搜档网
当前位置:搜档网 › 锚杆支护技术

锚杆支护技术

锚杆支护技术
锚杆支护技术

锚杆支护技术

锚杆支护技术

一、锚杆支护技术现状和展望

锚杆支护技术是煤矿支护技术改革的发展方向,是煤矿继推广综合机械化采煤技术又一重大推广技术。我国在上世纪80年代开始研究应用锚杆支护技术以来,不论在理论上,还是在实践应有中已取得了长足的进展,促进了我国煤炭工业的发展。

锚杆支护是由锚固在巷道四周钻孔的一系列杆件(木质件、金属件、钢筋混凝土件和聚合物件等)系统组成的。这些杆件配以支撑件和背板(也可以不用),靠它们的锚固力和向岩体稳定部分的悬吊作用,防止破碎岩石冒落。

用预拉紧方法安装的锚杆,提高了岩石分层之间的摩擦阻力,同时将两支撑点间的岩层夹紧,以岩梁和岩拱的形式构成承载结构。尽管加固的岩梁比未加固的岩梁呈现出明显的稳定性,但是仍不能准确量测出影响加固岩层稳定性单个分层缝合效果的量值。现代锚杆支护理论认为,岩层分层之间的摩擦作用具有重要意义,主要有以下几个方面。

①巷道上方的松软岩层被锚杆固结到其上部坚固的岩层上,松软有裂隙岩层的几个分层,彼此之间被锚杆夹紧形成梁和拱形式的承载结构。

②松软不稳定的岩石分层,彼此之间夹紧并被锚杆固结在上部坚固岩层上。

③在掘进巷道时,被破坏的有裂缝的岩石分层被锚杆夹紧并被悬挂在自然平衡拱上。

④不稳定的有裂缝的岩层被锚杆的联接部件托住并被悬挂于自然平衡拱的拱脚。

⑤不稳定的岩石分层被锚杆夹紧并悬吊于自然平衡拱的拱脚。

在采矿实践中,锚杆支架分单体锚杆支架和组合锚杆支架两种。单体锚杆支架指安设在巷道中的锚杆,彼此之间没有力学科系。组合锚杆支架包括钢梁、钢带、角钢、槽钢等承托顶板元件,把两个或几个锚杆联成统一的整体。

锚杆支架按用途分为临时锚杆支架和永久锚杆支架。

按作用原理分为主动锚杆和被动锚杆。主动锚杆预先紧装入钻孔中,以提高抵抗被加固岩体拱曲性和分层之间相对位移的能力。随着锚杆预应力的加大,相应增加了岩层分层面之间的摩擦力,提高了巷道的稳定性。安装被动锚杆时不给杆体以预应力,因此就比主动锚杆安装密些,其典型的有全长锚固的螺纹锚杆、钢筋混凝土锚杆、膨胀式锚杆和玻璃钢锚杆等。

按工作特性锚杆又分为刚性延伸和有限延伸锚杆。延伸锚杆靠套管能够伸长500~700毫米。有限延伸锚杆与延伸锚杆不同,只能伸长60~140毫米。

按杆体材料锚杆又分为木锚杆、竹锚杆、金属锚杆、混凝土锚杆和树脂锚杆等。而按杆体构造型式分为管式锚杆、杆式锚杆、钢丝绳锚杆、组合锚杆和多条杆的锚杆等。

以煤巷和半煤巷为主的采准巷道,其断面一般为矩形、梯形或近似梯形的四边形,不能形成近似自然冒落拱的支撑体系。这些巷道均要受到采动影响,巷道位置改变的余地很小,巷道围岩强度低,顶板岩石一般是层状特征。以前采准巷道多采用棚子支护,棚子支护不可能紧贴围岩,形成等来压,即所得的被动支护,锚杆支护是完全不同的一种支护方式,它利用锚固剂、锚杆、托板及各种构件,给围岩一定的支护强度,与围岩应力和采动应力达到支护目的,即所得的主动支护。它与传统的棚式支护相比具有以下几方面的优势:

①从根本上改善了采准巷道的支护状况,保证了安全生产。锚杆支护能及时加固围岩,从而减少了围岩变形,防止顶板早期离层和断帮,顶板下沉量和两帮位移量明显小于架棚巷道,减少了巷道维修量。据统计,有些局矿使用锚杆支护后,巷道失修率下降了50%~60%,巷道的断面利用率提高了10%~17%。

②简化了工作面上、下顺槽的超前支护,加快了回采过渡,提高了工作面单产,有利于提高效率,增加效益,工作面上、下巷采用棚子支护时,必须提前进行替棚,因采动压力的影响,撤棚、换棚工作十分复杂,用工多、速度慢、不安全(瓦斯管理、顶板管理),严重影响工作面推进速度(有时需用一个班从事此项工作)。采用锚杆支护可以有效减少回采超前压力对巷道的破坏,省掉替棚子序,提高工作面推进速度。

③减轻了工人的劳动强度,减少了支护物料的运输。采用锚杆支护后,不

需要运输大量的支护钢材和其它辅助材料,改善了上、下顺槽工作环境,从根本上减轻了工人的劳动强度,解放了生产力,加快了循环进度。

④大幅度节约了支护材料,降低了支护成本,有利于节约自然资源,改善生态环境。

实践资料显示,我国锚杆支护使用得好的煤矿与棚子支护相比较,工作面同等提高了40%~60%,巷道失修率下降了50%~60%,巷道掘进的支护成本下降25%~40%,掘进速度提高了10%~20%,巷道断面利用率提高了15%,通风阻力下降了10%,支护材料的运输量下降了60%~70%。因此锚杆支护已经成为煤矿最主要的支护方式。

锚杆支护虽具有很大的发展潜力,但由于种种历史原因,还存在许多问题。

①发展不平衡。由于技术观念、地质条件等因素,锚杆支护在各地的推广使用差异很大,北方80%以上,南方只有50%左右,公司各矿高的达70%以上,低的只有30%,特别是巷修只有30%左右。

②技术和生产结合不紧密。各矿还没有形成切合本矿实际的锚杆支护规。

③施工人员素质不高,运成施工质量达不到设计要求。

④锚杆支护机具、材料和监测仪器仪表还需进一步完善、配套。

二、锚杆作用原理

巷道支护的基本目的在于缓和与减少围岩的移动,使巷道断面不致于过分缩小,同时防止已离散和破坏的围岩垮塌,在服务期保持巷道的稳定。为使巷道稳定,人们能够提供的支护力是有限的。在开掘巷道以后形成的“支护—围岩”力学平衡系统中,围岩通常承受着大部分岩层压力,而支护仅仅承受其中一小部分。巷道支护的基本原理是普通支护和围攻岩共同承载,并尽量促使岩层形成承载结构。

实践中,人们一方面不断研究提高支护构件的支护力和性能,另一方面,总是设法提高围岩的承载能力,使支护承担的载荷最小,从而减小支护力,降低支护成本。由于地质条件的复杂性和研究手段的局限性,锚杆支护理论至今尚不成熟,还不能单独依靠那些理论为锚杆支护做出比较准确的设计。

锚杆支护的发展可分为四个阶段:50年代,开始试用锚杆支护;60年代,

在岩巷中试用喷浆支护,后发展为喷混凝土支护;70年代,试用和推广光面爆破及锚杆、网、喷射混凝土支护;80年代采用工程量测,试用新奥法,结合煤矿特点,初步形成一套完善的设计、施工、动态管理方法。

锚杆支护技术的发展冲破了传统的支撑概念,形成了充分发挥围岩本身自支承作用,使围岩和支护共同作用的现代支护理论。支护理论的发展,大致经历了以下几个阶段:20年代以前,发表了许多地压假说,其共同特点是把围岩作为不变载荷,而支护被看作承受载荷的结构,即所得的古典压力理论。60年代以前,把岩体视作松散体,认为作用在支护结构上的荷载是围岩垮落拱的松动岩体重量,即松散体理论。60年代发展起来的支护和围岩共同作用的现代支护理论。

锚杆支护是以维护和利用围岩的自承能力为基点,及时地进行支护,控制围岩的变形和松弛,使围岩成为支护体系的组成部分。锚杆支护通过锚入围岩部的杆体,改变围岩本身的力学状态,在巷道周围形成一个整体而又稳定的承载环(带),和围岩共同作用,达到维护巷道的目的。喷混凝土支护能起到及时封闭围岩、充填围岩的裂隙和支撑结构的作用,可有效的控制围岩变形和破坏,提高围岩强度,使围岩保持原有的稳定性和强度。因此,锚喷支护属于积极主动加固围岩的加固型支护系统。

锚杆支护的作用原理主要有几种:

①加固拱作用。对于被纵横交错的弱面所切割的块状或破裂状围岩,如果及时用锚杆加固,就能提高岩体结构弱面的抗剪强度,在围岩周边一定厚度的围形成一个不仅能维持自身稳定,而且能防止其上部围岩松动和变形的加固拱,从而保持巷道的稳定。在弹性体以锚杆的锚头和拧紧部为顶点,形成算盘珠或分布的锥形体压缩带,如将锚杆以适当间距排列,使相邻锚杆的锥形带(图中网线部分),即岩石加固拱,它使巷道围岩由“载荷”变成了“承载结构”。

