搜档网
当前位置:搜档网 › 三角函数中三角变换常用的方法和技巧

三角函数中三角变换常用的方法和技巧

三角函数中三角变换常用的方法和技巧
三角函数中三角变换常用的方法和技巧

三角函数中三角变换常用的方法和技巧三角函数公式

两角和公式

sin(A+B)=sinAcosB+cosAsinB

sin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinB

cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB)

tan(A-B)=(tanA-tanB)/(1+tanAtanB)

倍角公式

tan2A=2tanA/[1-(tanA)^2]

cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2

sin2A=2sinA*cosA

半角公式

sin^2(α/2)=(1-cosα)/2

cos^2(α/2)=(1+cosα)/2

tan^2(α/2)=(1-cosα)/(1+cosα)

万能公式

sin(a)= (2tan(a/2))/(1+tan^2(a/2))

cos(a)= (1-tan^2(a/2))/(1+tan^2(a/2))

tan(a)= (2tan(a/2))/(1-tan^2(a/2))

一、角的变换

在三角函数的求值、化简与证明题中,表达式往往出现较多的相异角,此时可根据角与角之间的和差、倍半、互余、互补的关系,运用角的变换,沟通条件与结论中角的差异,使问题获解。常见角的变换方式有:ββαα

-+=)(;)()(2βαβαα-++=;

αβαβα+-=-)(2;2

2

α

α=等等。

例1 函数ππ2sin cos ()36y x x x ????

=--+∈

? ?????

R 的最小值等于( )

. (A )3- (B )2-

(C )1-

(D )5-

解析:注意到题中所涉及的两个角的关系:πππ

362

x x ????-++=

? ?????,所以将函数()f x 的表达式转化为πππ()2cos cos cos 666f x x x x ??????

=+-+=+ ? ? ???????

故()f x 的最小值为1-.故选(C ).

评注:常见的角的变换有:()ααββ=+-,2()()ααβαβ=++-,

2()αβααβ-=+-,2

2

αβ

αβ

β+-=

-

,3πππ

()442

βααβ????+--=++

? ?????,ππ44αβαβ?

???++-=+ ? ?????

.只要对题设条件与结论中所涉及的角进行仔细的观察,往往

会发现角之间的关系. 例2、已知 βαβαα,,14

11

)cos(,71cos -=+=

均是锐角,求βcos 。 解:

。)2

1734143571)1411(cos 1435sin(,734sin .

sin )sin(cos )cos(])cos[(cos =?+?-=∴=+=+++=-+=ββαααβααβααβαβ

小结:本题根据问题的条件和结论进行])[(αβαβ-+=的变换。 例3、已知cos(91

)2-=-βα,sin(

2α-β)=32,且,20,2πβπαπ<<<<求.2

cos βα+

分析:观察已知角和所求角,可作出)2

(

)2

(2

βα

β

αβ

α---

=+的配凑角变换,然后利用

余弦的差角公式求角。

解:.27

5

7329543591)]2(

)2

cos[(2

cos

,

3

5(1)2cos(,954(

1)2

sin(.

2

2

4

,2

4

,

20,2

)3

2)912

2

=?+?-=---

=+∴=--=

-=-=-

<

-<

-

<-

<∴

<<<<βα

β

αβ

αβα

β

απ

βα

π

πβ

απ

π

βπαπ

例4、已知),2sin(sin βαβ+=m 求证:

).1(tan 11)tan(≠-+=

+m m

m

αβα 分析:由角的特点,因已知条件所含角是,,2ββα+所证等式含角,,αβα+所以以角为突破口。

证明:.tan 11tan(1sin )cos()1(cos )sin()1(,

sin )cos(cos )sin(sin )cos(cos )sin(],)sin[(])sin[(,)(,)(2αβααβααβααβααβαα

βααβααβααβααβαβαβαβαm

m

m m m m m m -+=

+∴≠++=+-∴+++=+-+++=-+∴-+=++=+)即

小结:抓住题设与结论中角的差异,利用角的和,差,倍等关系,变不同的角为同角,在三角变换中角的变换很重要。

二、函数名称变换

三角函数包括六种形式,因此,对于含有多种三角函数的问题,要从题目中所给的各函数间的关系入手,寻求统一函数名称的变换途径,正确选用三角变换公式,通过变换尽量减少三角函数的种类,可以使问题得到快速的解决.

例1、若sin (α+β)=

12, sin (α—β)=1

10

,求tan tan αβ

解:由sin=(α+β)=

12, s in (α—β)=1

10

1sin cos cos sin 312

sin cos ,cos sin 1

105sin cos cos sin 10αβαβαβαβαβαβ?

+=??==?

?=??

解得- ∴

tan tan αβ=sin cos cos sin αβαβ =3

2

例2、当π

04

x <<时,函数22cos ()cos sin sin x f x x x x =-的最小值是( ).

(A )4 (B )

1

2

(C )2 (D )

1

4

解析:注意到函数的表达式的分子与分母是关于sin x 与cos x 的齐二次式,所以,分子

与分母同时除以2

cos x 转化为关于tan x 的函数进行求解.因为π04

x <<,所以

0t an 1

α<<,所以22

11

()4tan tan 11tan 24f x x x x ==-?

?--+

??

?≥.故选(A ). 评注:切、割化弦,弦化切是解答三角问题中对函数名称进行转化的最常见、最基本的

两种方法:

(1)若所给的三角式中出现了“切、割函数”,则可利用同角三角函数基本关系将“切、割函数”化为“弦函数”进行求解、证明;

(2)若所给的三角式中出现了“弦函数”与“切函数”,有时可以利用公式sin tan cos x x x

=将“弦函数”化为“切函数”进行解答. 例3、化简:0

cos10(tan103)sin 50-

解:原式000000

00000

sin10cos10sin103cos10cos102cos 40(3)2cos10sin 50cos10sin 50sin 50--=-===-

例4、已知tan()34πα+=-,求22sin cos sin sin cos 1

αα

ααα-+的值。

解:∵tan()14tan tan()2441tan()4

π

αππααπα+-=+-=

=++, ∴

2

2222

2sin cos 2sin cos 2tan 4

7

sin sin cos 1sin sin cos sin cos 2tan tan 1ααααααααααααααα===-+-++-+ 点评:在求值、化简、恒等式证明中,切化弦与弦化切是常用的三角变换技巧。

三、升幂与降幂变换

分析三角函数中的次数,是低次的升次,还是高次的降次,要充分结合题中的要求,正

确选用半角公式或倍角公式等三角公式,达到次数的统一.

例1、 已知α为第二象限角,且15sin 4α=,求πsin 4sin2cos 21

ααα?

?+ ?

??++的值. 分析:由于已知条件中知道sin α的值,而所求三角函数式中所涉及的角是与α有关的

复角,因此可利用同角三角函数的基本关系式,二倍角公式以及三角函数式的恒等变形获得解答.

解:原式22

(sin cos )

2(sin cos )22sin cos 2cos 4cos (sin cos )

αααααααααα++==

++ 当

α为第二象限角,且15

sin 4

α=

时,s i n c o s 0αα+≠,1

cos 4

α=-

,所以πs i n 242s i n 2c o s 214c o s

αααα?

