搜档网
当前位置:搜档网 › 机械工程英语课文翻译9-14

机械工程英语课文翻译9-14

机械工程英语课文翻译9-14
机械工程英语课文翻译9-14

第九章Lapping 研磨

Lapping is a finishing operation used on flat and cylindrical surfaces. The lap, shown in Fig.9.1a, is usually made of cast iron, copper, leather, or cloth.

研磨是一种用于平面和圆柱面的精加工作业。研具,如图9.1a所示,通常用铸铁、铜、皮革或布制成。

The abrasive particles are embedded in the lap, or they may be carried through slurry. Depending on the hardness of the workpiece, lapping pressures range from 7kPa to 140kPa (1 to 20 psi).

研磨微粒嵌入研具内,或者可以通过液体携带。根据工件硬度,研磨压力可在7kPa到140kPa(1到20psi)范围中取。

Lapping has two main functions. Firstly, it produces a superior surface finish with all machining marks being removed from the surface. Secondly, it is used as a method of obtaining very close fits between mating parts such as pistons and cylinders.

研磨有两个主要作用。首先,它通过去除所有机加工痕迹能产生较好的表面光洁度。其次,它能用作获得像活塞与气缸之类配件间过盈配合的方法。

The lapped workpiece surface may look smooth but it is actually filled with microscopic peaks, valleys, scratches and pits. Few surfaces are perfectly flat. Lapping minimizes the surface irregularities, thereby increasing the available contact area.

研磨后的工件表面可能看似平滑,其实布满着微观峰、谷、划痕和凹陷。几乎没有表面是完全平整的。研磨使表面不规则最小化,因而增加了有效接触面积。

The drawing in Fig.9.1a shows two surfaces. The upper one is how a surface might look before lapping and the lower one after lapping. Lapping removes the microscopic mountain tops and produces relatively flat plateaus. Entire microscopic mountain ranges may need to be ground down in order to increase the available contact area.

图9.1a上显示了两个表面。上面是研磨前表面可能的外观模样而下面则是研磨后的模样。研磨去除了微观峰顶从而产生相对平坦的平台。整个微观山脉范围都需要磨去以增加有效接触面积。

Production lapping on flat or cylindrical pieces is done on machines such as those shown in Fig.9.1b and 9.1c. Lapping is also done on curved surfaces, such as spherical objects and lenses, using specially shaped laps.

研磨平面或圆柱面工件的生产过程是在如图9.1b和9.1c那样的机器上完成的。研磨也可采用特殊成型研具在诸如球形物体和透镜之类的曲面上进行。

Polishing 抛光

Polishing is a process that produces a smooth, lustrous surface finish. Two basic mechanisms are involved in the polishing process: (a) fine-scale abrasive removal, and (b) softening and smearing of surface layers by frictional heating during polishing.

抛光是生成平滑、有光泽表面光洁度的工艺。抛光工艺涉及两种基本机理:(a)精细等级磨粒去除,和(b)在抛光中通过摩擦生热软化并抹光表面层。

Electropolishing

Electropolishing is an electrochemical process similar to, but the reverse of, electroplating. The electropolishing process smoothes and streamlines the microscopic surface of a metal object. Mirror-like finishes can be obtained on metal surfaces by electropolishing.

电解抛光

电解抛光是一种与电镀相似的电化学工艺,但过程与电镀正好相反。电解抛光工艺使金属物体的微观表面平滑和简单化。通过电解抛光能在金属表面得到镜面光洁度。

In electropolishing, the metal is removed ion by ion from the surface of the metal object being polished. Electrochemistry and the fundamental principles of electrolysis (Faraday’s Law) replace traditional mechanical finishing techniques.

在电解抛光中,金属是逐个离子地从被抛光金属物体表面去除的。电化学和电解基本原理(Faraday定理)取代了传统的机械精加工技术。

In basic terms, the object to be electropolished is immersed in an electrolyte and subjected to a direct electrical current. The object is maintained anodic, with the cathodic connection being made to a nearby metal conductor.

用基本术语说,要电解抛光的物体被浸没在电解液中并且通上直流电。该物体为阳极,阴极连接到附近的金属导体上。

Smoothness of the metal surface is one of the primary and most advantageous effects of electropolishing. During the process, a film of varying thickness covers the surface of the metal. This film is thickest over micro depressions and thinnest over micro projections.

金属表面的平滑是电解抛光主要的和最有优势的效应之一。在此过程中,一变化着厚度的膜覆盖在金属表面上。该膜在微观凹陷处最厚而在微观凸出处最薄。

Electrical resistance is at a minimum wherever the film is thinnest, resulting in the greatest rate of metallic dissolution. Electropolishing selectively removes microscopic high points or “peaks” faster than the rate of attack on the corresponding micro-depressions or “valleys”.

电阻在膜最薄处最小,导致最大金属分解率。电解抛光选择性地去除微观高点或“峰”快于对相应微观凹陷处或“谷”的侵蚀速率。

Stock is removed as metallic salt. Metal removal under certain circumstances is controllable and can be held to 0.0001 to 0.0025 mm.

原材料以金属盐的形式被去除。在特定环境下金属的去除是可控的并且保持在0.0001 到0.0025mm范围内。

Chemical Mechanical Polishing

Chemical mechanical polishing is becoming an increasingly important step in the fabrication of multi-level integrated circuits. Chemical mechanical polishing refers to polishing by abundant slurry that interacts both chemically and mechanically with the surface being polished. 化学机械抛光

化学机械抛光正在多层集成电路制造领域成为日益重要的步骤。化学机械抛光是指大量抛光液与被抛光表面产生化学和机械作用的抛光。

During the chemical mechanical polishing process, a rotating wafer is pressed face down onto a rotating, resilient polishing pad while polishing slurry containing abrasive particles and chemical reagents flows in between the wafer and the pad.

在化学机械抛光过程中,旋转晶片面向下压在旋转、有回弹力的抛光衬垫上,而同时含有研磨微粒和化学反应物的抛光液流过晶片与衬垫之间。

The combined action of polishing pad, abrasive particles and chemical reagents results in material removal and polishing of the wafer surface. Chemical mechanical polishing creates flat, damage-free on a variety of brittle materials and it is used extensively on silicon wafers in the manufacture of integrated circuits.

抛光衬垫、研磨微粒和化学反应物的共同作用导致晶片表面的材料去除并抛光。化学机械抛光可使多种易碎材料平整且不受损害,因此在集成电路制造中被广泛地用在硅晶片上。

Chemical mechanical polishing is a complicated multiphase process. It mainly includes the following two dynamics. First, the active component in polishing slurry reacts with the atoms of the wafer, and the process is chemical reaction step with oxidation-reductive reaction.

化学机械抛光是一种复杂的多相工艺。它主要包括下列两个动态过程:第一,抛光液中活性成分与晶片的原子发生反应,这是带有氧化-还原反应的化学反应步骤。

The second step is the process of desorption, that is to say, the resultants gradually separate from the wafer surface and new surface is exposed to polishing slurry. If chemical reactive rate is smaller, the total removal rate of the wafer is also small; furthermore, the surface degree of finish is not good.

第二步是解吸附过程,即反应产物逐渐从晶片表面分离并将新表面暴露给抛光液。如果化学反应速率较小,晶片的总去除率也较小,而且表面光洁程度不够好。

On the contrary, even if chemical reaction is very rapid, but desorption is very slow, the total removal rate is not good. Because resultants connot separate from the wafer surface, the active component in the polishing slurry cannot expose and react with the atoms on the new surface, which holds up chemical reaction.

与之相反,即使化学反应很快,但解吸附很慢,则总去除率也不够好。因为反应产物不能从晶片表面分离,抛光液中活性成分就不能暴露并与新表面上的原子起反应,这会抑制化学反应。

The balance and compositive effects of two steps decide the total removal rate and its surface degree of finish.

这两个步骤的平衡与合成效应决定了总去除率和表面光洁程度。

第十章Surface Engineering 表面处理

The processes of surface engineering, or surface treatments, tailor the surfaces of engineering materials to: (1) control friction and wear, (2) improve corrosion resistance, (3) change physical property, e.g., conductivity, resistivity, and reflection, (4) alter dimension, (5) vary appearance, e.g., color and roughness, (6) reduce cost.

进行表面工程或表面处理的目的是:(1)控制摩擦和磨损,(2)改善抗腐蚀性,(3)改变物理性能,例如,传导率、电阻系数和反射率,(4)修改尺寸,(5)变更外观,例如颜色和粗糙程度,(6)降低成本。

Common surface treatments can be divided into two major categories: treatments that cover the surfaces and treatments that alter the surfaces.

通常的表面处理可以分为两个主要类型:覆盖表面的处理和改变表面的处理。

Covering the Surface覆盖表面

The treatments that cover the surfaces include organic coatings and inorganic coatings.

覆盖表面的处理包括有机涂层和无机涂层。

The inorganic coatings perform electroplatings, conversion coatings, thermal sprayings, hot dippings, furnace fusings, or coat thin films, glass, ceramics on the surfaces of the materials.

无机涂层有电镀、转化层、热喷涂、热浸渍、熔炉熔融、或在材料表面涂上薄膜、玻璃、陶瓷。

Electroplating is an electrochemical process by which metal is deposited on a substrate by passing a current through the bath.

电镀是一种在电镀槽通上电流使金属沉淀在基体上的电化学过程。

Usually there is an anode (positively charged electrode), which is the source of the material to be deposited; the electrochemistry which is the medium through which metal ions are exchanged and transferred to the substrate to be coated; and a cathode (negatively charged electrode) which is the substrate to be coated.

通常有一个阳极(正电极),是要沉淀材料的来源;电化学反应是使金属离子交换并迁移到要覆盖基体上的中间过程;以及一个阴极(负电极),即要覆盖的基体。

Plating is done in a plating bath which is usually a non-metallic tank (usually plastic). The tank is filled with electrolyte which has the metal, to be plated, in ionic form.

电镀在通常为非金属容器(一般是塑料)的电镀槽中进行。该容器装满了含有离子态被镀金属的电解液。

The anode is connected to the positive terminal of the power supply. The anode is usually the metal to be plated (assuming that the metal will corrode in the electrolyte). For ease of operation, the metal is in the form of nuggets and placed in an inert metal basket made out non-corroding metal (such as titanium or stainless steel).

阳极与电源正极相连。阳极通常为被镀金属(假定该金属能在电解液中腐蚀)。为了操作容易,该金属呈固体小块形式并置于由抗腐蚀金属(如钛或不锈钢)制成的惰性金属筐内。

The cathode is the workpiece, the substrate to be plated. This is connected to the negative terminal of the power supply. The power supply is well regulated to minimize ripples as well to deliver a steady predictable current, under varying loads such as those found in plating tanks.

阴极是工件,即要镀的基体,连接到电源的负极。很好地调节电源使波动最小化并在载荷变化情况(如同电镀容器中看到的那样)下提供稳定的可预知电流。

As the current is applied, positive metal ions from the solution are attracted to the negatively charged cathode and deposit on the cathode. As a replenishment for these deposited ions, the metal from the anode is dissolved and goes into the solution and balances the ionic potential.

