搜档网
当前位置:搜档网 › 大学考研数学分析笔记

大学考研数学分析笔记

大学考研数学分析笔记
大学考研数学分析笔记

大学考研数学分析笔记

|国家研究生入学考试专业课程高分数据

大学

“数学分析”

注释

备注:目标大学目标专业本科生备注或辅导班备注有意义:目标大学目标专业本科生教学课件期末试题:目标大学目标专业本科生期末试题2-3套模拟试题:目标大学目标专业研究生模拟试题2套复习题:目标大学目标专业研究生导师复习题真题:目标大学目标专业历年考试真题,此题为赠品,非

目录

第二模块备注................................................................................................................ .. (3)

第一部分实数集和函数....................................................................................................3第二部

分顺序限制................................................................................................................. 9第三部分功能限制........................................................................................................10第四部分功能连续性.............................................................................................16第五部分导数和微分.. (30)

第六部分微分中值定理及其应用..................................................................................36第八部分不定积分........................................................................................................51第九部分定积分................................................................................................55第十部分定积分的应用..........................................................................................61部分不当积分....................................................................................................69第十二部分数字术语系列.....................................................................................................73第十三部分功能术语系列..................................................................................91第十四部分电源系列..................................................................................................102第十五部分傅立叶级数....................................................................的限

制...........................117第十六部分多元函数与连续..................................................................................132第十七部分多元函数微分......................................................................................137第18部分隐函数定理及其应用.............................................................................149第19部分包括参数积分...........................................................................................153第20部分曲线积分....................................................................................................164第21部分二重积分。.................................................................................................167第22部分表面积分.. (176)

2 / 182“研究生入学考试专业课高分数教材”

第二模块注释

第一部分实数集和函数

1实数

数学分析的对象是定义在实数集上的函数。因此,我们将首先描述实数

1的概念。实数及其性质:

复习中学有理数和无理数的定义。

有理数:如果指定

,则有限小数可以表示为无限循环小数例如,被记录为

;0是

被记录为

实数大小的比较

定义1给定两个非负实数

,其中1)

2)如果存在非负整数,则在

(或

小于

)处,它被分别记录为

,如果根据定义1有

为非负整数,

如果

等于

,而

,则

表示指定任何非负实数大于任何负实数;对于负实数的有理数逼近,定义2将

设置为非负实数,将有理数

称为

位不足的实数逼近

,将有理数

称为

位过量逼近

为负实数

3/182 “考研专业课程高分数据”

下一位的近似值如下:例如,

位盈余近似值被指定为

,这被称为

剩余近似值如果

是两个实数,那么

实数的一些主要性质是1 4闭运算:2 3消歧(即有序性):3实数大小由传递性决定,即4 Achimedes性质:

5密度:有理数和无理数的密度。6实数集数轴的几何表示:

2。绝对值与不等式

的定义

绝对值:

从数轴看绝对值是到原点的距离:

绝对值的一些主要性质

4/ 182“研究生入学考试高分数据”性质4(三角不等式)的证明b作为一个整体x,也就是说,上述公式可以从性质3中理解:

3。几个重要的不等式:(1) (2)对于

记录

(算术平均)

(几何平均)

具有平均不等式:等号当且仅当

|在199,它被建立。

(调和平均)

(3)伯努利不等式:(由中学数学归纳法证明)由二项式公式5/ 182“考研高分资料”

2套公式右端

以上的任何一项。

两位数。确定性原则:区间和邻域:邻域

两个有界数集。明确原则:

1。有界数集:定义(上限、下限、有界)闭区间,

为有限数、邻域等。是有界数集。集合

无界数集:对于任何

,都有

也是一个无界数集。

,那么S被称为无界集

等。都是无界数集,

证明集是无界集。

证明:对于任何,有

由无界集合定义,e是无界集合定义域

首先给出了定义域的直观定义:如果数集S有一个上界,它显然有无穷多个上界,其中最小的上界称为数集S的上定义域;类似地,一组有下界的数的最大下界称为这组数的下界。

6/182“研究生入学考试高分数据”

精确定义

定义2设S为R中的一组数,如果数(1)的

全部为

,即

满足以下两个条件:它是数集S的上界;任何标称数

(2)的存在使得

(即S的最小上界)

成为集S的上界定义为

将S设置为R中的一组数字。如果数字(3)的

全部为

,即

满足以下两个条件:它是该组数字S的下界;

(4)对于任何名义数

3函数概念

的存在使得

(即S的最大下界)

成为集S的下界函数

是整个高等数学中最基本的研究对象。可以说,数学分析是对函数的研究。因此,我们应该对函数的概念和一些常见的函数有一个清晰的理解。

1的定义。功能的几种描述。

函数的两个元素:定义域和对应的规则

约定:定义域是独立变量可以用来使公式有意义的实用值。

函数表达式:分析法、列表法、图像法。

分段函数

狄利克雷函数

7/ 182 “考研专业课程高分数据”

黎曼函数

三个函数的四个运算(见u盘创建的新文件夹函数的四个运算)4。函数的组合:六个初等函数:基本初等函数:

1常数函数y=c(c为常数)2幂函数

3对数函数y = (a>0,a≠1,x>0,尤其是当α=e,y=ln x)

(a>0,A≠1)

4指数函数y =

5三角函数正弦函数y =sinx余弦函数y =cos x

正切函数y =tan x余切函数y =cot x

形式为f(x) =cotx=

割线函数y =sec x=1/cosθ余切函数y = cscx = 1/sin θ

割线函数y = sec x = 1/cosθ余切函数y = csc x = 1/sin θ 256 如果有界函数等价于,对于域中的所有

,如果在

上既有上界又有下界,那么

被称为在

上的有界函数这个定义是

。请用有界函数的定义来给出无界函数的定义示例

是一个无界函数

证明对于任何现有的、取数的,则

2。单调函数

8/ 182“研究生入学考试专业课高分教材”

奇数和偶数函数

(1)关于原点的域对称周期函数

1)一般来说,我们所说的周期总是指最小周期

2)有些周期函数不一定有最小周期,例如,常数它或)。对于

(或

的情况1被证明:如果

(证书)

定理2.5被证明如果,

9/182“研究生入学考试高分资料”

(注” = “;并注意求和的情况)。

推论如果到

4。定理(收敛)(证明)5。绝对收敛:

