搜档网
当前位置:搜档网 › 浅谈物理模型的变换

浅谈物理模型的变换

浅谈物理模型的变换
浅谈物理模型的变换

浅谈物理模型的变换

宝应县城郊中学 杨永根

解题的过程,实质上就是“还原”物理模型的过程,即“明确物理过程”,

“建立物理图景”.而我们遇到的许多新问题,常常是在旧模型的基础上发

展或变通而来的.下面通过几例粗浅的谈谈物理模型的变换.

[例1]把一个可视为质点的滑块m 放在一半径为R ,圆心角小于50的光

滑弧槽边缘,如图1所示,释放后经多长时间到达弧槽的最低点?

该滑块在弧槽中的受力与运动规律跟我们很熟悉的单摆的简谐振动模型是一样的.即小球释放后做简谐振动,周期为: g R T π2= ,所求时间为:g

R T t 241π== [例2]一个质量为m ,带有-q 电荷的小物体,可在水平绝缘轨道上运

动,O 端有一与轨道垂直的绝缘固定墙,轨道处于匀强电场中,场强大小为

E ,方向沿OX 的正方向,如图2所示.小物体以初速度V 0从X 0点沿OX

轨道运动,运动时受到大小不变的摩擦力f 作用,且f

壁碰撞时不损失机械能,且电量保持不变,求它在停止运动前所通过的总路

程S

我们先来看看一个比较熟悉的

物体的运动.从离地面H 高处以速

度V 0竖直抛出一小球,小球在运动

过程中所受空气阻力是它的重力的

K 倍,而小球与地面相碰时不损失机

械能,则小球从抛出到停止弹跳所经

过的总路程.

我们来把小球的运动和受力作如下变换:运动方向由竖直变换为水平,

受到的重力变换为电场力,受到的空气阻力变换为摩擦力.经这样一变换,

也就变成了我[例2]所要研究的物体的运动和受力情况.可见,这两个问题

的物理模型是相似的.

故根据动能定理可得:2002

10mV fS EqX -=-,解出物体通过的总路程为 f

mV qEX S 222

00+=. [例3]在光滑的水平轨道上有两个半径都是r 的小球A 和B ,质量分别

为m 和2m ,当两球心间距大于L (L 比2r 大得多)时,两球之间无相互作

用;当两球心间的距离等于或小于L 时,两球间存在相互作用的恒定斥力F ,

设A 球从远离B 球处经速度V 0沿两球连线向原来静止的B 球运动,如图3

所示.欲使两球不发生接触,V 0必须满足什么条件?

学生最感困惑的是:物理图景不清晰,物理模型建立不起来.其实此题的原型学生并不陌生:质量为M ,长为L 的木块静止在光滑水平面上,一质量为m ,速度为V 0的子弹水平射入木块中,如图4所示.设子弹所受木块对它的阻力大小恒为f ,欲使子弹不穿出木块,V 0必须满足什么条件?

图3 图4

“还原”,将收到举一反三,触类旁通的效果.但一定要注意对相似模型的属性、特征、规律进行全面比较和考证,否则,盲目地模仿和代换,势必导致负迁移的产生.

浅谈物理学中的抽象和概括

浅谈物理学中的抽象和概括 浅谈物理学中得抽象和概括 1 咨询题得提出 抽象和概括是一种抽象思维方法.许多物理咨询题得提出、物理概念得产生、物理规律得建立、物理理论得形成基本上抽象和概括得结果.由此可见,抽象和概括在物理学得形成进展、完善过程中起着举足轻重得作用.本文从抽象和概括得概念、作用和局限性等几方面做了详细得阐述. 2 抽象和概括得概念 抽象和概括是物理学中抽象思维能力得一种,“物理抽象是在观看、实验得基础上,通过物理概念、物理推断和物理推理得形式,对已获得得物理事实进行加工处理而形成得对物理对象、物理现象、物理过程得本质和规律得认识.”[1]所谓概括,确实是在抽象得基础上,把所有反映物理事物本质得属性结合为一个整体,形成关于物理事物整体得和一般得认识,进而把这种一般得认识推广到同类事物,把握同类事物得共同性和一般性. 抽象性与概括性得统一,是物理抽象思维得一个重要特点,只有通过抽象和概括,才能简化物理对象,形成理想化得过程;在实验和理论分析得基础上得出定量得物理规律. 3 抽象和概括在物理学中得作用 物理学中通过表面现象,揭示内在本质,从而把实际得物质模型化,把复杂得物理咨询题简单化,把具体得物理咨询题理想化,这种简化得过程从思维学得角度上来讲,确实是抽象思维得过程. 31 提炼物理模型论文联盟 “物理模型是依照研究咨询题和内容在一定条件下,对研究客体得抽象,物理模型是物理学中重要得抽象方法之一,它关于差不多规律和差不多理论得建立起着不可替代得作用.WcOm在物理学中,物理模型要紧分三种类型:“客体模型、条件模型和过程模型”.客体模型是客观存在得实际物体通过简化、抽象建立起得物理模型.例如在研究力学中物体得运动时得质点模型.电学中得点电荷、光学中得点光源、弹簧振子、刚体等等,基本上客体模型.条件模型是客观物体在运动变化过程中,对制约物体运动得条件进行取舍,抓住决定条件,忽略次要条件,如此建立起来得理想化条件确实是条件模型.如在平面上运动得物体,若摩擦力f与合力f相比非常小,那个平面称为光滑平面,“光滑平面”确实是条件模型.另外在物理学中得细绳、轻质细杆、稳定电源等等基本上条件模型.过程模型是在一定条件下对具体得运动过程及限制这些过程得条件进行抽象,形成“过程模型”.例如研究地面附近自由落体运动,下落得物体视为“质点”,从静止开始下落得过程中,忽略空气得阻力、浮力、风力、风向等作用,只受到恒定得重力作用,质点在如此理想化条件下运动得过程确实是“自由落体运动”.这确实是一个理想化得过程模型.在热学中,准静态过程也是一个理想化得过程模型.在物理学中理想化条件下得过程模型非常多,如匀速直线运动、简谐振动等等. 在物理学中,正是从实际物体、物理过程、条件中抽象和概括出这些物理模型,才使人们对物质世界得认识不断深化,不断想真理逼近,推动着物理学得进展,从某种意义上讲,各种理想物理模型得建立,正是物理学向深度和广度进展得重要标志之一. 32 总结物理概念、定律 物理概念、定律是物理学得理论基础,只有通过抽象和概括,才能形成物理概念,简化物理对象,形成理想化得过程,在实验和理论分析得基础上,得出定量得物理定律.例如:力得概念是通过抽象和概括一类事物得共同本质属性形成得,如:人推车,马拉犁,即力是物体对物体得作用.简谐振动得规律则是在研究单摆和弹簧振子这些理想模型得运动时概括出来得.可见,物理学中得许多概念、定律是通过抽象思维得加工,在实验得基础上概括出来得. 33 用抽象和概括得方法学习物理学