锚杆加固拱作用

②悬吊作用。

悬吊作用是指锚杆把将要冒落的软弱岩层或危岩悬吊于上部坚固稳定的岩体上,由锚杆来承担危岩或软弱岩层的重量。

悬吊软弱层状顶板悬吊危岩

上图表的煤层巷道的直接顶板一般比较软弱,且不厚,很容易离层冒落,它上面的老顶则比较坚固,这样,锚杆可以通过直接顶板达到老顶,把直接顶锚固在老顶上,锚杆的这种作用就象是“钉钉子”,把容易冒落的顶板“钉牢”在老顶上。

③组合梁作用。在层状岩层的巷道顶板中,通过锚入一系列的锚杆,将锚杆长度以的薄层岩石锚成岩石组合梁,从而提高其承载能力。

可以将平顶巷道的层状顶板看作是以巷道两帮为支点的叠合梁,在载荷作用下,各层板都有各自的单独弯曲,每层板的上下缘分别处在受压和受拉状态,但用锚杆将各层板紧固之后,在载荷作用下,各层之间基本不发生离层、错动,就如同一块板的弯曲,大大提高了板系的抗弯强度。在层状顶板中安设锚杆后,岩层由叠合梁变为组合梁,从而提高了顶板岩层的承载能力,锚杆本身也起着抗剪销钉的作有,有效地阻止了岩层的层间错动。

④围岩补强作用。巷道围岩深部的岩石处于三向受压状态。靠近巷道周边的岩石则处于三向受力状态,故易于破坏而丢失稳定性。巷道周围安设锚杆后,有些岩石又部分恢复了三向受力状态,增大了它本身的强度。另外,锚杆还可以增加岩层弱面的剪断阻力,使围岩不易破坏和失稳,这就是锚杆的补强作用。

⑤减小跨度作用。巷道顶板打了锚杆,相当于在该处打了点柱,减小了顶板跨度,从而增强了顶板岩石的稳定性,使岩石不易变形和破坏。

⑥挤压连结作用。锚杆将巷道围岩锚栓挤紧,对岩石施加预应力,以平衡岩石所产生的拉应力,阻止裂隙的继续扩大。而且对于松散岩石能起到挤压连结和加固作用。例如用一个长方形木箱,里面填紧了碎石,并用模拟的锚杆将它们锚固起来,锚杆上紧以后,将木箱翻转,其中充填的小碎石倒不出来。这说明,通过锚杆的预应力作用,可以在彼此毫无粘结力的碎石之间产生一种侧向挤压摩擦阻力,足以支撑碎石自身的重量而不会掉下来,好象碎石间互相连结起来一样。

锚杆支护的上述作用并非各自独立存在,往往是同时并存、互为补充,只不过在不同条件下,某种支护作用占主导地位。例如在拱形巷道中用锚杆加固块状或碎裂状围岩时,加固拱的作用是主要的,而在支护平顶巷道中,组合梁作用就是主要的了。

三、锚杆的种类和技术特征

用作支护的锚杆,可根据其锚固的长度划分为集中锚杆和全长锚固类锚杆。集中锚固类锚杆指的是锚杆装置和杆体只有一部分和锚杆孔壁接触和锚杆,包

括端头锚固、点锚固、局部药卷锚固的锚杆。全长锚固类锚杆指的是锚固装置或锚杆杆体在全长围全部和锚杆孔壁接触的锚杆,包括各种摩擦式锚杆、全长砂浆、树脂、水泥锚杆等。

锚杆锚固方式可分为机械锚固型和粘结锚固型。锚固装置或锚杆杆体和锚杆孔壁接触,靠摩擦阻力起锚固作用的锚杆属于机械锚固型锚杆。锚杆杆体部分或锚杆体全长利用树脂、砂浆、水泥等胶结材料,将锚杆杆体和锚杆孔壁粘结,紧贴在一起,靠粘结力起锚固作用的锚杆,属于粘结锚固型锚杆。

锚杆按材质不同又可分为钢丝绳、钢筋、螺纹钢、玻璃钢、木、竹锚杆等。锚杆的名称有以材质命名的,如竹锚杆、木锚杆、玻璃钢锚杆;有以粘结材料命名的,如树脂锚杆、水泥锚杆、砂浆锚杆;有以结构命名的,如倒楔锚杆、深壳锚杆;有以外形命名的,如管缝锚杆;有以作用机理命名的,如水力膨胀式等。

1、木锚杆。

木锚杆包括普通木锚杆和压缩木锚杆。普通木锚杆设计锚固力为10KN左右,锚杆孔底部充填砂浆锚固力可达20KN左右,服务时间为一年左右,木质选用杂木,做防腐处理、喷浆处理后,服务时间可延长。压缩木锚杆是用普通木材单向压缩后,加工制作,在井下遇水(相对湿度90%以上)后,杆体膨胀,产生的与锚杆孔壁而挤压力锚固围岩(煤),并由楔子产生初锚力,设计锚固力为20KN。使用寿命1~2年。

2、竹锚杆。

竹锚杆包括竹片锚杆和??竹锚杆。

3、楔缝式锚杆,设计锚固力50~60KN,最大90~120KN。

4、涨圈式锚杆,设计锚固力50~60KN,最大100KN。

5、管缝式锚杆,设计锚固力50~70KN,最大90KN。

6、砂浆锚杆,设计锚固力50KN。

7、树脂锚杆,设计锚固力60KN以上。

8、水泥锚杆。

9、水力膨胀式锚杆。

10、玻璃钢锚杆。

11、注式注浆锚杆。

四、锚杆支护参数设计

㈠巷道围岩的稳定性分类

维护巷道的稳定,满足安全生产是巷道支护的目的,巷道支护设计,施工和管理是涉及巷道稳定的几个主要方面。巷道围岩稳定性分类对促进煤矿的科学管理,起到很大的推动作用。

1、分类的依据

分类的依据就是如何选择和确定分类指标的问题。影响巷道围岩稳定性的因素主要有两方面:一是采煤工作面采动的影响,二是临近采空区的影响。

⑴影响巷道围岩稳定性的因素

巷道围岩稳定性受多种因素的影响,它不仅取决于地质因素,同时也取决于生产技术因素,例如巷道围巷状况、地质力、开采影响等方面。

a、巷道围岩强度

围岩强度的大小对其稳定性的作用是很明显的,较软弱的围岩容易产生变形和破坏,巷道的维护比较困难,相反,较坚硬的围岩就不易变形和破坏,巷道容易维护。

现场研究表明:巷道顶底板移近率随围岩强度增加而降低。当围岩强度低于某一值(如50Mpa)时,移近率随强度的降低而急剧增加;当强度大于某一值(如80Mpa)时,顶底板移近率随强度的变化就不明显了。

b、地应力

地应力是引起围岩变形和破坏的根本作用力。巷道的投入、巷道参数的设计及巷道的维护,在很大程度上取决于地应力的大小。一般地应力包括上覆岩层的自重应力、地质构造力和采动引起的集中应力。现在主要考虑自重应力(RH)的影响。一般情况下,顶底板移近率随巷道埋深的增加而增加。围岩强度较中时,巷道埋深对其围岩变形影响强烈,当围岩强度大于某一值(如80Mpa)时,在一定深度围,巷道埋深的变化对围岩变形的影响不大。

c、岩体完整性

一般岩体都不同程度地含有地质弱面和构造,如层理、节理、裂隙等,这

将降低岩体的强度。把反映地质弱面和构造的程度称为岩体完整性(以岩体完整性指数表示),它与节理裂隙间距、分层厚度、直接顶垮落步距等有关系。

d、开采影响

由于采煤工作面大面积回采,在工作面前(后)方形成的移动支承压力很大,这个支承压力的影响是回采巷道在整个服务期间围岩变形和破坏的主要原因。

煤层、直接顶、老顶强度和厚度以及层位结构都影响移动支承压力的状况。直接顶、厚度和采高的比值(N)可以反映老顶来压的强度,即在同们老顶条件下,N值越大,老顶来压强度越小,反之亦然。一般情况下,当N≥4时,老顶的垮落和错动对巷道维护状况无多大影响,当N<4时,老顶活动的影响就比较显著。因此,可以把N值作为反映开采影响的一个指数。

反映开采对巷道围岩稳定性的另一个因素是煤柱宽度,其尺寸大小对围岩的稳定性影响十分显著。

e、其它影响因素

地下水对围岩有软化、泥化作用,是影响巷道围岩稳定性的一个因素。由于比较复杂,分类时暂不考虑。

⑵分类指标的确定

分类指标主要有7个:表示围岩强度的指标是顶板可度(δ顶)、煤层强度(δ煤)、底板强度(δ底);表示自重应力的指标是深度(H);表示岩体结构和构造(即岩体完整性指数)的指标是直接顶、初次垮落步距(L);表示开采影响的指标是直接顶、厚度的采高比值(N)及护巷煤柱宽度(X)。

分类指标取值的方法:

a、三个围岩强度指标(δ顶、δ煤、δ底)