(注意相反的情况不成立)。(证明)

推理集序列{

}和{

}收敛,然后

6。四个操作属性:

7。子序列收敛:子序列概念。定理(序列收敛的充分必要条件){定理(序列收敛的充分必要条件){定理(序列收敛的充分必要条件){1。使用序列极限属性查找极限:

}收敛}收敛

{子列的任何子列{子列{

}收敛到相同的极限。

}和{

}收敛到相同的极限。}和{

收敛。(简单证明)

:

1有两个基本限制。利用四个运算的性质来求极限:

序列的单调增加是明显的,其有界性很容易用归纳法证明,如果的极限是

,那么就有,A=2

使用单调定义的

定理2.10级数{(或级数{

收敛,

收敛,

}

第三部分函数极限

1函数极限概念a

趋向

函数极限

10/ 182 “考研高分数据”表中定义了

函数。类似于数列的情况,我们研究当自变量趋向时,对应的函数的值是否可以无限接近某一固定数例如,对于函数

,从图中可以看出,当

无限增加时,函数值无限接近于0;

并且当

,函数值在趋于时无限接近我们一般称之为

,当

趋向于

时,函数极限的精确定义如下:

定义1将函数定义为一个固定的数如果任一给定项目的正数为

,那么当该函数倾向于被记录为或时,则该函数被称为

11/182“研究生入学考试专业高分数据”

限制

表明:(1)定义1中的正数类似于序列极限定义中的正数,表示一个充分程度;但是,

考虑所有大于

乘以

的实数,而不仅仅是

的正整数因此,在处理时,函数

是极限,这意味着某个邻域中的所有函数值必须包含在的任何小邻域中。

(2)和定义1的几何意义如下图所示。

对被给予

在坐标平面

上平行于

轴的两条直线

围成一个以直线

为中心线、宽度

为中心线的条形区域;“当时具有”的定义是指在直线的

的右侧,曲线都落在这个带区内。如果正数给出一个较小的点,即当条带区域较窄时,为

,则直线通常会向右移动;然而,无论带状区域有多窄,总是有一个正数,使得直线上的曲线

的右边部分都落在较窄的带状区域内。

定义1:定义1 ‘的否定语句将上定义的函数设置为固定数如果有???0,

趋向于

并且对于任何足够大的正数等于

(3)时,当前的

不是

M,总是有一个

x??m制造商:f(x0)?a。??,

调用函数

的极限。

是在或、当或上定义的函数,如果

函数值分别被分为

可以无限接近某个数字,如

:或

,那么

就是

的极限

12/182“研究生入学考试高分数据”中两个函数

的极限的精确定义与定义1相似。只需将定义1中的” “分别更改为“

q

“或” “。

问题

:

x???

limf(x)?a还是limf(x)?如何定义A的消极叙事?x??(4)显然,如果它是在函数上定义的,那么

(1)(返回)2趋向于限制

的设定值是否是在一个空心邻域函数中定义的现在我们将讨论相应的函数

在某个固定的数中,当它趋向于这类函数极限的精确定义如下:

定义)让

定义在

的空心邻域内,

是一个固定数

定义了2(如果给

的函数限制对在

处是

,则有一个正数

,因此在那个时候有,那么该函数被称为接近

限制,其被记录为

。下面,我们将举一个例子来说明如何应用

的值以及如何确定它

定义验证这种类型的功能极限在以下示例中,请特别注意中的

。通过上面的例子,读者可以认识到以下几点:定义中的,这取决于

,如果定义2中的正数

等于序列限制

中的较小者,则

变小例如,

不是唯一确定的,一般来说,在示例3中,

相应地更小,并且可以选择

等。

13/182《研究生入学考试高分数据》

2。定义只需要函数意义,

在某个空心邻域有定义,一般不考虑该点的函数值是否有或者取什么值这是因为我们对函数极限的研究是在将

定理3.9设置为

的任何递减序列

的极限的过程中函数值的变化趋势,

趋向于在点

的某个空心右邻域

中所定义的充要条件是:对于

的方法应适当修改。

定理的证明可以用定理3.8来模拟。然而,当充分性被反证法证明时,

被用来保证所发现的数字序列可以逐渐减少。证据的细节留给读者作为练习。

对应于序列极限的单调性,并且上述四种单边极限都有相应的定理。以这种类型为例,描述如下:

定理3.10可以设置为

是在

上定义的单调有界函数,那么右边界

递增因为

是以

为界的,所以

是根据确定性原则存在的

存在,

作为

发布。事实上,如果给定

的增量将影响所有

,根据确定性的定义,有

,使得

=,则有

;另一方面,有

来自

因此,

全部有

,这是被证明的。最后,我们描述并证明了关于函数极限的柯西准则定理3.11(柯西准则)假设有

,因此对于任何

,都有

内定义

北京大学数学分析考研试题及解答

判断无穷积分 1 sin sin( )x dx x +∞ ?的收敛性。 解 根据不等式31|sin |||,||62 u u u u π -≤≤, 得到 33 sin sin 1sin 11 |sin()|||66x x x x x x x -≤≤, [1,)x ∈+∞; 从而 1sin sin (sin())x x dx x x +∞-?绝对收敛,因而收敛, 再根据1sin x dx x +∞?是条件收敛的, 由sin sin sin sin sin()(sin())x x x x x x x x =-+ , 可知积分1sin sin()x dx x +∞?收敛,且易知是是条件收敛的。 例5.3.39 设2()1...2!! n n x x P x x n =++++,m x 是21()0m P x +=的实根, 求证:0m x <,且lim m m x →+∞ =-∞。 证明 (1)任意* m N ∈,当0x ≥时,有21()0m P x +>; , 当0x <且x 充分大时,有21()0m P x +<,所以21()0m P x +=的根m x 存在, 又212()()0m m P x P x +'=>,21()m P x +严格递增,所以根唯一,0m x <。 (2) 任意(,0)x ∈-∞,lim ()0x n n P x e →+∞ =>,所以21()m P x +的根m x →-∞,(m →∞)。 因为若m →∞时,21()0m P x +=的根,m x 不趋向于-∞。 则存在0M >,使得(,0)M -中含有{}m x 的一个无穷子列,从而存在收敛子列0k m x x →,(0x 为某有限数0x M ≥-); 21210lim ()lim ()0k k k M m m m k k e P M P x -++→+∞ →+∞ <=-≤=,矛盾。 例、 设(1)ln(1)n n p a n -=+,讨论级数2 n n a ∞ =∑的收敛性。 解 显然当0p ≤时,级数 2 n n a ∞ =∑发散; 由 20 01 1ln(1) 1lim lim 2x x x x x x x →→- -++=011lim 21x x →=+ 12=,