?+ ???==-++. 评注:解答本题的关键是将含有二倍角的一次式转化为二次式,消去常数1.

例2、求值:?

??+?-480sin 20sin 220sin 820sin 433

解:原式:=

?

?-?-20sin 3)

20sin 21(20sin 432=

?

?

?-20sin 340cos 20sin 43

=?

?

?-?+?20sin 340cos 20sin 4)2040sin(2

=

?

?

?-??20sin 320sin 40cos 20cos 40(sin 2

=?

?-?20sin 3)

2040sin(2=

3

3

2 注:怎样处理sin 320°和3是本题的难点,解决的方法是“降幂”和“常数变换法”。

例3、化简βαβαβα2cos 2cos 2

1

cos cos sin sin 2

2

2

2

-+。 分析:从“幂”入手,利用降幂公式。

解:原式

βαβαβα2cos 2cos 21

)2cos 1)(2cos 1(41)2cos 1)(2cos 1(41-+++--=

)2cos 2cos 2cos 2cos 1(41

)2cos 2cos 2cos 2cos 1(41βαβαβαβα+++++--=βα2cos 2cos 2

1

- 212cos 2cos 21

)2cos 2cos 1(21=-+=

βαβα

四、常数变换

在三角函数的、求值、证明中,有时需要将常数转化为三角函数,例如常数“1”的变换有:αααααα2

2

2

2

2

2

c o t c s c t a n s e c c o s s in 1-==+=,0

45sin 90sin 1==,

ααααsin csc 1,cos sec 1=?=等等。

例1、已知πtan 24α??

+=

???

,求2

12sin cos cos ααα+的值. 分析:由已知易求得tan α的值,而所求三角函数式中的分母所涉及的函数是正、余弦函数且各式都为二次式,而分子是常数1,可将1化为2

2

sin cos αα+,再利用同角三角函数基本关系将所求式转化为正切函数进行求解.

解:由π1tan tan 241tan α

αα

+??+==

?-??,得1tan 3α=,

于是原式2222

sin cos tan 12

2sin cos cos 2tan 13

ααααααα++===++. 评注:对于题中所给三角式中的常数(如:23

1

32

3

,,,等),比照特殊角的三角函数值,将它们化为相应的三角函数,参与其它三角函数的运算,在解题中往往起着十分奇妙的作用.

例2、 求值(

21cos 80o —23cos 10o )2

1

c o s 20

o

解:∵21cos 80o —23

cos 10o

=2222cos 103cos 80cos 80cos 10o o o o -

=223cos 10sin 10

o o

o o o o (cos10+3sin10)(cos10-sin10) =22cos10cos 10sin 10

o o

o o o o o o o o 4(sin30+cos30sin10)(sin30cos10-cos30sin10) =24sin 40sin 201sin 204

o o o =16sin 40sin 20o o

=32cos20o ∴原式=32

例3、(2004年全国高考题)求函数x

x

x x x x f 2sin 2cos sin cos sin )(2244-++=的最小正周

期,最大值和最小值。

分析:由所给的式子x x x x 2

2

4

4

cos sin cos sin ++可联想到2

2

2

)cos (sin 1x x +=。

解:x x

x x x x f 2sin 2cos sin cos sin )(2244-++=

)

cos sin 1(2cos sin 122x x x

x --=

2

12sin 41+=

x 。 所以函数)(x f 的最小正周期是π,最大值为43,最小值为4

1

五、消参变换

当题设或结论中含有参数时,我们可以采用消去参数法来解决. 例1、已知sin sin(3)m βαβ=+,1m ≠且ππ()2k k αβ+≠+∈Z ,π

()2

k k α≠∈Z .

求证:1tan()tan 1m

m

αβα++=

-. 分析:由于已知和结论中都含有参数m ,所以我们可以把已知变形,求出

sin sin(2)m m βαβ=

+,,代入1tan 1m

m

α+-化简,即可证得等式成立.

评注:在解答含有参数的等式证明问题时,我们往往可以采用这种办法.本例并未给出

证明过程,同学们可试着自己完成.

六、变换公式的方法

使用任何一个公式都要注意它的逆向变幻,多向变幻,这是灵活,深刻地使用公式所必须的,尤其是三角公式众多,把这些公式变活,显得更加重要。

三角公式是变换的依据,应熟练掌握三角公式的顺用、逆用及变形应用。如cos α=

α

α

sin 22sin ,tan α±tan β=tan (α+β)(1 tan αtan β)等。

例1:求值:

2

12cos 412csc )312tan 32

-??

-?+( 解:先看角,都是12°;再看“名”,需将切割化为弦,最后在化简过程中再看变换。

原式=

2

12cos 412sin 1

)312cos 12sin 3(

2-???

-??(切、割化为弦) =)112cos 2(12cos 12sin 212cos 312sin 32

-????-?=?

??-?24cos 24sin )

12cos 2312sin 21(32(逆用二倍角) =????-??24cos 24sin )

60sin 12cos 60cos 12(sin 32(常数变换)

=

???-?24cos 24sin 2)6012sin(34(逆用差角公式)=?

?-48sin )

48sin(34

=-43(逆用二倍角公式)

注:要养成逆用公式的意识,熟悉教材给出的三角基本公式的同时,如果我们熟悉其

他变通形式常可以开拓解题思路。

例2、求??+?+?28tan 17tan 28tan 17tan 的值。

解:原式=1

28tan 17tan )28tan 17tan 1(45tan 28tan 17tan )28tan 17tan 1)(2817tan(=?

?+??-?=?

?+??-?+?

小结:对于两个角的正切的三角函数的和与积的形式的求值问题,通常利用

β

αβ

αβαt a n t a n 1t a n t a n )t a n ( ±=

±的变形式).tan tan 1)(tan(tan tan βαβαβα ±=±

例3、求)6

tan()6tan(3)6tan()6tan(

θπ

θπθπθπ

+-+++-的值。

,

33

tan )]6()6tan[(==++-π

θπθπ 解:

3

)

6

tan(

)

6

tan(

3

)]

6

tan(

)

6

tan(

1[3

)]

6

tan(

)

6

tan(

1[3

)

6

tan(

)

6

tan(

)

6

tan(

)

6

tan(

1

)

6

tan(

)

6

tan(

)]

6

(

)

6 tan[(

=

+

?

-

+

+

?

-

-

=

+

?