物理模型在中学物理教学中的作用和意义

学号20095040104 学院物理电子工程学院 专业物理学 年级2009级 姓名杨超 论文题目物理模型在中学物理教学中的作用和意义 指导教师刘慧职称高级实验师

2013年05月01日

目录 摘要 (1) Abstract (1) 引言 (1) 1物理模型的概念 (2) 2物理模型的种类 (2) 2.1 理想化物理模型和探索性物理模型 (2) 2.2 对象模型、过程模型和理论模型 (2) 3物理模型在中学教育中的作用 (5) 3.1 物理模型可以培养学生正确的科学思维方法 (5) 3.2 物理模型具有教师传播知识和学生获取知识的桥梁作用 (5) 3.3 物理模型具有软化教学过程的作用 (6) 4物理模型在中学物理教学中的意义 (6) 4.1 物理模型能够促进学生适应新一轮课程改革 (6) 4.2 物理模型能够促进知识迁移创新学习 (6) 4.3 物理模型能够满足高考改革的需求 (6) 5培养学生构建物理模型的能力 (6) 5.1 引导学生主动掌握建立物理模型的方法 (6) 5.2 模式化构建模型步骤 (7) 5.3 充分利用教学资源降低构建模型的难度 (7) 5.4 重视思维程序训练 (7) 结束语 (8) 参考文献 (8)

物理模型在中学物理教学中的作用和意义 学生姓名:杨超学号:20095040104 学院:物理电子工程学院专业:物理学 指导教师:刘慧职称:高级实验师 摘要:在我国的传统物理教学中,教师比较注重知识的传授,教学活动的开展都是围绕如何有效地传授物理知识。在这样的环境下,学生的知识掌握比较牢固,但随着教育改革的深入,对学生解决实际问题和探索性问题能力的要求越来越高,传统的教育模式已经无法满足学生能力提高的需要。针对这一现象,本论文提出应该重视物理模型在中学物理教学中的作用和意义。本文主要介绍了物理模型的概念、分类以及在中学物理教学中的作用和意义,最后还介绍了培养学生构建物理模型能力的方法。 关键词:物理模型;作用和意义;模型构建 Roles and significances of physical models in middle school teaching Abstract:Traditional physical education in our country pays more attention to imparting knowledge, so the whole teaching process was just around how to teach effectively. In this situation, the students could master the knowledge well. However, as the education reform further, the demand ever higher in solving practical or exploratory problems. Traditional education has been unable to meet the students’ needs of improving the ability. Aiming at this phenomenon, This essay presents that it’s necessary to think highly of the roles and significances of physical models in middle school teaching. This essay mainly introduces the physical models’concept and classification, the roles and significances of physical models are also highlighted. At last, it introduces the ways to improve the students’ ability of constructing physical models. Key words:physical models;roles and significances;models constructing 引言 物理学的研究对象遍及整个物质世界,大到天体,小至基本粒子,无奇不有,无所不在。面对具体复杂的物体,研究它们形形色色的运动,如果不采取科学思维方法,人

高中物理模型汇总

学习资料收集于网络,仅供参考 高中物理模型汇总大全 模型组合讲解一一爆炸反冲模型 [模型概述] “爆炸反冲”模型是动量守恒的典型应用,其变迁形式也多种多样,如炮发炮弹中的化学能转化为机械能;弹簧两端将物块弹射将弹性势能转化为机械能;核衰变时将核能转化为动能等。 [模型讲解] 例?如图所示海岸炮将炮弹水平射出,炮身质量(不含炮弹)为M,每颗炮弹质量为m, 当炮身固定时,炮弹水平射程为s,那么当炮身不固定时,发射同样的炮弹,水平射程将是多少? 解析:两次发射转化为动能的化学能E是相同的。第一次化学能全部转化为炮弹的动能;第二次化学能转化为炮弹和炮身的动能,而炮弹和炮身水平动量守恒,由动能和动量的关系 2 式E k二丄知,在动量大小相同的情况下,物体的动能和质量成反比,炮弹的动能 2m E, =-mv1 = E,E2 =1mvf M一E,由于平抛的射高相等,两次射程的比等于抛出时初 2 2 M +m 速度之比,即:处亠=.M,所以S2 M。 sv.YM+m *M+m 思考:有一辆炮车总质量为M,静止在水平光滑地面上,当把质量为平面成B角 发射出去,炮弹对地速度为v0,求炮车后退的速度。 提示:系统在水平面上不受外力,故水平方向动量守恒,炮弹对地的水平速度大小为 V o COSV,设炮车后退方向为正方向,则(M -m)v-mv o COSV - 0,v = mV ° C ° S M —m 评点:有时应用整体动量守恒,有时只应用某部分物体动量守恒,有时分过程多次应用动量守恒,有时抓住初、末状态动量即可,要善于选择系统,善于选择过程来研究。 [模型要点] 内力远大于外力,故系统动量守恒P i二p2,有其他形式的能单向转化为动能。所以“爆 m的炮弹沿着与水