【参考借鉴】南京大学数学分析考研试题及解答.doc

南京大学20KK 年数学分析考研试题 一设()f x 为1R 上的周期函数,且lim ()0x f x →+∞ =,证明f 恒为0。 二设定义在2R 上的二元函数(,)f x y 关于x ,y 的偏导数均恒为零,证明f 为常值函数。 三设()n f x (1,2,...)n =为n R 上的一致连续函数,且lim ()()n n f x f x →∞ =,1x R ?∈, 问:()f x 是否为连续函数?若答案为“是”,请给出证明;若答案为“否”,请给出反例。 四是否存在[0,1]区间上的数列{}n x ,使得该数列的极限点(即聚点)集为[0,1],把极限点集换成(0,1),结论如何?请证明你的所有结论。 五设()f x 为[0,)+∞上的非负连续函数,且0()f x dx +∞ <+∞?,问()f x 是否在[0,)+∞上有 界?若答案为“是”,请给出证明;若答案为“否”,请给出反例。 六计算由函数211()2f x x = 和22()1f x x =-+的图像在平面2R 上所围成区域的面积。 七计算积分 222(22)x xy y R e dxdy -++??。 八计算积分xyzdxdydz Ω ???,其中Ω为如下区域: 3{(,,):0,0,0,}x y z R x y z x y z a Ω=∈≥≥≥++≤, a 为正常数。 九设0n a >(1,2,...)n =,1n n k k S a == ∑,证明:级数21n n n a S ∞=∑是收敛的。 十方程2232327x y z x y z +++-=在(1,2,1)-附近决定了隐函数(,)z z x y =,求2(1,2)z x y ?-??的值。 十一求函数333(,,)f x y z x y z =++在约束条件2x y z ++=,22212x y z ++=下的极值, 并判断极值的类型。 十二设1[0,1]f C ∈,且(0)(1)0f f ==,证明:112 200 1[()][()]4f x dx f x dx '≤??。 十三设()f x 为[0,]π上的连续函数,且对任意正整数1n ≥,均有 0()cos 0f x nxdx π =?,证明:f 为常值函数。 南京大学20KK 年数学分析考研试题解答 一证明设()f x 的周期为T ,0T >,则有()()f x nT f x +=,由条件知, ()lim ()0n f x f x nT →∞ =+=, 结论得证。 二证明因为0f x ?=?,0f y ?=?, f x ??,f y ??在2R 上连续,对任意2(,)x y R ∈,有 (,)(0,0)f x y f -(,)(,)f f x y x x y y x y θθθθ??=?+???0=, 所以(,)(0,0)f x y f =,即(,)f x y 为常值函数。 三解()f x 未必为连续函数。

广州大学数学分析第二学期试卷(A)

广州大学2005-2006 学年第二学期试卷 课程 数学分析 考试形式(闭卷,考试) 数学与信息科学学院 05级1~7班 学号 姓名 一、填 空 题 (每小题3分 , 共15分) 1. ()F x = dt e x t ? 2 的凸性区间为______________________ 。 2. 函数 12322 3 +-=x x y 的极大值点=0x _______________ 。 3. =-?2 )1sgn(dx x __________________________。 4. 计算无穷积分: =?+∞ dx x x 1 sin 12 2 π ___________________ 。 5、求级数的和:=+∑ ∞ =1 ) 1(1 n n n _________________ 。 二、单项选择题 (每小题3分 ,共15分) 1、若)(x f 为恒正连续函数,则___________ ≡ 0 。 A 、 ?dx x f dx d )( ; B 、 ?)(x df ;

C 、 ? 1 )(dt t f dx d ; D 、 ? x dt t f dx d 0 )(; 2、若)(x f 的一个原函数为)(x F ,则)12(+x f 的一个原函数为________ 。 A 、)12(+x F ; B 、 2 1 )12(+x F ; C 、2)12(+x F ; D 、不存在。 3. 在区间[ - 1 , 1 ] 上不可积的函数为 ________。 A 、狄利克雷函数 D(x); B 、取整函数 [x]; C 、符号函数 sgn x ; D 、绝对值函数 x 。 4、若n a 满足 时,级数∑∞ =1n n a 收敛。 A 、0lim =∞ →n n a ; B 、n a 2 1 n ≤ (n=1,2,…); C 、=∞ →n n n a lim λ< 1 ; D 、λ=+∞→n n n a a 1 lim < 1 。 5、利用M 判别法证明函数项级数∑∞ =1 2 cos n n nx 在),(+∞-∞上一致收敛时可作优级数的为 。 A 、∑∞ =11n n ; B 、∑∞ =121 n n ; C ∑∞ =1 cos n nx ; D 、∑ ∞ =1 cos n n nx 。

北京科技大学考研数学分析(2003-2014)

北 京 科 技 大 学 2014年硕士学位研究生入学考试试题 ============================================================================================================= 试题编号: 613 试题名称: 数学分析 (共 2 页) 适用专业: 数学, 统计学 说明: 所有答案必须写在答题纸上,做在试题或草稿纸上无效。 ============================================================================================================= 1.(15分)(1)计算极限2020cos lim ln(1)x x xdx x →+?; (2)设112(1)0,,(1,2,3,),2n n n a a a n a ++>==+ 证明: lim n n a →∞存在,并求该极限. 2.(15分) (1)设222z y x u ++=,其中),(y x f z =是由方程xyz z y x 3333=++所确定的隐函数, 求x u . (2) 设2233x u v y u v z u v ?=+?=+??=+?,求z x ??. 3. (15分)设)(x f 在[]0,2上连续,且)0(f =(2)f ,证明?0x ∈[]0,1,使 )(0x f =0(1).f x + 4.(15分)设f (x )为偶函数, 试证明: 20()d d 2(2)()d ,a D f x y x y a u f u u -=-??? 其中:||,|| (0).D x a y a a ≤≤> 5. (15分)设)(x f 在区间[0,1]上具有二阶连续导数,且对一切[0,1]x ∈,均有(),''()f x M f x M <<. 证明: 对一切[0,1]x ∈,成立 '()3f x M <.