-

-

=

+

+

-

+

-

-

+

+

-

=

+

+

-

θ

π

θ

π

θ

π

θ

π

θ

π

θ

π

θ

π

θ

π

θ

π

θ

π

θ

π

θ

π

θ

π

θ

π

原式

例4、若αβ为锐角且满足sinα—sinβ= —

1

2

,cosα—cosβ=

1

2

,求tan(α—β)的值。

解:由题中条件把两等式平方相加得

sin2α—2sinαsinβ+sin2 β+cos2α—2cosαcosβ+cos2β=

1

2

即2—2cos(α—β)=

1

2

∵cos(α—β)=

3

4

∵α、β为锐角sinα—sinβ=—

1

2

<0

∴0<α<β<

2

π

2

π

-<α—β<0

∴s in(α—β)=—1αβ

2

-cos(-)=—

7

4

,

∴tan(α—β)=

sin()

cos()

αβ

αβ

-

-

= —

7

3

,

三角函数经典解题方法与考点题型

三角函数经典解题方法与考点题型(教师) 1.最小正周期的确定。 例1 求函数y =s in (2co s|x |)的最小正周期。 【解】 首先,T =2π是函数的周期(事实上,因为co s(-x )=co s x ,所以cos |x |=co s x );其次,当且仅当x =k π+ 2 π 时,y =0(因为|2co s x |≤2<π), 所以若最小正周期为T 0,则T 0=m π, m ∈N +,又s in (2co s0)=s in 2≠s in (2co s π),所以T 0=2π。 过手练习 1.下列函数中,周期为 2π 的是 ( ) A .sin 2x y = B .sin 2y x = C .cos 4 x y = D .cos 4y x = 2.()cos 6f x x πω?? =- ?? ? 的最小正周期为 5 π ,其中0ω>,则ω= 3.(04全国)函数|2 sin |x y =的最小正周期是( ). 4.(1)(04北京)函数x x x f cos sin )(=的最小正周期是 . (2)(04江苏)函数)(1cos 22R x x y ∈+=的最小正周期为( ). 5.(09年广东文)函数1)4 (cos 22 -- =π x y 是 ( ) A .最小正周期为π的奇函数 B. 最小正周期为π的偶函数 C. 最小正周期为 2 π的奇函数 D. 最小正周期为2π 的偶函数 6.(浙江卷2)函数的最小正周期是 . 2.三角最值问题。 例2 已知函数y =s inx +x 2cos 1+,求函数的最大值与最小值。 【解法一】 令s inx =??? ??≤≤=+ππ θθ4304 sin 2cos 1,cos 22 x , 则有y =).4 sin(2sin 2cos 2π θθθ+ =+ 因为 ππ 4304≤≤,所以ππ θπ≤+≤4 2, 所以)4 sin(0π θ+≤≤1, 所以当πθ43=,即x =2k π-2 π (k ∈Z )时,y m in =0, 当4 π θ= ,即x =2k π+ 2 π (k ∈Z )时,y m ax =2. 2 (sin cos )1y x x =++

2020年高考数学三角函数专题解题技巧

三角函数专题复习 在三角函数复习过程中,认真研究考纲是必须做的重要工作。三角函数可以当成函数内容中的重要一支,要注意与其它知识的联系。 一、研究考题,探求规律 1. 从表中可以看出:三角函数题在试卷中所处的位置基本上是第一或第二题,本章高考重点考查基础知识,仍将以容易题及中档为主,题目的难度保持稳定,估计这种情况会继续保持下去 2. 特点:由于三角函数中,和差化积与积化和差公式的淡出,考查主体亦发生了变化。偏重化简求值,三角函数的图象和性质。考查运算和图形变换也成为了一个趋势。三角函数试题更加注重立足于课本,注重考查基本知识、基本公式及学生的运算能力和合理变形能力,对三角变换的要求有所降低。三角化简、求值、恒等式证明。图象。最值。 3、对三角函数的考查主要来自于:①课本是试题的基本来源,是高考命题的主要依据,大多数试题的产生是在课本题的基础上组合、加工和发展的结果。②历年高考题成为新高考题的借鉴,有先例可循。 二、典例剖析 例1:函数22()cos 2cos 2x f x x =-的一个单调增区间是 A .2(,)33ππ B .(,)62ππ C .(0,)3π D .(,)66 ππ- 【解析】函数22()cos 2cos 2 x f x x =-=2cos cos 1x x --,从复合函数的角度看,原函数看作2()1g t t t =--,cos t x =,对于2()1g t t t =--,当1[1,]2t ∈-时,()g t 为减函数,当1[,1]2 t ∈时,()g t 为增函数,当2(,)33x ππ∈时,cos t x =减函数,且11(,)22 t ∈-, ∴ 原函数此时是单调增,选A 【温馨提示】求复合函数的单调区间时,需掌握复合函数的性质,以及注意定义域、自变量系数的正负.求复合函数的单调区间一般思路是:①求定义域;②确定复合过程;③根据外层函数f(μ)的单调性,确定φ(x)的单调性;④写出满足φ(x)的单调性的含有x 的式子,并解出x 的范围;⑤得到原函数的单调区间(与定义域求交).求解时切勿盲目判断. 例2、已知tan 2θ=. (Ⅰ)求tan 4πθ??+ ??? 的值; (Ⅱ)求cos2θ的值. 【解析】 (Ⅰ)∵tan 2θ=, tan tan 4tan 41tan tan 4π θπθπθ+??∴+= ???-

三角函数公式变换

三角函数公式表 同角三角函数的基本关系式 倒数关系: 商的关系:平方关系: tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα sin2α+cos2α=1 1+tan2α=sec2α 1+cot2α=csc2α (六边形记忆法:图形结构“上弦中切下割,左正右余 中间1”;记忆方法“对角线上两个函数的积为1;阴影 三角形上两顶点的三角函数值的平方和等于下顶点的三 角函数值的平方;任意一顶点的三角函数值等于相邻两 个顶点的三角函数值的乘积。”) 诱导公式(口诀:奇变偶不变,符号看象限。) sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα sin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanα sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα (其中k∈Z) 两角和与差的三角函数公式万能公式 sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβ tanα+tanβ tan(α+β)=—————— 1-tanα ·tanβ tanα-tanβ tan(α-β)=—————— 1+tanα ·tanβ 2tan(α/2) sinα=—————— 1+tan2(α/2) 1-tan2(α/2) cosα=—————— 1+tan2(α/2) 2tan(α/2) tanα=—————— 1-tan2(α/2) 半角的正弦、余弦和正切公式三角函数的降幂公式

高考数学解题技巧三角函数

2018高考数学解题技巧 解答题模板2:三角函数 高考中三角函数解答题是历年高考必考内容之一,成为6道解答题中的第一题,难度一般比较小,三角函数中,以公式多而著称.解题方法也较灵活,但并不是无法可寻,当然有它的规律性,近几年的高考中总能体现出其规律性.而对三角函数的考查解法,归纳起来主要有以下六种方法:能够做好这道题也成了决定高考成败的关键,从近几年高考来看,三角函数解答题有如下几种题型 二、典型例题 弦切互化 例1.已知2tan =θ,求(1) θ θθ θsin cos sin cos -+; 解:(1)2232 121tan 1tan 1cos sin 1cos sin 1sin cos sin cos --=-+=-+=-+ = -+θθθ θθθ θθθθ; 函数的定义域问题 例2、求函数1sin 2+=x y 的定义域。 解:由题意知需01sin 2≥+x ,也即需21sin -≥x ①在一周期?? ????-23,2ππ上符合①的角为??? ???-67,6ππ,由此可 得到函数的定义域为????? ? +-672,62ππππk k ()Z k ∈ 说明:确定三角函数的定义域的依据:(1)正、余弦函数、正切函数的定义域。(2)若函数是分式函数,则分母不能为零。(3)若函数是偶函数,则被开方式不能为负。(4)若函数是形如()() 1,0log ≠>=a a x f y a 的函数,则其定义域由()x f 确定。(5)当函数是有实际问题确定时,其定义域不仅要使解析式有意义同时还要使实际问题有意义。 函数值域及最大值,最小值 (1)求函数的值域 一般函数的值域求法有:观察法,配方法判别式法等,而三角函数是函数的特殊形式,其一般方法也适用,只不过要结合三角函数本身的性质罢了。 例3、求下列函数的值域 (1)x y 2sin 23-= (2)2sin 2cos 2 -+=x y x 分析:利用1cos ≤x 与1sin ≤x 进行求解。 解:(1) 12sin 1≤≤-x ∴[]5,151∈∴≤≤y y (2)()[].0,4,1sin 11sin 1sin 2sin 2sin 22 22 cos -∈∴≤≤---=-+-=-+=y x x x x x x y

