搜档网
当前位置:搜档网 › 路由表说明(详解route print)

路由表说明(详解route print)

路由表说明(详解route print)
路由表说明(详解route print)

看了的路由表,就找来这片文章,比较详细的解释了路由表,这个还是比较常用的,和大家共享

路由表说明

:

:

当前的路由:

目的网段

子网掩码

到达该目的地的本路由器的出口

下一跳路由器入口的,路由器通过和定义一调到下一个路由器的链路,通常情况下,和是同一网段的跳数,该条路由记录的质量,一般情况下,如果有多条到达相同目的地的路由记录,路由器会采用值小的那条路由

第一条

缺省路由:意思就是说,当一个数据包的目的网段不在你的路由记录中,那么,你的路由器该把那个数据包发送到哪里!缺省路由的网关是由你的连接上的决定的该路由记录的意思是:当我接收到一个数据包的目的网段不在我的路由记录中,我会将该数据包通过这个接口发送到这个地址,这个地址是下一个路由器的一个接口,这样这个数据包就可以交付给下一个路由器处理,与我无关。该路由记录的线路质量

第二条

缺省路由:该路由记录的意思是:当我接收到一个数据包的目的网段不在我的路由记录中,我会将该数据包通过这个接口发送到这个地址,这个地址是下一个路由器的一个接口,这样这个数据包就可以交付给下一个路由器处理,与我无关。该路由记录的线路质量

第三条

本地环路:这个网段内所有地址都指向自己机器,如果收到这样一个数据,应该发向哪里该路由记录的线路质量

第四条

直联网段的路由记录:当路由器收到发往直联网段的数据包时该如何处理,这种情况,路由记录的和是同一个。

当我接收到一个数据包的目的网段是时,我会将该数据包通过这个接口直接发送出去,因为这个端口直接连接着这个网段,该路由记录的线路质量

第五条

直联网段的路由记录

当我接收到一个数据包的目的网段是时,我会将该数据包通过这个接口直接发送出去,因为这个端口直接连接着这个网段,该路由记录的线路质量

第六条

本地主机路由:当路由器收到发送给自己的数据包时将如何处理

当我接收到一个数据包的目的网段是时,我会将该数据包收下,因为这个数据包时发送给我自己的,该路由记录的线路质量

第七条

本地主机路由:当路由器收到发送给自己的数据包时将如何处理

当我接收到一个数据包的目的网段是时,我会将该数据包收下,因为这个数据包时发送给我自己的,该路由记录的线路质量

第八条

本地广播路由:当路由器收到发送给直联网段的本地广播时如何处理

当我接收到广播数据包的目的网段是时,我会将该数据从接口以广播的形势发送出去,该路由记录的线路质量

第九条

本地广播路由:当路由器收到发送给直联网段的本地广播时如何处理

当我接收到广播数据包的目的网段是时,我会将该数据从接口以广播的形势发送出去,该路由记录的线路质量

第十条

组播路由:当路由器收到一个组播数据包时该如何处理

当我接收到组播数据包时,我会将该数据从接口以组播的形势发送出去,该路由记录的线路质量

第十一条

组播路由:当路由器收到一个组播数据包时该如何处理

当我接收到组播数据包时,我会将该数据从接口以组播的形势发送出去,该路由记录的线路质量

Windows操作系统路由表完全解析

Windows操作系统路由表完全解析 时间能够以这样的方式过去令人感到惊异。人们倾向于认为计算机技术属于高科技,但是,TCP/IP协议在过去的三十年里以各种形式出现,无所不在。因此,TCP/IP协议有时间变得真正成熟起来,并且更稳定和更可靠。然而,当涉及到计算机的时候,事情就没有那样简单了。当路由包通过网络的时候,有时候会出现错误。在这种情况下,熟悉Windows路由表是很有帮助的。路由表能够决定来自有问题的机器的数据包的去向。在本文中,我将向你介绍如何查看Windows路由表以及如何让Windows路由表中包含的数据有意义。 查看Windows路由表 路由表是Windows的TCP/IP协议栈的一个重要的部分。但是,路由表不是Windows 操作系统向普通用户显示的东西。如果你要看到这个路由表,你必须要打开一个命令提示符对话框,然后输入“ROUTE PRINT”命令。然后,你将看到一个类似于图A中显示的图形。 图A:这是Windows路由表的外观 在我深入讨论这个路由表之前,我建议你在命令提示符对话框中输入另一个命令。这个命令是:IPCONFIG /ALL 我建议你使用IPCONFIG /ALL命令的理由是因为这个命令能够显示TCP/IP协议在机器中实际上是如何设置的。的确,你可以在网卡属性页认真查看TCP/IP协议,但是,如果你从IPCONFIG得到这个信息,这个信息会更可靠。在过去的几年里,我曾经遇到过这样一些例子,IPCONFIG报告的信息与机器中的TCP/IP协议设置屏幕中显示的信息完全不一样。这种事情不常见,但是,如果正好出现这种错误,你就会遇到这种不匹配的情况。坦率