一旦通上电流,来自溶液的正的金属离子被吸引到带负电的阴极并沉淀在其上。作为这些沉淀离子的补充,来自阳极的金属被溶解并进入溶液平衡离子势能。

Thermal spraying process. Thermal spraying metal coatings are depositions of metal which has been melted immediately prior to projection onto the substrate. The metals used and the application systems used vary but most applications result in thin coatings applied to surfaces requiring improvement to their corrosion or abrasion resistance properties.

热喷涂工艺:热喷涂金属涂层是金属熔化后立即投射到基体上形成的金属沉积层。所用的金属和应用系统都可以变化,但大多数应用都是在要求改善抗腐蚀或耐磨性能的表面涂上薄层。

Thermal spray is a generic term for a broad class of related processes in which molten droplets of metals, ceramics, glasses, and/or polymers are sprayed onto a surface to produce a

coating, to form a free-standing near-net-shape, or to create an engineered material with unique properties.

热喷涂是用于很大一类相关工艺的一个通用术语,喷涂到表面产生涂层的熔化小滴可以是金属、陶瓷、玻璃和/或聚合物,形成独立的近似纯形或产生具有独特性能的设计材料。

In principle, any material with a stable molten phase can be thermally sprayed, and a wide range of pure and composite materials are routinely sprayed for both research and industrial applications. Deposition rates are very high in comparison to alternative coating technologies.

大体上,有稳定熔化状态的任何材料都可以热喷涂,范围宽阔的纯净和合成材料一般都能喷涂用于研究及工业目的。其沉积率与可供选择的涂层技术比较是很高的。Deposit thickness of 0.1 to 1mm is common, and thickness greater than 1cm can be achieved with some materials.

沉淀厚度普遍为0.1到1mm,对某些材料则沉淀厚度可以达到1cm以上。

The process for application of thermal spray metal is relatively simple and consists of the following stages.

(1) Melting the metal at the gun.

(2) Spraying the liquid metal onto the prepared substrate by means of compressed air.

热喷涂金属的应用工艺相对简单并由下列阶段组成:

(1)在喷枪内熔化金属。

(2)通过压缩空气将液态金属喷涂在准备好的基体上。

(3) Molten particles are projected onto the cleaned substrate.

There are two main types of wire application available today namely arc spray and gas spray.

(3)熔化微粒投射在清洁过的基体上。

现在有两种主要的金属丝应用类型可选用,也就是电弧喷涂和气体喷涂。

ARC—A pair of wires are electrically energized so that an arc is struck across the tips when brought together through a pistol. Compressed air is blown across the arc to atomise and propel the autofed metal wire particles onto the prepared workpiece.

电弧喷涂—当一对金属丝通过手持喷枪连到一起时,通上电横过其末端划燃电弧。压缩空气吹过电弧使其雾化并驱使自动送料金属丝微粒到准备好的工件上。

GAS—In combustion flame spraying the continuously moving wire is passed through a pistol, melted by a conical jet of burning gas. The molten wire tip enters the cone, atomises and is propelled onto the substrate.

气体喷涂—连续移动的金属丝在燃烧火焰喷射中通过手持喷枪,并被燃烧气体的锥形喷嘴所熔化。熔化后的金属丝顶端进入锥体雾化并驱使其到基体上。

Thin-Film Coatings. Physical Vapor Deposition (PVD) and Chemical Vapor Deposition (CVD) are two most common types of thin-film coating methods.

薄膜涂层:物理蒸发沉淀(PVD)和化学蒸发沉淀(CVD)是两种最常见薄膜涂层方法的类型。

PVD coatings involve atom-by-atom, molecule-by-molecule, or ion deposition of various materials on solid substrates in vacuum systems.

物理蒸发沉淀涂层涉及到在真空装置内各种各样的材料原子紧靠原子、分子紧靠分子或离子沉淀于固态基体上。

Thermal evaporation uses the atomic cloud formed by the evaporation of the coating metal

in a vacuum environment to coat all the surfaces in the line of sight between the substrate and the target. It is often used in producing thin, 0.5μm, decorative shiny coati ngs on plastic parts.

热蒸发利用涂层金属在真空环境中蒸发形成的微粒子雾将基体和靶材之间可见范围内所有表面覆盖。在塑料零件上生成较薄(0.5μm)的、装饰性的、有光泽的涂层时常常用到它。

The thin coating, however, is fragile and not good for wear applications. The thermal evaporation process can also coat a very thick, 1mm, layer of heat-resistant materials, such as MCrAIY—a metal, chromium, aluminum, and yttrium alloys, on jet engine parts.

然而,这种薄涂层是易碎的并不适合用于磨损场合。热蒸发工艺也能在喷气发动机零件上覆盖很厚(1mm)的耐热材料涂层,例如MCrAIY—一种金属、铬、铝和钇合金。

Sputtering applies high-technology coatings such as ceramics, metal alloys, organic and inorganic compounds by connecting the workpiece and the substance to a high-voltage DC power supply in an argon vacuum system.

反应溅射法通过在氩真空设备中连接工件和具有特定成分的材料到高压直流电来应用诸如陶瓷、金属合金、有机和无机化合物之类的高技术涂层。

The plasma is established between the substrate (workpiece) and the target (donor) and transposes the sputtered off target atoms to the surface of the substrate.

等离子区形成于基体(工件)和靶材(原料物质)之间并将被溅射的靶材原子转移到基体的表面上。

When the substrate is non-conductive, e.g., polymer, a radio-frequency (RF) sputtering is used instead. Sputtering can produce thin, less than 3μm (120μin), hard thin-film coatings, e.g., titanium nitride (TIN) which is harder than the hardest metal.

如果基体不导电,例如聚合物,则采用射频(RF)溅射代替。反应溅射法可以生成较薄(小于3μm(120μin))的、坚硬薄膜涂层,像比最硬金属还硬的氮化钛(TIN)。

Sputtering is now widely applied on cutting tools, forming tools, injection molding tools, and common tools such as punches and dies, to increase wear resistance and service life.

现在反应溅射法已被广泛应用于切削刀具、成型工具、注射模具和诸如冲头和冲模之类的通用器具,以增强其耐磨性和使用寿命。

CVD is capable of producing thick, dense, ductile, and good adhesive coatings on metals and non-metals such as glass and plastic. Contrasting to the PVD coating in the “line of sight”, the CVD can coat all surfaces of the substrate.

化学蒸发沉淀能在金属和像玻璃和塑料之类的非金属上生成较厚的、致密的、有延伸性的和带良好粘性的涂层。与物理蒸发沉淀在“可见范围”对比,化学蒸发沉淀能将基体的所有表面都覆盖。

Conventional CVD coating process requires a metal compound that will volatilize at a fairly low temperature and decompose to a metal when it contacts with the substrate at higher temperature.

常规的化学蒸发沉淀涂层工艺需要一种容易在相当低温度下挥发并且在较高温度下与基体接触时能分解成纯金属的金属化合物。

The most well known example of CVD is the nickel carbonyl (NiCO4) coating as thick as 2.5mm (0.1in.) on glass windows and containers to make them explosion or shatter resistant.

最为人熟知的化学蒸发沉淀例子是在玻璃窗和容器上镀厚为2.5mm(0.1in.)的羰基镍(NiCO4)涂层使它们能抵抗爆裂或破碎。

Diamond CVD coating process is introduced to increase the surface hardness of cutting

tools. However, the process is done at the temperatures higher than 700℃(1300℉) which will soften most tool steel.

为增加切削刀具表面硬度引入了钻石化学蒸发沉淀涂层工艺。可是此工艺要在高于700℃(1300℉)的温度下才能实现,这温度会软化大多数工具钢。

Thus, the application of diamond CVD is limited to materials which will not soften at this temperature such as cemented carbides.

因而钻石化学蒸发沉淀的应用受到材料限制,要求材料在此温度下不软化例如硬质合金。

Plasma-Assisted CVD coating process can be performed at lower temperature than diamond CVD coatings. This CVD process is used to apply diamond coatings or silicon carbide barrier coatings on plastic films and semiconductors, including th e state of the art 0.25μm semiconductors.

等离子体辅助化学蒸发沉淀涂层工艺可以在比钻石化学蒸发沉淀涂层低的温度下操作。这种化学蒸发沉淀用于在塑料膜和半导体(包括人工0.25μm半导体的情况)上覆盖钻石涂层或碳化硅隔离涂层。

Altering the Surfaces改变表面

The treatments that alter the surfaces include hardening treatments, high-energy processes and special treatments.

改变表面的处理包括淬火处理、高能加工和特殊处理。

High-energy processes are relatively new surface treatment methods. They can alter the properties of surfaces without changing the dimension of the surface. Common high-energy processes, including electron beam treatment, ion implantation, and laser beam treatment, are briefly discussed as follows:

高能加工是相对较新的表面处理方法。它们能在不改变表面尺寸的情况下改变表面性能。通用的高能加工包括电子束处理、离子注入和激光束处理简要讨论如下:Electron beam treatment. Electron beam treatment alters the surface properties by rapid heating—using electron beam and rapid cooling—in the order of 106℃/see in a very shallow region, 100μm, near the surface. This technique can also be used in hardfacing to produce “surface alloys”.

电子束处理:电子束处理在靠近表面很浅(100μm)的区域通过用电子束快速加热并以106℃/秒等级快速冷却来改变表面性能。这种技术也被用于表面硬化产生“表面合金”。

Ion implantation. Ion implantation uses electron beam or plasma to impinge gas atoms to ions with sufficient energy, and embed these ions into atomic lattice of the substrate, accelerated by magnetic coils in a vacuum chamber. The mismatch between ion implant and the surface of a metal creates atomic defects that harden the surface.

离子注入:离子注入采用电子束或等离子体通过真空室内磁性线圈加速以足够的能量将气体原子撞击为离子,并把这些离子嵌入基体的原子点阵中。离子注入和金属表面之间的错配产生了硬化表面的原子瑕疵。

Laser beam treatment. Similar to electron beam treatment, laser beam treatment alters the surface properties by rapid heating and rapid cooling in a very shallow region near the surface. It can also be used in hardfacing to produce “surface alloys”.

激光束处理:与电子束处理类似,激光束处理通过在靠近表面很浅的区域快速加热和快速冷却来改变表面性能。它也可以用于表面硬化产生“表面合金”。

The results of high-energy processes are not well known or very well controlled. But the

preliminary results look promising. Further development is needed in high-energy processes, especially in implant dosages and treatment methods.

高能加工的结果不能充分地了解或很好地控制。但初步结果看来是有前途的。高能加工需要进一步的开发,特别是注入剂量和处理方法。

第十一章Lathe 车床

The Lathe and Its Construction车床及其结构

A lathe is a machine tool used primarily for producing surfaces of revolution and flat edges.