围岩强度是指围岩的单向抗压强度,单位为Mpa。顶板强度取相当1.5倍的巷道宽度的顶板围的各岩层强度的加权平均值,底板强度取1.0倍巷道宽度的底板围各岩层强度的加权平均值。分层开采时上分层巷道的底板强度就是煤层强度。

b、埋藏深度(H)

巷道埋藏深度是指巷道所在位置距地表的深度,单位为米。

c、岩体完整性指数(D)

岩体完整性指数(D)以直接顶、初次垮落步距(L)表示,单位为米。

d、直接顶厚度和采高比值(N)

可以从地质柱状图中直接量取直接顶厚度。直接顶是直接位于煤层(或伪顶)之上,强度小于60~80Mpa,一般随回柱冒落的岩层。当N>4时,取N=4。

e、护巷煤柱宽度(X)

护巷煤柱宽度是指回风巷一侧的实际煤柱宽度,单位为米。当巷道两侧为实体煤时,取X=100米,当无煤柱护巷时X=0。

由于巷道围岩稳定性受多因素、多指标的影响,我们采用现代的模糊聚类分析方法将巷道围岩稳定性分为非常稳定(Ⅰ)、稳定(Ⅱ)、等稳定(Ⅲ)、不稳定(Ⅳ)和极不稳定(Ⅴ)5类。

㈡锚杆选用原则

1、技术先进,质量稳定。

2、价格合理。

3、安装简便。

4、货源充足,供应有保证。

㈢锚固强度的确定

锚固强度是指作用到单位围岩面积的锚杆锚固力。锚固强度是保证锚杆支护效果的关键因素。一般顶板锚杆的锚固力>200KN才能可靠支护巷道。我国现在所用锚杆的锚固力在70KN左右。

㈣锚杆杆体直径和锚杆孔径的匹配

国外研究表明,锚杆孔壁和杆体之间的间隙有一个合理围。决定间隙合理围的主要因素是使锚固剂的抗剪强度最大,即充填锚固剂的空间越小,抗剪切强度越高,实验表时,锚杆孔径与杆体直径之差宜保持在6~10毫米之间。

㈤对锚杆支护主要材料与构件的要求

1、树脂锚固剂

树脂锚固剂应满足:保证足够的锚固力,为满足端部锚固、加长锚固和全长锚固的要求,应具有不同的胶凝时间。

2、锚杆杆体材料

选用的金属杆体极限抗拉强度最低值不应小于380Mpa;杆体尾部螺纹加工应采用滚丝工艺,也可采用热处理措施,使螺纹部分的强度与杆体强度相当。

3、钢带

钢带是组合锚杆支护的关键构件。它可将单根锚杆联接起来组成一个整体承载结构,提高锚杆支护的整体效果。钢带有平钢带和W钢带。两者相比W钢带具有强度高(高10%~15%),刚度大(70~115倍)等优点,是理想的支护材料。

4、托板

选择托板的原则是托板的承载能力应与锚杆的锚固力相匹配,并使锚杆杆体、螺母均匀受力。主要有平板形和钟形。

5、网

网的作用是维护锚杆间比较破碎的岩石,防止岩块掉落,同时对提高锚杆支护的整体效果也有一定的作用。网的品种主要有铁丝网、钢筋网和塑料网。

㈥对锚杆钻机的要求

1、钻机应具有足够的转数、扭距和推力。

2、钻机能够钻与铅垂方向成40°角的钻孔。

3、耐用、可靠,小修和大修间隔时间长,维修方便。

4、厂家售后服务周到、及时,零部件俱应充足。

㈦锚杆支护设计的基础资料

锚杆支护设计的基础主要包括三个方面:一是地应力大小和方向;二是围岩物理力学性质;三是能提供的锚固强度(或锚杆的锚固力),其主要有以下几个方面:

1、顶板岩层层数和厚度(一般取1.5倍巷道宽度围),由地质柱状图钻孔资料确定。

2、各层节理裂隙间距。指沿结构面法线方向上的平均间距,在巷道测取。

3、岩层的分层厚度。指分层厚度的平均数值。

4、岩层的单向抗压强度。在井下直接测取,或在实验室利用岩样测定。

5、煤层厚度。

6、煤层倾角。

7、煤层单向抗压强度。在井下直接测取,或在实验室测定。

8、巷道埋深。

9、主应力方向和大小。一般应在井下实测;或根据地质构造判断。

10、地质构造情况描述。

11、水文情况描述。

12、煤柱宽度。

13、锚杆在煤层中的实际锚固力,井下实测。

14、锚杆在岩层中的实际锚固力,井下实测。

15、巷道的几何形状和尺寸。

巷道锚杆支护参数设计

巷道锚杆支护参数设计 一、锚杆支护理论研究 (一)锚杆支护综述 1、锚杆支护技术的发展 锚杆支护作为一种有效的、技术经济优越的采准巷道支护方式,自美国1912年在aberschlesin(阿伯施莱辛)的Friedens(弗里登斯)煤矿首次使用锚杆支护顶板至今已有90多年的历史。 1945~1950年,机械式锚杆研究与应用; 1950~1960年,采矿业广泛采用机械式锚杆,并开始对锚杆支护进行系统研究; 1960~1970年,树脂锚杆推出并在矿山得到了应用; 1970~1980年,发明管缝式锚杆、胀管式锚杆并得到了应用,同时研究新的设计方法,长锚索产生; 1980~1990年,混合锚头锚杆、组合锚杆、特种锚杆等得到了应用,树脂锚固材料得到改进。 美国、澳大利亚、加拿大等国由于煤层埋藏条件好,加之锚杆支护技术不断发展和日益成熟,因而锚杆支护使用很普遍,在煤矿巷道的支护中的比重几乎达到了100%。 澳大利亚锚杆支护技术已经形成比较完整的体系,处于国际领先水平。澳大利亚的煤矿巷道几乎全部采用W型钢带树脂全长锚固组合锚杆支护技术,尽管其巷道断面比较大,但支护效果非常好。对于复合顶板、破碎顶板及其巷道交叉点、大跨度硐室等难维护的地方,采用锚索注浆进行补强加固,控制了围岩的强烈变形。美国一直采用锚杆支护巷道,锚杆消耗量很大。锚杆种类也较多,有胀壳式、

树脂式、复合锚杆等。组合件有钢带。具体应用时,根据岩层条件选择不同的支护方式和参数。 锚杆支护发展最快的是英国。在1987年以前,英国煤矿巷道支护90%以上采用金属支架,而且主要是矿用工字钢拱型刚性支架。由于回采工作面单产低、效率低、巷道支护成本高,因而亏损严重。为了摆脱煤炭行业的这种困境,在巷道支护方面积极发展锚杆支护,到1987年,英国从澳大利亚引进了成套的锚杆支护技术,从而扭转了过去的被动局面,煤巷锚杆支护得到迅速发展,经过近10年实验的基础上,又进行了改进和提高,到1994年在巷道支护中所占的比重己达到80%以上。锚杆支护技术的广泛采用给英国煤矿带来巨大的活力和经济效益。 德国是U型钢支架使用最早、技术上最为成熟的国家,自1932年发明U型钢支架以来,U型钢支架发展迅速,支护比重很快达到了90%以上,从井底车场一直到采煤工作面两巷均采用U型钢可缩性支架。但是自20世纪80年代以来,随着矿井开采深度日益增加,维护日益困难。面临这种困境,德国采用不断增加金属支架的型钢质量,逐步减小棚距的做法,这不仅使巷道支护费用增高,而且施工、运输更加困难和复杂。即便如此,巷道维护困难的状况仍然难以改观,于是寻求成本低,运输和施工简单方便、控制围岩变形效果好的锚杆支护变得尤为重要。到20世纪80年代初期,锚杆支护在鲁尔矿区实验成功后获得推广,现己应用到千米的深井巷道中,取得了许多成功的经验。 法国煤巷锚杆支护的发展也很迅速,到1986年其比重己达50%。在采区巷道支护中同时发展金属支架、锚杆支护、混凝土支架。 俄罗斯锚杆支护的发展也引人瞩目。他们研制了多种类型的锚杆,在俄罗斯第一大矿区——库兹巴斯矿区锚杆支护巷道所占比重己达50%。 我国在煤矿岩巷中使用锚杆支护也已有近50余年的历史。从1956年起在煤矿岩巷中使用锚杆支护,20世纪60年代锚杆支护开始进入采区,但由于煤层巷道围岩松软,受采动影响后围岩变形量很大,对支护技术要求很高,加之锚杆支护理论、设计方法,锚杆材料、施工机具、检测手段等还不够完善,因而发展缓慢。“八五”期间,原煤炭工业部把煤巷锚杆支护技术作为重点项目进行攻关,在“九五”期间,原煤炭工业部将“锚杆支护”列为煤炭工业科技发展的五个项目之一,