查看Windows路由表

时间能够以这样的方式过去令人感到惊异。人们倾向于认为计算机技术属于高科技,但是,TCP/IP协议在过去的三十年里以各种形式出现,无所不在。因此,TCP/IP 协议有时间变得真正成熟起来,并且更稳定和更可靠。然而,当涉及到计算机的时候,事情就没有那样简单了。当路由包通过网络的时候,有时候会出现错误。在这种情况下,熟悉Windows路由表是很有帮助的。路由表能够决定来自有问题的机器的数据包的去向。在本文中,我将向你介绍如何查看Windows路由表以及如何让Windows路由表中包含的数据有意义。 查看Windows路由表 路由表是Windows的TCP/IP协议栈的一个重要的部分。但是,路由表不是Windows操作系统向普通用户显示的东西。如果你要看到这个路由表,你必须要打开一个命令提示符对话框,然后输入“ROUTE PRINT”命令。然后,你将看到一个类似于图A中显示的图形。 图A:这是Windows路由表的外观 在我深入讨论这个路由表之前,我建议你在命令提示符对话框中输入另一个命令。这个命令是:IPCONFIG /ALL 我建议你使用IPCONFIG /ALL命令的理由是因为这个命令能够显示TCP/IP 协议在机器中实际上是如何设置的。的确,你可以在网卡属性页认真查看TCP/IP 协议,但是,如果你从IPCONFIG得到这个信息,这个信息会更可靠。在过去的几年里,我曾经遇到过这样一些例子,IPCONFIG报告的信息与机器中的TCP/IP 协议设置屏幕中显示的信息完全不一样。这种事情不常见,但是,如果正好出现这种错误,你就会遇到这种不匹配的情况。坦率地说,键入到TCP/IP属性页中的信息反映了你想要Windows为选择的网络设置的TCP/IP协议。IPCONFIG提供的信息显示了Windows实际上设置的协议。

Windows路由表详解

Windows路由表详解 对于路由器的路由表,大部分网管朋友都很熟悉,但是对于windows的路由表,可能了解的人就相对少一些。今天我们就一起来看看windows路由表。 一、 windows路由表条目解释 1. 使用ipconfig /all查看网卡信息 2. 使用route print命令查看路由表信息,如下图: 3. 路由表信息解释

1)名词解释: Active Routes:活动的路由 Network destination :目的网段 Netmask:子网掩码 Gateway:网关,又称下一跳路由器。在发送IP数据包时,网关定义了针对特定的网络目的地址,数据包发送到的下一跳服务器。如果是本地计算机直接连接到的网络,网关通常是本地计算机对应的网络接口,但是此时接口必须和网关一致;如果是远程网络或默认路由,网关通常是本地计算机所连接到的网络上的某个服务器或路由器。 Interface:接口,接口定义了针对特定的网络目的地址,本地计算机用于发送数据包的网络接口。网关必须位于和接口相同的子网(默认网关除外),否则造成在使用此路由项时需调用其他路由项,从而可能会导致路由死锁。 Metric:跳数,跳数用于指出路由的成本,通常情况下代表到达目标地址所需要经过的跳跃数量,一个跳数代表经过一个路由器。跳数越低,代表路由成本越低,优先级越高。 Persistent Routes:手动配置的静态固化路由 2)第一条路由信息:缺省路由 当系统接收到一个目的地址不在路由表中的数据包时,系统会将该数据包通过 192.168.99.8这个接口发送到缺省网关192.168.99.1。 3)第二条路由信息:本地环路 当系统接收到一个发往目标网段127.0.0.0的数据包时,系统将接收发送给该网段的所有数据包。 4)第三条路由信息:直连网段的路由记录

路由表

路由表 在计算机网络中,路由表(routing table)或称路由择域信息库(RIB, Routing Information Base),是一个存储在路由器或者联网计算机中的电子表格(文件)或类数据库。路由表存储着指向特定网络地址的路径(在有些情况下,还记录有路径的路由度量值)。路由表中含有网络周边的拓扑信息。路由表建立的主要目标是为了实现路由协议和静态路由选择。 主要工作 路由器的主要工作就是为经过路由器的每个数据包寻找一条最佳的传输路径,并将该数据有效地传送到目的站点。由此可见,选择最佳路径的策略即路由算法是路由器的关键所在。为了完成这项工作,在路由器中保存着各种传输路径的相关数据——路由表(Routing Table),供路由选择时使用,表中包含的信息决定了数据转发的策略。打个比方,路由表就像我们平时使用的地图一样,标识着各种路线,路由表中保存着子网的标志信息、网上路由器的个数和下一个路由器的名字等内容。路由表可以是由系统管理员固定设置好的,也可以由系统动态修改,可以由路由器自动调整,也可以由主机控制。 路由表项 路由表中的表项内容包括:

destination:目的地址,用来标识IP包的目的地址或者目的网络。mask:网络掩码,与目的地址一起标识目的主机或者路由器所在的网段的地址。 pre:标识路由加入IP路由表的优先级。可能到达一个目的地有多条路由,但是优先级的存在让他们先选择优先级高的路由进行利用。cost:路由开销,当到达一个目的地的多个路由优先级相同时,路由开销最小的将成为最优路由。 interface:输出接口,说明IP包将从该路由器哪个接口转发。nexthop:下一跳IP地址,说明IP包所经过的下一个路由器。 分类