车床是主要用于生成旋转表面和平整边缘的机床。

Based on their purpose, construction, number of tools that can simultaneously be mounted, and degree of automation, lathes-or, more accurately, lathe-type machine tools can be classified as follows:

根据它们的使用目的、结构、能同时被安装刀具的数量和自动化的程度,车床—或更确切地说是车床类的机床,可以被分成以下几类:

(1)Engine lathes

(2)Toolroom lathes

(3)Turret lathes

(4)Vertical turning and boring mills

(5)Automatic lathes

(6)Special-purpose lathes

(1)普通车床

(2)万能车床

(3)转塔车床

(4)立式车床

(5)自动车床

(6)特殊车床

In spite of that diversity of lathe-type machine tools, they all have common features with respect to construction and principle of operation. These features can best be illustrated by considering the commonly used representative type, the engine lathe. Following is a description of each of the main elements of an engine lathe, which is shown in Fig.11.1.

虽然车床类的机床多种多样,但它们在结构和操作原理上具有共同特性。这些特性可以通过普通车床这一最常用的代表性类型来最好地说明。下面是关于图11.1所示普通车床的主要部分的描述。

Lathe bed. The lathe bed is the main frame, involving a horizontal beam on two vertical supports. It is usually made of grey or nodular cast iron to damp vibrations and is made by casting.

车床床身:车床床身是包含了在两个垂直支柱上水平横梁的主骨架。为减振它一般由灰铸铁或球墨铸铁铸造而成。

It has guideways to allow the carriage to slide easily lengthwise. The height of the lathe bed should be appropriate to enable the technician to do his or her job easily and comfortably.

它上面有能让大拖板轻易纵向滑动的导轨。车床床身的高度应适当以让技师容易而舒适地工作。

Headstock. The headstock is fixed at the left hand side of the lathe bed and includes the spindle whose axis is parallel to the guideways (the slide surface of the bed). The spindle is driven through the gearbox, which is housed within the headstock.

主轴箱:主轴箱固定在车床床身的左侧,它包括轴线平行于导轨的主轴。主轴通过装在主轴箱内的齿轮箱驱动。

The function of the gearbox is to provide a number of different spindle speeds (usually 6 up to 18 speeds). Some modern lathes have headstocks with infinitely variable spindle speeds, which employ frictional ,electrical ,or hydraulic drives.

齿轮箱的功能是给主轴提供若干不同的速度(通常是6到18速)。有些现代车床具有采用摩擦、电力或液压驱动的无级调速主轴箱。

The spindle is always hollow, i. e., it has a through hole extending lengthwise. Bar stocks can be fed through that hole if continuous production is adopted.

主轴往往是中空的,即纵向有一通孔。如果采取连续生产,棒料能通过此孔进给。Also, that hole has a tapered surface to allow mounting a plain lathe center. The outer surface of the spindle is threaded to allow mounting of a chuck, a face plate, or the like.

同时,此孔为锥形表面可以安装普通车床顶尖。主轴外表面是螺纹可以安装卡盘、花盘或类似的装置。

Tailstock. The tailstock assembly consists basically of three parts, its lower base, an intermediate part, and the quill. The lower base is a casting that can slide on the lathe bed along the guideways, and it has a clamping device to enable locking the entire tailstock at any desired location, depending upon the length of the workpiece.

尾架:尾架总成基本包括三部分,底座、尾架体和套筒轴。底座是能在车床床身上沿导轨滑动的铸件,它有一定位装置能让整个尾架根据工件长度锁定在任何需要位置。The intermediate part is a casting that can be moved transversely to enable alignment of the axis of the tailstock with that of the headstock. The third part, the quill, is a hardened steel tube, which can be moved longitudinally in and out of the intermediate part as required.

尾架体为一能横向运动的铸件,它可以调整尾架轴线与主轴箱轴线成一直线。第三部分,套筒轴是一淬硬钢管,它能根据需要在尾架体中纵向进出移动。

This is achieved through the use of a handwheel and a screw, around which a nut fixed to the quill is engaged. The hole in the open side of the quill is tapered to enable mounting of lathe centers or other tools like twist drills or boring bars. The quill can be locked at any point along its travel path by means of a clamping device.

这通过使用手轮和螺杆来达到,与螺杆啮合的是一固接在套筒轴上的螺母。套筒轴开口端的孔是锥形的,能安装车床顶尖或诸如麻花钻和镗杆之类的工具。套筒轴通过定位装置能沿着它的移动路径被锁定在任何点。

The carriage. The main function of the carriage is mounting of the cutting tools and

generating longitudinal and/or cross feeds. It is actually an H-shaped block that slides on the lathe

bed between the headstock and tailstock while being guided by the V-shaped guideways of the bed.

大拖板:大拖板的主要功能是安装刀具和产生纵向和/或横向进给。它实际上是一由车床床身V形导轨引导的、能在车床床身主轴箱和尾架之间滑动的H形滑块。

The carriage can be moved either manually or mechanically by means of the apron and either the feed rod or the lead screw.

大拖板能手动或者通过溜板箱和光杆(进给杆)或丝杆(引导螺杆)机动。

When cutting screw threads, power is provided to the gearbox of the apron by the lead screw. In all other turning operations, it is the feed rod that drives the carriage. The lead screw goes through a pair of half nuts, which are fixed to the rear of the apron.

在切削螺旋时,动力通过丝杆提供给溜板箱上的齿轮箱。在其余车削作业中,都由光杆驱动大拖板。丝杆穿过一对固定在溜板箱后部的剖分螺母。

When actuating a certain lever, the half nuts are clamped together and engage with the rotating lead screw as a single nut, which is fed, together with the carriage, along the bed. When the lever is disengaged, the half nuts are released and the carriage stops.

当开动特定操作杆时,剖分螺母夹在一起作为单个螺母与旋转的丝杆啮合,并带动拖板沿着床身提供进给。当操作杆脱离时,剖分螺母释放同时大拖板停止运动。

On the other hand, when the feed rod is used, it supplies power to the apron through a worm gear. The latter is keyed to the feed rod and travels with the apron along the feed rod, which has a keyway extending to cover its whole length.

另一方面,当使用光杆时则通过蜗轮给溜板箱提供动力。蜗轮用键连接在光杆上,并与溜板箱一起沿光杆运动,光杆全长范围开有键槽。

A modern lathe usually has a quick-change gearbox located under the headstock and driven from the spindle through a train of gears. It is connected to both the feed rod and the lead screw and enables selecting a variety of feeds easily and rapidly by simply shifting the appropriate levers.

现代车床一般在主轴箱下装备快速变换齿轮箱,通过一系列齿轮由主轴驱动。它与光杆和丝杆连接,能容易并快速地通过简单转换适当的操作杆选择各种进给。

The quick-change gearbox is employed in plain turning, facing and thread cutting operations. Since that gearbox is linked to the spindle, the distance that the apron (and the cuttingtool) travels for each revolution of the spindle can be controlled and is referred to as the feed.

快速变换齿轮箱可用于普通车削、端面切削和螺旋切削作业中。由于这种齿轮箱与主轴相连,主轴每转一圈溜板箱(和切削刀具)运动的距离能被控制,这距离就可以被认为是进给。

Lathe Cutting Tools车床切削刀具

The shape and geometry of the lathe tools depend upon the purpose for which they are employed.

车床刀具的形状和几何参数取决于它们的使用目的。

Turning tools can be classified into two main groups, namely, external cutting tools and internal cutting tools. Each of these two groups include the following types of tools:

车削刀具可以分为两个主要组别,即外部切削刀具和内部切削刀具。这两组中的每一组都包括以下类型刀具:

Turning tools. Turning tools can be either finishing or rough turning tools. Rough turning tools have small nose radii and are employed when deep cuts are made.

车削刀具:车削刀具可以是精车刀具或粗车刀具。粗车刀具刀尖半径较小,用于深

切削。

On the other hand, finishing tools have larger nose radii and are used for obtaining the final required dimensions with good surface finish by making slight depths of cut. Rough turning tools can be right-hand or left-hand types, depending upon the direction of feed. They can have straight, bent, or offset shanks.

而精车刀具刀尖半径较大,用于通过微量进刀深度来获得具有较好表面光洁度的最终所需尺寸。粗车刀具按其进给方向可以是右手型的或是左手型的。它们可以有直的、弯的或偏置的刀杆。

Facing tools. Facing tools are employed in facing operations for machining plane side or end surfaces. There are tools for machining left-hand-side surfaces and tools for right-hand-side surfaces. Those side surfaces are generated through the use of the cross feed, contrary to turning operations, where the usual longitudinal feed is used.

端面刀具:端面刀具用在端面作业中加工平板侧面或端部表面,也有加工左右侧表面之分。与一般采用纵向进给的车削作业相反,那些侧表面通过采用横向进给产生。

Cutoff tools. Cutoff tools, which are sometimes called parting tools, serve to separate the workpiece into parts and/or machine external annular grooves.

切断刀具:切断刀具,有时也称为分割刀具,用于将工件分割成若干部分和/或加工外部环形槽。

Thread-cutting tools. Thread-cutting tools have either triangular, square, or trapezoidal cutting edges, depending upon the cross section of the desired thread. Also, the plane angles of these tools must always be identical to those of the thread forms.

螺纹切削刀具:螺纹切削刀具根据所需螺纹的横截面,有三角形的、矩形的或梯形的切削刃。同时,这些刀具的平面角必须始终与螺纹形状的平面角保持一致。

Thread-cutting tools have straight shanks for external thread cutting and are of the bent-shank type when cutting internal threads.

车外螺纹的螺纹切削刀具为直刀杆,而车内螺纹的螺纹切削刀具则是弯刀杆。

Form tools. Form tools have edges especially manufactured to take a certain form, which is opposite to the desired shape of the machined workpiece.

成形刀具:成形刀具有专门制成特定形状的刀刃,这种刀刃形状与被加工工件所需外形正好相反。

An HSS tool is usually made in the form of a single piece, contrary to cemented carbides or ceramic, which are made in the form of tips. The latter are brazed or mechanically fastened to steel shanks.

高速钢刀具通常以单件形式制造,而硬质合金或陶瓷刀具则以刀尖形式制造。后者用铜焊或机械方法固定于钢质刀杆上。

Fig.11.2 indicates an arrangement of this latter type, which includes the carbide tip, the chip breaker, the pad, the clamping screw (with a washer and a nut), and the shank.

图11.2所示为机械式固定布置方式,它包括了硬质合金刀尖、断屑槽、衬垫、卡装螺杆(带有垫圈和螺母)及刀杆。

As the name suggests, the function of the chip breaker is to break long chips every now and then, thus preventing the formation of very long twisted ribbons that may cause problems during the machining operation.

顾名思义,断屑槽的功能就是不时地折断长切屑,以防形成很长的可能会在机加工操作中引起问题的缠绕切屑条。

The carbide tips (or ceramic tips) can have different shapes, depending upon the machining operations for which they are to be employed. The tips can either be solid or with a central through hole, depending on whether brazing or mechanical clamping is employed for mounting the tip on the shank.