三角函数解题技巧和公式(已整理)

浅论关于三角函数的几种解题技巧 本人在十多年的职中数学教学实践中,面对三角函数内容的相关教学时,积累了一些解题方面的处理技巧以及心得、体会。下面尝试进行探讨一下: 一、关于)2sin (cos sin cos sin ααααα或与±的关系的推广应用: 1、由于ααααααααc o s s i n 21c o s s i n 2c o s s i n )c o s (s i n 2 22±=±+=±故知道)c o s (s i n αα±,必可推出)2sin (cos sin ααα或,例如: 例1 已知θθθθ33cos sin ,3 3 cos sin -= -求。 分析:由于)cos cos sin )(sin cos (sin cos sin 2233θθθθθθθθ++-=- ]cos sin 3)cos )[(sin cos (sin 2θθθθθθ+--= 其中,θθcos sin -已知,只要求出θθcos sin 即可,此题是典型的知sin θ-cos θ,求sin θcos θ的题型。 解:∵θθθθcos sin 21)cos (sin 2-=- 故:3 1cos sin 31)33( cos sin 212=?==-θθθθ ]cos sin 3)cos )[(sin cos (sin cos sin 233θθθθθθθθ+--=- 39 4 3133]313)33[(332=?=?+= 2、关于tg θ+ctg θ与sin θ±cos θ,sin θcos θ的关系应用: 由于tg θ+ctg θ=θ θθθθθθθθθcos sin 1cos sin cos sin sin cos cos sin 22=+=+ 故:tg θ+ctg θ,θθcos sin ±,sin θcos θ三者中知其一可推出其余式子的值。 例2 若sin θ+cos θ=m 2,且tg θ+ctg θ=n ,则m 2 n 的关系为( )。 A .m 2=n B .m 2= 12+n C .n m 2 2= D .22m n =

(完整版)高中数学三角函数解题技巧和公式(已整理)

关于三角函数的几种解题技巧 本人在十多年的职中数学教学实践中,面对三角函数内容的相关教学时,积累了一些解题方面的处理技巧以及心得、体会。下面尝试进行探讨一下: 一、关于)2sin (cos sin cos sin ααααα或与±的关系的推广应用: 1、由于ααααααααcos sin 21cos sin 2cos sin )cos (sin 222±=±+=±故知道)cos (sin αα±,必可推出)2sin (cos sin ααα或,例如: 例1 已知θθθθ33cos sin ,3 3cos sin -=-求。 分析:由于)cos cos sin )(sin cos (sin cos sin 2233θθθθθθθθ++-=- ]cos sin 3)cos )[(sin cos (sin 2θθθθθθ+--= 其中,θθcos sin -已知,只要求出θθcos sin 即可,此题是典型的知sin θ-cos θ,求sin θcos θ的题型。 解:∵θθθθcos sin 21)cos (sin 2-=- 故:3 1cos sin 31)33(cos sin 212=?==-θθθθ ]cos sin 3)cos )[(sin cos (sin cos sin 233θθθθθθθθ+--=- 39 43133]313)33[(332=?=?+= 例2 若sin θ+cos θ=m 2,且tg θ+ctg θ=n ,则m 2 n 的关系为( )。 A .m 2=n B .m 2=12+n C .n m 22= D .22m n = 分析:观察sin θ+cos θ与sin θcos θ的关系: sin θcos θ=2 121)cos (sin 22-=-+m θθ 而:n ctg tg ==+θ θθθcos sin 1 故:1212122+=?=-n m n m ,选B 。 例3 已知:tg α+ctg α=4,则sin2α的值为( )。

三角函数的平移及伸缩变换(含答案)

三角函数的平移及伸缩变换 一、单选题(共8道,每道12分) 1.将函数的图象上所有点的纵坐标不变,横坐标缩小到原来的,再把图象上各点向左平移个单位长度,则所得的图象的解析式是( ) A. B. C. D. 答案:C 解题思路: 试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换 2.已知函数y=f(x)图象上每个点的纵坐标保持不变,横坐标伸长到原来的2倍,然后再将整 个图象沿x轴向左平移个单位,沿y轴向下平移1个单位,得到函数,则y =f(x)的表达式时( ) A. B. C. D.

答案:B 解题思路: 试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换 3.已知函数,若f(x)的图象向左平移个单位所得的图象与f(x)的图象向右平移个单位所得的图象重合,则的最小值是( ) A.2 B.3 C.4 D.5 答案:C 解题思路:

试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换 4.已知函数的最小正周期为,将的图象向左平移个单位长度,所得图象关于y轴对称,则的一个值是( ) A. B. C. D. 答案:D 解题思路:

试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换 5.偶函数的图象向右平移个单位得到的图象关于原点对称,则的值可以是( ) A.1 B.2 C.3 D.4 答案:B 解题思路:

试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换 6.已知函数的周期为π,若将其图象沿x轴向右平移a个单位(a >0),所得图象关于原点对称,则实数a的最小值是( ) A.π B. C. D. 答案:D

锐角三角函数的解题技巧

锐角三角函数的解题技巧 一、知识点回忆 (一)锐角的三角函数的意义 1、正切 在Rt△ABC中,∠C=90°,我们把锐角A的对边与邻边的比,叫做∠A的正切,记作tanA. 2、正弦和余弦 如图,在Rt△ABC中,∠C=90°,锐角A的对边与斜边的比叫做∠A的正弦,记作sinA,即 3、三角函数:在直角三角形中,锐角A的正切(tanA)、正弦(sinA)、余弦(cosA),都叫做∠A的三角函数. (二)同角的三角函数之间的关系 (1)平方关系:sin2α+cos2α=1 (2)商数关系: (三)两角的关系 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值,任意锐角的正切值与它的余角的正切值的积等于1.即若A+B=90°,则sinA=cosB,cosA=sinB,tanA·tanB=1.