欧阳光中《数学分析》笔记和考研真题详解(重积分)【圣才出品】

欧阳光中《数学分析》笔记和考研真题详解 第21章重积分 21.1复习笔记 一、矩形上的二重积分 1.矩形的分划P (1)矩形的分划P的定义 设是内的一个闭矩形,即 用平行于轴和平行于轴的两组直线 将矩形A分划为个子矩形,记 称P为矩形A的一个分划. (2)分划P的长度的定义 矩形A分划为个子矩形后, 记称为分划P的长度.直线及称为分线. 2.矩形A上的积分定义 (1)矩形A上的和 设定义于矩形A.在每个子矩形内任取一点作和

式中是子矩形的面积. (2)可积 ①可积定义 对于矩形A上的和,若满足当如果极限存在,并且此极限与A的分 划无关,又与点在内的选取无关,则称二元函数在闭矩形A上可积(简称(R)可积或可积).记为 或者简单记为称它是函数在A上的二重积分,即 其中是被积函数,A是积分区域. ②语言定义 若存在一个数对对一切分划P,只要不等式 对一切都成立,则称为在A上的二重积分,并记 注意:当在A上可积时,在A上必有界. (3)大(小)和 记 作下列和式,它们显然与分划P有关:

分别称和是函数在A上相应于分划P的大和与小和. (4)大(小)和的相关性质 ①加入新分线后,大和不增,小和不减; ②每增加一分线,大和与小和的变动值不大于这里 ③任何一个大和不小于任一个小和,即对任两个分划,必成立 3.二重积分的几何意义 设是定义在闭矩形A上的一个非负连续函数,那么二重积分 表示以曲面为顶、以矩形A为底面的柱体(即曲顶柱体)的体积.如图21-1. 图21-1 4.可积充要条件 (1)定理 设定义于矩形则于A上可积,等价于当分划 时,振幅体积 也等价于一个振幅体积 这里是在子矩形上的振幅.

南开大学数学分析考研试卷答案

南开大学年数学分析考研试卷答案 一、 设),,(x y x y x f w -+= 其中),,(z y x f 有二阶连续偏导数,求xy w . 解:令u =x +y ,v =x -y ,z =x ,则z v u x f f f w ++=; )1()1()1(-++-++-+=zv zu vv vu uv uu xy f f f f f f w 二、 设数列}{n a 非负单增且a a n n =∞ →lim ,证明 a a a a n n n n n n =+++∞ →1 21][lim . 解:因为a n 非负单增,故有n n n n n n n n n na a a a a 11 21)(][≤+++≤ . 由a a n n =∞ →lim ;据两边夹定理有极限成立。 三、 设? ??≤>+=0 ,00),1ln()(2 x x x x x f α,试确定α的取值范围,使f (x )分别满足: (1) 极限)(lim 0x f x + →存在 (2) f (x )在x=0连续 (3) f (x )在x=0可导 解:(1)因为 )(lim 0x f x + →=)1ln(lim 2 0x x x ++ →α=)]()1(2[lim 221420n n n x x o n x x x x +-++- -→+ α极限存在,则 2+α0≥知α2-≥. (2)因为)(lim 0 x f x - →=0=f(0)所以要使f(x)在0连续则2->α . (3)0)0(='- f 所以要使f(x)在0可导则1->α. 四、设f (x )在R 连续,证明积分ydy xdx y x f l ++?)(22与积分路径无关. 解;令U =22 y x +,则ydy xdx y x f l ++?)(22=2 1du u f l )(?又f (x )在R 上连续,故存 在F (u )使d F (u )=f (u )du=ydy xdx y x f ++)(22. 所以积分与路径无关。

2015年数学考研数学分析各名校考研真题及答案

2015年考研数学分析真题集 目录 南开大学 北京大学 清华大学 浙江大学 华中科技大学

2014年浙江大学数学分析试题答案 一、,,0N ?>?ε当N n >时,ε<->>?m n a a N n N m ,, 证明:该数列一定是有界数列,有界数列必有收敛子列 }{k n a ,a a k n k =∞ →lim , 所以, ε2<-+-≤-a a a a a a k k n n n n 二 、,,0N ?>?ε当N x >时,ε<-)()(x g x f ,,0,01>?>?δε当1'''δ<-x x 时, ε<-)''()'(x f x f 对上述,0>ε当N x x >'','时,且1'''δ<-x x ε3)''()'()''()''()'()'()''()'(<-+-+-≤-x f x f x f x g x g x f x g x g 当N x x <'','时,由闭区间上的连续函数一定一致收敛,所以,0,02>?>?δε2'''δ<-x x 时 ε<-)''()'(x g x g ,当'''x N x <<时,由闭区间上的连续函数一定一致收敛,在 ],['','22δδ+-∈N N x x 时,ε<-)''()'(x g x g ,取},min{21δδδ=即可。 三、由,0)('',0)('<>x f a f 得,0)('a f ,所以 )(x f 必有零点,又)(x f 递减,所以有且仅有一个零点。 四、? ?==1 0,)(1)()(x dt t f x dt xt f x ?2 )()()('x dt t f x x f x x ? - =?, 2 2)(lim )(lim ) (lim )0('0 2 A x x f x dt t f x x x x x x ====→→→???, 2)(lim )(lim )() (lim )('lim 20 0020 00A x dt t f x x f x dt t f x x f x x x x x x x =-=-=?? →→→→?,)('x ?在0=x 连续。 五、当k m ≠时,不妨设k m <, ? ?--+--= 1 1 11 )(2)(2])1[(])1[(!!21 )()(dx x x k m dx x P x P k k m m k m k m = --? -dx x x k k m m 1 1 )(2)(2])1[(])1[(dx x x x x m m k k k k m m ?-+--------1 1 )1(2)1(211 ) 1(2 ) (2 ])1[(])1[(] )1[(])1[(=