高中物理:力学模型及方法知识归纳

╰ α 高中物理知识归纳(二) ----------------力学模型及方法 1.连接体模型是指运动中几个物体叠放在一起、或并排在一起、或用细绳、细杆联系在一起的物体组。解决这类问题的基本方法是整体法和隔离法。 整体法是指连接体内的物体间无相对运动时,可以把物体组作为整体,对整体用牛二定律列方程隔离法是指在需要求连接体内各部分间的相互作用( 如求相互间的压力或相互间的摩擦力等)时,把某物体从连接体中隔离出来进行分析的方法。 2斜面模型(搞清物体对斜面压力为零的临界条件) 斜面固定:物体在斜面上情况由倾角和摩擦因素决定 μ=tgθ物体沿斜面匀速下滑或静止μ> tgθ物体静止于斜面 μ< tgθ物体沿斜面加速下滑a=g(sinθ一μcosθ) 3.轻绳、杆模型 向的力。 杆对球的作用力由运动情况决定 只有θ=arctg( g a)时才沿杆方向 最高点时杆对球的作用力;最低点时的速度?,杆的拉力? 若小球带电呢? 假设单B下摆,最低点的速度V B=R 2g?mgR=2 2 1 B mv 整体下摆2mgR=mg 2 R +'2 B '2 A mv 2 1 mv 2 1 +

F 'A 'B V 2V = ? ' A V = gR 53 ; ' A ' B V 2V ==gR 25 6> V B =R 2g 所以AB 杆对B 做正功,AB 杆对A 做负功 若 V 0

浅谈构建物理模型在解题中的作用

浅谈构建物理模型在解题中的作用 大多数学生进入高中学习以后,感到物理是一门比较难学的科目,解题时往往感到无从下手,这是由于物理的基本概念和规律建立的基础是理想化过程模型和理想化实体模型,因此在解答物理问题时应首先创设物理情景,构建物理模型。 物理概念和规律具有高度的抽象性和客观性,而物理习题由于是描述一些理想物体的基本运动或基本状态,所以物理习题具有理想性、具体性和形象性。为了沟通概念规律与习题的联系,解题中就应创设具有这种联系的“图景”,通过物理图景,构建物理模型,这样可以使物理过程变得更为形象和清晰,对启发学生思维,正确理解物理概念,分析物理问题起到良好的辅助作用。同时使学生形成科学的思维方法和掌握科学的研究方法。 模型最能反映现象和事物的本质,建立模型就是找出、抓住现象和事物的本质和主要矛盾,抽象出物理本质,研究和解决事物的主要矛盾,这样,解决问题时就会取得事半功倍的效果。 为了便于研究物理问题和对物理现象进行客观描述,现就以下几个方面作出分析: 一、简化确定“研究对象”是建立正确物理模型的基础 “研究对象”是参与所研究的物理对象的客体。由于实际参与的客体众多,影响因素复杂,因此在建立物理模型时,首先要对客体进行简化,抓住其主要特征,舍弃其次要因素,因此,要建立正确的物理模型,首先应具有将实际的物理问题简化成理想模型的能力。 对于多个物理客体参与的物理问题,我们要认真分析各个“研究对象”

之间的相互联系,从现状和所求结果入手,找出关键的客体,作为研究对象,它们是物理模型中的“主角”。 比如,对一列水平横波的研究。如果研究质点的振动,可选取某个质点(如振源)为研究对象;要研究波的周期性,可选取水平距离是波长整数倍的两个质点来研究;要研究质点的振动与波动的关系,就要选取某个质点和波动的形态为对象,就可得到这样一幅简单、清晰的物理图景:质点在竖直方向作简谐振动,波在水平方向作匀速运动,质点的振动方向决定了波的传播方向,在质点完成一次全振动的时间内,波恰好向前移动了一个波长。 下面举例说明物理模型在解题中的实际应用。 例一、(见图1)劲度度系数为k 的弹簧一端固定于 墙壁,另一端连着质量为M 的物体,物体静止于光滑水 平面的O 点上,现有一质量为m 的子弹以水平速度v 0 射进且留在物体中,试问最少需要多少时间物体又到达O 点?物体的最大位移是多少? 解:开始时取子弹和物体组成的系统为研究对象,忽略子弹的转动,认为子弹射进物体的过程为平动,从而建立质点系统模型。因为从子弹开始射进物体到停留在物体中这一过程时间极短,弹簧的形变微小到可以忽略,所以可认为在此过程中,沿水平方向系统所受合力为零,系统的变化为完全非弹性碰撞,从而可建立完全非弹性碰撞过程模型。系统动量守恒,故有: (m+M)v=mv 0 由此可得系统的初速度:v=mv 0/(m+M) 又系统获得速度v 的过程短暂,它们的位移微小到可以忽略,故可以认为系统虽已具有速度v 但还处在平衡位置O 点处.此后,选取子弹、物体和

最新高中物理模型解题法的构建

浅谈高中物理的模型构建 思维定势是人们在思维活动中所倾向的特定的思维模式。它是指人们按照某种固定的思路和模式去考虑问题,表现为思维的倾向性和专注性。它有消极的一面,消极的思维定势是指人将头脑中已有的、习惯了的思维模式生搬硬套到新的物理情景中去,不善于变换认识的角度和改变解决问题的方式。但是它也有积极的一面,积极的思维定势有利于物理概念的形成和对物理规律的理解。构建物理模型一定程度上可以说是利用了思维定势积极的一面。 物理学科的研究对象是自然界物质的结构和最普遍的运动形式,对于那些纷繁复杂事物的研究,首先就需要抓住其主要的特征,而舍去那些次要的因素,形成一种经过抽象概括了的理想化的“模型”,这种以模型概括复杂事物的方法,是对复杂事物的合理的简化。如运动员的跳水问题是一个“竖直上抛”运动的物理模型;人体心脏收缩使血液在血管中流动可简化为一个“做功”的模型等等。物理模型是同类通性问题的本质体现和核心归整。 高中物理模型可以分为三类,即实物模型、过程模型、试题模型。接下来分别详细阐述: 一、实体模型 它是用来代替由具体物质组成的,代表研究对象的实体系统。这一类模型在中学物理中最为常见,如力学中有质点、刚体、杠杆、轻质弹簧、单摆、弹簧振子;热学中有弹性球分子模型、理想气体、黑体;电学中有点电荷、试验电荷、理想导体、绝缘体、理想电表、纯电阻、无限长螺线管;光学中的薄透镜、光的波粒二象性模型、原子物理中原子的核式结构模型等。 这种模型教材中较常见,是研究问题时,抓住事物的主要因素,忽略次要因素建立起来的实物模型,对理解的概念起着不可估量的作用。 例1、如图所示,四个完全相同的弹簧都处于水平位置,它们的右端受到大小皆为F的拉力作用,而左端的情况各不相同:①中弹簧的左端固定在墙上,②中弹簧的左端受大小也为F 的拉力作用,③中弹簧的左端拴一小物块,物块在光滑的桌面上滑动,④中弹簧的左端拴一小物块,物块在有摩擦的桌面上滑动.若认为弹簧的质量都为零,以l1、l2、l3、l4依次表示四个弹簧的伸长量,则有:()

