婷 12211096 郑羲 12211004 冯顺 任课教师:姚冬萍 1

实验四扩频实验 一、实验目标 在本实验中你要基于LabVIEW+USRP平台实现一个扩频通信系统,你需要在对扩频技术有一定了解的基础上编写程序,完成所有要求的实验任务。在这一过程中会让你对扩频技术有更直接和感性的认识,并进一步掌握在LabVIEW+USRP平台上实现通信系统的技巧。 二、实验环境与准备 软件环境:LabVIEW 2012(或以上版本); 硬件环境:一套USRP和一台计算机; 实验基础:了解LabVIEW编程环境和USRP的基本操作; 知识基础:了解扩频通信的基本原理。 三、实验介绍 1、扩频通信技术简介 扩频通信技术是一种十分重要的抗干扰通信技术,可以大大提高通信系统的 抗干扰性能,在电磁环境越来越恶劣的情况下,扩频技术在诸多通信领域都有了 十分广泛的应用。 扩频技术简单来讲就是将信息扩展到非常宽的带宽上——确切地说,是比数 据速率大得多的带宽。在扩频系统中,发端用一种特定的调制方法将原始信号的 带宽加以扩展,得到扩频信号;然后在收端对接收到的扩频信号进行解扩处理,把它恢复为原始的窄带信号。 扩频系统之所有具有较强的抗干扰能力,是因为接收端在接收到扩频信号后,需要通过相关处理对接收信号进行带宽的压缩,将其恢复成窄带信号。对于 干扰信号而言,由于与扩频信号不相关,所以会被扩展到很宽的频带上,使之进 入信号带宽内的干扰功率大幅下降,即增加了相关器输出端的信号/干扰比。因 此扩频系统对大多数人为干扰都具有很强的抵抗能力。 2

软件无线电(software radio)

概要 软件无线电的基本思想是以一个通用、标准、模块化的硬件平台为依托,通过软件编程来实现无线电台的各种功能,从基于硬件、面向用途的电台设计方法中解放出来。功能的软件化实现势必要求减少功能单一、灵活性差的硬件电路,尤其是减少模拟环节,把数字化处理(A/D和D/A变换)尽量靠近天线。软件无线电强调体系结构的开放性和全面可编程性,通过软件更新改变硬件配置结构,实现新的功能。软件无线电采用标准的、高性能的开放式总线结构,以利于硬件模块的不断升级和扩展。 软件无线电(software radio)在一个开放的公共硬件平台上利用不同可编程的软件方法实现所需要的无线电系统。简称SWR。理想的软件无线电应当是一种全部可软件编程的无线电,并以无线电平台具有最大的灵活性为特征。全部可编程包括可编程射频(RF)波段、信道接入方式和信道调制。 一般说来,SWR就是宽带模数及数模变换器(A/D及D/A)、大量专用/通用处理器、数字信号处理器(Digital Signal Proicesser,DSP)构成尽可能靠近射频天线的一个硬件平台。在硬件平台上尽量利用软件技术来实现无线电的各种功能模块并将功能模块按需要组合成无线电系统。例如:利用宽带模数变换器(Analog Digital Converter,ADC),通过可编程数字滤波器对信道进行分离;利用数字信号处理技术在数字信号处理器(DSP)上通过软件编程实现频段(如短波、超短波等)的选择,完成信息的抽样、量化、编码/解码、运算处理和变换,实现不同的信道调制方式及选择(如调幅、调频、单边带、跳频和扩频等),实现不同的保密结构、网络协议和控制终端功能等。 在目前的条件下可实现的软件无线电,称做软件定义的无线电(Software Defin ed Radio,SDR)。SDR被认为仅具有中频可编程数字接入能力。 发展历史无线电的技术演化过程是:由模拟电路发展到数字电路;由分立器件发展到集成器件;由小规模集成到超大规模集成器件;由固定集成器件到可编程器件;由单模式、单波段、单功能发展到多模式、多波段、多功能;由各自独立的专用硬件的实现发展到利用通用的硬件平台和个性的编程软件的实现。 20世纪70~80年代,无线电由模拟向数字全面发展,从无编程向可编程发展,由少可编程向中等可编程发展,出现了可编程数字无线电(PDR)。由于无线电系统,特别是移动通信系统的领域的扩大和技术复杂度的不断提高,投入的成本越来越大,硬件系统也越来越庞大。为了克服技术复杂度带来的问题和满足应用多样性的需求,特别是军事通信对宽带技术的需求,提出在通用硬件基础上利用不同软件编程的方法。20世纪80年代初开始的软件无线电的革命,将把无线电的功能和业务从硬件的束缚中解放出来。 1992年5月在美国通信系统会议上,Jeseph Mitola(约瑟夫·米托拉)首次提出了“软件无线电”(Software Radio,SWR)的概念。1995年IEEE通信杂志(Comm unication Magazine)出版了软件无线电专集。当时,涉及软件无线电的计划有军用的SPEAKEASY(易通话),以及为第三代移动通信(3G)开发基于软件的空中接口计划,即灵活可互操作无线电系统与技术(FIRST)。