(四)特殊锐角的三角函数值 (五)锐角三角函数值解法 1、用计算器 求整数度数的锐角三角函数值. 在计算器的面板上涉及三角函数的键有和键,当我们计算整数度数的某三角函数值时,可先按这三个键之一,然后再从高位向低位按出表示度数的整数,然后按,则屏幕上就会显示出结果. 例如:计算sin44°. 解: 按键,再依次按键. 则屏幕上显示结果为0.69465837. 求非整数度数的锐角三角函数值. 若度数的单位是用度、分、秒表示的,在用计算器计算三角函数值时,同样先按 和三个键之一,然后再依次按度分秒键,然后按键,则屏幕上就会显示出结果. 2、已知三角函数值,用计算器求角度

已知三角函数值求角度,要用到、键的第二功能“sin-1,cos-1,tan-1”和键.具体操作步骤是:先按键,再按键之一,再依次按三角函数值,最后按键,则屏幕上就会显示出结果. 值得注意的是:型号不同的计算器的用法可能不同。 (六)直角三角形的解法 解直角三角形既是初中几何的重要内容,又是今后学习解斜三角形,三角函数等知识的基础,同时,解直角三角形的知识又广泛应用于测量、工程技术和物理之中,解直角三角形的应用题还有利于培养学生空间想象的能力。因此,通过复习应注意领会以下几个方面的问题: 解直角三角形的重点是锐角三角函数的概念和直角三角形的解法。前者又是复习解直角三角形的难点,更是复习本部分内容的关键。 掌握锐角三角函数和解直角三角形是进行三角运算解决应用问题和进一步研究任意角三角函数的重要基础。因此,解直角三角形既是各地中考的必考内容,更是热点内容。题量一般在4%~10%。分值约在8%~12%题型多以中、低档的填空题和选择题为主。个别省市也有小型综合题和创新题。几乎每份试卷都有一道实际应用题出现。 二、重点难点疑点突破 1、(1)sinA和cosA都是一个整体符号,不能看成sin·A或cos·A. (2)是一个比值,没有单位,只与角的大小有关,而与三角形的大小无关. (3)sinA+sinB≠sin(A+B)sinA·sinB≠sin(AB) (4)sin2A表示(sinA)2,cos2A=(cosA)2 (5)0<sinA<1,0<cosA<1 2、同名三角函数值的变化规律 当角α在0°~90°间变化时,它的正切和正弦三角函数值随着角度的增大而增大; 余弦三角函数值随着角度的增大而减少. 三、解题方法技巧点拨 1、求锐角三角函数的值 例1、(1)在Rt△ABC中,∠C=90°,若,求cosB,tanB的值.

三角函数中三角变换常用的方法和技巧1

三角函数中三角变换常用的方法和技巧 一、角的变换 当已知条件中的角与所求角不同时,需要通过“拆”、“配”等方法实现角的转化,一般是寻求它们的和、差、倍、半关系,再通过三角变换得出所要求的结果. 例1 函数ππ2sin cos ()36y x x x ???? =--+∈ ? ????? R 的最小值等于( ) . (A )3- (B )2- (C )1- (D )解析:注意到题中所涉及的两个角的关系:πππ 362 x x ????-++= ? ?????,所以将函数()f x 的表达式转化为πππ()2cos cos cos 666f x x x x ?????? =+-+=+ ? ? ??????? , 故()f x 的最小值为1-.故选(C ). 评注:常见的角的变换有:()ααββ=+-,2()()ααβαβ=++-, 2()αβααβ-=+-,2 2 αβ αβ β+-= - ,3πππ ()442 βααβ????+--=++ ? ?????,ππ44αβαβ? ???++-=+ ? ????? .只要对题设条件与结论中所涉及的角进行仔细的观察,往往 会发现角之间的关系. 例2、已知 βαβαα,,14 11 )cos(,71cos -=+= 均是锐角,求βcos 。 解: 。 。)2 1734143571)1411(cos 1435sin(,734sin . sin )sin(cos )cos(])cos[(cos =?+?-=∴=+=+++=-+=ββαααβααβααβαβ 小结:本题根据问题的条件和结论进行])[(αβαβ-+=的变换。 例3、已知cos(91)2- =-βα,sin(2α-β)=3 2 ,且,20,2πβπαπ<<<<求.2cos βα+ 分析:观察已知角和所求角,可作出)2 ( )2 (2 βα β αβ α--- =+的配凑角变换,然后利用 余弦的差角公式求角。

三角函数的图像的变换口诀解读

三角函数的图像的变换口诀解读 变T 数倒系数议,变A 伸压 y 无疑, 变φ 要把系数提,正φ 左进负右移. 周期变换是通过改变x 的系数来实现的,即周期T 的变化只与ω有关而与φ无关.这是因为ω π 2=T ,故要使周期扩大或缩小m (m >0) 倍,则须用 x m 1去代原式中的x (纵坐标不 变),故有“变T 数倒系数议”之说. 相位φ变换实质上就是将函数的图像向左或向右平移.当先作周期变换后作相位变换时,须提出系数ω,这是因为周期变化时改变了x 的值,此时其初相位(非0初相)同时也改变相应得到改变,且改变的倍数相同.当先作相位变换后作周期变换,由于此时x 的系数为1,系数提不提无影响,为了统一记忆我们也视为提出系数“1”.因而有“变φ要把系数提”之说. 三角函数图像的周期﹑振幅﹑相位等变换的问题是历年高考中常考查的内容.对此类命题的求解,无论三种变换怎样摆设,先要弄清哪是原函数的图像,哪是新函数的图像,再据本歌诀所述,很快就可得到解决. 例1 为了得到 y =) 62sin(π-x 的图像,可以将函数 y = cos2x 的图像 (2004年高考) ( ) (A)向右平移6 π 个单位长度 (B)向右平移3 π 个单位长度 (C)向左平移 6 π 个单位长度 (D) 向左平移 3 π 个单位长度 解法1 ∵ y = cos2x =) 4 (2sin )2 2sin(π π + =+ x x , 而 y =] 3 )4 [(2sin )6 2sin(π π π - + =- x x , 由此可得 只须将函数y = cos2x 的图像向右平移3 π 个单位长度即可.故选(B). 解法2 ∵ y =)62sin(π - x ) 6 22 cos( ππ x + -=,即y ) 3(2cos π - = x , 而已知的函数为y = cos2x , 由此可得,须将函数y = cos2x 的图像向右平3 π 个单位即可.故选(B). 点评 由于当ω ?- =x 时, 相位0 =+?ω x .因而,我们可称此时的相位为零相位.由此可 见,在作相位变换时,其平移的数值与方向是由两个0相位对应的x 值的差来决定的.对于本题而言,由于两个0相位对应的x 的值分别为12 π与4 π - ,故所作的平移就是要将已知函数 的0相位对应的点) 0 ,4(π - 移到点)0 12 ( ,π 处.易知要平移的数值是: 3 )4 (12 π π π = - -,方向是向 右的.显然这一方法就是“五点作图法”中的第一零点判断法. 例2 已知函数 f (x ) =) 5 sin( 2π + x (x ∈R ) 的图像为C, 函数 y = ) 5 2sin(π - x (x ∈R ) 的图 像为C 1, 为了得到C 1,只需把C 上所有的点先向右平移 ,再将 . ( ) (A) 5 2π个单位,横、纵坐标都缩短到原来的2 1 (B) 5 2π个单位,横、纵坐标都伸