硬质合金刀尖(或陶瓷刀尖)根据采用它们的机加工操作,可以有不同的形状。根据将刀尖装配在刀杆上是通过用铜焊还是机械卡装,刀尖可以是实心的或是带有中心通孔的。

Lathe Operations车床操作

In the following section, we discuss the various machining operations that can be performed on a conventional engine lathe.

在下面这节中,要讨论的是能在传统普通车床上进行的各种机加工作业。

It must be borne in mind, however, that modern computerized numerically controlled lathes have more capabilities and can do other operations, such as contouring, for example. Following are conventional lathe operations.

然而,必须记住现代计算机数控车床具有更多的功能并且可以进行其它操作,例如仿型。下面是传统车床的操作。

Cylindrical turning. Cylindrical turning is the simplest and the most common of all lathe operations. A single full turn of the workpiece generates a circle whose center falls on the lathe axis; this motion is then reproduced numerous times as a result of the axial feed motion of the tool.

圆柱面车削:圆柱面车削是所有车床操作中最简单也是最普通的。工件旋转一整圈产生一个圆心落在车床主轴上的圆;由于刀具的轴向进给运动这种动作重复许多次。

The resulting machining marks are, therefore, a helix having a very small pitch, which is equal to the feed. Consequently, the machined surface is always cylindrical.

所以,由此产生的机加工痕迹是一条具有很小节距的螺旋线,该节距等于进给。因此机加工表面始终是圆柱形的。

The axial feed is provided by the carriage or the compound rest, either manually or automatically, whereas the depth of cut is controlled by the cross slide.

轴向进给通过大拖板或复式刀架手动或自动提供,然而切削深度则由横向滑板控制。In roughing cuts, it is recommended that large depths of cuts (up to 0.25in. or 6mm, depending upon the workpiece material) and smaller feeds would be used. On the other hand, very fine feeds, smaller depths of cut (less than 0.05in, or 0.4mm), and high cutting speeds are preferred for finishing cuts.

粗车中,推荐使用较大切削深度(根据工件材料可达0.25英寸或6毫米)和较小进给。另一方面,精车则最好采用很小的进给、较小的切削深度(小于0.05英寸或0.4毫米)和较高的切削速度。

Facing. The result of a facing operation is a flat surface that is either the whole end surface of the workpiece or an annular intermediate surface like a shoulder. During a facing operation, feed is provided by the cross slide, whereas the depth of cut is controlled by the carriage or compound rest.

端面车削:端面车削操作的结果是将工件整个端部表面或者像轴肩之类的中间环形表面加工平整。在端面车削操作中,进给由横向滑板提供,而切削深度则通过大拖板或复式刀架控制。

Facing can be carried out either from the periphery inward or from the center of the workpiece outward. It is obvious that the machining marks in both cases take the form of a spiral.

端面车削既可以从外表面向内切削也可以从工件中心往外切削。很明显在这两种情况下机加工痕迹都是螺线形式。

Usually, it is preferred to clamp the carriage during a facing operation, since the cutting force tends to push the tool (and, of course, the whole carriage) away from the workpiece. In most facing operations, the workpiece is held in a chuck or on a face plate.

通常在端面车削作业时习惯于采用夹住大拖板,这是因为切削力倾向于将刀具(当然包括整个大拖板)推离工件。在大多数端面车削作业中,工件被支撑在卡盘或花盘上。

Groove cutting. In cut-off and groove-cutting operations, only cross feed of the tool is employed. The cut-off and grooving tools, which were previously discussed, are employed.

开槽:在切断和开槽操作中,刀具只有横向进给。要采用前面已经讨论过的切断和开槽刀具。

Boring and internal turning. Boring and internal turning are performed on the internal surfaces by a boring bar or suitable internal cutting tools. If the initial workpiece is solid, a drilling operation must be performed first. The drilling tool is held in the tailstock, and the latter is then fed against the workpiece.

镗孔和内部车削:镗孔和内部车削通过镗杆或合适的内部切削刀具在内表面进行。如果初始工件是实心的,则必须首先进行钻孔作业。钻孔刀具安装在尾架上,然后对着工件进给。

Taper turning. Taper turning is achieved by driving the tool in a direction that is not parallel to the lathe axis but inclined to it with an angle that is equal to the desired angle of the taper. Following are the different methods used in taper-turning practice:

锥面车削:锥面车削通过沿着与车床主轴不平行而倾斜成一个等于锥面所需角度的方向进刀来实现。下面是在实际锥面车削中采用的不同方法:

(1) Rotating the disc of the compound rest with an angle equal to half the apex angle of the cone. Feed is manually provided by cranking the handle of the compound rest. This method is recommended for taper turning of external and internal surfaces when the taper angle is relatively large.

(1) 将复式刀架盘旋转一个等于圆锥体顶角一半的角度。通过摇动复式刀架操纵柄手动提供进给。当锥角相对较大时切削外锥面和内锥面推荐使用这种方法。

(2) Employing special form tools for external, very short, conical surfaces. The width of the workpiece must be slightly smaller than that of the tool, and the workpiece is usually held in a chuck or clamped on a face plate. In this case, only the cross feed is used during the machining process and the carriage is clamped to the machine bed.

(2) 对很短的外锥面采用特殊的成型刀具。工件的宽度必须略小于刀具的宽度,并且工件通常由卡盘支撑或夹紧在花盘上。在这种情况下,机加工作业时只有横向进给而大拖板则夹紧在床身上。

(3) Offsetting the tailstock center. This method is employed for external taper turning of long workpieces that are required to have small taper angles (less than 8°). The workpiece is mounted between the two centers; then the tailstock center is shifted a distance S in the direction normal to the lathe axis.

(3)偏移尾架顶尖。对需要较小锥角(小于8°) 的较长工件外锥面车削采用这种方法。工件安装于两顶尖之间;然后将尾架顶尖朝垂直于车床主轴方向移动一距离S。

(4) Using the taper-turning attachment. This method is used for turning very long workpieces, when the length is larger than the whole stroke of the compound rest. The procedure followed in

such cases involves complete disengagement of the cross slide from the carriage, which is then guided by the taper-turning attachment.

(4) 采用锥面车削附加装置。这种方法用于车削很长的工件,其长度大于复式刀架的整个行程。在这种场合下要遵循的步骤是将横向滑板完全脱离大拖板,然后通过锥面车削附加装置进行引导。

During this process, the automatic axial feed can be used as usual. This method is recommended for very long workpieces with a small cone angle, i.e., 8°through 10°.

在此作业中,能照常使用自动轴向进给。对具有较小锥角(即8°到10°)的很长工件推荐采用这种方法。

Thread cutting. When performing thread cutting, the axial feed must be kept at a constant rate, which is dependent upon the rotational speed (rpm) of the workpiece. The relationship between both is determined primarily by the desired pitch of the thread to be cut.

螺纹切削:在螺纹切削作业时,轴向进给必须保持恒定速率,这取决于工件的转速(rpm)。两者之间的关系基本上由被切削螺纹所需的节距决定。

As previously mentioned, the axial feed is automatically generated when cutting a thread by means of the lead screw, which drives the carriage. When the lead screw rotates a single revolution, the carriage travels a distance equal to the pitch of the lead screw.

如前所述,当依靠驱动大拖板的丝杆切削螺纹时轴向进给是自动产生的。丝杆旋转一圈,大拖板就行进等于丝杆节距的一段距离。

Consequently, if the rotational speed of the lead screw is equal to that of the spindle (i.e., that of the workpiece), the pitch of the resulting cut thread is exactly equal to that of the lead screw.

因此如果丝杆的旋转速度等于心轴的转速(即工件的转速),生成切削螺纹的节距就正好等于丝杆的节距。

The pitch of the resulting thread being cut therefore always depends upon the ratio of the rotational speeds of the lead screw and the spindle: Pitch of the lead screw/ Desired pitch of workpiece=rpm of the workpiece/rpm of lead screw=spindle-to-carriage gearing ratio.

所以被切削生成螺纹的节距总是取决于丝杆和心轴的转速比:丝杆的节距/工件所需节距=工件转速/丝杆转速=心轴到大拖板的传动比。

This equation is useful in determining the kinematic linkage between the lathe spindle and the lead screw and enables proper selection of the gear train between them.

这公式在决定车床心轴和丝杆之间的运动学关系时很有用,并且提供了正确挑选它们之间轮系的方法。

In thread cutting operations, the workpiece can either be held in the chuck or mounted between the two lathe centers for relatively long workpieces. The form of the tool used must exactly coincide with the profile of the thread to be cut, i.e., triangular tools must be used for triangular threads, and so on.

在螺纹切削作业中,工件既能支撑于卡盘中,对相对较长的工件也能安装在两个车床顶尖之间。使用的刀具外形必须正好与要切削螺纹的轮廓一致,即三角形刀具必须用于三角形螺纹等等。

Knurling. Knurling is mainly a forming operation in which no chips are produced. It involves pressing two hardened rolls with rough filelike surfaces against the rotating workpiece to cause plastic deformation of the workpiece metal.

滚花:滚花主要是一种不产生切屑的成型操作。它使用两个带有粗锉式表面的淬火滚轮压在旋转的工件上使工件金属产生塑性变形。

Knurling is carried out to produce rough, cylindrical (or conical) surfaces, which are usually used as handles. Sometimes, surfaces are knurled just for the sake of decoration; there are different types of patterns of knurls from which to choose.

滚花用于生成粗糙的圆柱(或圆锥)面,通常用来作手柄。有时表面滚花只为装饰之故;有不同的滚花图案类型可供选择。

Cutting Speeds and Feed切削速度和进给

The cutting speed, which is usually given in surface feet per minute (SFM), is the number of feet traveled in the circumferential direction by a given point on the surface (being cut) of the workpiece in 1 minute.

切削速度,通常用每分钟表面英尺给出,就是一分钟内工件(被切削)表面给定点在圆周方向上行进的英尺数。

The relationship between the surface speed and rpm can be given by the following equation: SFM=πDN

Where

D=the diameter of the workpiece in feet

N=the rpm

表面速度与转速之间的关系可以用下式给出:

SFM=πDN

式中

D=用英尺表示的工件直径

N=转速

The surface cutting speed is dependant primarily upon the material being machined as well as the material of the cutting tool and can be obtained from handbooks, information provided by cutting tool manufacturers, and the like.

表面切削速度主要由被切削材料和切削刀具材料决定,可以从手册、切削刀具生产商提供的资料及类似的东西上查取。

Generally, the SFM is taken as 100 when machining cold-rolled or mild steel, as 50 when machining tougher metals, and as 200 when machining softer materials. For aluminum, the SFM is usually taken as 400 or above. There are also other variables that affect the optimal value of the surface cutting speed.