高中物理常见的物理模型易错题归纳总结及答案分析

第9专题高中物理常见的物理模型 方法概述 高考命题以《考试大纲》为依据,考查学生对高中物理知识的掌握情况,体现了“知识与技能、过程与方法并重”的高中物理学习思想.每年各地的高考题为了避免雷同而千变万化、多姿多彩,但又总有一些共性,这些共性可粗略地总结如下: (1)选择题中一般都包含3~4道关于振动与波、原子物理、光学、热学的试题. (2)实验题以考查电路、电学测量为主,两道实验小题中出一道较新颖的设计性实验题的可能性较大. (3)试卷中下列常见的物理模型出现的概率较大:斜面问题、叠加体模型(包含子弹射入)、带电粒子的加速与偏转、天体问题(圆周运动)、轻绳(轻杆)连接体模型、传送带问题、含弹簧的连接体模型. 高考中常出现的物理模型中,有些问题在高考中变化较大,或者在前面专题中已有较全面的论述,在这里就不再论述和例举.斜面问题、叠加体模型、含弹簧的连接体模型等在高考中的地位特别重要,本专题就这几类模型进行归纳总结和强化训练;传送带问题在高考中出现的概率也较大,而且解题思路独特,本专题也略加论述. 热点、重点、难点 一、斜面问题 在每年各地的高考卷中几乎都有关于斜面模型的试题.如20XX年高考全国理综卷Ⅰ第25题、北京理综卷第18题、天津理综卷第1题、上海物理卷第22题等,20XX年高考全国理综卷Ⅰ第14题、全国理综卷Ⅱ第16题、北京理综卷第20题、江苏物理卷第7题和第15题等.在前面的复习中,我们对这一模型的例举和训练也比较多,遇到这类问题时,以下结论可以帮助大家更好、更快地理清解题思路和选择解题方法. 1.自由释放的滑块能在斜面上(如图9-1 甲所示)匀速下滑时,m与M之间的动摩擦因数μ=gtan θ. 图9-1甲 2.自由释放的滑块在斜面上(如图9-1 甲所示): (1)静止或匀速下滑时,斜面M对水平地面的静摩擦力为零; (2)加速下滑时,斜面对水平地面的静摩擦力水平向右; (3)减速下滑时,斜面对水平地面的静摩擦力水平向左. 3.自由释放的滑块在斜面上(如图9-1乙所示)匀速下滑时,M对水平地面的静摩擦力为零,这一过程中再在m上加上任何方向的作用力,(在m停止前)M对水平地面的静摩擦力依然为零(见一轮书中的方法概述).

浅谈物理模型在教学中的作用

谈物理教学中的物理模型构建 安徽省天城中学黄飞(231480) 【摘要】物理模型教学中将最基础最典型的物理知识、物理问题介绍给学生,并通过建立物理模型,将研究方法也展示给学生,引导学生思考、感悟以至升华。培养能力是落实课改的措施,知识是能力的载体。这就需要我们在教学中注意对学生进行物理模型的总结归纳。 【关键词】物理模型物理模型教学科学性策略性理想化 物理是高中理科中学生普遍感觉到比较难的一门学科。物理课堂教学既是科学又是艺术,有其自身的科学性和策略性。高中物理学习,主要是学生个体智力活动的过程与教师课堂教学的高效结合的过程。学习物理,模型的建立非常重要,不管是那方面的物理学,最重要的是建立物理模型。特别是力学与运动学,遇到一个物理问题我们首先要将它联想到一个相关的物理模型。将复杂的;抽象的问题化为简单的;直观的问题。 下面是高中物理教学中经常用到的几种物理模型 (1)研究对象的理想化模型 例如:质点物理模型,它忽略了物体的形状、大小、转动等性能,突出它所处的位置和质量的特性,用一有质量的点来代替。如当物体本身的大小在所研究的问题中可以忽略或对研究问题没有影响,能当作质点来处理;质点的概念是一种科学的抽象,是理想化模型。这种抽象正是抓住问题的实质,只要我们在教学过程中注意培养学生抓住主要矛盾,忽略次要矛盾,逐步建立这种物理模型。以后遇到类似质点的客观实体比如:刚体、点电荷、点光源、理想气体、匀强电磁场等物理模型,学生就会自己分析学习了。 (2)物理状态和物理过程的理想化模型 例如:运动学中的匀速直线运动、自由落体运动;动力学中的完全弹性碰撞;电学中的稳恒电流, (3)理想化实验物理模型 在实验的基础上,抓住主要矛盾,忽略次要矛盾,根据逻辑推理法则,对过程进一步分析、推理,找出其规律。例如,伽利略的理想实验为牛顿第一定律的产生奠定了基础。 (4)研究对象的条件的模型 当研究动量守恒定律时,当系统的内力远大于外力时,系统的动量守恒;当研究带电粒子在电场中运动时,因粒子所受的重力远小于电场力,可以舍去重力的作用,使问题得到简化。力学中的光滑面;电学中的匀强电场、匀强磁场等等,都是把物体所处的条件理想化了。 培养学生建立和正确使用物理模型不仅有利于学生将复杂问题简单化、明了化,使抽象的物理问题更直观、具体、形象、鲜明,突出了事物间的主要矛盾;而且对学生的思维发展、解题能力的提高起着重要的作用。可以把以有物理模型的知识和将来探索的新知识相类比,起到模型的迁移,到达事半功倍的效果。 1.动能转换内能类型 例1.如图所示,倾角为θ 轨相连,连接处是光滑的圆弧。水平导轨上 存在有磁感强度为B的竖直向上的磁场。同 时水平导轨上有质量为m、电阻为R的导体 棒b。一根与b完全一样的导轨a自斜面高为h处开始下滑,运动过程中,a、b始终不