2020广州大学学科数学考研经验分享

2020广州大学学科数学考研经验分享 2019届考研已经落下帷幕,20届考研复习的黄金时期也到来了,回想自己去年6月至9月这个时期的坚持学习,可以说打下了深厚的基础,后期的复习也更加有条不紊。趁着这个时间,我也赶紧写下我的备考经验,希望给你们一些启发。 英语二:前期先背单词,这是长期战,不要想着一次性把它们背完了就不管了,我们得每天都花时间去背去巩固复习,这样才能记得牢固深刻。然后阅读是重点,每天可以练习一篇真题上的阅读题,做完了可以仔细分析一下,全文都翻译下来,这虽然有点费时间,但是对后面英语各部分的答题都有帮助。作文的话,静下心来去背作文,把那20篇作文背下来,考场上花的时间不会很多。在学作文得同时要自己学会整理模板,也要背下来,会更适合自己。 政治:前期看视频学习知识,比较生动,后期9月份左右大题背肖4和肖8,所以政治前期重点放在选择题就好了,市面上的模拟题都买来做一做,很有帮助的。 333教育综合:我们今年考的333出了选择题,虽然很突然,但是我复习的时候用的是爱考宝典的学姐的笔记,几本参考书上的知识点都认真看了背了,不懂的地方爱考的学姐给我在线上课的时候也认真给我讲解了,所以没有什么大问题,考试的时候状态挺好的。333教育综合考的两本书,教育基础第二版,姚本先心理学,官网说赵国祥,但是学姐推荐我用姚本先的,大家可以安心用这本复习,挺不错的。 333建议还是过一遍书,做课后习题。然后把历年真题考过的真题背熟,把相关的知识点也找出来,然后整理并且背诵,背诵不建议死记硬背,应该在看书的时候把书上的的关键点梳理成一个大框架,然后再将详细的知识点补充进去,背的时候先背框架,然后根据框架一点一点的回忆细碎的知识点。这样大脑也会形成框架,到时候考试的时候就算记得不详细,前后联系一下也能比较轻松的回忆起来。 924:参考书目是华东师范的数学分析上下册,还有官网公布的线性代数。备考期间,重点是把书刷一两遍。时间充裕的师弟师妹们就多刷几遍。然后期间再配合一些视频和笔记,加上真题进行复习,当然不懂的地方我是可以直接问爱考宝典的学姐,大家有需要的可以自行联系,真的会省去不少时间,在线解答也会比较方便,这样自己心里也会踏实很多。如果数学没有一个可以帮你解疑惑的人,会学的有点困难,我也是因为有人教,有人帮,我才能有这么好的成绩。所以大家有不懂的不会的一定要及时找人帮忙,舍得开口,不然吃亏的还是你自己,考研在这一阶段是最最重要的事情了。 最后,大概分享的内容就这些,希望大家一切顺利,都能考上心仪的院校。

数学分析考研大纲

数学分析考研大纲 第一部分 集合与函数 1、集合 实数集、有理数与无理数的调密性,实数集的界与确界、确界存在性定理、闭区间套 定理、聚点定理、有限复盖定理。2上的距离、邻域、聚点、界点、边界、开集、闭集、有界(无界)集、2上的闭矩形套定理、聚点定理、有限复盖定理、基本点列,以及上述概念和定理在n 上的推广。 2、函数 函数、映射、变换概念及其几何意义,隐函数概念,反函数与逆变换,反函数存在性定 理。初等函数以及与之相关的性质。 第二部分 极限与连续 1、 数列极限 数列极限的N ε-定义,收敛数列的基本性质(极限唯一性、有界性、保号性、不等式 性质) 数列收敛的条件(Cauchy 准则、迫敛性、单调有界原理、数列收敛与其子列收敛的关 系),极限1lim(1)n n e n →∞+=及其应用。 2、 函数极限 各种类型的一元函数极限的定义(εδ-、M ε-语言 ),函数极限的基本性质(唯一 性、局部有界性、保号性、不等式性质、迫敛性),归结原则和Cauchy 收敛准则,两个重要极限:sin 10lim 1,lim(1)x x x x x x e →→∞=+=及其应用,计算一元函数极限的各种方法,无穷小量与无穷大量、阶的比较,记号о与O 的意义。多元函数重极限与累次极限概念、基本性质,二 元函数的二重极限与累次极限的关系。 3、 函数的连续性 函数连续与间断的概念,一致连续性概念。连续函数的局部性质(局部有界性、保号性), 有界闭集上连续函数的性质(有界性、最值可达性、介值性、一致连续性)。 第三部分 微分学 1、一元函数微分学 (i )导数与微分 导数概念及其几何意义,可导与连续的关系,导数的各种计算方法,微分及其几何意义、 可微与可导的关系、一阶微分形式不变性。 (ii )微分学基本定理及其应用 Feimat 定理,Rolle 定理,Lagrange 定理,Cauchy 定理, Taylor 公式(Peano 余项与 Lagrange 余项)及应用,函数单调性判别法,极值、最值、曲线凹凸性讨论。

2021南师大数学602数学分析考研复习笔记重难点真题答案

2021南师大数学602数学分析考研复习笔记重难点真题答案一、资料简介 本复习全析是分为四册,由仙林南师大考研网依托多年丰富的教学与辅导经验,组织仙林教学研发团队与南师大高分研究生共同整理编写而成。全书内容紧凑权威细致,编排结构科学合理,是参加南京师范大学考研的考生在初试复习的全程必备专业课资料。本资料内容包含了以下教材内容: 《数学分析(上册,华东师范大学数学系)》 《数学分析(下册,华东师范大学数学系)》 ----2020南师大官方考研参考书目---- 《数学分析》,华东师范大学,高等教育出版社 该书通过总结梳理教材各章节复习和考试的重难点,浓缩精华内容,并对各章节的课后习题进行解答且配备相关的名校真题,再提供南师大数学分析历年真题,使复习更有针对性,从而提高复习效率。 为保障购书考生利益,本书仅对外出售80册。因考研辅导资料的资源稀缺性,本书一旦出售,谢绝退货。 二、适用范围 适用院系: 数学科学学院:【数学、统计学】 适用科目: 602数学分析 三、内容详情 1、考试重难点(复习笔记):