锚杆支护工程施工工艺标准——【施工工法与施工工艺】

锚杆支护工程施工工艺标准 第1章适用范围 本工艺标准适用于工业与民用建筑中非软弱土层的各种土层的锚杆及土钉墙支护工程 第2章材料准备 水泥宜用强度等级32 5 级的普通硅酸盐水泥 沙宜用洁净的中粗含泥量不大于3% 水宜用自来水或不含有害物质的洁净水 钢绞线应具有出厂合格证明并复试合格方可使用 第3章施工机具 钻孔机钢拉杆注浆管定位器预应力张拉锚具 第4章工艺流程 第1节流程 第2节钻孔 1) 钻孔方法 a.干作业法: 当土层锚杆处于地下水位以上呈非漫水状态时可选用不护壁的螺旋钻孔干作 业法成孔适用与粘土亚粘土和密实性稳定性较好的沙土等土层 b.湿作业法: 压水钻进法压水钻进法是国内外应用较多的土层锚杆成孔法可把成孔过程 1

中的钻孔出渣清孔等工序一次完成可防止塌孔不留残土能适用多种软硬土层但施工现场 积水较多 2) 扩孔在需要增大锚固段锚固力时可采用锚固段扩孔措施一般有4 种方法 a.机械扩孔:利用专门的机械扩孔装置在锚固段形成几倍于钻孔直径的扩大头 b.爆破扩孔:将计算好的炸药置于钻孔内引爆而将土体向周抗压形成球形扩展孔径 c.水力扩孔:钻孔钻到锚固段是换上水力扩孔钻头利用射水压力扩展孔径 3) 压浆扩孔:在第二次灌浆是增大灌浆压并力保持一段时间使浆液向四周土体渗透并挤压土 体从而扩大孔径 第3节安放拉杆 1)土层锚杆用的拉杆一般为粗钢筋钢丝束及钢绞线当土层锚杆承载力较小时采用 粗钢筋当承载力较大时采用钢丝束钢绞线 2)拉杆要求顺直在使用前要除锈并作防腐处理对钢筋拉杆先涂一度环氧防腐漆冷 底子油待干燥后再涂一度环氧玻璃铜待其固化后再缠绕两层聚乙烯塑料薄膜对 自由段的钢绞线要套以聚丙烯防护套等钢绞线如果涂有油脂在固定段要仔细加 以清除以免影响与锚固体的粘结除锈后要尽快放入钻孔并灌浆以免再锈 第4节灌浆 灌浆是土层锚杆施工中的一个重要工序必须认真进行并将有关数据记录下来灌浆的作用是形成锚固体防止钢拉杆腐蚀充填土层中空隙 灌浆方法。灌浆方法一般有一次灌浆法和二次灌浆法两种一次灌浆法是压浆泵将水泥浆管进行灌浆灌浆时将一根30mm 左右的钢管或胶皮管作为导管一端与压浆泵相连另一端与拉杆同时 送入孔底注浆管端保持距孔底150mm 随着水泥浆的灌入应逐步把灌浆管往外拔出但管口要始终 1

煤矿巷道锚杆支护技术规范

煤矿巷道锚杆支护技术规范 1 范围 本标准规定了煤矿巷道锚杆支护技术的术语和定义、技术要求、锚杆支护施工质量检测及锚杆支护监测。 本标准适用于煤矿岩巷、煤巷及半煤岩巷的锚杆支护。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB 175-2007 硅酸盐水泥、普通硅酸盐水泥 GB/T 228.1-2010 金属材料拉伸试验第1部分:室温试验方法 GB/T 23561.1-2009 煤和岩石物理力学性质测定方法第1部分:采样一般规定 GB 50086 岩土锚固与喷射混凝土支护工程技术规范 GB/T 50266-2013 工程岩体试验方法标准 MT 146.1-2011 树脂锚杆第1部分:锚固剂 MT 146.2-2011 树脂锚杆第2部分:金属杆体及其附件 MT 285 缝管锚杆 MT/T 861 W型钢带 MT/T 1061-2008 树脂锚杆玻璃纤维增强塑料杆体及其附件 3 术语和定义 GB/T 228.1-2010、MT 146.1-2011、MT 285界定的以及下列术语和定义适用于本文件。 3.1 巷道 roadway 为煤矿提升、运输、通风、排水、行人、动力供应等而掘进的通道。 3.2 煤巷 coal roadway 断面中煤层面积占4/5或4/5以上的巷道。 3.3 岩巷 rock roadway 断面中岩石面积占4/5或4/5以上的巷道。 3.4

半煤岩巷 coal-rock roadway 断面中岩石面积(含夹石层)大于1/5到小于4/5的巷道。 3.5 锚杆 rock bolt 安装在围岩中,对围岩实施锚固的杆件系统。一般由杆体、托盘、螺母、垫圈、锚固剂或锚固构件组成。 3.6 预应力锚杆 pretensioned rock bolt 在安装过程中施加一定预拉力的锚杆。 3.7 无预应力锚杆 non-pretensioned rock bolt 在安装过程中不施加预拉力的锚杆。 3.8 树脂锚杆 resin anchored bolt 采用树脂锚固剂锚固的锚杆。 注:改写MT 146.1-2011,定义3.1。 3.9 注浆锚杆 grouting bolt 杆体为中空式,兼做注浆管,对围岩进行注浆加固的锚杆。 3.10 钻锚注锚杆 self-drilling bolt 杆体为中空式,自带钻头,集钻孔、锚固、注浆于一体的锚杆。 3.11 玻璃纤维增强塑料锚杆 glass fibre reinforced plastic bolt 杆体主体部分由玻璃纤维和树脂复合而成的锚杆。 3.12 缝管锚杆 s plit set bolt 经特殊加工成纵向开缝的钢管及其附件。 [MT 285—1992,术语 3.1] 3.13 锚索 cable bolt 安装在围岩中,对围岩实施锚固的索体系统。一般由钢绞线、托盘、锚具及锚固剂组成。 3.14 锚杆支护 rock bolting

锚杆支护技术的应用现状与发展前景

锚杆支护技术的应用现状与发展前景 于富才1)杨宏2)冉启发3) 摘要:针对我国锚杆支护的现状做了初步分析。运用支护设计中常用理论及方法,( 对其中的优缺点进行了分析和评价,同时对实际支护工程中的某些不足进行了具体讨论,并对未来的发展趋势进行了初步分析。 关键词锚杆支护;应用现状;发展趋势 锚杆支护作为岩土工程加固的一种重要形式,由于其具有安全、高效、低成本等优点,在国际岩土工程领域得到了越来越多的应用.1872年,英国北威尔士的煤矿加固工程中首次采用钢筋加固页岩之后,1905年美国矿山中也出现了类似的加固工程.到了20世纪40年代,锚杆支护在地下工程中的应用在国外得到了迅猛发展.目前,在澳大利亚和美国的地下工程支护中,锚杆支护已经占到了将近100%.我国的锚杆加固技术于20世纪50年代开始起步,在最近20年得到了快速发展,目前已经得到了广泛的应用.据估计,在1993年至1999年间,我国仅在边坡工程和深基坑工程中的锚杆年用量就达到了3000-3500KM.目前,我国正在进行大规模的基础设施与各类矿山及隧道工程建设,锚杆支护得到了普遍应用[1-11]. 1.锚杆支护的现状 锚杆加固技术在工程中的应用十分广泛.目前,它已经在地下工程、边坡工程、结构抗浮工程、深基坑工程、重力坝加固工程、桥梁工程以及抗倾覆、抗震工程的地层锚固应用中得到了发展.近年,我国正在进行的高速铁路、跨海大桥、海底隧道、地铁等在内的大规模基础设施建设中所遇到地基处理、边坡加固、地下空间结构加固、水下空间结构坚固等各方面的问题中,将锚杆加固方式得到了很大的扩展. 1.1 锚杆支护理论 岩土体在工程开挖之后,其初始的应力平衡状态会遭到破坏,为了达到新的平衡状态,应力场将重新分布,从而导致岩土体在一定范围内出现弹塑性变形、地层膨胀变形,使岩土体出现碎裂带;若地层开始处于高应力状态,还可能发生岩爆,严重的影响工程质量,威胁施工人员的安全.锚杆加固技术是一种柔性加固技术,它能充分利用岩土体自身的承载力保持岩体的稳定,使加固体不被破坏.它本质就是通过锚固加强岩土体的整体性,控制开挖后岩土体的变形,避免应力的突然释放,从而保证工程顺利、安全地进行. 1)目前,已经广为接受的锚杆支护理论主要有悬吊理论、组合梁理论和组合拱(压缩拱)理论.①悬吊理论认为锚杆的作用是将松散、软弱的岩土体悬吊在坚硬、稳定的岩土体上,从而起到加固作用.②组合梁理论将锚杆看做螺栓,将各薄层岩土体看作是叠合在一起的梁结构,通过锚杆的锚固将其紧固成一个组合梁,且锚固力越大,梁之间的摩擦力越大,岩土体也就越稳定.③组合拱理论是在光弹试验的基础上提出的,试验证实了锚杆对地层的挤压加固作用.锚杆进入岩土体后,会使岩土体出现以锚杆两头为顶点的塑性压缩区,若有一排锚杆适当排列,则会形成一定厚度的连续压缩带,从而起到加固岩土体的作用. 1.2 锚杆类型、选择及作用机理 从锚杆的初次使用到现在,锚杆作为一种支护方式已经发展出了多种型.按

锚杆支护技术规范(正式版本)