高中数学三角函数解题方法与技巧分析

龙源期刊网 https://www.sodocs.net/doc/6818377373.html, 高中数学三角函数解题方法与技巧分析 作者:王元蕾 来源:《文理导航》2017年第29期 【摘要】在高中学习期间,三角函数是相对独立又颇为重要的一块内容。分析历年来的高考试题可以发现,全国卷中涉及的三角函数的内容一般为选择题(或填空题)和一道大题。选择题的型多变,不易解答。而大题一般出现在第一道大题的位置上,较为简单。另外,数理不分家,三角函数在高中物理的叠加场大题中也发挥着关键作用。总之,加强对于高中数学三角函数内容的学习,十分必要。在本文中,我将介绍自己在高中学习过程中,对三角函数这块内容的理解以及一些解题方法、答题技巧。 【关键词】三角函数;答题技巧;高考 引言 三角函数,顾名思义,与角度和函数有关,数学上对函数的定义为:给定一个数集A,对A施加对应法则f,记作f(A),得到另一数集B,也就是B=f(A),因此,角度也就是函数定义中A了。据专家、老师以及我的分析,在全国卷中,三角函数题属于低档题,而且三 角函数知识属于高中阶段的工具性知识,因此必须熟练掌握。下面我根据个人经验,从三个方面介绍三角函数的答题技巧。 1.解题时要注意灵活运用基础知识 如例2:如右图所示,在三角形ABC中,已知:tan∠B=3/4,sin∠ADC=4/5,AD长度为5米。求:AB的长度。 解析:由sina/cosa=tana、tan∠B=3/4两个条件可以得出,sina=3/4cosa,再由 sina+cosa=1,联立方程组,再观察图一三角形,可以判断正弦值为正数,可以计算出 sin∠B=3/5。又因为知道sin∠ADC=4/5,则sin∠ADB=sin(180°-∠ADC)=sin∠ADC=4/5。由正弦定理得AD/sin∠B=AB/sin∠ADB,代入数值,解得AB的长度为20/3米。 2.解题时要注重题目的隐含条件 我们都知道三角函数隶属于函数,笔者根据高一学函数时总结的经验可以发现,三角函数题(特别是给出图的题,对图中标注的条件观察不仔细而导致题做不出来)有时候会含有隐含条件,例如:奇偶性、极值、锐角三角形等。 如例3:在銳角三角形ABC中,如果tan∠B=2+√3,sin∠C=√3 /2。求∠A的余弦值。

三角函数平移变换方法张

三角函数平移变换问题的简易判定 三角函数中的正弦、余弦在水平方向上的平移变换、涉及伸缩的平移变换问题是高考命题的热点之一,它主要以选择题的形式出现,为此本文将价绍能迅速、准确做出断定的简易方法. 先来看问题:sin()y A x ω?=+的图象可由sin()y A x ωθ=+(0,0A ω>>)的图象作怎样的变换得到 易知sin()y A x ωθ=+的图象上所有的点都向左( 0?θω->)或向右(0?θ ω -<) 平移θ?ωω-个长度单位得到sin(())y A x ?θ ωθω -=+ +,即sin()y A x ω?=+的图象.而()?θωω---中的 θω- 、? ω -可分别看作令sin()y A x ωθ=+和sin()y A x ω?=+中“角”的位置的代数式值为0所求得的x 的值.显然点(,0)?ω-是所得图象上与原来图象上的点(,0)θω-对应,(,0)θ ω -是被移动的 点(本文约定被告移动的点为“起”),而(,0)? ω -是所得的点(本文约定移动得到的点为“终”),要 从点(,0)θω- 到点(,0)? ω -,得沿x 轴平移()?θωω---个长度单位,其余各对对应点也如此. 由此,我们得到三角函数平移变换问题的第一种类型及其简易判定方法: 类型一、两个都是“弦”,且振幅相同、变量系数相同的同名函数间的平移变换问题. 简易判定方法:在判断sin()y A x ω?=+是由sin()y A x ωθ=+(0,0A ω>>)经过怎样的变换得到时(余弦的亦然),令0x x θωθω+=?=- (起),且令0x x ? ω?ω +=?=-(终).为直观起见,可在x 轴上标出这两个点(注:要明确“起”和“终”),平移方向是由“起”指向“终”,平移的长度单位个数是()?θ ωω - --. 例1. 函数sin(2)6y x π =- 的图象可由函数sin(2)3 y x π =+的图象作怎样的变换得到 解:令203 x π + =得6 x π =- (起),令206 x π - =,得12 x π =- (终)显然sin(2)6 y x π =- 的 图象可由sin(2)3 y x π =+ 的图象向右平移()1264 πππ - --=个单位得到. 我们再来看可转化为类型一的以下两种类型: 类型二、两个都是“弦”,且振幅相同、变量系数相同的异名函数间的平移变换问题.(此时只要

三角函数图像变换顺序详解全面

《图象变换的顺序寻根》 题根研究? 一、图象变换的四种类型 从函数y = f (x)到函数y = A f ()+m,其间经过4种变换: 1.纵向平移——m 变换 2.纵向伸缩——A变换 3.横向平移——变换 4.横向伸缩——变换 一般说来,这4种变换谁先谁后都没关系,都能达到目标,只是在不同的变换顺序中,“变换量”可不尽相同,解题的“风险性”也不一样. 以下以y = sin x到y = A sin ()+m为例,讨论4种变换的顺序问题. 【例1】函数的图象可由y = sin x的图象经过怎样的平移和伸缩变换而得到? 【解法1】第1步,横向平移: 将y = sin x向右平移,得 第2步,横向伸缩: 将的横坐标缩短倍,得 第3步:纵向伸缩: 将的纵坐标扩大3倍,得 第4步:纵向平移: 将向上平移1,得 【解法2】第1步,横向伸缩:

将y = sin x的横坐标缩短倍,得y = sin 2x 第2步,横向平移: 将y = sin 2x向右平移,得 第3步,纵向平移: 将向上平移,得 第4步,纵向伸缩: 将的纵坐标扩大3倍,得 【说明】解法1的“变换量”(如右移)与参数值()对应,而解法2 中有的变换量(如右移)与参数值()不对应,因此解法1的“可靠性”大,而解法2的“风险性”大. 【质疑】对以上变换,提出如下疑问: (1)在两种不同的变换顺序中,为什么“伸缩量”不变,而“平移量”有变? (2)在横向平移和纵向平移中,为什么它们增减方向相反—— 如当<0时对应右移(增方向),而m < 0时对应下移(减方向)? (3)在横向伸缩和纵向伸缩中,为什么它们的缩扩方向相反—— 如|| > 1时对应着“缩”,而| A | >1时,对应着“扩”? 【答疑】对于(2),(3)两道疑问的回答是:这是因为在函数表达式y = A f ()+m中x和y的地位在形式上“不平等”所至. 如果把函数式变为方程式 (y+) = f (),则x、y在形式上就“地位平等”了.