一般而言,SFM当机加工冷轧或低碳钢时取100,机加工较坚韧的金属时取50,而机加工较软材料时取200。对铝而言,SFM通常可取400以上。也还存在其它一些变量影响表面切削速度的最佳值。

These include the tool geometry, the type of lubricant or coolant, the feed, and the depth of cut. As soon as the cutting speed is decided upon, the rotational speed (rpm) of the spindle can be obtained as follows:

N=SFM/(πD)

其中包括刀具形状、润滑剂或冷却液的类型、进给和切削深度。切削速度一旦确定,心轴转速(rpm)就能按下式得到:

N=SFM/(πD)

The selection of a suitable feed depends upon many factors, such as the required surface finish, the depth of cut, and the geometry of the tool used. Finer feeds produce better surface finish, whereas higher feeds reduce the machining time during which the tool is in direct contact with the workpiece.

合适进给的选择取决于许多因素,例如所需表面光洁度、切削深度和所用刀具的几何形状。进给越小生成的光洁度越好,而在刀具与工件直接接触时进给越大则可以减少机加工时间。

Therefore, it is generally recommended to use high feeds for roughing operations and finer feeds for finishing operations. Again, recommended values for feeds, which can be taken as guidelines, are found in handbooks and in information booklets provided by cutting tool manufacturers.

所以对粗车一般推荐使用较大进给,而精车则用较小进给。再者,作为指导方针的进给推荐值可以从手册和切削刀具生产商提供的资料小册子上找到。

第十二章Drilling and Milling 钻削

Drilling and Drills钻削和钻头

Drilling involves producing through or blind holes in a workpiece by forcing a tool, which rotates around its axis, against the workpiece.

钻削就是通过迫使绕自身轴线旋转的切削刀具进入工件而在其上生成通孔或盲孔。Consequently, the range of cutting from that axis of rotation is equal to the radius of the required hole. In practice, two symmetrical cutting edges that rotate about the same axis are employed.

因此,从旋转轴线开始的切削范围等于所需孔的半径。实际上,使用的是两条围绕相同轴线旋转的对称切削刃。

Drilling operations can be carried out by using either hand drills or drilling machines. The latter differ in size and construction. Nevertheless, the tool always rotates around its axis while the workpiece is kept firmly fixed. This is contrary to drilling on a lathe.

钻削作业既能采用手钻也能采用钻床来实现。钻床在尺寸和结构上虽有差别,然而始终都是切削刀具围绕自身轴线旋转、工件稳固定位的形式。这正好与在车床上钻孔相反。Cutting Tool for Drilling Operation

In drilling operations, a cylindrical rotary-end cutting tool, called a drill, is employed. The drill can have either one or more cutting edges and corresponding flutes, which can be straight or helical.

用于钻削作业的切削刀具

在钻削作业中,要用到被称为钻头的圆柱形回转端切削刀具。钻头可以有一条或多条直的或是螺旋状的切削刃以及相应的出屑槽。

The function of the flutes is to provide outlet passages for the chips generated during the drilling operation and also to allow lubricants and coolants to reach the cutting edges and the surface being machined. Following is a survey of the commonly used drills.

出屑槽的功能是给钻削作业中产生的切屑提供排出通道,并允许润滑剂和冷却液到达切削刃和正在被加工的表面。下面是常用钻头的概述。

Twist drill. The twist drill is the most common type of drill. It has two cutting edges and two helical flutes that continue over the length of the drill body, as shown in Fig.12.1. The drill also consists of a neck and a shank that can be either straight or tapered.

麻花钻:麻花钻是最常用的钻头类型。它有两条切削刃和两条沿钻头体全长连续的螺旋状出屑槽,如图12.1所示。麻花钻还包括钻颈和钻柄,钻柄可以是直的也可以是锥形的。

In the latter case, the shank is fitted by the wedge action into the tapered socket of the spindle and has a tang, which goes into a slot in the spindle socket, thus acting as a solid means for transmitting rotation.

锥形钻柄通过楔入动作安装在主轴的锥形轴孔中,钻柄上还有柄舌插入主轴轴孔中的插槽,从而作为传递转动的可靠方法。

On the other hand, straight-shank drills are held in a drill chuck that is, in turn, fitted into the spindle socket in the same way as tapered shank drills.

另一方面,直柄钻头用钻头卡盘夹住,接下来钻头卡盘则象锥形钻柄钻头一样安装在主轴轴孔内。

As can be seen in Fig.12.1, the two cutting edges are referred to as the lips, and are connected together by a wedge, which is a chisel-like edge. The twist drill also has two margins, which enable proper guidance and locating of the drill while it is in operation.

如图12.1所示,两条切削刃就是钻唇,通过凿子状边缘的楔形体连在一起。麻花钻还有两条导向边,用于作业中钻头的正确导向和定位。

The tool point angle (TPA) is formed by the two lips and is chosen based on the properties of the material to be cut. The usual TPA for commercial drills is 118°, which is appropriate for drilling low-carbon steels and cast irons.

两条钻唇形成钻顶角,并根据被钻削材料的性能来选取其大小。商品化钻头的钻顶角一般为118°,这适用于钻削低碳钢和铸铁。

For harder and tougher metals, such as hardened steel, brass and bronze, larger TPAs (130°or 140°) give better performance. The helix angle of the flutes of the commonly used twist drills ranges between 24°and 30°. When drilling copper or soft plastics, higher values for the helix angle are recommended (between 35°and 45°).

对于更硬更韧的金属,诸如淬火钢、黄铜和青铜,更大的钻顶角(130°或140°)才能有更好的效果。麻花钻常用的出屑槽螺旋角范围为24°到30°。钻削紫铜或软塑料时,推荐采用更大的螺旋角(35°到45°)。

Twist drills are usually made of high-speed steel, although carbide-tipped drills are also available. The sizes of twist drills used in industrial practice range from 0.01 up to 3.25 in. (i. e., 0.25 up to 80 mm).

虽然也有硬质合金刀尖的钻头,麻花钻一般用高速钢制成。工业实际中使用的麻花钻尺寸范围为0.01到3.25英寸(即0.25到80毫米)。

Core drills. A core drill consists of the chamfer, body, neck, and shank, as shown in Fig.12.2. This type of drill may have either three or four flutes and equal number of margins, which ensure superior guidance, thus resulting in high machining accuracy.

空心钻:空心钻包括斜面、钻头体、钻颈和钻柄,如图12.2所示。这类钻头可以有三条或四条出屑槽及相同数量的保证良好导向的导向边,这样使得加工有高精度。

It can also be seen in Fig.12.2 that a core drill has flat end. The chamfer can have three or four cutting edges or lips, and the lip angle may vary between 90°and 120°.

在图12.2中同样能看到,空心钻具有平坦的端部。斜面可以有三或四条切削刃或钻唇,并且钻唇角可以在90°到120°之间变化。

Core drills are employed for enlarging previously made holes and not for originating holes. This type of drill is characterized by greater productivity, high machining accuracy, and superior quality of the drilled surfaces.

空心钻用于扩大已有的孔而不是打孔。这类钻头具有较大生产率、高加工精度和优良钻削表面质量的特性。

Gun drills. Gun drills are used for drilling deep holes. All gun drills are straight-fluted, and each has a single cutting edge. A hole in the body acts as a conduit to transmit coolant under considerable pressure to the tip of the drill.

深孔钻:深孔钻用于钻深孔。所有深孔钻都是直出屑槽的,并且均为单切削刃。钻头体中有个孔作为导管在相当大的压力下将冷却液传送到钻头顶端。

There are two kinds of gun drills, namely, the center-cut gun drill used for drilling blind holes and the trepanning drill. The latter has a cylindrical groove at its center, thus generating a solid core, which guides the tool as it proceeds during the drilling operation.

深孔钻有两种类型,即用于钻盲孔的中心切削深孔钻和套孔钻。后者在其中心有一圆柱形沟槽,这样能生成整体芯在钻孔作业过程中引导钻头。

Spade drills. Spade drills are used for drilling large holes of 3.5 in.(90mm) or more. Their design results in a marked saving in cost of the tool as well as a tangible reduction in its weight, which facilitates its handling. Moreover, this type of drill is easy to grind.

扁平钻:扁平钻用于钻削3.5英寸(90毫米)或更大的大孔。其设计使得钻头成本明显节省、重量切实减轻,重量轻又使操作更方便。此外这种钻头容易磨利。

Milling and Milling Cutter铣削和铣刀

Milling is a machining process that is carried out by means of a multiedge rotating tool known as a milling cutter.

铣削是采用被称为铣刀的多刃旋转刀具完成的机加工作业。

In this process, metal removal is achieved through combining the rotary motion of the milling cutter and linear motions of the workpiece simultaneously. Milling operations are employed in producing flat, contoured and helical surfaces as well as for thread- and gear-cutting operation.

在此工艺中,金属去除是通过铣刀的旋转运动和工件的直线运动的组合实现的。铣削作业既可用于生成平面、轮廓面和螺旋面,也可用于切削螺纹和齿轮。

Each of the cutting edges of a milling cutter acts as an individual single-point cutter when it engages with the workpiece metal. Therefore, each of those cutting edges has appropriate rake and relief angles.

在铣刀切削工件金属时,铣刀的每条切削刃都象一单独的单刃刀具一样作用。所以每条切削刃都适当的前后角。

Since only a few of the cutting edges are engaged with the workpiece at a time, heavy cuts can be taken without adversely affecting the tool life. In fact, the permissible cutting speeds and feeds for milling are three to four times higher than those for turning or drilling.

由于同一时间只有部分切削刃切削工件,因此可以在对刀具寿命没有不利影响的情况下承担重型切削。事实上,铣削允许的切削速度和进给比车削或钻削高三到四倍。

Moreover, the quality of the surfaces machined by milling is generally superior to the quality of surfaces machined by turning, shaping, or drilling.

此外,由铣削加工的表面质量通常优于车削、刨削或钻削加工的表面质量。

A wide variety of milling cutters is available in industry. This, together with the fact that a milling machine is a very versatile machine tool, makes the milling machine the backbone of a machining workshop.

工业上可采用的铣刀类型众多。连同铣床是极通用机床的事实,使得铣床成为机加工车间的支柱。

As far as the direction of cutter rotation and workpiece feed are concerned, milling is performed by either of the following two methods.

至于涉及到铣刀转动的方向和工件的进给,铣削可以通过下列两种方法之一进行。

Up milling (conventional milling). In up milling the workpiece is fed against the direction of cutter rotation, as shown in Fig.12.3a. As we can see in that figure, the depth of cut (and consequently the load) gradually increases on the successively engaged cutting edges.

逆铣(传统铣削):在逆铣中,工件逆着铣刀转动的方向进给,如图12.3a所示。就像在此图中能看到的那样,切削深度(及作为结果的载荷)随着切削刃持续进入切削而逐渐增加。

Therefore, the machining process involves no impact loading, thus ensuring smoother operation of the machine tool and longer tool life. The quality of the machined surface obtained by up milling is not very high. Nevertheless, up milling is commonly used in industry, especially for rough cuts. 所以,这种工艺没有冲击载荷,从而保证了机床的较平稳运行和较长寿命。通过逆铣所得机加工表面质量不是很高。然而逆铣仍经常被用在工业上,尤其是粗切削时。

Down milling (climb milling). As can be seen in Fig.12.3b, in down milling the cutter rotation coincides with the direction of feed at the contact point between the tool and the workpiece. It can also be seen that the maximum depth of cut is achieved directly as the cutter engages with the workpiece.