锚杆支护技术规范(正式) 第一章总则 1 为贯彻安全第一的生产方针,严格执行《煤矿安全规程》和煤炭工业技术政策, 确保正确地进行锚杆支护设计和施工质量,促进煤巷锚杆支护技术的健康发 展,特制定本规范。 2 锚杆支护巷道施工必须进行设计。锚杆支护设计要注重现场调查研究,吸取国内 外锚杆支护设计、施工和监测方面的先进经验,积极采用新技术、新工艺、 新材料,做到技术先进、经济合理、安全可靠。 新采区采用锚杆支护时,要进行基础数据收集并进行锚杆支护试验工作,锚 杆支护设计要组织有关单位会审,并报集团公司备案。 3 对在煤巷应用锚杆支护的有关人员(管理人员、工程技术人员及操作人员),都必 须进行技术培训。 4 在应用锚杆支护的巷道中,必须有矿压及安全监测设计。在施工中必须按设计设置 矿压及安全监测装置,并有专人负责监测。 第二章巷道围岩的稳定性分类 5 采用煤巷锚杆支护技术,必须对巷道围岩稳定性进行分类,为指导锚杆支护设计、 施工与管理提供依据。 6 巷道分类按原煤炭部颁发的《缓倾斜、倾斜煤层回采巷道围岩稳定性分类方案》执 行。 7 煤层围岩分类指标以缓倾斜、倾斜薄煤层及中厚煤层回采巷道分类指标为基本分

类指标。其它条件下的煤巷(如煤层上山)稳定性分类指标,可根据具体情况对分类指标进行相应替代,详见表1和表2。 缓倾斜、倾斜薄及中厚煤层回采巷道分类指标 表1 煤层上、下山分类指标 表2

第三章锚杆支护设计 8 锚杆支护设计应贯彻地质力学评估—初始设计—监测与信息反馈—修改设计等四 个步骤。 锚杆支护设计参考以地应力为基础的煤巷锚杆支护设计方法,结合锚杆支 护实践,可根据直接顶稳定情况,按悬吊理论、自然平衡拱理论、组合梁理 论或锚杆楔固理论进行设计计算;亦可采用工程类比法进行设计。无论采用 哪种设计方法,都必须对支护状况进行监测,包括锚杆受力、巷道围岩表面 与深部位移及弱化范围、顶板离层等内容。根据监测信息反馈结果对设计进 行验证或修改。 第9条为进行科学的锚杆支护设计,必须具备表3所要求的原始资料。巷道施工后,根据实际揭露的围岩及地质构造等情况,对有关数据进行校核,为修改和完 善锚杆支护设计提供依据。

基坑锚杆支护施工方案

龙翔嘉苑地库东侧基坑锚杆支护加固方案 一、工程概况 龙翔嘉苑地下室位于郑东新区合村并城祭城北安置区项目宗地十(B6-06-01)区域,项目基地西北临龙翼六街,东北临龙北二街,东南临龙翼七街。该工程地下室开挖深度为8.5~11.5m,场地土类别为中软场地土,基坑开挖采用一次开挖二次放坡方案,均按1:0.4放坡,侧壁首次防护采用土钉墙支护技术。 二、基坑支护加固原因及方案 由于近期雨水较多及边坡附近机械开挖土方造成基坑东侧1-G~1-K区域(护坡已施工完毕)土层裂开,部分塌方,存在极大安全隐患,土钉墙技术不能满足现场实际需要。为确保施工安全,结合该工程地质现场勘察的地质情况,遵循安全可靠、技术可行、经济合理、节约工期的原则,拟采用锚杆支护方案对基坑边坡进行加固。 地基土的构成及岩性特征,自上而下分为六层: (1)填土:平均厚度 0.7m (2)粉土:平均厚度 2.33m (3)粉质粘土:平均厚度2.62m (4)粉砂:平均厚度7.85m (5)细砂:平均厚度7.87m (6)中砂:平均厚度9.37m 二、锚杆加固施工工艺 在锚杆支护加固施工时,边坡支护分上中下三层,直至坑底,施工时在基坑开挖坡面,用机械成孔,孔内放锚杆并注入水泥浆,外露Φ22钢筋除锈,上横梁安装6#[槽钢并固定,在坡面安装φ6.5钢筋网片, 纵横向间距250mm,面层喷射100mm厚 C20的混凝土,使土体、锚杆、横梁及喷射混凝土面层结合,加固基坑侧壁。 三、施工组织 健全施工组织机构是保证施工质量和进度的关键,为保证边坡加固有效进行,加强组织管理,根据工程需要选择具有丰富施工经验的专业公司,劳动力合

理调整,确保各阶段施工人员及时到位,在施工前由专人进行安全技术交底。 作业层施工人员组成情况见附表1。 施工人员组成情况表(附表1) 四、主要施工机械设备 主要施工机械设备表(附表2)

锚杆支护技术讲解

锚杆支护参数的确定 一、锚杆长度 L≥L1+L2+L3------------------------- ① =0.1+1.5+0.3=1.9m 式中: L——锚杆总长度,m; L1 ——锚杆外露长度(包括钢带+托板+螺母厚度),取0.1m; L2 ——锚杆有效长度或软弱岩层厚度,m; L3——锚入岩(煤)层内深度(锚固长度),按经验L3≥300mm。 (一)锚杆外露长度L1 L1=(0.1~0.15)m,[钢带+托板+螺母厚度+(0.02~0.03)] (二)锚入岩(煤)层内深度(锚固长度)L3 1.经验取值法 《在锚杆喷射混凝土支护技术规范》GBJ86-85“第三节锚杆支护设计”中、第3.3.3条第四款规定: 第3.3.3条端头锚固型锚杆的设计应遵守下列规定: 一、杆体材料宜用20锰硅钢筋或3号钢钢筋; 二、杆体直径按表3.3.3选用; 三、树脂锚固剂的固化时间不应大于10分钟,快硬水泥的终凝时间不应大于12分钟; 四、树脂锚杆锚头的锚固长度宜为200~250毫米,快硬水泥卷锚杆锚头的锚固长度

宜为300~400毫米; 五、托板可用3号钢,厚度不宜小于6毫米,尺寸不宜小于150×150毫米; 六、锚头的设计锚固力不应低于50千牛顿; 七、服务年限大于5年的工程,应在杆体与孔壁间注满水泥砂浆。 一般取300mm ~400mm 2. 理论估算法 《在锚杆喷射混凝土支护技术规范》GBJ86-85“第三节 锚杆支护设计”中规定: 第3.3.11条 局部锚杆或锚索应锚入稳定岩体。水泥砂浆锚杆或预应力锚索的水泥砂浆胶结式内锚头锚入稳定岩体的长度,应同时满足下列公式: 公式(3.3.11-1)、(3.3.11-2)见图形所示。 cs st f f d k l 412≥ (3.3.11-1) cr st a f d f d k l 2214≥ (3.3.11-2) 式中la ——锚杆杆体或锚索体锚入稳定岩体的长度(cm ); d1——锚杆钢筋直径走丝或锚索体直径(cm ); d2——锚杆孔直径(cm ); f st ——锚杆钢筋或锚索体的设计抗拉强度(N/cm 2); f cs ——水泥砂浆与钢筋或水泥砂浆与锚索的设计粘结强度 (N/cm 2);圆钢为2.5MPa ,螺纹钢为5MPa 。

锚杆支护技术管理

锚杆支护技术管理第一节 总则 第1条锚杆、锚喷支护(以下简称锚杆支护)是煤矿井巷工程一种重要的支护形式,它以快速、主动、有效的支护特性已得到广泛推广应用。 第2条锚杆的种类 根据xx矿区开采的实际情况,规定允许使用的锚杆种类包括以下 6 种: 1、MSGLD-335 等强螺纹钢式树脂锚杆; 2、MSGLW-500 无纵肋螺纹钢式树脂锚杆,适用于埋深大于 600 米的巷道; 3、MSGLW-600 无纵肋螺纹钢式树脂锚杆(原高强度高韧性抗冲击锚杆)适用于埋深大于 800 米及地压较大的巷道; 4、MSGLD-400/600(X)等强螺纹钢式树脂锚杆(原热轧细牙等强螺纹钢式树脂锚杆),屈服强度 400MPa 适用于埋深不大于 800 米的巷道或埋深大于800 米的巷道两帮;屈服强度 600MPa 及其以上适用于埋深大于 800 米及地压较大的巷道; 5、缝管锚杆(只限于回采巷道护帮或断层破碎带临时支护); 6、玻璃钢锚杆(允许在使用时间较短的,围岩稳定的切眼两帮及条件适宜的煤帮使用); 7、使用本规定以外规格型号的锚杆,必须经过论证、安全性能检验和鉴定,并制定安全措施,报集团公司备案后进行试验。 第3条锚杆的锚固方式 1、端锚:锚杆的锚固长度不大于钻孔长度的1/3。