建立理想模型法

建立理想模型法 Document number【980KGB-6898YT-769T8CB-246UT-18GG08】

初中物理建立理想模型法简介 王台中学王建国 百度+自己的总结,请有选择地参考。 把复杂问题简单化,摒弃次要条件,抓住主要因素,只考虑起决定作用的主要因素,对实际问题进行理想化处理,构建理想化的物理模型,这是一种重要的物理思想。在此基础上,有时为了更加形象地描述所要研究的物理现象、物理问题,还需要引入一些虚拟的内容,借此来形象、直观地表述物理情景。 题型分为两类 一、理想模型是从无到有建立的,例子如下 ※光线、磁感线都是虚拟假定出来的,但它们却直观、形象地表述物理情境与事实,方便地解决问题。通过磁感线研究磁场的分布,通过光线研究光的传播路径和方向。(光的性质波动性、粒子性、沿直线传播)(磁场的性质:对处于其中的磁体、电流、运动电荷有力的作用) ※电路图。(电路的一些性质:电流按照从电源正极流出通过外部电路流回负极、流过用电器会做功、电流有大小、导线有粗细、) ※匀速直线运动,就是一种理想模型。在生活实际中严格的匀速直线运动是无法找到的,但有很多的运动情形都近似于匀速直线运动,按匀速直线运动来处理,大大简化了难题,得到的结果又具有极高的精度,在允许的误差范围内与实际相吻合。(运动物体方向和快慢随时间发生变化) ※杠杆也是一种理想模型,杠杆在实际使用时,由于受力的作用,都会引起或大或小的形变,可忽略不计,因此,我们就把杠杆理相化,认为它无形变。(物体有形状,硬棒,能绕固定点转动) ※原子核式结构模型 ※力的示意图或力的图示 二、把实际物体看作已建立的实体模型 ※斜拉索式大桥看作是杠杆模型。(抓住的主要因素:硬、能绕固定点转动。) ※汛期,江河中的水有时会透过大坝下的底层从坝外的地面冒出来,形成“管涌”,“管涌”的物理模型是连通器。(抓住的主要因素:上部开口,底部连通) ※水面看作镜面(抓住的主要因素:表面光滑) 考题往往问抓住了什么主要因素,忽略了什么次要因素,该如何回答呢? 答:主要因素就是该模型的定义,次要因素自己想。 你可以把问题改一改,就可以看出主、次要因素,例如改成:哪些物体还可以看作某某模型这些物体的共同特征就是主要因素,不同特征就是次要因素。 某高人对高中物理的基本理想化模型分类

高中物理模型总结汇总

l v 0 v S v 0 A B v 0 A B v 0 l 滑块、子弹打木块模型之一 子弹打木块模型:包括一物块在木板上滑动等。μNS 相=ΔE k 系统=Q ,Q 为摩擦在系统中产生的热量。②小球在置于光滑水平面上的竖直平面内弧形光滑轨道上滑动 :包括小车上悬一单摆单摆的摆动过程等。小球上升到最高点时系统有共同速度(或有共同的水平速度);系统内弹力做功时,不将机械能转化为其它形式的能,因此过程中系统机械能守恒。 例题:质量为M 、长为l 的木块静止在光滑水平面上,现有一质量为m 的子弹以水平初速v 0射入木块,穿出时子弹速度为v ,求子弹与木块作用过程中系统损失的机械能。 解:如图,设子弹穿过木块时所受阻力为f ,突出时木块速度为V ,位移为S ,则子弹位移为(S+l)。水平方向不受外力,由动量守恒定律得:mv 0=mv+MV ① 由动能定理,对子弹 -f(s+l )=2 022 121 mv mv - ② 对木块 fs=02 12-MV ③ 由①式得 v= )(0v v M m - 代入③式有 fs=2022 )(21v v M m M -? ④ ②+④得 f l =})]([2121{212 12 1 2 120220222 v v M m M mv mv MV mv mv -+-=-- 由能量守恒知,系统减少的机械能等于子弹与木块摩擦而产生的内能。即Q=f l ,l 为子弹现木块的相对位移。 结论:系统损失的机械能等于因摩擦而产生的内能,且等于摩擦力与两物体相对位移的乘积。即 Q=ΔE 系统=μNS 相 其分量式为:Q=f 1S 相1+f 2S 相2+……+f n S 相n =ΔE 系统 1.在光滑水平面上并排放两个相同的木板,长度均为L=1.00m ,一质量 与木板相同的金属块,以v 0=2.00m/s 的初速度向右滑上木板A ,金属 块与木板间动摩擦因数为μ=0.1,g 取10m/s 2 。求两木板的最后速度。 2.如图示,一质量为M 长为l 的长方形木块B 放在光滑水平面上,在其右端放一质量为m 的小木块A ,m <M ,现以地面为参照物,给A 和B 以大小相等、方向相反的初速度 (如图),使A 开始向左运动,B 开始向右运动,但最后A 刚好没有滑离 B 板。以地面为参照系。 ⑴若已知A 和B 的初速度大小为v 0,求它们最后速度的大小和方向; ⑵若初速度的大小未知,求小木块A 向左运动到最远处(从地面上看)到出发点的距离。 3.一平直木板C 静止在光滑水平面上,今有两小物块A 和B 分别以2v 0和v 0的初速度沿同一直线从长木板