顺铣(同向铣削):如同在图12.3b中看到的那样,在顺铣时刀具与工件之间接触点上铣刀旋转与进给方向一致。还可以看到当刀具进入工件切削时直接达到最大切削深度。This results in a kind of impact, or sudden loading. Therefore, this method cannot be used unless the milling machine is equipped with a backlash eliminator on the feed screw. The advantages of this method include higher quality of the machined surface and easier clamping of workpieces, since the cutting forces act downward.

这会导致一种冲击,或突然加载。因此,这种方法只有当铣床在进给螺栓上配备间隙消除器时才采用。这种方法的优点包括机加工表面质量较高和工件由于切削力向下作用而较容易夹紧。

Types of Milling Cutters

There is a wide variety of milling cutter shapes. Each of them is designed to perform effectively a specific milling operation.

铣刀的类型

铣刀的形状类型很多。其中每种都是为有效进行特定的铣削作业而设计的。Generally, a milling cutter can be described as a multiedge cutting tool having the shape of a solid of revolution, with the cutting teeth arranged either on the periphery or on an end face or on both. Following is a quick survey of the commonly used types of milling cutters.

通常,铣刀可以被描述为具有旋转实体形状并将切削齿安装在周边或一到两个端面上的多刃切削刀具。下面是常用铣刀类型的快速综览。

Plain milling cutter. A plain milling cutter is a disk-shaped cutting tool that may have either straight or helical teeth, as shown in Fig.12.4a. This type is always mounted on horizontal

milling machines and is used for machining flat surfaces.

平面铣刀:平面铣刀是一种盘状切削刀具,它可以具有直齿或螺旋齿,如图12.4a 所示。这类铣刀总是安装在卧式铣床上,用于机加工平面。

Face milling cutter. A face milling cutter is also used for machining flat surfaces. It is bolted at the end of a short arbor, which is in turn mounted on a vertical milling machine. Fig.12.4b indicates a milling cutter of this type.

端面铣刀:端面铣刀也可用于机加工平面。它用螺栓固定在短刀杆的端部,而短刀杆则依次安装于立式铣床上。图12.4b显示了这类铣刀。

Plain metal slitting saw cutter. Fig.12.4c indicates a plain metal slitting saw cutter. we can see that it actually involves a very thin plain milling cutter.

平面金属开槽锯刃铣刀:图12.4c显示了一种平面金属开槽锯刃铣刀。可以看到它其实是一种很薄的平面铣刀。

Side milling cutter. A side milling cutter is used for cutting slots, grooves, and splines. As shown in Fig.12.4d, it is quite similar to the plain milling cutter, the difference being that this type has teeth on the sides. As is the case with the plain cutter, the cutting teeth can be straight or helical.

侧铣刀:侧铣刀用于切削狭槽、凹槽和花键槽。正如图12.4d所示,它与平面铣刀十分相似,差别在于此类铣刀齿在侧面。象平面铣刀的情况一样,切削齿既可以是直的也可以是螺旋的。

Angle milling cutter. An angle milling cutter is employed in cutting dovetail grooves, ratchet wheels, and the like. Fig.12.4e indicates a milling cutter of this type.

倾斜铣刀:倾斜铣刀用于切削燕尾槽、棘轮之类的。图12.4e显示了这类铣刀。

T-slot cutter. As shown in Fig.12.4f, a T-slot cutter involves a plain milling cutter with an integral shaft normal to it. As the name suggests, this type is used for milling T-slots.

T型槽铣刀:如图12.4f所示,T型槽铣刀包括了一个平面铣刀和一根垂直于它的整体轴。正像其名字所表明的,这类铣刀用于铣削T型槽。

End mill cutter. End mill cutters find common applications in cutting slots, grooves, flutes, splines, pocketing work, and the like. Fig.12.4g indicates an end mill cutter. The latter is always mounted on a vertical milling machine and can have two or four flutes, which may be either straight or helical.

端面铣刀:端面铣刀在切削狭槽、凹槽、长凹槽、花键槽、凹状工件之类时均能发现其普遍应用。图12.4g为端面铣刀。它总是安装在立式铣床上,并具有两到四条既可是直的也可是螺旋的长凹槽。

Form milling cutter. The teeth of a form milling cutter have a certain shape, which is identical to the section of the metal to be removed during the milling operation. Examples of this type include gear cutters, gear hobs, convex and concave cutters, and the like. From milling cutters are mounted on horizontal milling machines.

成形铣刀:成形铣刀的齿具有特定的形状,这个形状与铣削时要切削的那部分金属的形状一致。这类铣刀的例子包括齿轮铣刀、齿轮滚刀、凸形和凹形铣刀等等。成形铣刀安装在卧式铣床上。

Materials of Milling Cutters

The commonly used milling cutters are made of high-speed steel, which is generally adequate for most jobs.

铣刀的材料

《机械工程专业英语教程》课文翻译

Lesson 1 力学的基本概念 1、词汇: statics [st?tiks] 静力学;dynamics动力学;constraint约束;magnetic [m?ɡ'netik]有磁性的;external [eks't?:nl] 外面的, 外部的;meshing啮合;follower从动件;magnitude ['m?ɡnitju:d] 大小;intensity强度,应力;non-coincident [k?u'insid?nt]不重合;parallel ['p?r?lel]平行;intuitive 直观的;substance物质;proportional [pr?'p?:??n?l]比例的;resist抵抗,对抗;celestial [si'lestj?l]天空的;product乘积;particle质点;elastic [i'l?stik]弹性;deformed变形的;strain拉力;uniform全都相同的;velocity[vi'l?siti]速度;scalar['skeil?]标量;vector['vekt?]矢量;displacement代替;momentum [m?u'ment?m]动量; 2、词组 make up of由……组成;if not要不,不然;even through即使,纵然; Lesson 2 力和力的作用效果 1、词汇: machine 机器;mechanism机构;movable活动的;given 规定的,给定的,已知的;perform执行;application 施用;produce引起,导致;stress压力;applied施加的;individual单独的;muscular ['m?skjul?]]力臂;gravity[ɡr?vti]重力;stretch伸展,拉紧,延伸;tensile[tensail]拉力;tension张力,拉力;squeeze挤;compressive 有压力的,压缩的;torsional扭转的;torque转矩;twist扭,转动;molecule [m likju:l]分子的;slide滑动; 滑行;slip滑,溜;one another 互相;shear剪切;independently独立地,自立地;beam梁;compress压;revolve (使)旋转;exert [iɡ'z?:t]用力,尽力,运用,发挥,施加;principle原则, 原理,准则,规范;spin使…旋转;screw螺丝钉;thread螺纹; 2、词组 a number of 许多;deal with 涉及,处理;result from由什么引起;prevent from阻止,防止;tends to 朝某个方向;in combination结合;fly apart飞散; 3、译文: 任何机器或机构的研究表明每一种机构都是由许多可动的零件组成。这些零件从规定的运动转变到期望的运动。另一方面,这些机器完成工作。当由施力引起的运动时,机器就开始工作了。所以,力和机器的研究涉及在一个物体上的力和力的作用效果。 力是推力或者拉力。力的作用效果要么是改变物体的形状或者运动,要么阻止其他的力发生改变。每一种

机械工程英语翻译

Unit1 1、What is the difference between an alloy and a pure metal? Pure metals are elements which come from a particular area of the periodic table. Examples of pure metals include copper in electrical wires and aluminum in cooking foil and beverage cans. 合金与纯金属的区别是什么?纯金属是在元素周期表中占据特定位置的元素。例如电线中的铜和制造烹饪箔及饮料罐的铝。 Alloys contain more than one metallic element. Their properties can be changed by changing the elements present in the alloy. Examples of metal alloys include stainless steel which is an alloy of iron, nickel, and chromium; and gold jewelry which usually contains an alloy of gold and nickel. 合金包含不止一种金属元素。合金的性质能通过改变其中存在的元素而改变。金属合金的例子有:不锈钢是一种铁、镍、铬的合金,以及金饰品通常含有金镍合金。 2、 Why are metals and alloys used? Many metals and alloys have high densities and are used in applications which require a high mass-to-volume ratio. 为什么要使用金属和合金?许多金属和合金具有高密度,因此被用在需要较高质量体积比的场合。 Some metal alloys,such as those based on aluminum, have low densities and are used in aerospace applications for fuel economy. Many alloys also have high fracture toughness, which means they can withstand impact and are durable. 某些金属合金,例如铝基合金,其密度低,可用于航空航天以节约燃料。许多合金还具有高断裂韧性,这意味着它们能经得起冲击并且是耐用的。 3、The atomic bonding of metals also affects their properties. In m etals, the outer valence electrons are shared among all atoms, and ar e free to travel everywhere. Since electrons conduct heat and electri city, metals make good cooking pans and electrical wires. 金属的原子连结对它们的特性也有影响。在金属内部,原子的外层阶电子由所有原子共享并能到处自由移动。由于电子能导热和导电,所以用金属可以制造好的烹饪锅和电线。 It is impossible to see through metals, since these valence electrons absorb any photons of light which reach the metal. No photons pass through. 因为这些阶电子吸收到达金属的光子,所以透过金属不可能看得见。没有光子能通过金属. 4、Some of the useful properties of ceramics and glasses include high melting temperature, low density, high strength, stiffness, hardness, wear resistance, and corrosion resistance. 陶瓷和玻璃的特性高熔点、低密度、高强度、高刚度、高硬度、高耐磨性和

机械工程专业英语翻译 华中科技大学版 李光布

1.机械设计过程 机械设计的最终目标是生产一种满足客户需求的有用产品,而且这种产品安全,高效,可靠,经济,实用。当回答这个问题时,广泛地思考,我将要设计的产品或系统的客户是谁? 在产品设计之前,了解所有客户的期望和期望是至关重要的。营销专业人员经常被用来管理客户期望的定义,但是设计师可能会把他们作为产品开发团队的一部分。 许多方法被用来确定客户想要什么。一种被称为质量功能部署或QFD的流行方法寻求(1)识别客户期望的所有特征和性能因素,以及(2)评估这些因素的相对重要性。QFD过程的结果是产品的一组详细功能和设计要求。 考虑设计过程如何配合为客户提供令人满意的产品所必须发生的所有功能以及在产品的整个生命周期中为产品提供服务也很重要。事实上,重要的是考虑产品在使用寿命后如何处置。影响产品的所有这些功能的总和有时被称为产品实现过程或PRP。PRP中包含的一些因素如下: ?营销功能来评估客户的要求 ?研究确定可在产品中合理使用的可用技术 ?可以包含在产品中的材料和组件的可用性 ?产品设计和开发 ?性能测试 ?设计文件 ?供应商关系和采购职能 ?考虑全球材料采购和全球营销 参加工作的技能 ?物理工厂和设施可用