路由表相关的概念及路由匹配原则

1、查看路由表信息的命令为ZXR10#show ip route,显示实例如下: ZXR10#show ip route IPv4 Routing Table: Dest Mask Gw Interface Owner pri metric 10.26.32.0 255.255.255.0 10.26.245.5 fei_1/1 bgp 200 0 10.26.33.253 255.255.255.255 10.26.245.5 fei_1/1 ospf 110 14 10.26.33.254 255.255.255.255 10.26.245.5 fei_1/1 ospf 110 13 10.26.36.0 255.255.255.248 10.26.36.2 gei_5/2.1 direct 0 0 10.26.36.2 255.255.255.255 10.26.36.2 gei_5/2.1 address 0 0 10.26.36.24 255.255.255.248 10.26.36.26 gei_5/2.4 direct 0 0 10.26.245.4 55.255.255.252 10.26.245.6 fei_1/1 direct 0 0 10.26.245.6 255.255.255.255 10.26.245.6 fei_1/1 address 0 0 路由表中通常包含以下信息: ● Dest:目的逻辑网络或子网地址。 ● Mask:目的逻辑网络或子网的掩码。 ● Gw:与之相邻的路由器的端口地址,即该路由的下一跳IP地址。 ● Interface:学习到该路由条目的接口,也是数据包离开路由器去往目的地将经过的接口。 ● Owner:路由来源,表示该路由信息是怎样学习到的。 ● Pri:路由的管理距离,即优先级,决定了来自不同路由来源的路由信息的优先权。 ● Metric:度量值,表示每条可能路由的代价,度量值最小的路由就是最佳路由。Metric 只有当同一种动态路由协议,发现多条到达同一目的网段路由的时候,才有比较性。不同路由协议的Metric不具有可比性。 例如,实例中加粗显示的一行是路由表中的一条路由信息,其中:

添加路由表

添加路由,这里按照自己的网络情况设置,下面是我的路由设置:Persistent Routes: Network Address Netmask Gateway Address Metric 135.190.35.0 255.255.255.0 135.190.35.254 135.190.0.0 255.255.0.0 135.190.35.254 132.0.0.0 255.0.0.0 135.190.35.254 我的内网是135.190.35.0段的IP,网关是135.190.35.254,外网是135.175.35.0段的IP,网关是135.175.35.254,因为我们设置的网络是外网的(可以正常使用的,用IE上个百度或者别的网站试试),所以不用增加外网路由,只需要增加内网的路由,我增加如下有路由就可以: Route add 135.190.0.0 mask 255.255.0.0 135.190.35.254 -p Route add 132.0.0.0 mask 255.0.0.0 135.190.35.254 –p route add 135.190.35.0 mask 255.255.255.0 135.190.35.254 -p 如果网络不稳定,再增加一条外网的路由: route add 135.175.35.0 mask 255.255.255.0 135.175.35.254 上面的命令直接粘贴在cmd下运行就可以:

三、即指向0.0.0.0的有两个网关,这样就会出现路由冲突,两个网络都不能访问。如何实现同时问两个网络?那要用到route命令第一步:route delete 0.0.0.0 "删除所有0.0.0.0的路由" 第二步:route add 0.0.0.0 mask 0.0.0.0 172.23.1.1 "添加0.0.0.0网络路由"这个是主要的,意思就是你可以上外网。第三步:route add 10.0.0.0 mask 255.0.0.0 192.168.0.2 "添加以10开头的网段指向内网路由",注意mask为255.0.0.0 ,而不是255.255.255.0 ,这样内部的多网段才可用。到这儿如果能正常访问内外网了的话,那么我么就要永久写入了(因为刚刚设置的路由表会在重启后丢失),用到以下命令:route add -p 添加静态路由,即重启后,路由不会丢失。注意使用前要在tcp/ip设置里去掉接在企业内部网的网卡的网关。以下是 WinArpAttacker 这是一个arp攻击软件。你可以用它来查看网络上所有的ip和MAC地址! 我用它追查过ARP攻击者。还可以用~~~

IP路由表管理

IP路由表管理 1、路由表的显示和维护 通过查看路由表,有助于了解网络拓扑结构和定位路由问题。 查看路由表的信息是定位路由问题的基本手段,下面列举了通用的路由表信息显示及维护命令。 display命令可以在所有视图下使用。reset命令在用户视图下使用。 交换机引入较多的路由会占用较多的系统资源,在系统业务繁忙时,这就有可能影响设备的正常运行。为提高系统的安全性和可靠性,可以配置公网路由前缀限制,这样当路由前缀数超过预先设定的值时,系统会输出告警信息,从而提醒用户检查公网路由前缀的有效性。 操作步骤 1、查看IPv4路由表中当前激活路由的摘要信息。 display ip routing-table 2、查看IPv4路由表详细信息 display ip routing-table verbose 3、查看指定目的IPv4地址的路由信息。 display ip routing-table ip-address [ mask | mask-length ] [ longer-match ] [ verbose ] 4、查看指定目的IPv4地址范围内的路由信息。 display ip routing-table ip-address1 { mask1 | mask-length1 } ip-address2 { mask2 | mask-length2 } [ verbose ] 5、查看通过指定基本访问控制列表过滤的IPv4路由信息。 display ip routing-table acl { acl-number | acl-name } [ verbose ] 6、查看通过指定前缀列表过滤的IPv4路由信息。 display ip routing-table ip-prefix ip-prefix-name [ verbose ] 7、查看指定协议发现的IPv4路由信息。 display ip routing-table protocol protocol [ inactive | verbose ] 8、查看IPv4路由表的综合路由统计信息。 display ip routing-table statistics 9、查看IPv6路由表中当前激活路由的摘要信息 display ipv6 routing-table 10、查看IPv6路由表详细信息。 display ipv6 routing-table verbose 11、查看指定协议发现的IPv6路由信息。 display ipv6 routing-table protocol [ inactive | verbose ] 12、查看指定协议发现的IPv6路由信息。 13、查看IPv6路由表的综合信息。