浅谈物理模型的作用及其建立

浅谈物理模型的作用及其 建立 Last revision on 21 December 2020

浅谈“物理模型”的作用及其建立 布鲁纳的发现法学习理论认为:“认识是一个过程,而不是一种产品”。探究式学习法是学习物理的一种重要的认知方法;它以学生的需要为出发点,以问题为载体,从学科领域或现实社会生话中选择和确定研究主题,创设类似于科学的情境,通过学生自主、独立地发现问题、实验探究、操作、调查、信息搜集与处理、表达与交流等探索活动,获得知识技能,发展情感与态度,培养探索精神和创新能力的学习方式。在这探究式学习的过程中,最难的一点在于如何创设科学的物理情境;这个科学物理情境的创建过程就是“物理模型”的建立过程。所以说要想学好中学物理,就要学会对生活中的现象多观察,多思考,并能从中学会如何建立“物理模型”。 一、什么是“物理模型” 自然界中任何事物与其他许多事物都有这千丝万缕的联系,并处在不断的变化当中。面对复杂多边的问题,人们在着手研究时,总是遵循这样一条重要的法则,即从简到繁,从易到难,循序渐进,逐次深入;基于这样一种思维,人们创建了“物理模型”,物理模型是指:物理学所分析的、研究的问题往往很复杂,为了便于着手分析与研究,物理学中常采用“简化”的方法,对实际问题进行科学抽象处理,用一种能反应原物本质的理想物理(过程)或遐想结构,去描述实际的事物(过程),这种理想物质(过程)或假象结构称之为“物理模型”。 物理模型的建立是人们认识和把握自然的一个典范,是前人的一种创举。 二、物理模型的种类和特点 1、中学中常见物理模型的种类 (1)研究对象理想化模型,例如:质点、刚体、理想气体、恒压电源等; (2)运动变化过程中理想化模型,如:“自由落体运动”、“简谐运动”、“热平衡方

浅谈物理模型的学习及理解

浅谈物理模型的学习及理解 我们知道,建立物理模型是物理学研究问题的基本方法之一。对于任意一个实际物体,因其自身的形状、体积、组成的均匀性等多方面的情况,使其在一个实际环境中的物理表现就不具有多少规律性,而物理学的分析问题的基本方法,如受力分析等,对此当然既不能定量描述,甚至也不能定性地分析。这是我们每个学习了基本物理学知识的人必然都形成的观念。 那么,我们如何学习和理解物理模型呢?我想物理模型的建立是为了突出问题的实质,从而进一步建立理论,能在实验室中进行有针对性的验证或探索等。从中,我们进一步能体会物理模型(或说概念)本身的重要性。但需要过分地基于模型本身进行“深挖”和无休止地讨论吗?我感到这种问题是不能确定性地回答的,套用物理学的一个出发点,即具体问题应具体分析。 1.一些“定势”的影响 我们新课标人教版教材物理1中(现已经删除)有一习题,大致内容是:高速飞行的子弹射穿一个吊着的苹果,在射穿苹果的短暂过程中,问子弹能被看成是“质点”吗?答案是不能。有老师指出,在穿透苹果的短暂时间内,子弹整体作平动,即子弹上各点的运动情况相同,因此,子弹可看成质点。 我本人写过一道题:物理学研究问题一般是通过建立物理模型进行的,质点就是一个物理模型。关于质点,以下说法正确的是 A.研究地球的自转时,把地球当作质点 B.研究火车通过隧道所用的时间时,把火车当作质点 C.研究宇宙飞船在轨道上的运动时,把飞船当作质点 D.研究跳水运动员的空中运动情况时,把运动员当作质点 有老师提出B答案也是正确的。 我们仔细思考上面的问题,其实所要表述的思想是明确的,我们都明白其中的物理问题,应该说这两题的考核目标达到了。当然,仅仅从一个题目求解的角度来看,老师的质疑也是合理的。如果我们把题目的要求改为“在以下各问题的分析处理中,所采取的方法合理的是?”的话,那么,无论是从概念上分析,还是从物理问题的阐述的层面上看,就都有意义了。 2.平面运动的研究 透过以下的介绍,有助于我们合理地理解、把握物理模型的建立和运用。

重点高中物理建模论文

重点高中物理建模论文

————————————————————————————————作者:————————————————————————————————日期:

运动模型的应用 内容摘要:中学物理教材中无论哪一部分的内容都是以物理模型为基础向学生传达物理知识的。物理模型是中学物理知识的载体,通过对其进行分析与讲解,是学生获得物理知识的一种基本方法,更是培养学生创造思维能力的重要途径。本文拟从习题教学中浅谈提高运动模型的建模能力。 关键词:运动模型、匀速圆周运动 学好物理,关键是学习物理思想和物理方法。常有高中学生说,物理听课易懂,做题难。难就难在对物理模型的应用上,也就是学生在解题过程中往往存在一些问题,读不懂题或做题过程思维混乱。这在很大程度上是由于学生不良解题习惯、建模能力差造成的。据对学生的调查,发现大多数学生的解题模式是: 一般来说,较为有效的解决物理问题的思维流程应该是通过审题先确定研究对象,对其进行抽象建立物理模型,再应用模型知识求解。此过程大致可以归纳为: 求解 读题 想公式

如果在解题过程中快速准确地建立起与题目相符合的物理模型是至关重要的。这个解题流程学生容易模仿,如果说正确识别或建立物理模型是正确解题的前提,那么在解决具有物理过程的物理习题时,学生头脑中对物理过程的一个清晰的图景则是解决此类物理问题的关键和保证。下面以力学中运动模型的应用为例。 一、 基本模型 1. 两种直线运动模型 匀速直线运动:00,v v t v x == 匀变速直线运动:at v v at t v x +=+=02210,(特例: 自由落体运动:gt v gt h ==,221 ) 2. 两种曲线运动模型 平抛运动: 水平方向为匀速直线运动 竖直方向为自由落体运动 匀速圆周运动:r T m r mw r mv ma F F n 22 22n 4π=====合(天体运动:物理解释 数学演算 数学抽象 科学抽象 一个具体的物理问题 物理模型 数学方程(物理问题的数学表达式) 方程的数学解 物理问题之解