?制造系统的能力 生产计划和生产系统的控制 ?生产支持系统和人员 ?质量体系要求 ?销售操作和时间表 ?成本目标和其他竞争性问题 ?客户服务要求 ?产品在生产,操作和处置过程中的环境问题 ?法律要求 ?金融资本的可用性 你可以添加到这个列表吗?您应该能够看到,产品的设计只是综合过程的一部分。在本文中,我们将更加注意设计过程本身,但必须始终考虑设计的可生产性。产品设计和制造过程设计的同时考虑通常被称为并行工程。 2.机械设计所需的技能 产品工程师和机械设计师在日常工作中使用广泛的技能和知识。这些技能和知识包含在以下内容中: ?素描,技术制图和计算机辅助设计 ?材料的性质?材料加工*和制造过程 ?化学的应用,如腐蚀防护,电镀和喷漆 静力学动力学材料的强度,运动学和机制 流体力学,热力学和传热 ?流体动力,电气现象的基本原理和工业控制

机械工程专业英语翻译合集

1.我们可以把钢再次加热到临界温度以下的某一温度,然后在慢慢让其冷却。We can heat the steel again to a temperature below the critical temperature, then cool it slowly. 2.无论任何简单的机床,都是由单一元件即通称为机械零件或部件组成的。However simple, any machine is a combination of individual components generally referred to as machine elements or parts. 3.这些金属不都是好的导体。 All these metals are not good conductors. 4. 在做带电实验的时候,再怎么小心都不为过。 You can't be too careful in performing an experiment. 5.利用发电机可以把机械能转变成电能。 The mechanical energy can be changed back into electrical energy by means of a generator or dynamo. 6.假定电源输入的电压保持不变。 Assume that the voltage input of the power supply remains the same. 7.化石燃料是发电过程中最为频繁使用的能源。 Fossil fuels are most frequently used source daring the power generation process. 8单个机械零件的可靠性成为评估整台机器使用寿命的基本因素。 The individual reliability of machine elements becomes the basis for estimating the overall life 9.说我们生活在一个电子时代,这一点都不夸张。 It's no exaggeration to say that we live in an electronic age. 10.发动机的转速不应超过最大允许值。 Engine revolution should not exceed the maximum permissible. 11.如能从大型核电站获得成本极低的电力,电解氢的竞争能力就会增强。(Electrolytic hydrogen)。 If extremely low-cost power were ever to become available from large nuclear power plants, electrolytic hydrogen would become competitive. 12.电子技术提供了一种新的显示时间的方法。 A new way of displaying time has been given by electronics. 13.远距离输电需要高压,安全用电需要低压。 High voltage is necessary for long transmission line while low voltage for safe use. 14.铝的电阻大约是同等尺寸的铜的1.5倍。 The resistance of aluminum is approximately half again as great as that of copper for the same dimensions = size 15.In fact,it is impossible for no force to be exerted on a body,since in this world everything is subject to the for ce of gravity. 事实上,物体不受外力作用是不可能的,因为在这个世界上任何物体都要受到重力的作用。 16.In a thermal power plant,all the chemical energy is not

(完整版)机械工程专业英语词汇

陶瓷ceramics 合成纤维synthetic fibre 电化学腐蚀electrochemical corrosion 车架automotive chassis 悬架suspension 转向器redirector 变速器speed changer 板料冲压sheet metal parts 孔加工spot facing machining 车间workshop 工程技术人员engineer 气动夹紧pneuma lock 数学模型mathematical model 画法几何descriptive geometry 机械制图Mechanical drawing 投影projection 视图view 剖视图profile chart 标准件standard component 零件图part drawing 装配图assembly drawing 尺寸标注size marking 技术要求technical requirements 刚度rigidity 内力internal force 位移displacement 截面section 疲劳极限fatigue limit 断裂fracture 塑性变形plastic distortion 脆性材料brittleness material 刚度准则rigidity criterion 垫圈washer 垫片spacer 直齿圆柱齿轮straight toothed spur gear 斜齿圆柱齿轮helical-spur gear 直齿锥齿轮straight bevel gear 运动简图kinematic sketch 齿轮齿条pinion and rack 蜗杆蜗轮worm and worm gear 虚约束passive constraint 曲柄crank 摇杆racker 凸轮cams

机械工程专业英语 翻译

2、应力和应变 在任何工程结构中独立的部件或构件将承受来自于部件的使用状况或工作的外部环境的外力作用。如果组件就处于平衡状态,由此而来的各种外力将会为零,但尽管如此,它们共同作用部件的载荷易于使部件变形同时在材料里面产生相应的内力。 有很多不同负载可以应用于构件的方式。负荷根据相应时间的不同可分为: (a)静态负荷是一种在相对较短的时间内逐步达到平衡的应用载荷。 (b)持续负载是一种在很长一段时间为一个常数的载荷, 例如结构的重量。这种类型的载荷以相同的方式作为一个静态负荷; 然而,对一些材料与温度和压力的条件下,短时间的载荷和长时间的载荷抵抗失效的能力可能是不同的。 (c)冲击载荷是一种快速载荷(一种能量载荷)。振动通常导致一个冲击载荷, 一般平衡是不能建立的直到通过自然的阻尼力的作用使振动停止的时候。 (d)重复载荷是一种被应用和去除千万次的载荷。 (e)疲劳载荷或交变载荷是一种大小和设计随时间不断变化的载荷。 上面已经提到,作用于物体的外力与在材料里面产生的相应内力平衡。因此,如果一个杆受到一个均匀的拉伸和压缩,也就是说, 一个力,均匀分布于一截面,那么产生的内力也均匀分布并且可以说杆是受到一个均匀的正常应力,应力被定义为 应力==负载 P /压力 A, 因此根据载荷的性质应力是可以压缩或拉伸的,并被度量为牛顿每平方米或它的倍数。 如果一个杆受到轴向载荷,即是应力,那么杆的长度会改变。如果杆的初始长度L和改变量△L已知,产生的应力定义如下: 应力==改变长△L /初始长 L 因此应力是一个测量材料变形和无量纲的物理量 ,即它没有单位;它只是两个相同单位的物理量的比值。 一般来说,在实践中,在荷载作用下材料的延伸是非常小的, 测量的应力以*10-6的形式是方便的, 即微应变, 使用的符号也相应成为ue。 从某种意义上说,拉伸应力与应变被认为是正的。压缩应力与应变被认为是负的。因此负应力使长度减小。 当负载移除时,如果材料回复到初始的,无负载时的尺寸时,我们就说它是具有弹性的。一特定形式的适用于大范围的工程材料至少工程材料受载荷的大部分的弹性, 产生正比于负载的变形。由于载荷正比于载荷所产生的压力并且变形正比于应变, 这也说明,当材料是弹性的时候, 应力与应变成正比。因此胡克定律陈述, 应力正比于应变。 这定律服从于大部分铁合金在特定的范围内, 甚至以其合理的准确性可以假定适用于其他工程材料比如混凝土,木材,非铁合金。 当一个材料是弹性的时候,当载荷消除之后,任何负载所产生的变形可以完全恢复,没有永久的变形。

机械工程英语翻译unit 1

Types of Materials 材料的类型 Materials may be grouped in several ways. Scientists often classify materials by their state: solid, liquid, or gas. They also separate them into organic (once living) and inorganic (never living) materials. 材料可以按多种方法分类。科学家常根据状态将材料分为:固体、液体或气体。他们也把材料分为有机材料(曾经有生命的)和无机材料(从未有生命的)。 For industrial purposes, materials are divided into engineering materials or nonengineering materials. Engineering materials are those used in manufacture and become parts of products. 就工业效用而言,材料被分为工程材料和非工程材料。那些用于加工制造并成为产品组成部分的就是工程材料。Nonengineering materials are the chemicals, fuels, lubricants, and other materials used in the manufacturing process, which do not become part of the product. 非工程材料则是化学品、燃料、润滑剂以及其它用于加工制造过程但不成为产品组成部分的材料。 Engineering materials may be further subdivided into: ①Metal ②Ceramics ③Composite ④Polymers, etc. 工程材料还能进一步细分为:①金属材料②陶瓷材料③复合材料④聚合材料,等等。 Metals and Metal Alloys 金属和金属合金 Metals are elements that generally have good electrical and thermal conductivity. Many metals have high

机械工程专业英语单词

Lesson 1 Basic Concepts in Mechanics 机械学的基本概念 mechanics n.力学 modify v.修改,调解,变更manageable a.可控制【管理】的 incline v.(使)倾斜 ramp n.斜板,斜坡【道】 slope v.(使)倾斜 friction n.摩擦 roll v.滚动 multiplier n.放大器,乘法器 broom n.扫帚 convert v.转变【化】 handle n.手柄【把】 sweep v.扫荡【描】,掠过efficiency n.效率 gauge vt.测【计】量,校验bearing n.轴承 ideal mechanical advantage 理想的机械效益 neglect vt.忽略Lesson 2 Basic Assumption in Plasticity Theory 塑性理论的基本假设 assumption n.假定 plasticity n.塑性 investigate v.调查,研究deformation n.变形 metal forming process 金属成型工艺【过程】 strain (rate) n.应变【速率】 strength n.强度 stress n.应力 yield stress 屈服应力 flow stress 流动应力 tensile stress 拉【伸】应力compressive stress 压【缩】应力 shear stress 剪【切】应力 geometry n.几何形状 elastic a.弹性的 springback n.回弹 bending n.弯曲,折弯

机械工程专业英语第二版必考翻译(完整版)