从ROUTE命令学路由表配置

从R O U T E命令学路由表 配置 This model paper was revised by the Standardization Office on December 10, 2020

时间能够以这样的方式过去令人感到惊异。人们倾向于认为计算机技术属于高科技,但是,TCP/IP协议在过去的三十年里以各种形式出现,无所不在。因此,TCP/IP协议有时间变得真正成熟起来,并且更稳定和更可靠。然而,当涉及到计算机的时候,事情就没有那样简单了。当路由包通过网络的时候,有时候会出现错误。在这种情况下,熟悉Windows 路由表是很有帮助的。路由表能够决定来自有问题的机器的数据包的去向。在本文中,我将向你介绍如何查看Windows路由表以及如何让Windows路由表中包含的数据有意义。 查看Windows路由表 路由表是Windows的TCP/IP协议栈的一个重要的部分。但是,路由表不是Windows 操作系统向普通用户显示的东西。如果你要看到这个路由表,你必须要打开一个命令提示符对话框,然后输入“ROUTE PRINT”命令。然后,你将看到一个类似于图A中显示的图形。 图A:这是Windows路由表的外观 在我深入讨论这个路由表之前,我建议你在命令提示符对话框中输入另一个命令。这个命令是:IPCONFIG /ALL 我建议你使用IPCONFIG /ALL命令的理由是因为这个命令能够显示TCP/IP协议在机器中实际上是如何设置的。的确,你可以在网卡属性页认真查看TCP/IP协议,但是,如果你从IPCONFIG得到这个信息,这个信息会更可靠。在过去的几年里,我曾经遇到过这样一些例子,IPCONFIG报告的信息与机器中的TCP/IP协议设置屏幕中显示的信息完全不一样。这种事情不常见,但是,如果正好出现这种错误,你就会遇到这种不匹配的情况。

静态路由难点分析

静态路由中的下一跳地址和送出接口的区别和使用 在路由器转发任何数据包之前,路由表过程必须确定用于转发数据包的送出接口。我们将此过程称为路由解析。我们来看下具体的解析过程 在R1的路由表中有下面这条静态路由: S 192.168.2.0/24 [1/0] via 172.16.2.2 查找路由只是查询过程的第一步。R1 必须确定如何到达下一跳 IP 地址 172.16.2.2。它将进行第二次搜索,以查找与 172.16.2.2 匹配的路由。在本例中,IP 地址 172.16.2.2 与直连网络 172.16.2.0/24 的路由相匹配。 C 172.16.2.0 is directly connected, Serial0/0/0 172.16.2.0 路由是一个直连网络,送出接口为 Serial 0/0/0。此次查找告知路由表过程数据包将从此接口转发出去。因此,将任何数据包转发到 192.168.2.0/24 网络实际上经过了两次路由表查找过程。 在本例中:路由查找将包括下面两个步骤 1.数据包的目的 IP 地址与静态路由 19 2.168.2.0/24 匹配,下一跳 IP 地址 是 172.16.2.2。 2.静态路由的下一跳 IP 地址(172.16.2.2)与直连网络 172.16.2.0/24 匹配, 送出接口为 Serial 0/0/0。 对于只具有下一跳 IP 地址而且没有指定送出接口的每一条路由,都必须使用路由表中有送出接口的另一条路由来解析下一跳 IP 地址。 3.通常,这些路由将解析为路由表中直连网络的路由,因为这些条目始终包含 送出接口。 送出接口关闭 请注意,从 debug 命令的输出可以看出,当 Serial 0/0/0 接口关闭后,所有三条静态路由都被删除,因为所有三条静态路由都被解析到 Serial 0/0/0。但是,这些静态路由仍保留在 R1 的运行配置内。如果该接口重新开启(通过 no shutdown 再次启用),则 IOS 路由表过程将把这些静态路由重新安装到路由表中。