物理(心得)之浅谈物理模型与建模能力的培养

物理论文之浅谈物理模型与建模能力的培养 现在高考的重要指导思想是从知识立意向能力立意的转变,着重考查学生对知识的理解、迁移、应用能力。命题已向联系实际、与现代科技相结合的方向发展,考查学生学以致用的能力素质。这就需要学生把实际问题转化成物理模型来寻求解决方法。那么在教学中重视物理模型的教学及建模能力的培养就显得尤为重要。 一、物理模型 所谓物理模型就是为了便于抓住本质,解决问题,把复杂的物理过程或研究对象(事物),取其枝干,弃其蔓叶后,进行高度的概括,归结为一些简单的模型便于研究。 物理模型的特点 典型性。物理模型是从一类物理问题中,抓住主要的本质问题,删除干扰和次要因素,集基础知识与基本规律于一体,具有代表性的结晶。 方法性。物理模型不只是知识的结晶,同时也是思维的结晶。掌握好物理模型,除了加深对物理概念的理解之外,还可以从物理模型的建立,理解物理知识深刻的内涵及外延,体会将物理知识应用于解决实际问题的思路和逻辑方法入手。

美学性。物理模型能简明扼要地揭示物理问题,体现了它的形式美。物理模型是知识与思维的产物,是知识与能力的完美结合,体现了它的和谐美。随着学习的深入,对同一模型会有不同层次的体会和感悟,会为它丰富的内涵所折服,体现它的内在美。 物理模型的分类 物理模型一般有三类:一类是把研究对象视为抽象的理想模型。这类模型有:质点、刚体、弹性体、理想气体、弹簧振子、单摆、点电荷、点光源、薄透镜、卢瑟福模型等,牛顿的质点模型、玻尔的原子模型、理想气体模型等均属“对象模型”。它的特点是将研究对象简化成某种物理模型,从而使问题简化、直观、形象;另一类是把物理过程抽象为理想模型。此类模型重要的有:匀速直线运动、完全弹性碰撞、等温变化、恒定电流等,物理过程总是在一定条件下发生,将条件理想化以便突出主要的物理现象与过程,这便是条件模型方法。例如“光滑”、“均匀”、“轻质”等也属条件模型;还有一种是将物理过程发生的条件抽象模型化。过程模型是将复杂的过程抽象为简单的物理模型的方法。例如我们已学过匀速圆周运动,匀速直线运动,自由落体运动,简谐运动等均属过程模型。利用过程模型可将一个复杂的物理过程抽象为一个我们熟知的问题加以解决。 二、物理模型教学的意义 物理模型教学是课程改革的需要。课改的一对矛盾是丰富的教

物理模型的建构在初中生物教学中的应用

物理模型的建构在初中生物教学中的应用 物理模型的建构在初中生物教学中的应用 物理模型的建构在初中生物教学中的应用 2015-05-26 生物论文 物理模型的建构在初中生物教学中的应用 物理模型的建构在初中生物教学中的应用 吕国庆 (江苏省常州市新北区实验中学) 摘要:探讨在初中生物教学中常见的几种物理模型的建构。物理模型的设计非常有利于生物教学的有效开展,提高学生的学习效率,培养学生的各种技能和科学素养。 关键词:物理模型;创新;生物 人们认识客观世界的时候,直观化、形象化,更便于人们探索科学世界的客观规律。物理模型建构的研究旨在教学活动中建构学生的建模意识,物理模型建构的创新研究实质上是培养学生的创造性思维能力,因为建模活动本身就是一项创造性思维活动。能够培养学生的想象力,思维能力,假想、变换、构造等能力,这些能力正是创造性思维所具有的最基本的特征。“创新是一个民族的灵魂,是一个国家兴旺发达的不竭动力,创新的关键是人才,人才的成长靠教育。”要真

正培养学生的’创新能力,自觉地在学习过程中构建物理模型,只有这样,才能使学生分析和解决问题的能力得到有效提高,也只有这样才能真正提高学生的创新能力。 那什么是物理模型呢?物理模型就是以实物或图画形式直接表达认识事物的特征。根据相似原理,把真实事物制成相关模型,其状态变量和原事物基本相同,可以模拟客观事物的某些功能和性质。物理模型包括:实物模型、模拟模型、图画。通过下面以三个具体实例来阐述本人对物理模型的理解与探索。 一、模拟模型建构能将抽象化的知识活化为具体直观 主题举例:植物细胞的模型模拟建构。 材料的选择:一次性方型塑料盒,透明塑料袋,带壳核桃或熟鸡蛋,清水和有颜色的水,气球,不能水溶的绿色胶囊若干,长粒香大米若干粒。 设计方案:学生根据自己对植物细胞的结构和功能的理解,小组成员利用教师所提供的材料制作模型,小组成员展示模型并介绍,同时接受其他小组成员点评,并答疑。 具体实施过程:一次性塑料盒充当细胞壁,透明塑料袋可充当细胞膜,带壳核桃或熟鸡蛋可充当细胞核,清水可充当细胞质,气球可充当液泡,有颜色的水可充当细胞液。 评价:在班级内部交流小组制作模型,从科学性、技术性、正确性等方面进行评价。小组成员根据班内成员的评价完善自己的设计。 解释:模拟模型,就是根据系统或过程的特性,按一定规律,用实物材料模拟系统原型的方法。形象大于思维,七年级学生对细胞的认识较浅显,由于细胞很