1.With low-power machinery or vehicles the operator can usually apply sufficient force through a simple mechanical linkage from the pedle or handle to the stationary part of the brake. In many cases, however, this force must be multiplied by using an elaborate braking system.(P5)用低能机器或传力工具,操作者通过向踏板或把手的一个简单机械连接构件作用足够的力量到车闸固定的部分。大多数情况,然而,用一个详细(复杂)的车闸系统使这个力量成倍增加。 2. The fundamental principle involved is the use of compressed air acting through a piston in a cylinder to set block brakes on the wheels. The action is simultaneous o n the wheels of all the cars in the train. The compressed air is carried through a strong hose from car to car with couplings between cars; its release to all the separate block brake units, at the same time, is controlled by the engineer. (Braking Systems)(P5) 相关的基本原理是使用压缩气体,通过气缸内的活塞将闸块压在车轮起作用。列车的所有车厢上的车轮同时动作。压缩气体通过一个坚固的管道在由联轴器连接的车厢之间传输;工程师控制其在同一时间释放到所有独立的闸块单元。 3.When the brake pedal of an automobile is depressed, a force is applied to a piston in a master cylinder. The piston forces hydraulic fluid through metal tubing into a cylinder in each wheel where the fluid’s pressure moves two pistons that press the brake shoes against the drum. (Braking Systems)(P5) 当踩下汽车刹车的踏板,在主汽缸中的活塞上施加一个力。活塞驱动液压流体通过金属管道进入每个车轮气缸,在那里液压移动两个活塞将闸片压向轮圈。 4.Machinery ontology including mechanical rack, mechanical connections and mechanical transmission, which is the basis of mechanical-electrical integration, plays a role in supporting the other functional units of the system and transmitting motion and power. Compared to purely mechanical products, the performance and functionality of integration technology in electrical and mechanical systems have been improved a lot, which requires mechanical ontology to adapt its new status in mechanical structure, materials, processing technology, as well as the areas of geometry. Accordingly, the new ontology is with high efficient, multi-functional, reliable and energy-saving, small, light-weighted and aesthetically pleasing characteristics. (Mechatronics System) (P7) 机械体包括机架、机械联接和机械传动,它是机电一体化的基础,作用是支撑系统其他功能单元,传递运动和动力。和纯机械产品相比,一体化技术的性能和功能在机电系统中大幅提高,它要求机械本体适应在机械结构、材料、加工技术以及这些领域中的几何学下的新环境。相应的,新的一体化具有高效、多功能、可靠、节能、小轻和美学的令人赏心悦目的特征。 5. Detecting sensor detecting sensor part includes a variety of sensors and signal detection circuit, and its function is to detect the process of mechatronic systems in the work itself and the changes of relevant parameters in external environment and transmit the information to the electronic control unit. Electronic control unit check the information and sends the corresponding control issues to the actuator. (Mechatronics System) (P7) 检测传感器部分包括各类传感器、信号检测电路,它的功能是检测机电系统自身工作的工程,在外部环境下的相关参数的改变,将其信息传给电子控制单元。电子控制单元通过检查信息,送出相应的指令到执行机构。 6. Electronic control unit, also known as ECU, is the core of mechatronic systems, responsible for the external commands and the signals output by sensors. It centralizes stores, computes and analyzes the information. Based on the results of information processing,instruction are issued according to a certain extent and pace to control the destination for the entire system. (Mechatronics System) (P7) 电子控制单元,也被称为控制单元(ECU)控制,是机电系统的核心,负责外部命令和传感器的信号输出。它集中、存储、计算并分析信息。基于信息处理的结果,按照一定的范围和步调发出命令来实现控制整个系统的目标。 7. It is put into a fairly standard machine tool that has had position sensing and motors on the

机械专业术语英文翻译

机械专业英语词汇 陶瓷ceramics 合成纤维synthetic fibre 电化学腐蚀electrochemical corrosion 车架automotive chassis 悬架suspension 转向器redirector 变速器speed changer 板料冲压sheet metal parts 孔加工spot facing machining 车间workshop 工程技术人员engineer 气动夹紧pneuma lock 数学模型mathematical model 画法几何descriptive geometry 机械制图Mechanical drawing 投影projection 视图view 剖视图profile chart 标准件standard component 零件图part drawing 装配图assembly drawing 尺寸标注size marking 技术要求technical requirements 刚度rigidity 内力internal force 位移displacement 截面section 疲劳极限fatigue limit 断裂fracture 塑性变形plastic distortion 脆性材料brittleness material 刚度准则rigidity criterion 垫圈washer 垫片spacer 直齿圆柱齿轮straight toothed spur gear 斜齿圆柱齿轮helical-spur gear 直齿锥齿轮straight bevel gear 运动简图kinematic sketch 齿轮齿条pinion and rack 蜗杆蜗轮worm and worm gear 虚约束passive constraint 曲柄crank 摇杆racker

机械专业英语复试词汇总结

机械英语词汇大全2 金属切削 metal cutting 机床 machine tool 金属工艺学 technology of metals 刀具 cutter 摩擦 friction 联结 link 传动 drive/transmission 轴 shaft 弹性 elasticity 频率特性 frequency characteristic 误差 error 响应 response 定位 allocation 拉孔 broaching 装配 assembling 铸造 found 流体动力学 fluid dynamics 流体力学 fluid mechanics 加工 machining 液压 hydraulic pressure 切线 tangent 机电一体化 mechanotronics mechanical-electrical integration 气压 air pressure pneumatic pressure 稳定性 stability 介质 medium 数学模型 mathematical model 画法几何 descriptive geometry 机械制图 Mechanical drawing 投影 projection 视图 view 剖视图 profile chart 标准件 standard component 零件图 part drawing 装配图 assembly drawing 尺寸标注 size marking 技术要求 technical

机床夹具 jig 动力学 dynamic 运动学 kinematic 静力学 static 分析力学 analyse mechanics 拉伸 pulling 压缩 hitting 剪切 shear 扭转 twist 弯曲应力 bending stress 强度 intensity 三相交流电 three-phase AC 磁路 magnetic circles 变压器 transformer 异步电动机 asynchronous motor 液压驱动泵 fluid clutch 液压泵 hydraulic pump 阀门 valve 失效 invalidation 强度 intensity 载荷 load 应力 stress 安全系数 safty factor 可靠性 reliability 螺纹 thread 螺旋 helix 键 spline 销 pin 滚动轴承 rolling bearing 滑动轴承 sliding bearing requirements 刚度 rigidity 内力 internal force 位移 displacement 截面 section 疲劳极限 fatigue limit 断裂 fracture 塑性变形 plastic distortion 脆性材料 brittleness material 刚度准则 rigidity criterion 垫圈 washer 垫片 spacer 直齿圆柱齿轮

机械工程专业英语参考译文

机械工程专业英语》参考译文 高等学校机械设计制造及其自动化专业新编系列教材(供教师及学生使用) 黄运尧黄威 司徒忠李翠琼 武汉理工大学出版社 目录编译者的话……………………………… 第1章材料和热加工………………… 第1课机械学的基本概念………… 第2课塑性理论的基本假设……… 第3课有限元优化的应用………… 第4课金属………………………… 第5课金属和非金属材料………… 第6课塑料和其他材料…………… 第7课模具的寿命和失效………… 第8踩冷加工和热加工…………… 第9踩铸造………………………… 第10课制造中的金属成形工艺… 第11课缎选……………………… 第12课锻造的优点和工作原理… 第13课焊接……………………… 第14课热处理…………………… 第二章机构和机器原理……………。 第15课机构介绍…………………。 第16课运动分析…………………. 第l7课运动的综合………………— 第18课凸轮和齿轮………………— 第19课螺纹件,紧固件和联接件— 第20课减(耐)摩擦轴承…………*第2l课斜齿轮、蜗杆蜗轮和锥齿轮 第22课轴、离合器和制动器……— 第三章机床……… 第23课机床基础 第24课车床…… 第25课牛头刨、钻床和铣床…………第36课磨床和特种金属加工工艺……第四章切削技术和液压“………………第27课加工基础………………………第28课基本的机械加工参数…………第29课切削参数的改变对温度的影响第30课刀具的磨损………… 第31课表面稍整加工机理… 第32课极限和公差…………“

第33课尺寸控制和表面桔整” 第34课自动央具设计………“ 第36课变速液压装置……………—…………— 策37课电液伺服系统…………。……………。 第五章机械电子技术……………………………… 第38课专家系统……。………………………… 第3D课建筑机器人……………………………… 第40课微机为基础的机器人模拟……………… 第41课机器人学的定义和机器入系统………… 第42课微型计算机基础(1)…………………… 第43课微型计算机基础(x)…………………… 第44课可编程控制器…………………………… 第45课CAD/CAM计算机辅助设计与制造… 第46课计算机数控和直接数控,CNC和DNC 第47课加工过程的数控—……………………… 第48课柔性制造系统……………—…………… 第仍课交互式编程系统………………………… 第50课在振动分析方面的计算机技术………… 策51课压力传感器……………………………… 第52课反馈元件…………………—…………… 第53课现代按制理论概述……………………… 第54课管理上采取了新的措施—来自福持汽 第六章英文科技文献和专利文献的查阅………… 6.1 常见科技文献及其查阅……………………… 6.2 专利文献概述………………………………… 第七章英文科拉论文写作………………………… 7.1 标题与摘要写法……………………………… 7.2 正文(body)的组织与写法………………… 7.3 致谢、附录及参考文献………………—…… 参考文献……………………………………………… 第1章材料和热加工 机械学的基本概念 功是力乘以该力作用在物体上佼物体移动的距离。功用公斤·米来表示。l公斤‘米等于I 公斤力作用于物体上使物体移动1米的距离。例如,一项工作需要提升一台300公斤重的设备到两米半高的卡车上,那么就需要750公斤·米的功。由于没有一个人能直接举升别o 公斤重,因此必须使用一种装置去调节所需要的可以控制的作用力。常见的装置是一个斜面 一在这个例子中,一个倾斜在地面动卡车之勾的承载斜板.如果斜板有1G米长,摩擦力忽略,那么就需要75公斤的力将机器该上斜板。总功仍然是7jN?斤·米L用75公斤乘以10米),但作用力已经被改变,于是乎共所需的最大外力仅仅是75公斤。

机械英文翻译

机械英文翻译

英文翻译 机械设计 一台完整机器的设计是一个复杂的过程。机械设计是一项创造性的工作。设计工程师不仅在工作上要有创造性,还必须在机械制图、运动学、工程材料、材料力学和机械制造工艺学等方面具有深厚的基础知识。 Machine Design The complete design of a machine is a complex process. The machine design is a creative work. Project engineer not only must have the creativity in the work, but also must in aspect and so on mechanical drawing, kinematics, engineerig material, materials mechanics and machine manufacture technology has the deep elementary knowledge. 任何产品在设计时第一步就是选择产品每个部分的构成材料。许多的材料被今天的设计师所使用。对产品的功能,它的外观、材料的成本、制造的成本作出必要的选择是十分重要的。对材料的特性必须事先作出仔细的评估。 One of the first steps in the design of any product is to select the material from which each part is to be made. Numerous materials are available to today's designers. The function of the product, its appearance, the cost of the material, and the cost of fabrication are important in making a selection. A careful evaluation of the properties of a. material must be made prior to any calculations. 仔细精确的计算是必要的,以确保设计的有效性。在任何失败的情况下,最好知道在最初设计中有有缺陷的部件。计算(图纸尺寸)检查是非常重要的。一个小数点的位置放错,就可以导致一个本可以完成的项目失败。设计工作的各个方面都应该检查和复查。 Careful calculations are necessary to ensure the validity of a design. In case of any part failures, it is desirable to know what was done in originally designing the defective components. The checking of calculations (and drawing dimensions) is of utmost importance. The misplacement of one decimal point can ruin an otherwise acceptable project. All aspects of design work should be checked and rechecked. 计算机是一种工具,它能够帮助机械设计师减轻繁琐的计算,并对现有数据提供进一步的分析。互动系统基于计算机的能力,已经使计算机辅助设计(CAD)和计算机辅助制造(CAM)成为了可能。心理学家经常谈论如何使人们适应他们所操作的机器。设计人员的基本职责是努力使机器来适应人们。这并不是一项容易的工作,因为实际上并不存在着一个对所有人来说都是最优的操作范围和

相关主题