dos命令下查看路由表

tracert dos命令下查看路由表 2010-03-28 16:44 很多玩游戏的都用过网络加速器吧。尤其是教育网的,估计大家对类似于统一加速器这样的解决网络互联互通的软件。我们怎么知道加速器是否真正起作用了。出来查看游戏的延迟,打开网页的快慢外当然还有个方法——查看路由表。很多加速器只说了提供多少多少的带宽。其实提供路由线路的多少也是一个影响加速自量的因素。 转帖了方法如下: 在dos下面输入 route print 就可以查看路由表如何读懂路由表 如何读懂路由表 源 码:-------------------------------------------------------------------------------- Active Routes: Network Destination Netmask Gateway Interface Metric 0.0.0.0 0.0.0.0 192.168.123.254 192.168.123 .88 1 0.0.0.0 0.0.0.0 192.168.123.254 192.168.123 .68 1 127.0.0.0 255.0.0.0 127.0.0.1 127.0.0.1 1 192.168.123.0 255.255.255.0 192.168.123.68 192.168. 123.68 1 192.168.123.0 255.255.255.0 192.168.123.88 192.168. 123.88 1 192.168.123.68 255.255.255.255 127.0.0.1 127.0.0.1 1 192.168.123.88 255.255.255.255 127.0.0.1 127.0.0.1 1 192.168.123.255 255.255.255.255 192.168.123.68 192.168.12 3.68 1 192.168.123.255 255.255.255.255 192.168.123.88 192.168.12 3.88 1 224.0.0.0 224.0.0.0 192.168.123.68 192.168.12 3.68 1 224.0.0.0 224.0.0.0 192.168.123.88 192.168. 123.88 1 255.255.255.255 255.255.255.255 192.168.123.68 192.16 8.123.68 1

计算机网络:路由表的生成

7.2 路由表的生成 我们看到,就向交换机的工作全依靠其内部的交换表一样,路由器的工作也完全仰仗其内存中的路由 表。 图7.5列出了路由表的构造。 图 7.5 路由表的构造 路由表主要由六个字段组成,能够前往的网络和如何前往那些网络。路由表的每一行,表示路由器了解的某个网络的信息。网络地址字段列出本路由器了解的网络的网络地址。端口字段标明前往某网络的数据报该从哪个端口转发。下一跳字段是在本路由器无法直接到达的网络,下一跳的中继路由器的IP地址。距离字段表明到达某网络有多远。在RIP路由协议中需要穿越的路由器数量。协议字段表示本行路由记录是如何得到的。本例中,C表示是手工配置,RIP表示本行信息是通过RIP协议从其它路由器学习得到的。定时字段表示动态学习的路由项在路由表中已经多久没有刷新了。如果一个路由项长时间没有被刷新,该 路由项就被认为是失效的,需要从路由表中删除。 我们注意到,前往160.4.1.64、200.12.105.0、178.33.0.0网络,下一跳都指向160.4.1.34路由器。其中178.33.0.0网络最远,需要12跳。路由表不关心下一跳路由器将沿什么路径把数据报转发到目标网络,它只要把数据报转发给下一跳路由器就完成任务了。 路由表是路由器工作的基础。路由表中的表项有两种方法获得: 静态配置 动态学习 路由表中的表项可以用手工静态配置生成。将电脑与路由器的console端口连接,使用电脑上的超级终端软件或路由器提供的配置软件就可以对路由器进行配置。 手工配置路由表需要大量的工作。动态学习路由表是最为行之有效的方法。一般情况下,我们都是手工配置路由表中直接连接的网段的表项,而间接连接的网络的表项使用路由器的动态学习功能来获得。

分析RIP协议如何更新路由表

分析RIP协议如何更新路由表 RIP为每个目的地只记录一条路由的事实要求RIP积极地维护路由表的完整性。通过要求所有活跃的RIP路由器在固定时间间隔广播其路由表内容至相邻的RIP路由器来做到这一点,所有收到的更新自动代替已经存储在路由表中的信息。 RIP依赖3个计时器来维护路由表: ·更新计时器 ·路由超时计时器 ·路由刷新计时器 更新计时器用于在节点一级初始化路由表更新。每个RIP节点只使用一个更新计时器。相反的,路由超时计时器和路由刷新计时器为每一个路由维护一个。 如此看来,不同的超时和路由刷新计时器可以在每个路由表项中结合在一起。这些计时器一起能使RIP节点维护路由的完整性并且通过基于时间的触发行为使网络从故障中得到恢复。 1. 初始化表更新 RIP路由器每隔3 0秒触发一次表更新。更新计时器用于记录时间量。一旦时间到,RIP 节点就会产生一系列包含自身全部路由表的报文。 这些报文广播到每一个相邻节点。因此,每一个RIP路由器大约每隔3 0秒钟应收到从每个相邻RIP节点发来的更新。 注意在更大的基于RIP的自治系统中,这些周期性的更新会产生不能接受的流量。因此,一个节点一个节点地交错进行更新更理想一些。RIP自动完成更新,每一次更新计时器会被复位,一个小的、任意的时间值加到时钟上。 如果更新并没有如所希望的一样出现,说明互联网络中的某个地方发生了故障或错误。故障可能是简单的如把包含更新内容的报文丢掉了。故障也可能是严重的如路由器故障,或者是介于这两个极端之间的情况。显然,采取合适的措施会因不同的故障而有很大区别。由 于更新报文丢失而作废一系列路由是不明智的(记住,RIP更新报文使用不可靠的传输协议以最小化开销)。因此,当一个更新丢失时,不采取更正行为是合理的。为了帮助区别故障和错误的重要程度,RIP使用多个计时器来标识无效路由。 2. 标识无效路由 有两种方式使路由变为无效:

路由表的主要参数(精)