高中物理模型总结整理

l v 0 v S v 0 A B v 0 A B v 0 l 滑块、子弹打木块模型之一 子弹打木块模型:包括一物块在木板上滑动等。μNS 相=ΔE k 系统=Q ,Q 为摩擦在系统中产生的热量。②小球在置于光滑水平面上的竖直平面内弧形光滑轨道上滑动 :包括小车上悬一单摆单摆的摆动过程等。小球上升到最高点时系统有共同速度(或有共同的水平速度);系统内弹力做功时,不将机械能转化为其它形式的能,因此过程中系统机械能守恒。 例题:质量为M 、长为l 的木块静止在光滑水平面上,现有一质量为m 的子弹以水平初速v 0射入木块,穿出时子弹速度为v ,求子弹与木块作用过程中系统损失的机械能。 解:如图,设子弹穿过木块时所受阻力为f ,突出时木块速度为V ,位移为S ,则子弹位移为(S+l)。水平方向不受外力,由动量守恒定律得:mv 0=mv+MV ① 由动能定理,对子弹 -f(s+l )=2022121 mv mv - ② 对木块 fs=0212-MV ③ 由①式得 v= )(0v v M m - 代入③式有 fs=2022)(21v v M m M -? ④ ②+④得 f l =})]([2121{21212121 202202220 v v M m M mv mv MV mv mv -+-=-- 由能量守恒知,系统减少的机械能等于子弹与木块摩擦而产生的内能。即Q=f l ,l 为子弹现木块的相对位移。 结论:系统损失的机械能等于因摩擦而产生的内能,且等于摩擦力与两物体相对位移的乘积。即 Q=ΔE 系统=μNS 相 其分量式为:Q=f 1S 相1+f 2S 相2+……+f n S 相n =ΔE 系统 1.在光滑水平面上并排放两个相同的木板,长度均为L=1.00m ,一质量 与木板相同的金属块,以v 0=2.00m/s 的初速度向右滑上木板A ,金属 块与木板间动摩擦因数为μ=0.1,g 取10m/s 2。求两木板的最后速度。 2.如图示,一质量为M 长为l 的长方形木块B 放在光滑水平面上,在其右端放一质量为m 的小木块A ,m <M ,现以地面为参照物,给A 和B 以大小相等、方向相反的初速度 (如图),使A 开始向左运动,B 开始向右运动,但最后A 刚好没有滑离 B 板。以地面为参照系。 ⑴若已知A 和B 的初速度大小为v 0,求它们最后速度的大小和方向; ⑵若初速度的大小未知,求小木块A 向左运动到最远处(从地面上看)到出发点的距离。 3.一平直木板C 静止在光滑水平面上,今有两小物块A 和B 分别以2v 0和v 0的初速度沿同一直线从长木板

浅谈物理模型在物理教学中的作用

浅谈物理模型在物理教学中的作用 论文关键词:物理模型,物理教学,作用 一、物理模型在物理学中无处不在。 物理学中的各种基本概念,如物质、长度、时间等都是物理模型。因为它们都是以各自相应的现实原型为背景,加以抽象出来的最基本的物理概念。那些反映特定问题或特定具体事物结构的物理模型,如质点、点电荷、理想气体、理想变压器、匀变速直线运动,简谐运动等,是理想化的物理模型。那些用形象化的手段、采用示意图或制作出与实体相似的模拟,如用铁屑模拟磁感线、直流电机的构造示意图、发电机模型等,则是模拟式物理模型。那些由概念与概念推断出的各种结论及在实验基础上产生的物理规律,往往以字母的形式,通过数学的手段描述出来,如欧姆定律、牛顿第二定律、法拉第电磁感应定律等,可称之为数学化的物理模型。由此可见,物理模型在物理学中无处不在。从某种意义上讲,物理学也是一 门模型科学。 二、物理模型在物理教学中的作用 物理教学是物理教师引导学生建立物理模型,并学会应用物理模型解决物理问题的教学。可见物理模型在物理教学中的作用是非常重要的,笔者根据自己的教学经验认为,物理模型 在物理教学中有如下作用: 1、建立和正确使用物理模型可以提高学生理解和接受新知识的能力。例如,在教学运动学中建立“质点”模型,使学生对这一模型有充分的认识和足够的理解,为以后学习质点的运动、万有引力定律、物体的平动和转动,以及电学中的“点电荷”模型、光学中的“点光源” 模型等奠定了良好的基础。使学生学习这些新知识时容易理解和接受。 2、建立和正确使用物理模型有利于学生将复杂问题简单化、明了化,使抽象的物理问 题更直观、具体、形象、鲜明,突出了事物间的主要矛盾。 3、建立和正确使用物理模型对学生的思维发展、解题能力的提高起着重要的作用。可 以把复杂隐含的问题化繁为简、化难为易,起到事半功倍的效果。 4、建立和正确使用物理模型有利于减负增效。物理学的难教难学,让许多师生困惑、苦恼。究其原因,教师不善于帮助学生建立物理模型或建立物理模型的意识淡薄是重要原因。学生头脑中有形象化的实物模型和抽象化的诸多物理模型,并能灵活的提取、应用、置换、迁移物理模型,是学生学好物理的充要条件。学生对物理概念、规律的理解不深不透,说明学生头脑中的物理模型是含糊不清的。即便强行建立了概念、规律的物理模型,但在具体应用时又感到手足无措。在应试教育甚行,题海战术泛滥的氛围中,如何跳出题海,提高学习效率,笔者以为,正确理解物理概念和规律是前提。在遇到具体的习题时,要善于寻找模型解决实际问题,再在解决实际问题的基础上建立新的物理模型。 5、建立和正确使用物理模型有有利于培养学生的创造思维能力。因为建模活动本身就是一项创造性的思维活动。它可以培养学生的想像能力,直觉思维能力,猜测、转换、构造等能力,这些能力正是创造性思维所具有的最基本的特征。这也适应当前新课改的需要,也 是提高学生技能、适应现代化科技发展的需要。 总之,在物理教学中,物理老师要善于帮助学生建立物理模型,并使学生学会利用物理模型解决实际问题。只有这样,物理学才不再枯燥难学,而物理学丰富的内涵和独特的思维方法在物理模型的建立与应用的过程中必将被学生所理解与应用、信服与欣赏。所以,物理 教师一定要重视物理模型在教学中的重要价值。

相关主题