2、加长锚:树脂锚固段长度介于端锚和全锚之间。 3、全锚:锚杆的锚固长度不小于钻孔长度的90%;水泥锚固段长度为钻孔长度的100%。 一般情况下应采用加长锚;Ⅲ~Ⅴ类煤巷顶板和深部全岩巷道、有冲击地压危险的巷道严禁使用端锚;推广应用全长锚固技术。 第4条锚杆支护材料规格、性能 1、树脂锚杆金属杆体及其附件应符合中华人民共和国煤炭行业标准MT146.2-2011 要求。 规格说明: MS G L 口—口/口×口(X) (热轧细牙) 杆体长度,mm 杆体公称直径,mm 材料屈服强度,MPa D 代表等强;W 代表无纵 肋螺纹钢式 杆体 树脂锚杆 2、MSGLD-335 等强螺纹钢式树脂锚杆成套外形见图 1,杆体外形见图2,技术性能及外形尺寸规定见表 1、表 2。

煤矿锚杆支护技术规范标准设计

煤矿锚杆支护技术规范(新) ICS 73.100.10 D 97 备案号:26921—2010 MT 2009-12-11发布 2010-07-01实施 中华人民共和国煤炭行业标准 MT/T 1104—2009 煤巷锚杆支护技术规范 Technical specifications for bolt supporting in coal roadway 国家安全生产监督管理总局发布 前言 本标准的附录A为资料性附录。 本标准由中国煤炭工业协会科技发展部提出。 本标准由煤炭行业煤矿专用设备标准化技术委员会归口。 本标准由中国煤炭工业协会煤矿支护专业委员会负责起草。煤炭科学研究总院南京研究所、煤炭科学研究总院开采设计研究分院、煤炭科学研究总院建井研究分院、中国矿业大学、兖州矿业集团公司、徐州矿务集团公司、鹤岗矿业集团公司、新汶矿业集团公司、山西焦煤西山煤电集团公司、江阴市矿山器材厂、石家庄中煤装备制造有限公司、深圳海川工程科技有限公司参加起草。 本标准主要起草人:袁和生、康红普、陈桂娥、权景伟、张农、王方荣、王富奇、何清江、周明、秦斌青、晨春翔、黄汉财、赵盘胜、何唯平。 煤巷锚杆支护技术规范 1 范围 本标准规定了煤巷锚杆支护技术的术语和定义、技术要求、煤巷锚杆支护监测及煤巷锚杆支护施工质量检测。 本标准适用于煤矿煤巷锚杆支护,也适用于半煤岩巷锚杆支护。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T 5224-2003 预应力混凝土用钢绞线 GB/T 14370-2000 预应力筋用锚具、夹具和连接器 GB 50086-2001 锚杆喷射混凝土支护技术规范 MT 146.1-2002 树脂锚杆锚固剂 MT 146.2-2002 树脂锚杆金属杆体及其附件 MT/T 942-2005 矿用锚索 MT 5009-1994 煤矿井巷工程质量检验评定标准

锚杆及土钉墙支护施工技术交底

锚杆及土钉墙支护施工技术交底 一、工艺流程: 1.土层锚杆施工工艺流程:土方开挖→修整边壁→测量、放线→钻机就位→接钻杆→校正孔位→调整角度→打开水源→钻孔(接钻杆)→钻至设计深度→冲洗→插锚杆→压力灌浆养护→裸露主筋除锈→上横梁(或预应力锚件)→焊锚具→张拉(仅限于预应力锚杆)→锚头(锚具)锁定。 土层锚杆干作业施工程序与水作业钻进法基本相同,只是钻孔时不用水冲泥渣成孔,而是将土体顺钻杆排出孔外而成孔。 2.喷射混凝土面层施工工艺流程:立面子整→绑扎钢筋网片→干配混凝土料→依次打开电、风、水开关→进行喷射混凝土作业→混凝土面层养护。 二、施工操作要点及要求 1.基坑开挖 锚杆、土钉支护应按设计规定分层、分段开挖,做到随时开挖,随时支护,随时喷混凝土,在完成上层作业面的锚杆预应力张拉或土钉与喷射混凝土以前,不得进行下一层土的开挖。当基坑面积较大时,允许在距离四周边坡8~10 m 的基坑中部自由开挖,但应注意与分层作业区的开挖相协调;当用机械进行土方开挖时,严禁边壁出现超挖或造成边壁土体松动或挡土结构的破坏。为防止基坑边坡土体发生塌陷,对于易塌的土体可采用以下措施: (1)对修整后的边壁立即喷上一层薄的砂浆或混凝土,待凝结后再进行钻孔;(2)在作业面上先安装钢筋网片喷射混凝土面层后,再进行钻孔并设置土钉;(3)在水平方向分小段间隔开挖; (4)先将开挖的边壁作成斜坡,待钻孔并设置土钉后再清坡; (5)开挖时沿开挖面垂直击入钢筋和钢管或注浆加固土体。 2.排水 (1)锚杆、土钉支护宜在排除地下水的条件下进行施工,应采取恰当的降、排水措施排除地下水(包括地表、支护内部、基坑排水),以避免土体处于饱和状态并减轻作用于面层上的静水压力。 (2)基坑四周支护范围内应预修整,构筑排水沟和水泥砂浆或混凝土地面,防止地表水向地下渗透。靠近基坑坡顶2~4m 的地面应适当垫高,并且里高外低,

锚杆支护的发展现状

锚杆支护技术的应用现状及发展趋势 摘要 基于国内外大量而广泛的锚杆支护技术的应用与研究,锚杆支护的优越性越来越得到认可,本文阐述了锚杆支护技术及其分类,总结了锚杆支护技术的作用原理,并对国内外锚杆支护的现状做了初步分析。运用支护设计中常用理论及方法,对锚杆支护的优缺点进行了分析和评价,高效机械化掘进与支护技术是保证矿井实现高产高效的必要条件,也是巷道掘进技术的发展方向。同时对实际支护工程中的某些不足进行了具体讨论,并对未来的发展趋势进行了初步分析。 关键词:锚杆支护;支护原理;应用现状;发展趋势

摘要 ··································································································· I 一、概述 (1) 二、锚杆支护技术的概念及其分类 (1) (一)锚杆支护技术 (1) (二)锚杆的分类 (2) (三)锚杆支护适用条件及优缺点 (6) (四)锚杆支护的设计与施工 (6) 三、锚杆的支护原理 (7) (一)目前,已经被广为接受的锚杆支护理论主要有如下几种: (7) (二)近年来,又提出了新的支护理论,主要有以下几种: (9) 四、国内外锚杆支护技术的应用现状 (10) (一)国外锚杆支护技术的现状 (10) (二)国内锚杆支护的现状 (12) (三)国内外锚杆支护技术的对比 (12) 五、锚杆支护技术发展趋势 (13) (一)锚杆支护技术的改进 (13) (二)锚杆支护技术的发展趋势 (15) 参考文献 (16)

一、概述 锚杆支护作为岩土工程加固的一种重要形式,由于其具有安全、高效、低成本等优点,在国际岩土工程领域得到了越来越多的应用。1872年,英国北威尔士的煤矿加固工程中首次采用钢筋加固页岩之后,1905年美国矿山中也出现了类似的加固工程。到了20世纪40年代,锚杆支护在地下工程中的应用在国外得到了迅猛发展。 目前,在澳大利亚和美国等国的地下工程支护中,锚杆支护已经占到了接近100%。我国于20世纪50年代开始试用锚杆支护技术,至70年代前期还处于探索阶段,直到1978年才开始重点推广,80年代开始向英国学习锚杆支护技术后推广到煤巷支护,90年代又向澳大利亚学习引进成套先进的锚杆支护技术,目前已得到较广泛的推广和应用。在一些矿区的锚杆支护巷道比例达到90%以上,有些矿井甚至达到了100%,取得了较好的技术与经济效益。国内现有楔缝、涨壳、倒楔锚杆、钢丝绳或钢筋砂浆锚杆、木锚杆、竹锚杆、内涨锚杆、管缝锚杆、树脂锚杆、水泥锚杆、爆扩锚杆、预应力注浆大锚索等十几个系列。 由于各种锚杆的构造不同,锚杆作用机理差异甚大,国内外大量工程实践证明,各种不同种类锚杆,在不同的地质条件下,有不同的“支护”效果。国内外锚杆支护成功的经验表明,合理的锚杆支护设计及详细的监测分析,不仅可保证回采巷道的安全可靠,而且可取得显著的技术经济效益和社会效益。 二、锚杆支护技术的概念及其分类 (一)锚杆支护技术 锚杆支护技术就是在土层或岩层中钻孔,埋入锚杆后灌注水泥(或水泥砂浆、锚固剂),依靠锚固体与岩层之间的摩擦力、拉杆与锚固体的握裹力以及拉杆强度共同作用,来承受作用于支护结构上的荷载。通过锚杆的轴向作用力,将杆体周围围岩中一定范围岩体的应力状态由单向(或双向)受压转变为三向受压,从而提高其环向抗压强度,使压缩带既可承受其自身重量,又可承受一定的外部载荷,使其有效地控制围岩变形。 锚杆支护是在边坡、岩土深基坑等地表工程及隧道、采场等地下施工中均广