通过总结和梳理《数学分析(上册,华东师范大学数学系)》、《数学分析(下册,华东师范大学数学系)》两本教材各章节复习和考试的重难点,浓缩精华内容,令考生对各章节内容考察情况一目了然,从而明确复习方向,提高复习效率。了解更多初复试经验、初试指导、等可移步仙林南师大考研网查看。 2、课后习题详解: 对《数学分析(上册,华东师范大学数学系)》、《数学分析(下册,华东师范大学数学系)》两本教材各章节的课后习题进行了解答。通过做每一章节配套的课后习题,可以巩固各章节考察的知识点,加强理解与记忆。 3、名校考研真题与典型题详解: 根据《数学分析(上册,华东师范大学数学系)》、《数学分析(下册,华东师范大学数学系)》两本教材各章节复习和考试的重难点,精选相关的名校考研真题和典型题并进行解析。以便加强对知识点的理解,并更好地掌握考试基本规律,全面了解考试题型及难度。 4、南师大历年考研真题与答案详解: 整理南师大该科目的2000-2019年考研真题,并配有2000-2017年答案详解,本部分包括了(解题思路、答案详解)两方面内容。首先对每一道真题的解答思路进行引导,分析真题的结构、考察方向、考察目的,向考生传授解答过程中宏观的思维方式;其次对真题的答案进行详细解答,方便考生检查自身的掌握情况及不足之处,并借此巩固记忆加深理解,培养应试技巧与解题能力。学姐学长一对一辅导详情 2000年南京师范大学数学分析考研真题试卷 2001年南京师范大学数学分析考研真题试卷 2002年南京师范大学359数学分析考研真题试卷

数学分析报告考研试题

高数考研试题2 一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上) (1)设,0,0,0,1cos )(=≠?????=x x x x x f 若若λ 其导函数在x=0处连续,则λ的取值围是2>λ. 【分析】 当≠x 0可直接按公式求导,当x=0时要求用定义求导. 【详解】 当1>λ时,有 ,0, 0,0,1sin 1cos )(21 =≠?????+='--x x x x x x x f 若若λλλ 显然当2>λ时,有) 0(0)(lim 0f x f x '=='→,即其导函数在x=0处连续. 【评注】 原题见《考研数学大串讲》P.21【例5】(此考题是例5的特殊情形). (2)已知曲线b x a x y +-=2 33与x 轴相切,则2b 可以通过a 表示为=2b 6 4a . 【分析】 曲线在切点的斜率为0,即0='y ,由此可确定切点的坐标应满足的条件,再根据在切点处纵坐标为零,即可找到2 b 与a 的关系. 【详解】 由题设,在切点处有 0332 2=-='a x y ,有 .220a x = 又在此点y 坐标为0,于是有 030023 0=+-=b x a x , 故 .44)3(6 422202202a a a x a x b =?=-= 【评注】 有关切线问题应注意斜率所满足的条件,同时切点还应满足曲线方程. 完全类似例题见《文登数学全真模拟试卷》数学四P.36第一大题第(3)小题. (3)设a>0, ,x a x g x f 其他若, 10,0,)()(≤≤?? ?==而D 表示全平面,则??-=D dxdy x y g x f I )()(= 2 a . 【分析】 本题积分区域为全平面,但只有当10,10≤-≤≤≤x y x 时,被积函数才不为零,因此实际上只需在满足此不等式的区域积分即可. 【详解】 ??-=D dxdy x y g x f I )()(=dxdy a x y x ??≤-≤≤≤1 0,102 =. ])1[(21 02101 2a dx x x a dy dx a x x =-+=??? + 【评注】 若被积函数只在某区域不为零,则二重积分的计算只需在积分区域与被积函数不为零的区域的公共部分上积分即可. 完全类似例题见《数学复习指南》P.191【例8.16-17】 . (4)设n 维向量0,),0,,0,(<=a a a T Λα;E 为n 阶单位矩阵,矩阵 T E A αα-=, T a E B αα1+=,

数学分析各校考研试题与答案

2003南开大学年数学分析 一、设),,(x y x y x f w -+=其中),,(z y x f 有二阶连续偏导数,求xy w 解:令u=x+y,v=x-y,z=x 则z v u x f f f w ++=; )1()1()1(-++-++-+=zv zu vv vu uv uu xy f f f f f f w 二、设数列}{n a 非负单增且a a n n =∞ →lim ,证明a a a a n n n n n n =+++∞ →1 21 ] [lim 解:因为an 非负单增,故有n n n n n n n n n na a a a a 1 1 21)(][≤ +++≤ 由 a a n n =∞ →lim ;据两边夹定理有极限成立。 三、设? ? ?≤>+=0 ,00),1ln()(2 x x x x x f α试确定α的取值围,使f(x)分别满足: (1) 极限)(lim 0x f x + →存在 (2) f(x)在x=0连续 (3) f(x)在x=0可导 解:(1)因为 )(lim 0x f x + →=)1ln(lim 20x x x ++ →α=)]()1(2[lim 221420n n n x x o n x x x x +-++--→+ α极限存在则2+α0≥知α2-≥ (2)因为)(lim 0 x f x - →=0=f(0)所以要使f(x)在0连续则2->α (3)0)0(='- f 所以要使f(x)在0可导则1->α 四、设f(x)在R 连续,证明积分ydy xdx y x f l ++?)(22与积分路径无关 解;令U=22 y x +则ydy xdx y x f l ++?)(22=2 1du u f l )(?又f(x)在R 上连续故存在F (u ) 使dF(u)=f(u)du=ydy xdx y x f ++)(22 所以积分与路径无关。 (此题应感小毒物提供思路) 五、 设 f(x)在[a,b]上可导, 0)2 (=+b a f 且 M x f ≤')(,证明 2) (4)(a b M dx x f b a -≤?