路由表的主要参数 1) 路由表提供了到达不同目标网络的表项,所以转发分组中的目标地址会通过 掩码运算得到分组目标地址所在的目标网络号,使用这个运算出来的网络号在路由表中查找表中目标网络和分组目标网络匹配的表项。所以路由表中包括两项:子网掩码和目标网络(使用CIDR记法只有一项)。 2) 路由表为路由器转发分组提供了路径选择的依据,由于网络层提供了面向非 连接的服务,所以路由表不会存在从分组源地址到分组目的地址的完整路径信息。路由表仅仅提供了经由本路由器接口(Interface 可以是逻辑子接口)和到达目标网络要经过的下一个路由器接口逻辑地址的信息(下一跳,Next Hop)。所以路由表中还包括两项:接口和下一跳地址。 3) 路由表中会出现到达同一个目标网络,但是经过不同的下一跳地址,这种多 路径选择是由计算机网络设计初衷决定的,也是选择分组交换通信的必然结果。条条大路通罗马的思路在路由表中最直接的体现就是到达同一个目标网络可以经过不同路径,但是经过每条路径的开销(Cost)是不一样的,在路由表中把这种开销称为度量值(Metric),度量值低的路径会被优先选择。度量值可能是一个单一参数的概念(如日常生活中从一个出发地到另外一个目的地经过的收费站数量,收费站数量少的作为优先的出行方式);度量值也可能是多个参数综合权衡的结果(如日常生活中从一个出发地到另外一个目的地选择的交通工具、距离的远近、交通安全性、费用情况及时间消耗等多个参数,来综合评估出一个度量值,再按照度量值低的选择合适的出行方式)。 所以路由表中还包括一项:度量值。 4) 路由表中的表项可以通过三种方式进行添加:直接连接、静态添加和动态添 加。直接连接代表着路由器端口所配IP地址所在的目标网络;静态添加是由网络管理人员手动添加的路由表项;动态添加是指使用动态路由选择协议(如RIP协议、OSPF协议)自动学习到的路由表项。所以路由表中还包括一项:表项类型。

IP路由表分析

CCNA考点精析---IP路由表分析 当frame到达路由器的接口后,路由器检查frame中的目标地址字段,如果目标地址为路由器接口的地址或者广播地址的时候,路由器把packet从frame中剥离出来,传递给network layer,然后packet中的目标地址将被检查,接下来还要检查protocol字段,最后再发送给合适的进程,如果packet是可路由的,路由器会查找自己路由表中寻找相应 的路由条目,路由条目至少包含两个要素: 1、目标地址,这个地址是路由器必须能够到达的地址; 2、到达目标地址的指针,这个指针也就是我们平时在路由表中看到的Via.或者是平 时听说的next-hop(下一跳) 路由器根据packet中的目标地址字段,在路由表中执行查询,查询的精确程度按如下顺序 递减: 1、主机地址 2、子网地址 3、汇总网络号 4、主类网络号 5、超网号(super net) 6、默认路由 如果在执行完所有的表查询后,还没有找到匹配的条目,则丢弃packet,并回送一个(Destinnation Unreachable)ICMP不可达的报文给发送方在CISCO路由器上要查看路由表,可以使用特权命令:show ip route R1#sh ip route Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2 E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2 ia - IS-IS inter area, * - candidate default, U - per-user static route o - ODR, P - periodic downloaded static route Gateway of last resort is not set C 192.168.123.0/24 is directly connected, FastEthernet0/0 1.0.0.0/24 is subnetted, 3 subnets C 1.1.1.0 is directly connected, Loopback0 C 1.1.2.0 is directly connected, Loopback1 C 1.1.3.0 is directly connected, Loopback2 C 192.168.14.0/24 is directly connected, Serial1/2

主机路由表介绍

主机路由表介绍 在windows中,保存着一张路由表。这张路由表根据实际情况的不同而不同。它是保证本机能上网不可缺少的一项。 在windows的命令提示符下输入:route print ,可查看当前路由表信息。 (假设本机IP:192.168.50.10 网关:192.168.50.1) ========================================================================================================

解释: 第一条: 缺省路由:意思就是说,当一个数据包的目的网段不在你的路由记录中,那么,你的主机该把那个数据包发送到那里!缺省路由的网关是由你的连接上的default gateway决定的。 该路由记录的意思是:当我接收到一个数据包的目的网段不在我的路由记录中,我会将该数据包通过192.168.50.10这个接口发送到192.168.50.1这个地址,这个地址是下一个路由器的一个接口,这样这个数据包就可以交付给下一个路由器处理,与我无关。该路由记录的路由代价 20。 第二条: 本地环路:127.0.0.0这个网段内所有地址都指向自己机器,如果收到这样一个数据,应该发向哪里该路由记录的路由代价 1 第三条:

直联网段的路由记录:当主机发往直联网段的数据包时该如何处理,这种情况,路由记录的interface和gateway是同一个。当我接收到一个数据包的目的网段是192.168.50.100时,我会将该数据包通过192.168.50.10这个接口直接发送出去,因为这个端口直接连接着192.168.50.0/24这个网段,该路由记录的路由代价 20 第四条: 本地主机路由:当主机发送给自己的数据包时将如何处理 当我接收到一个数据包的目的网段是192.168.50.10时,我会将该数据包收下,因为这个数据包时发送给我自己的,该路由记录的路由代价 20 第五条: 本地广播路由:当主机发送给直联网段的广播时如何处理 当我发送到广播数据包的目的网段是192.168.50.255时,我会将该数据从192.168.50.10接口以广播的形势发送出去,该路由记录的路由代价 20