巷道支护技术

2.1 巷道围岩控制理论 1907年俄国学者普罗托吉雅可诺夫提出普氏冒落拱理论[1-2],该理论认为:巷道开掘后,已采空间上部岩层将逐步垮落,其上方会形成一个抛物线形的自然平衡拱,下方冒落拱的高度与岩层强度和巷道宽度有关。该理论适用于确定巷道围岩强度不高、开采深度不是很大的巷道支护反力。20世纪50年代以来,人们开始用弹塑性力学解决巷道支护问题,其中最著名的是Fenner [3]公式和Kastner 公式[4]。 Fenner 公式为: ()[]10cot sin 1cot -??? ??+-+-=???σ?N i R r C C P (1) 式中,i P —支护反力;C —围岩内聚力;?—内摩擦角;0σ—原岩应力;r —巷道半径;R —塑性圈半径;?N —塑性系数,κ??sin 1sin 1-+= N 。 Kastner 公式为: ()()?????sin 1sin 20sin 1cot cot -??? ??-?++-=R r C P C P i (2) 式中,i P —支护反力;C —围岩内聚力;?—内摩擦角;0P —初始应力;r —巷道半径;R —塑性圈半径。 国内外巷道顶板控制理论发展很快[3-4],我国在1956年开始使用锚杆支护,迄今为止,已有50多年的历史。锚杆支护机理研究随着锚杆支护实践的不断发展,国内外已经取得大量研究成果[5-10]。 (1)悬吊理论 1952年路易斯阿帕内科L(ouis.Apnake)等提出了悬吊理论,悬吊理论认为锚杆支护的作用就是将巷道顶板较软弱岩层悬吊在上部稳固的岩层上,在预加张紧力的作用下,每根锚杆承担其周围一定范围内岩体的重量,锚杆的锚固力应大于其所悬吊的岩体的重力。 (2)组合梁理论

浅议锚杆支护的作用

浅议锚杆支护的作用 摘要]近几年来,随着煤矿开采技术的不断发展,开采深度逐步增加。矿井和巷道支护是煤矿安全生产的重要保证,我国煤矿以矿井开采为主,需要在井下开掘大量巷道,而且80%以上是煤巷、半煤岩巷,或为松软破碎围岩巷,或为遇水软化膨胀围岩巷。确保巷道的安全、快速掘进,确保巷道使用期间的畅通、与围岩稳定,确保巷道的支护与维护成本较低等,是建设安全高效矿井的一项重要工作,具有重要意义。煤矿矿井、巷道支护经历一系列的技术发展历程。目前,锚杆支护应用较为广泛。本文讨论了锚杆支护的分类、支护形式、作用、注意事项等方面阐述个人观点。 [关键词]煤矿锚杆支护作用 1 锚杆的分类 (1)木锚杆分为普通木锚杆、压缩木锚杆;(2)倒楔式金属锚杆; (3)管缝式锚杆;(4)树脂锚杆 (5)快硬膨胀水泥锚杆;(6)锚索 2 锚杆支护的优越性 2.1 支护效果好锚杆支护在支护原理上符合现代岩石力学和围岩控制理论,属于主动支护,锚杆安装以后在围岩内部对围岩进行加固,迅速形成一个围岩――支护的整体承载结构,能够调动和利用围岩自身的稳定性,充分发挥围岩自身的承载能力,有利于保护巷道围岩的稳定,改善巷道维护状况。 2.2 劳动强度低、效率高与传统架棚式支护相比,由于锚杆支护所

采用的支护材料较少、重量较轻、巷道掘进时,极大地减少了支护材料的运输量,劳动强度也大为降低,有利于提高掘进工效。工作面回采时,也省去了支架的回撤工作,既降低了工人劳动强度,又提高了安全系数。锚杆施工操作简单,紧跟掘进面,有利于实现快速掘进工作。 2.3 经济效益明显采用锚杆支护可以减少支护材料投入,降低直接支护成本。由于锚杆支护不占用巷道工作断面,因此在支护设计上,可相应减少巷道断面,节省大量材料。还能减少巷道维修量,节约维护费用。 3 锚杆支护的结构形式 (1)单一锚杆+水泥托板; (2)锚杆+网+水泥托板; (3)锚杆+网+ w型钢板钢带 (4)锚杆+网+钢筋梁等形式。 形式的选择主要取决于巷道围岩的性质,在Ⅰ、Ⅱ、Ⅲ类较好的围岩巷道中一般选择锚杆+网+水泥托板,随着围岩条件的变化程度及断面增大,Ⅳ、Ⅴ类围岩巷道采用锚杆+网+ w型钢板钢带、锚杆+网+钢筋梁的支护形式。 4 锚杆支护的作用 4.1 悬吊作用 锚杆支护的悬吊作用,突出的表现在直接顶较薄,老顶较坚固的情况下,锚杆将下部不稳定的岩层悬吊在上步稳固的岩层上,由锚杆承担软岩或危岩的重量,以达到井巷稳定的目的。实践证明,即使巷道上部

601运输巷锚杆支护施工安全技术措施(2021版)

601运输巷锚杆支护施工安全技术措施(2021版) Security technology is an industry that uses security technology to provide security services to society. Systematic design, service and management. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0438

601运输巷锚杆支护施工安全技术措施 (2021版) 601运输巷原设计为矿工钢作永久支护,临时支护采用前探梁支护。根据迎头顶板岩性,煤岩层结构情况,经矿研究决定,601运输巷永久支护改为锚网支护。为了保证施工安全,特制定如下补充安全措施。 一、施工前的准备工作: 1、施工队按计划准备锚杆、树脂药卷、托板、螺帽、金属网(金属网采用12#元丝加工而成)、临时支护材料等。 二、施工顺序: (1)敲帮问顶→临时支护→打锚眼→锚固。 (2)随掘进头掘进方向由北向南进行。 四、锚杆支护技术措施:

1、锚杆支护 ①、锚杆及构件:锚杆用¢18螺纹钢制成,锚杆尾螺纹段长 0.05m;金属弧形方托板规格:长×宽×厚=120㎜×120㎜×8㎜;每根锚杆上1颗M16㎜的螺帽。 ②、锚杆支护参数: 锚杆长度:2m/根。树脂药卷规格:长350㎜,直径¢23㎜。 锚固形式:端头锚固,每根锚杆用3卷树脂锚固剂。 锚固力:60KN。 锚杆布置:方形布置。锚杆垂直于巷道轮廓线,锚杆不得布置在岩缝中。 锚杆间、排距:0.7m,局部较破碎段缩小间、排距为0.6m。 每张金属网规格:长×宽=2.0m×1.0m,金属网网孔规格:100㎜×100㎜。 2、锚杆支护参数验算 ①、锚杆长度 L≥a+b+h=0.4+0.1+1.5=1.4(m)

煤巷锚杆支护技术规范

煤巷锚杆支护技术规范 1 范围 本标准规定了煤巷锚杆支护技术的术语和定义、技术要求、煤巷锚杆支护监测及煤巷锚杆支护施工质量检测。 本标准适用于煤矿煤巷锚杆支护,也适用于半煤岩巷锚杆支护。 2规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T5224-2003 预应力混凝土用钢绞线 GB/T14370-2000 预应力筋用锚具、夹具和连接器 GB50086-2001 锚杆喷射混凝土支护技术规范 MT146.1-2002 树脂锚杆锚固剂 MT146.2-2002 树脂锚杆金属杆体及其附件 MT/T942-2005 矿用锚索 MT5009-1994 煤矿井巷工程质量检验评定标准 3术语和定义 下列术语和定义适用于本标准。 3.1 煤巷coal roadway 断面中煤层面积占4/5或4/5以上的巷道。 3.2 半煤岩巷half-coal and half-rock roadway 断面中岩石面积(含夹石层)大于1/5到小于4/5的巷道。

锚杆支护bolt supporting 以锚杆为基本支护形式的支护方式。 3.4 锚杆杆体破断力breaking force of bolt bar 锚杆杆体能承受的极限拉力。 3.5 锚杆拉拔力pulling force of bolt 锚杆锚固后,拉拔试验时,锚杆破断或失效时的极限拉力。 3.6 锚固力anchor capacity 锚杆的锚固部分或杆体在拉拔试验时,所能承受的极限载荷。 〔MT146.1-2002,定义3.8〕 3.7 设计锚固力design anchor capacity 设计时给定的锚杆应能承受的锚固力。 3.8 树脂锚杆resin anchor bolt 〔MT146.1-2002,定义3.1〕 3.9 树脂锚固剂capsule resin 起粘结锚固作用的材料称锚固剂,树脂锚固剂由树脂胶泥与固化剂两部份分隔包装成卷形。混合后能使杆体与被锚固体煤岩粘接在一起。 〔MT146.1-2002,定义3.2〕