三角函数图像变换顺序详解(全面)

《图象变换的顺序寻根》 题根研究 一、图象变换的四种类型 从函数y = f (x)到函数y = A f ()+m,其间经过4种变换: 1.纵向平移——m 变换 2.纵向伸缩——A变换 3.横向平移——变换 4.横向伸缩——变换 一般说来,这4种变换谁先谁后都没关系,都能达到目标,只是在不同的变换顺序中,“变换量”可不尽相同,解题的“风险性”也不一样. 以下以y = sin x到y = A sin ()+m为例,讨论4种变换的顺序问题. 【例1】函数的图象可由y = sin x的图象经过怎样的平移和伸缩变换而得到? 【解法1】第1步,横向平移: 将y = sin x向右平移,得 第2步,横向伸缩: 将的横坐标缩短倍,得 第3步:纵向伸缩: 将的纵坐标扩大3倍,得 第4步:纵向平移: 将向上平移1,得 【解法2】第1步,横向伸缩: 将y = sin x的横坐标缩短倍,得y = sin 2x 第2步,横向平移:

将y = sin 2x向右平移,得 第3步,纵向平移: 将向上平移,得 第4步,纵向伸缩: 将的纵坐标扩大3倍,得 【说明】解法1的“变换量”(如右移)与参数值()对应,而解法2中有的变 换量(如右移)与参数值()不对应,因此解法1的“可靠性”大,而解法2的“风险性”大. 【质疑】对以上变换,提出如下疑问: (1)在两种不同的变换顺序中,为什么“伸缩量”不变,而“平移量”有变? (2)在横向平移和纵向平移中,为什么它们增减方向相反—— 如当<0时对应右移(增方向),而m < 0时对应下移(减方向)? (3)在横向伸缩和纵向伸缩中,为什么它们的缩扩方向相反—— 如|| > 1时对应着“缩”,而| A | >1时,对应着“扩”? 【答疑】对于(2),(3)两道疑问的回答是:这是因为在函数表达式y = A f ()+m 中x和y的地位在形式上“不平等”所至. 如果把函数式变为方程式 (y+) = f (),则x、y在形式上就“地位平等”了. 如将例1中的变成 它们的变换“方向”就“统一”了. 对于疑问(1):在不同的变换顺序中,为什么“伸缩量不变”,而“平移量有变”?这是因为在“一次”替代:x→中,平移是对x进行的. 故先平移(x→)对后伸缩(→)没有影响; 但先收缩(x→)对后平移(→)却存在着“平移”相关. 这

高中数学三角函数的解题技巧

209 二○一九年一月(下旬) 高 考 ·考试研究· 高中数学三角函数的解题技巧 山东省济宁市实验中学 薛丁方 摘 要:三角函数是高中数学学习中的主要内容,不仅在高中阶段的数学学习中具有重要地位,而且据了解,历年高考数学题中约15%的考察内容与三角函数有关。想要掌握三角函数的解题技巧,首先需要对三角函数概念、性质、公式具备足够的了解,奠定抓实基础,进而在三角函数的解题过程中总结规律,掌握灵活多变的解题方法,做到活学活用,以此提升三角函数的学习质量。本文在三角函数学习的过程中总结了以下几点经验,以供参考与批评。 关键词:高中数学;三角函数;解题技巧 一、掌握基本概念、性质定理,打好基础 三角函数的内容较为复杂,其中涉及到大量的公式与定理,而每一个三角函数公式的使用条件与定理的使用范围受到题目内容的限制,若是在三角函数学习中没有充分的掌握三角函数的概念、公式、性质,理解程度不够,记忆量不足,缺乏知识的灵活运用能力,就会在三角函数解题过程中盲目性解答,出现错用、错套等问题。基于此,笔者认为提升高中生三角函数解题能力,掌握解题技巧的关键在于打好基础。 1.概念与性质的学习是学生三角函数学习中的基础,只有真正吃透三角函数概念,掌握三角函数的性质,才能具有三角函数概念的灵活运用能力,在三角函数的解题过程中灵活应对,周期性与图像性质是我们在高中阶段三角函数学习中的常见性质,在解题中学生应具备三角函数性质的正确判断能力,通过对其性质的判断降低解题难度。如该题目为三角函数周期性类型,学生在该类问题解答中实现利用角度转换的方式,减少解题过程中的计算难度,利用该问题的类型得出解集,利用周期性三角函数在某一特定区间内的奇偶性和单调性,建立图像,利用其特性,迅速找出问题解决的方法。 2.需要重点学习三角函数公式,公式的学习效果以及应用能力的提升,可以让高中生的三角函数解题更加快速、准确。但是,高中阶段的三角函数公式涉及的内容角度,在强行记忆与三角函数有关的公式下,虽然记忆量增加,众多公式也进入的脑袋里,但是,在面对实际问题解答中如何灵活运用,成为了高中生三角函数学习过程中的又一难题。因为用一类型的三角函数公式具有一定的相似度,很多同学会容易记混、错用,因此,我们可以使用口诀记忆的方式,如“一全正,二正弦,三正切,四余弦”、“函数名不变,符号看象限”等,快速记忆,同时需要通过实际的联系,掌握不同公式之间的差异,区分其具体用法,通过总结与分析,掌握不同公式的应该规律。 二、三角函数解题技巧探究 1.利用转化法,灵活多变,解答问题 在充分了解三角函数概念、性质、定理的基础上,需要我们具有清晰的解题思路,掌握科学、简便的解题方法,以求在有限的时间内快速解答出正确的答案。转化法是我们在高中阶段三角函数学习中常用的一种方法,通过转化法在解题中的应用,可以将原本看似复杂的问题转化为简单易懂的形式,在求解,降低了三角函数问题的解答难度。举例说明: 例1已知sinα+cosα=m2,tgα+ctgα=n,求m 2与n 的关系. 此题看似较为复杂,但只要对tgα+ctgα进行适当转换,并找出sinα+cosα与sinαcosα的关系,就可以快 速解出答案.由于tgα+ctgα=1/sinαcosα,根据题目已知条件,可以得出sinαcosα=1/n,又由于sinαcosα=[(sinα+cosα)2-1]/2=m 2-1/2,因此,可以推导出m2与n 的关系式,即m 2=2/n+1. 2.利用托底法简化表达式 上述中的例题属于容易转化的类型,而在面对不易转化的题目类型时,可以采取托底法简化求解,还是结合一道例题进行具体说明. 例2已知tgα=3,求解sinα-3cosα2sinα+cosα的值. 在该题中,只有把求解表达式化简为包含tgα的形式,才能利用已知条件进行求解.根据求解表达式特点,可以将其分子和分母同时除以cosα,将其转化为tgα-3/2tgα+1,代入已知条件后,可以快速求解出, sinα-3cosα/2sinα+cosα=0.3.总结方法规律 首先,在练习的过程中应选择具有典型特征的题型,盲目性的练习不仅不会提升解题能力,还会增加学习负担。其次,针对性练习,每一种三角函数题型都有其自身的一套解题方法,学生可以采取逐个类型练习的方法,从中总结方法与规律,掌握该类型的解题技巧,再次面对此类型题的时候,就能够轻松应对。三角函数的解题方法分为很多种,除了上述提到的转化法、简化法外,还包括排除法、特殊值法、数形结合法等。通过平时练习中的总结经验、积累和归纳,有助于提升解题速度与准确率。 结语:结合上文可知,三角函数的知识内容繁杂,涉及到的公式较多,对于高中生而言具有一定的学习难度。想要掌握三角函数的解题技巧,要一步一步脚印,扎实基础,吃透三角函数的概念,充分了解不同类型公式的使用条件,具有公式的灵活运用能力,能够根据题目的类型及时判断解题方法,通过对条件以及表达式的转化、简化,梳理清晰的解题思路,避免错误理解题目内容、错用公式,总结规律与经验,以此提升高中生的三角函数解题能力,掌握符合自身学习特点的三角函数解题技巧。 参考文献 [1]例析三角函数求值题的解题技巧[J].彭万雷.华夏教师.2016(12) [2]分析高中数学三角函数解题常见误区及正确解题方案[J].宗位勇.数学大世界(下旬).2016(07)