路由表说明

路由表说明(详解route print) 看了nello的路由表,就找来这片文章,比较详细的解释了路由表,这个还是比较常用的,和大家共享 路由表说明 -------------------------------------------------------------源码:------------------------------------------------ ---------- Active Routes: Network Destination Netmask Gateway Interface Metric 0.0.0.00.0.0.0192.168.123.254192.168.123.881 0.0.0.00.0.0.0192.168.123.254192.168.123.681 127.0.0.0255.0.0.0127.0.0.1127.0.0.11 192.168.123.0255.255.255.0192.168.123.68192.168.123.681 192.168.123.0255.255.255.0192.168.123.88192.168.123.881 192.168.123.68255.255.255.255127.0.0.1127.0.0.11 192.168.123.88255.255.255.255127.0.0.1127.0.0.11 192.168.123.255255.255.255.255192.168.123.68192.168.123.681 192.168.123.255255.255.255.255192.168.123.88192.168.123.881 224.0.0.0224.0.0.0192.168.123.68192.168.123.681 224.0.0.0224.0.0.0192.168.123.88192.168.123.881 255.255.255.255255.255.255.255192.168.123.68192.168.123.681 Default Gateway: 192.168.123.254 当前的路由: destination目的网段 mask子网掩码 interface到达该目的地的本路由器的出口ip gateway 下一跳路由器入口的ip,路由器通过interface和gateway定义一调到下一个路由器的链路,通常情况下,interface和gateway是同一网段的metric 跳数,该条路由

路由表插入流程分析

路由表 在内核中存在路由表fib_table_hash和路由缓存表rt_hash_table。路由缓存表主要是为了加速路由的查找,每次路由查询都会先查找路由缓存,再查找路由表。这和cache是一个道理,缓存存储最近使用过的路由项,容量小,查找快速;路由表存储所有路由项,容量大,查找慢。首先,应该先了解路由表的意义,下面是route命令查看到的路由表: Destination Netmask Gateway Flags Interface Metric 169.254.0.0255.255.0.0*U eth01 192.168.123.0255.255.255.0*U eth01 default0.0.0.0192.168.123.254UG eth01一条路由其实就是告知主机要到达一个目的地址,下一跳应该走哪里。比如发往 192.168.22.3报文通过查路由表,会得到下一跳为192.168.123.254,再将其发送出去。在路由表项中,还有一个很重要的属性-scope,它代表了到目的网络的距离。 路由scope可取值:RT_SCOPE_UNIVERSE, RT_SCOPE_LINK, RT_SCOPE_HOST 在报文的转发过程中,显然是每次转发都要使到达目的网络的距离要越来越小或不变,否则根本到达不了目的网络。上面提到的scope很好的实现这个功能,在查找路由表中,表项的scope一定是更小或相等的scope(比如RT_SCOPE_LINK,则表项scope只能为RT_SCOPE_LINK或RT_SCOPE_HOST)。 路由缓存 路由缓存用于加速路由的查找,当收到报文或发送报文时,首先会查询路由缓存,在内核中被组织成hash表,就是rt_hash_table。 static struct rt_hash_bucket *rt_hash_table __read_mostly; [net\ipv4\route.c] 通过ip_route_input()进行查询,首先是缓存操作时,通过[src_ip, dst_ip, iif,rt_genid]计算出hash 值 hash = rt_hash(daddr, saddr, iif, rt_genid(net)); 此时rt_hash_table[hash].chain就是要操作的缓存表项的链表,比如遍历该链表for (rth = rt_hash_table[hash].chain; rth; rth = rth->u.dst.rt_next) 因此,在缓存中查找一个表项,首先计算出hash值,取出这组表项,然后遍历链表,找出指定的表项,这里需要完全匹配[src_ip, dst_ip, iif, tos, mark, net],实际上struct rtable中有专门的属性用于缓存的查找键值– struct flowi。 /* Cache lookup keys */ struct flowi fl; 当找到表项后会更新表项的最后访问时间,并取出dst dst_use(&rth->u.dst, jiffies); skb_dst_set(skb, &rth->u.dst); 路由缓存的创建 inet_init() -> ip_init() -> ip_rt_init() rt_hash_table = (struct rt_hash_bucket *) alloc_large_system_hash("IP route cache", sizeof(struct rt_hash_bucket), rhash_entries, (totalram_pages >= 128 * 1024) ? 15 : 17,