锚杆支护技术存在的问题与发展策略探讨

锚杆支护技术存在的问题与发展策略探讨 贾焕福 (龙煤鹤岗分公司兴山煤矿,黑龙江鹤岗154100) 摘要该文论述了锚杆支护技术在地质、设计、围岩监测等方面存在着一些问题。加强锚杆支护理论的研究,完善描杆支护施工机具,缩小W型钢带与国际先进水平的差距,以及深化树脂锚固剂发展研究。 关键词锚杆支护设计发展策略围岩监测 中图分类号TD353+.6文献标识码A 1锚杆支护技术存在的问题 1.1地质方面的问题 锚杆支护质量与巷道地质工作密切相关,煤矿地质环境复杂、基础信息匾乏。我国煤矿有围岩稳定的l、2类巷道,也有围岩不稳定和极不稳定的4、5类巷道。特别是回采巷道,不仅围岩的强度条件较差,还受到采动的强烈影响。所以,锚固结构要具有相应的变形适应性并保持足够的承载能力及对围岩变形的约束力,使围岩重新形成平衡状态,这给锚杆支护技术的应用带来了较大的困难。地应力实测技术是煤巷锚杆支护技术体系的核心技术之一,实施地应力实测是煤巷锚杆支护设计的基础。我国在一些煤矿仅进行了局部地应力的实测和研究,因测量技术、测量仪器和相关配套设备的限制,地应力实测和研究进展缓慢,并未系统进行矿区地应力实测。 通过地质勘察设计,仅给出矿区地质格局,不能完全明确给出某条巷道的具体地质状况。没有从整个矿山系统分析地质状况,不能正确反映地压的来源。若从整体考虑巷道在矿山中所处的周围围岩状况及与周围巷道之间的相互关系,就能正确地判断来压方向,切断来压源,较大程度地缓解支护困难。 1.2设计方面的问题 1.2.1锚杆支护的机理 现有锚杆支护理论存在一定的局限性,还不能满足复杂条件下特别是全煤及软岩条件下巷道围岩支护设计的要求。传统的锚杆支护理论有:悬吊理论、组合梁理论、组合拱(压缩拱)理论。它们以一定的假说为基础的,从不同角度、条件阐述锚杆支护的作用机理,并且力学模型较为简单,计算方法简单。近年来,锚杆支护理论研究有了新的发展,提出了巷道锚杆支护围岩强度强化理论及最大水平应力理论,揭示了锚杆支护的实质,扩大了锚杆支护技术的应用范围,尤其是为煤巷和软岩巷道的锚杆支护提供了理论指导。然而, *收稿日期:2011-08-03 作者简介:贾焕福(1968-),男,汉族,河北唐山人,黑龙江科技大学采矿工程本科毕业,工程师,哈尔滨理工大学在读工程硕士研究生,现从事煤矿技术工作。现有较为成熟的锚杆支护理论也难以满足指导回采巷道特别是全煤巷道锚杆支护设计的要求,需要加强多方面的研究。 1.2.2锚杆支护参数选取 锚杆支护参数的选取主要是采用经验法、工程类比法和理论计算法,而这三种方法存在着弊端,不能完全确定锚杆支护参数。地下围岩的地质状况,非常复杂,在锚杆支护设计方面,需要针对实际情况,不断修改设计。随着计算机技术的发展,数值计算已经成为工程设计不可缺少的工具。正确进行锚杆支护参数的选取已成为关键问题。 1.2.3锚杆种类 随着新型材料的不断发展,各种新材料锚杆也不断涌现。而单独进行锚杆生产与研发的单位却较少,在材料、工艺上没有实现规范化,浪费材料,也影响了锚杆的支护效果。在锚杆安装上,机械化程度相当低,多数煤矿还是采用手持钻机安装锚杆或人工安装。 煤矿地质条件复杂,特别在软岩、厚层复合顶板、高应力地层区域中,煤巷锚杆支护经常出现断锚断索现象。顶板岩层的层间错动会使锚杆、锚索发生剪切破坏。金属锚杆结构不合理,在偏心载荷超过锚尾材料的强度极限时,锚尾发生破坏。地层和地下水中的侵蚀介质腐蚀锚杆杆体,在高拉应力作用下杆体可能发生脆性破坏,可能引起钢丝或钢绞线的断裂,造成锚杆支护系统失效 1.3围岩监测方面的问题 顶板离层指示仪测定锚杆锚固的离层状况,对顶板出现冒落危险进行报警,以杜绝顶板事故。对顶板离层监测普遍使用的是离层指示仪,这是一种机械式测量方法。此法尽管比较直观,但要经常到测点附近读取数据,测量数据的真实性受一定的人为因素影响。离层值是表征锚杆支护巷道顶板稳定性的重要指标。确定锚杆支护巷道顶板离层界限值,采用数值计算程序模拟及经验公式计算得出,但公式中的系数需在具体矿区环境下不断检验和修正。在实际运用中,还需要与锚杆受力大小、巷道表面位移、巷道外观形态变化等进行考虑。目前应用的是锚杆拉拔计、扭矩扳手等常规的侧定锚杆锚固力技术,对锚杆的工作状况存在负面作用。 44 12012年第2期

喷锚支护施工工艺流程和施工技术要求

喷锚支护施工工艺流程和施工技术要求 标准化管理部编码-[99968T-6889628-J68568-1689N]

喷锚支护施工工艺流程和施工技术要求㈠.施工工序 分层开挖土方→修整坡面→测定锚杆位置→锚杆钻机就位→锚杆打入设计深度→铺设钢筋网片→钢筋与锚杆焊接→喷射混凝土→锚杆体进行压力灌浆→挖土至下一层锚杆施工深度→重复以上工序直到设计深度。 ㈡.工程实施 1.喷锚支护施工 喷锚支护施工是与挖土工作交叉进行的,应分层分阶段施工,每层挖土深度一般控制在2~2.5m左右,对于砂层厚度大于1.5m的地段,应严格控制每层挖土深度在1.5m以内,以便进行锚杆的施工和护壁工作,具体施工方案如下: (1) 锚杆位置测放:沿平整的土坡面上由技术人员测放出锚杆位置,并作出标记和编号。孔位偏差不得超过20cm。成孔倾角误差不大于±3度。 (2) 杆体制作,锚杆采用φ48(壁厚3.0mm)普通钢管,在杆体锚固段上钻孔形成花管,土层、砂层内锚杆应焊接角钢作为倒剌,杆体无影响质量的裂痕,内部要求畅通无堵塞。 (3) 杆体安放,用专用锚杆钻机将锚杆顶入土层中,倾角为15度。 (4) 焊接 ①杆体的焊接:焊接时应保证焊接面积符合设计要求,也保证锚杆的抗拔力能满足设计强度,同时焊接应使内部能够畅通。 ②锚杆与金属网主筋的焊接:焊接中应避免虚焊和焊接面积不够的问题,也应保证焊接强度不低于锚杆的抗拔力。 焊接质量的好坏直接影响到锚杆能否正常发挥作用,每根锚杆都应严把焊接质量关。 (5).喷射混凝土施工: ①.喷射混凝土施工前基坑壁应清理掉虚土并保持壁面平整。面层内的钢筋网应牢固固定在边壁上,钢筋网片可用插入土中的钢筋固定,在砼喷射时应不出现振动。

锚杆支护技术规范(正式版本)

锚杆支护技术规范(正式) 第一章总则 1为贯彻安全第一得生产方针,严格执行《煤矿安全规程》与煤炭工业技术政策,确保正确地进行锚杆支护设计与施工质量,促进煤巷锚杆支护技术得健康发 展,特制定本规范。 2 锚杆支护巷道施工必须进行设计.锚杆支护设计要注重现场调查研究,吸取国内外锚 杆支护设计、施工与监测方面得先进经验,积极采用新技术、新工艺、新材 料,做到技术先进、经济合理、安全可靠。 新采区采用锚杆支护时,要进行基础数据收集并进行锚杆支护实验工作,锚杆支护设计要组织有关单位会审,并报集团公司备案. 3 对在煤巷应用锚杆支护得有关人员(管理人员、工程技术人员及操作人员),都必须 进行技术培训。 4 在应用锚杆支护得巷道中,必须有矿压及安全监测设计。在施工中必须按设计设置 矿压及安全监测装置,并有专人负责监测. 第二章巷道围岩得稳定性分类 5采用煤巷锚杆支护技术,必须对巷道围岩稳定性进行分类,为指导锚杆支护设计、施工与管理提供依据。 6巷道分类按原煤炭部颁发得《缓倾斜、倾斜煤层回采巷道围岩稳定性分类方案》执行。 7煤层围岩分类指标以缓倾斜、倾斜薄煤层及中厚煤层回采巷道分类指标为基本分类指标。其它条件下得煤巷(如煤层上山)稳定性分类指标,可根据具体情 况对分类指标进行相应替代,详见表1与表2。 缓倾斜、倾斜薄及中厚煤层回采巷道分类指标

第三章锚杆支护设计 8 锚杆支护设计应贯彻地质力学评估-初始设计-监测与信息反馈—修改设计等四个步 骤。 锚杆支护设计参考以地应力为基础得煤巷锚杆支护设计方法,结合锚杆支护实践,可根据直接顶稳定情况,按悬吊理论、自然平衡拱理论、组合梁理论或锚杆楔固理 论进行设计计算;亦可采用工程类比法进行设计。无论采用哪种设计方法,都 必须对支护状况进行监测,包括锚杆受力、巷道围岩表面与深部位移及弱化 范围、顶板离层等内容。根据监测信息反馈结果对设计进行验证或修改。 第9条为进行科学得锚杆支护设计,必须具备表3所要求得原始资料。巷道施工后,根据实际揭露得围岩及地质构造等情况,对有关数据进行校核,为修改与完善锚 杆支护设计提供依据。

相关主题