北京大学数学分析考研试题及解答复习进程

北京大学数学分析考研试题及解答

判断无穷积分1sin sin( )x dx x +∞ ?的收敛性。 解 根据不等式31|sin |||,||62 u u u u π -≤≤, 得到 33 sin sin 1sin 11 |sin()|||66x x x x x x x -≤≤, [1,)x ∈+∞; 从而 1sin sin (sin())x x dx x x +∞-?绝对收敛,因而收敛, 再根据1sin x dx x +∞?是条件收敛的, 由sin sin sin sin sin()(sin())x x x x x x x x =-+ , 可知积分1sin sin()x dx x +∞?收敛,且易知是是条件收敛的。 例5.3.39 设2()1...2!! n n x x P x x n =++++,m x 是21()0m P x +=的实根, 求证:0m x <,且lim m m x →+∞ =-∞。 证明 (1)任意*m N ∈,当0x ≥时,有21()0m P x +>; 当0x <且x 充分大时,有21()0m P x +<,所以21()0m P x +=的根m x 存在, 又212()()0m m P x P x +'=>,21()m P x +严格递增,所以根唯一,0m x <。 (2) 任意(,0)x ∈-∞,lim ()0x n n P x e →+∞ =>,所以21()m P x +的根m x →-∞, (m →∞)。 因为若m →∞时,21()0m P x +=的根,m x 不趋向于-∞。 则存在0M >,使得(,0)M -中含有{}m x 的一个无穷子列,从而存在收敛子列 0k m x x →,(0x 为某有限数0x M ≥-); 21210lim ()lim ()0k k k M m m m k k e P M P x -++→+∞ →+∞ <=-≤=,矛盾。 例、 设(1)ln(1)n n p a n -=+,讨论级数2 n n a ∞ =∑的收敛性。 解 显然当0p ≤时,级数2 n n a ∞ =∑发散; 由 20 01 1ln(1) 1lim lim 2x x x x x x x →→- -++=011lim 21x x →=+ 12=,

1992-2016年南京大学627数学分析考研真题及答案解析 汇编

2017版南京大学《627数学分析》全套考研资料 我们是布丁考研网南大考研团队,是在读学长。我们亲身经历过南大考研,录取后把自己当年考研时用过的资料重新整理,从本校的研招办拿到了最新的真题,同时新添加很多高参考价值的内部复习资料,保证资料的真实性,希望能帮助大家成功考入南大。此外,我们还提供学长一对一个性化辅导服务,适合二战、在职、基础或本科不好的同学,可在短时间内快速把握重点和考点。有任何考南大相关的疑问,也可以咨询我们,学长会提供免费的解答。更多信息,请关注布丁考研网。 以下为本科目的资料清单(有实物图及预览,货真价实): 南京大学《数学分析》全套考研资料 一、南京大学《数学分析》历年考研真题及答案解析 2016年南京大学《数学分析》考研真题(含答案解析) 2015年南京大学《数学分析》考研真题(含答案解析) 2014年南京大学《数学分析》考研真题(含答案解析) 2013年南京大学《数学分析》考研真题(含答案解析) 2012年南京大学《数学分析》考研真题(含答案解析) 2011年南京大学《数学分析》考研真题(含答案解析) 2010年南京大学《数学分析》考研真题(含答案解析) 2009年南京大学《数学分析》考研真题(含答案解析) 2008年南京大学《数学分析》考研真题(含答案解析) 2007年南京大学《数学分析》考研真题(含答案解析) 2006年南京大学《数学分析》考研真题(含答案解析) 2005年南京大学《数学分析》考研真题(含答案解析) 2004年南京大学《数学分析》考研真题(含答案解析) 2003年南京大学《数学分析》考研真题(含答案解析) 2002年南京大学《数学分析》考研真题(含答案解析) 2001年南京大学《数学分析》考研真题(含答案解析) 2000年南京大学《数学分析》考研真题(含答案解析) 1999年南京大学《数学分析》考研真题(含答案解析) 1998年南京大学《数学分析》考研真题(含答案解析) 1997年南京大学《数学分析》考研真题(含答案解析) 1996年南京大学《数学分析》考研真题(含答案解析) 1992年南京大学《数学分析》考研真题(含答案解析) 本试题均配有详细的答案解析过程,并且均为WORD打印版。考研必备! 二、南京大学《数学分析》考研复习笔记 本笔记由学长提供,字迹清晰,知识点总结梳理到位,是一份非常好的辅助复习参考资料,学长推荐! 三、南京大学《数学分析》赠送资料(电子档,邮箱发送) 1、南京大学梅加强《数学分析》经典复习讲义 2、南京大学《数学分析》本科生期中期末试卷 3、南京大学《数学分析》本科生每周作业题汇总

南开大学数学分析考研试题

南开大学2008年数学分析考研试题 一.计算题 1.求极限2 1lim[ln(1)]x x x x →∞ -+ 。 2.求和()() ∑∞ =-+-1121n n n n 。 3.已知()()() 1f x x f x ''-=-,求()x f ? 4 .设 2ln 2 6 x π = ? ,则x =? 5.设区域()[][]{} 1,1,2,0,-∈∈=y x y x D ,求D 。 二.设61-≥x 61+= +n n x x ,(1,2,)n =,证明数列{}n x 收敛,并求其极限。 三.设()[]b a C x f ,∈,并且[]b a x ,∈?,[]b a y ,∈?,使()()x f y f 2 1 ≤, 证明[]b a ,∈?ξ,使得()0=ξf . 四.设()x f 在[)+∞,a 一致连续,且广义积分 ()a f x dx +∞ ? 收敛,求证()0lim =+∞ →x f x 。 五.设()x f 在(,)-∞+∞上可微,对任意(,)x ∈-∞+∞,()0f x >, ()()f x mf x '≤, 其中10<

伍胜健《数学分析》笔记和考研真题详解(广义积分)【圣才出品】

伍胜健《数学分析》笔记和考研真题详解 第8章广义积分 8.1复习笔记 一、无穷积分的基本概念与性质1.无穷积分的概念 (1)设函数上有定义,并且对于上可积.①如果极限 存在,则称无穷积分收敛,此时称函数f(x)在上可积,并记 ②如果极限 不存在,则称无穷积分 发散. (2)设函数f (x)在上有定义,并且对于在区间[X,b]上可积.①如果极限 存在,则称无穷积分收敛,此时称函数f(x)在上可积,并记

②如果极限 不存在,则称无穷积分发散. (3)设函数上有定义,且在任何的闭区间[a,b]上可积.任取 ①若无穷积分与都收敛,则称无穷积分收敛,并 记 ②若无穷积分中至少有一个发散,则称无穷积分 发散. 2.无穷积分的基本性质 (1)若函数f(x)在[a,+∞)上有原函数F(x),并形式地记 则有 (2)若f(x)在(-∞,b]上有原函数G(x),记,则 (3)若上有原函数H(x),则

(4)无穷积分换元公式设函数上有定义,且对于在区间 上可积,再设函数 在区间上连续可微,严格单调上升,并且满足 则有以下的换元公式: (5)无穷积分分部积分公式设函数上连续可微,且极限 存在,则有以下分部积分公式 二、无穷积分敛散性的判别法 1.柯西准则 设函数上有定义,对于在区间上可积,则无穷积分 收敛的充分必要条件是:对于时,有 2.绝对收敛的无穷积分 (1)定义 设函数上有定义,对(x) f在区间[a,X]上可积. ①若无穷积分收敛,则称无穷积分绝对收敛;