OSPF路由信息详解

OSPF协议 OSPF(Open Shortest Path First开放式最短路径优先)[1]是一个内部网关协议(Interior Gateway Protocol,简称IGP),用于在单一自治系统(autonomous system,AS)内决策路由。与RIP相比,OSPF是链路状态路由协议,而RIP是距离矢量路由协议。OSPF的协议管理距离(AD)是110。 一。OSPF起源 IETF为了满足建造越来越大基于IP网络的需要,形成了一个工作组,专门用于开发开放式的、链路状态路由协议,以便用在大型、异构的I P网络中。新的路由协议以已经取得一些成功的一系列私人的、和生产商相关的、最短路径优先(SPF )路由协议为基础,在市场上广泛使用。包括OSPF在内,所有的S P F路由协议基于一个数学算法—Dijkstra算法。这个算法能使路由选择基于链路-状态,而不是距离向量。OSPF由IETF在20世纪80年代末期开发,OSPF是SPF类路由协议中的开放式版本。最初的OSPF规范体现在RFC1131中。这个第1版( OSPF版本1 )很快被进行了重大改进的版本所代替,这个新版本体现在RFC1247文档中。RFC 1247 OSPF称为OSPF版本2是为了明确指出其在稳定性和功能性方面的实质性改进。这个OSPF版本有许多更新文档,每一个更新都是对开放标准的精心改进。接下来的一些规范出现在RFC 1583、2178和2328中。OSPF版本2的最新版体现在RFC 2328中。最新版只会和由RFC 2138、1583和1247所规范的版本进行互操作。 链路是路由器接口的另一种说法,因此OSPF也称为接口状态路由协议。OSPF通过路由器之间通告网络接口的状态来建立链路状态数据库,生成最短路径树,每个OSPF路由器使用这些最短路径构造路由表。 OSPF路由协议是一种典型的链路状态(Link-state)的路由协议,一般用于同一个路由域内。在这里,路由域是指一个自治系统(Autonomous System),即AS,它是指一组通过统一的路由政策或路由协议互相交换路由信息的网络。在这个AS中,所有的OSPF路由器都维护一个相同的描述这个AS结构的数据库,该数据库中存放的是路由域中相应链路的状态信息,OSPF 路由器正是通过这个数据库计算出其OSPF路由表的。 作为一种链路状态的路由协议,OSPF将链路状态广播数据LSA(Link State Advertisement)传送给在某一区域内的所有路由器,这一点与距离矢量路由协议不同。运行距离矢量路由协议的路由器是将部分或全部的路由表传递给与其相邻的路由器。 二.OSPF的hello协议 1.Hello协议的目的: 1.用于发现邻居 2.在成为邻居之前,必须对Hello包里的一些参数进行协商 3.Hello包在邻居之间扮演着keepalive的角色 4.允许邻居之间的双向通信 5.用于在NBMA(Nonbroadcast Multi-access)网络上选举DR和BDR 2.Hello Packet包含以下信息: 1.源路由器的RID 2.源路由器的Area ID 3.源路由器接口的掩码

路由表的相关参数解释

路由表的相关参数解释 以下给出了一个查看路由表实例,并通过该实例来说明路由表中各参数的涵义。 如图所示路由表中,每一行代表一条静态路由,各参数项涵义如下: IpAddr/Mask:目的地址/掩码长度; 该值为“0.0.0.0/0”对应的路由为缺省路由。 GwIpAddr:网关地址(下一跳地址) 如果是直接路由,即目的地址为与对应端口直接相连的网络,则显示为“-”。 特别地,对于PPPoE拨号上网线路来说,拨号成功后,对应的缺省路由以及绑定在该PPPoE 连接上的静态路由的网关地址均将显示为PPPoE拨号获得的IP地址。 IfId:转发接口 部分转发接口的涵义如下: ie0:物理接口LAN; ie1:物理接口W AN; ie2:物理接口DMZ/WAN2; ptpdial0:待拨的虚端口; ptpx:虚端口x,x为对应的虚端口号,取值为0、1、2、…; bhole0:内部接口,转发到该端口的所有包都被HiPER丢弃; local:内部软路由接口,转发到HiPER本身; reject:内部接口,转发到该端口的所有数据包都被HiPER拒绝,并回应一个ICMP不可达;

loopback:回环地址,代表127.0.0.0/8网段,不被转发; mcast:多播; Flag:标志 该参数用来显示路由的状态。该参数显示字的母对应的全称如下。 *-Hidden,o-OSPF,i-ICMP,l-Local,r-RIP,n-SNMP,c-Connected,s-Static,R-Remote,g-Gateway,h-Host,p-Private,u-Up,t-Temp,M -Multiple,F-Float,a-Append,N-NA T,x-rtNAT,y-NATrt,B-BIND,E-IPSec,?-Unknown。 部分标志项的涵义如下: *-Hidden:此条路由目前不生效,一般是此条路由处于备份状态或是线路失效导致路由中断;g–Gateway:此条路由为间接路由; h–Host:此条路由为主机路由; N-NA T:此条路由上启用了NAT,局域网用户正通过此条路由共享上网; F-Float:此条路由配置了路由优先级等信息,目前处于浮动状态,会因为线路的生效或者失效而决定该条路由是否启用; M-Multiple:到同一个目的地,当前至少有两条可使用的路由; a-Append:到同一目的地,允许存在多条路由; E-IPSec:当前路由的转发端口上启用了IPSec策略。 Cost:优先级。系统自动生成的静态路由的优先级均为20。 Met:跳数。系统自动生成的静态路由的跳数均为0,即全部都是直接路由。 Use:使用次数。系统使用该静态路由转发数据包的次数。 Age:使用时间。该静态路由生成的年龄。单位:秒。

相关主题