软件无线电技术实验报告_实验三

电子科技大学 实验报告 学生姓名:李志学号:2011019070023 指导教师:沈莹 邮箱:634897551@https://www.sodocs.net/doc/6715434463.html, 一、实验室名称:通信信号处理及传输实验室 二、实验项目名称:数字上下变频 三、实验原理: 1、数字上/下变频的理论基础 通常的无线通信都是通过载波调制信号来实现。这意味着产生了数字基带信号后,需要将信号通过数模(DA)转换,由射频端调制到某个载波频段进行发送。这个将基带信号调制到高频载波频段的过程就称为上变频。反之,在接收机端将模数(AD)转换后的高速率高频带数字信号转换为低速率的基带信号,即将中频或者高频信号搬移到基带或者低频波段的过程就称为下变频。 因此,上变频和下变频的概念分别是指把信号搬移到更高或更低的频率上。这可以通过信号()t c与一个复旋转向量相乘得到,结果为: ()()t f j c =(3.1) t sπ2 e t c 其中, f代表搬移的频率,通常称为载波频率。 c 复数信号的实部和虚部也可以分别称做同相分量或正交分量。 数字上变频和下变频就是对上式进行数字化。这就意味着信号和复向量都要用量化的样本来表示。引入满足采样定理的采样周期T,这样,数字上变频和下变频可以写为: ()()kT f j c sπ2 =(3.2) kT c e kT

进行上变频还是下变频是由频率c f 的符号决定。因此只要对其中一种情况进行讨论即可。我们假设对接收到的信号在模拟前端对整个接收带宽进行下变频,然后进行滤波。 假设信道可位于带宽为Band 的频带(波段)内的任何位置,频带内包含所需信道加上干扰邻道。如图1所示。对信号进行下变频可以得到图2。邻道干扰可以通过信。 为了分析方便,我们假设中频信号为单频形式,暂不考虑邻道及其他干扰。 1)数字下变频的时域分析: 数字下变频的目的是把所需的分量从载波频率加搬移至基带。模拟中频信号为单频形式: ()()0cos c c t t ω?=+ (3.3) 其中c ω表示信号频率,0?表示信号初始相位。 同时假设用于正交解调的两路数字本振的初始相位为0,那么模拟中频信号经过A/D 后得到的信号形式为 ()()()()()[]∑+∞-∞=-?= ?=k T kT t kT c t P t c kT C δ (3.4) 可见信号()kT C 是原信号()t c 在 ,2,,0T T t ±±=处的一些离散值。因此A/D 输出的最终信号形式为: []()0cos ,c c k kT ω?=+ 0,1,2,k =±± (3.5) 那么,此信号经过正交数字解调后的信号形式 (设信号频率和本振频率相同,即c p ωω=)可以表示如下: I 路: ()()()()()0cos cos cos I p c p s k c k kT kT kT ωω?ω=?=+? ()()001cos 2cos 2 c kT ω????=++?? (3.6) Q 路:

相关主题