三角函数恒等变换练习试题和答案解析详解

两角和与差的正弦、余弦、正切 1.利用两角和与差的正弦、余弦、正切公式进行三角变换; 2.利用三角变换讨论三角函数的图象和性质 2.1.牢记和差公式、倍角公式,把握公式特征;2.灵活使用(正用、逆用、变形用)两角和与差的正弦、余弦、正切公式进行三角变换,三角变换中角的变换技巧是解题的关键. 知识点回顾 1. 两角和与差的余弦、正弦、正切公式 cos(α-β)=cos αcos β+sin αsin β (C α-β) cos(α+β)=cos_αcos_β-sin_αsin_β (C α+β) sin(α-β)=sin_αcos_β-cos_αsin_β (S α-β) sin(α+β)=sin_αcos_β+cos_αsin_β (S α+β) tan(α-β)=tan α-tan β 1+tan αtan β (T α-β) tan(α+β)=tan α+tan β 1-tan αtan β (T α+β) 2. 二倍角公式 sin 2α=ααcos sin 2; cos 2α=cos 2 α-sin 2 α=2cos 2 α-1=1-2sin 2 α; tan 2α=2tan α 1-tan 2 α . 3. 在准确熟练地记住公式的基础上,要灵活运用公式解决问题:如公式的正用、逆用和变形用等.如T α±β 可变形为 tan α±tan β=tan(α±β)(1?tan_αtan_β), tan αtan β=1-tan α+tan βα+β=tan α-tan β α-β -1. 4. 函数f (α)=a cos α+b sin α(a ,b 为常数),可以化为f (α)= a 2 +b 2 sin(α+φ)或f (α)=a 2 +b 2 cos(α-φ),其中φ可由a ,b 的值唯一确定. [难点正本 疑点清源] 三角变换中的“三变” (1)变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是“配凑”. (2)变名:通过变换函数名称达到减少函数种类的目的,其手法通常有“切化弦”、“升幂与降幂”等. (3)变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有“常值代换”、“逆用变用公式”、“通分约分”、“分解与组合”、“配方与平方”等. 热身训练 1. 已知sin(α+β)=23,sin(α-β)=-15,则tan α tan β 的值为_______.

锐角三角函数的题型及解题技巧

锐角三角函数的题型及解题技巧 锐角三角函数是三角函数的基础,它应用广泛,解题技巧性强,下面归纳 出 锐角三角函数的常见题型,并结合例题介绍一些解题技巧。 、 化简或求值 例1 (1) 已知tan 2cot 1,且 是锐角,求乙tan 2 cot 2 2的值。 (2) 化简 a sin bcos ? acos bsin ?。 分析 (1)由已知可以求出tan 的值,化简?、tan 2 cot 2 2可用 1 tan cot ; (2)先把平方展开,再利用sin 2 cos 2 1化简 解(1)由tan 2cot 1得tan 2 2 tan ,解关于tan 的方程得 tan 2或 tan 1。又是锐角,二 tan 2。二、tan 2 cot 2 2 = 1 2 2 2,「 tan cot 2 = tan cot (2) a sin bcos ? acos bsin 2 -2 ? 2 2 cos b sin cos = a 、已知三角函数值,求角 求C 的度数。 分析 几个非负数的和为0,则这几个数均为0。由此可得cosA 和sin B 的 值,进而求出 代B 的值,然后就可求出 C 的值。 \ tan 2 2tan cot cot 2 = : (tan cot )2 tan cot 由tan 得cot a 2 sin 2 2ab sin cos b 2 cos 2 + a 2 cos 2 2ab cos sin b 2s in 2 2 2 a sin 2 b 2 tan 说明 在化简或求值问题中,经常用到 cot 1 等。 “ 1” 的代换, 即 sin 2 2 cos J 2 例2在厶ABC 中,若cosA — 2 .3 2 sin B 0 A, B 均为锐角,

三角函数变换的方法总结

三角函数变换的方法总结 三角学中,有关求值、化简、证明以及解三角方程与解几何问题等,都经常涉及到运用三角变换的解题方法与技巧,而三角变换主要为三角恒等变换。三角恒等变换在整个初等数学中涉及面广,是常用的解题工具,而且由于三角公式众多,方法灵活多变,若能熟练掌握三角恒等变换的技巧,不但能加深对三角公式的记忆与内在联系的理解,而且对发展数学逻辑思维能力,提高数学知识的综合运用能力都大有益处。下面通过例题的解题说明,对三角恒等变换的解题技巧作初步的探讨研究。 (1)变换函数名 对于含同角的三角函数式,通常利用同角三角函数间的基本关系式及诱导公式,通过“切割化弦”,“切割互化”,“正余互化”等途径来减少或统一所需变换的式子中函数的种类,这就是变换函数名法.它实质上是“归一”思想,通过同一和化归以有利于问题的解决或发现解题途径。 【例1】已知θ同时满足和,且a、b均不为0,求a、b的关系。 解析:已知 显然有: 由①×cos2θ+②×cosθ,得:2acos2θ+2bcosθ=0 即有:acosθ+b=0 又 a≠0 所以,cosθ=-b/a ③ 将③代入①得:a(-a/b)2-b(-b/a)=2a 即a4+b4=2a2b2 ∴(a2-b2)2=0即|a|=|b| 点评:本例是“化弦”方法在解有关问题时的具体运用,主要利用切割弦之间的基本关系式。 (2)变换角的形式 对于含不同角的三角函数式,通常利用各种角之间的数值关系,将它们互相表示,改变原角的形式,从而运用有关的公式进行变形,这种方法主要是角的拆变.它应用广泛,方式灵活,如α可变为(α+β)-β;2α可变为(α+β)+(α-β);2α-β可变为(α-β)+α;α/2可看作α/4的倍角;(45°+α)可看成(90°+2α)的半角等等。 【例2】求sin(θ+75°)+cos(θ+45°)-cos(θ+15°)的值。 解析:设θ+15°=α,则 原式=sin(α+60°)+cos (α+30°)-cosα =(sinαcos60°+cosαsin60°)+(cosαcos30°-sinαsin30°)-cosα =sinα+cosα+cosα-sinα-cosα =0 点评:本例选择一个适当的角为“基本量”,将其余的角变成某特殊角与这个“基本量”的和差关系,这也是角的拆变技巧之一。 【例3】已知sinα=Asin(α+β)(其中cosβ≠A),试证明:tan(α+β)= 证明:已知条件可变为:sin[(α+β)-β]=Asin (α+β) 所以有:sin (α+β) cosβ-cos (α+β) sinβ=Asin (α+β) ∴ sin (α+β)( cosβ-A)=cos (α+β) sinβ

相关主题