②若无穷积分收敛,但无穷积分发散,则称无穷积分 条件收敛. (2)定理 设函数f(x)在上有定义,对于在区间[a,X]上可积.若无穷积分 绝对收敛,则无穷积分必收敛. 3.非负函数的无穷积分的敛散性问题 (1)定理 设非负函数f(x)在[a,+∞)上有定义,对于在[a,X]上可积,则无穷积分 收敛的充分必要条件是:存在0 A ,使得对一切X≥a,有 (2)比较定理 设非负函数上有定义,且对于在[a,X]上可积.若存在常数 使得当时,成立不等式 则可得出下述结论: ①若收敛,则也收敛; ②若发散,则也发散. (3)推论 设非负函数上有定义,且对于在区间[a,X]上可

2020年数学分析高等代数考研试题参考解答

安徽大学2008年高等代数考研试题参考解答 北京大学1996年数学分析考研试题参考解答 北京大学1997年数学分析考研试题参考解答 北京大学1998年数学分析考研试题参考解答 北京大学2015年数学分析考研试题参考解答 北京大学2016年高等代数与解析几何考研试题参考解答 北京大学2016年数学分析考研试题参考解答 北京大学2020年高等代数考研试题参考解答 北京大学2020年数学分析考研试题参考解答 北京师范大学2006年数学分析与高等代数考研试题参考解答北京师范大学2020年数学分析考研试题参考解答 大连理工大学2020年数学分析考研试题参考解答 赣南师范学院2012年数学分析考研试题参考解答 各大高校考研试题参考解答目录2020/04/29版 各大高校考研试题参考解答目录2020/06/21版 各大高校数学分析高等代数考研试题参考解答目录2020/06/04广州大学2013年高等代数考研试题参考解答 广州大学2013年数学分析考研试题参考解答 国防科技大学2003年实变函数考研试题参考解答 国防科技大学2004年实变函数考研试题参考解答 国防科技大学2005年实变函数考研试题参考解答 国防科技大学2006年实变函数考研试题参考解答 国防科技大学2007年实变函数考研试题参考解答 国防科技大学2008年实变函数考研试题参考解答 国防科技大学2009年实变函数考研试题参考解答 国防科技大学2010年实变函数考研试题参考解答 国防科技大学2011年实变函数考研试题参考解答 国防科技大学2012年实变函数考研试题参考解答 国防科技大学2013年实变函数考研试题参考解答 国防科技大学2014年实变函数考研试题参考解答 国防科技大学2015年实变函数考研试题参考解答 国防科技大学2016年实变函数考研试题参考解答 国防科技大学2017年实变函数考研试题参考解答 国防科技大学2018年实变函数考研试题参考解答 哈尔滨工程大学2011年数学分析考研试题参考解答

2019年数学考研数学分析各名校考研真题及答案

考研数学分析真题集 目录 南开大学 北京大学 清华大学 浙江大学 华中科技大学 一、,,0N ?>?ε当N n >时,ε<>?m a N m , 证明:该数列一定是有界数列,有界数列必有收敛子列 }{k n a ,a a k n k =∞ →lim , 所以, ε 2<-+-≤-a a a a a a k k n n n n 二 、,,0N ?>?ε当N x >时,ε<-)()(x g x f ,,0,01>?>?δε当1'''δ<-x x 时, ε<-)''()'(x f x f 对上述,0>ε当N x x >'','时,且1'''δ<-x x ε3)''()'()''()''()'()'()''()'(<-+-+-≤-x f x f x f x g x g x f x g x g 当N x x <'','时,由闭区间上的连续函数一定一致收敛,所以,0,02>?>?δε2'''δ<-x x 时 ε<-)''()'(x g x g ,当'''x N x <<时,由闭区间上的连续函数一定一致收敛,在 ],['','22δδ+-∈N N x x 时,ε<-)''()'(x g x g ,取},m in{21δδδ=即可。 三、由,0)('',0)('<>x f a f 得,0)('

又2))((''2 1 ))((')()(a x f a x a f a f x f -+ -+=ξ,所以-∞=+∞→)(lim x f x ,且0)(>a f ,所以 )(x f 必有零点,又)(x f 递减,所以有且仅有一个零点。 四、? ?==1 ,)(1)()(x dt t f x dt xt f x ?2 )()()('x dt t f x x f x x ? -=?, 2 2)(lim )(lim ) (lim )0('0 2 A x x f x dt t f x x x x x x ====→→→???, 2 )(lim ) (lim )() (lim )('lim 2 002 00A x dt t f x x f x dt t f x x f x x x x x x x = -=-=? ? →→→→?,)('x ?在0=x 连续。 五、当k m ≠时,不妨设k m <, ??--+--=1 111) (2)(2])1[(])1[(!!21)()(dx x x k m dx x P x P k k m m k m k m = --? -dx x x k k m m 1 1 )(2)(2])1[(])1[(dx x x x x m m k k k k m m ?-+--------1 1 )1(2)1(211 ) 1(2)(2])1[(])1[(])1[(])1[(= 0])1][()1[()1(])1[(])1[(11 )(221 1 )1(2)1(2=---==---??-+-+-dx x x dx x x k m m k k m m k k Λ 当k m =时, ?? ----= 1 11 1 )(2)(22 2])1[(])1[(!21)()(dx x x m dx x P x P m m m m m k m ?? -+---------=--1 1 )1(21211 1 221 1 )(2)(2])1[(])1[(])1[(])1[(])1[(])1[(dx x x x x dx x x m m m m m m m m m m m m =?-+----1 1)1(212])1[(])1[(dx x x m m m m =?----=1 1 )2(22])1][()1[()1(dx x x m m m m Λ= ? ---1 1 2])1[()!2()1(dx x m m m =?--1 2])1[()!2()1(2dx x m m m 六、J 是实数,,0,0>?>?δε当δs 时,该积分收敛。 七、∑=-n k k 1 )1(有界,2 1 x n +在),(+∞-∞上单调一致趋于零,由狄利克雷判别法知,∑∞ =+-12)1(n n x n 在),(+∞-∞上一致收敛,∑∞ =+12 1n x n 与∑∞ =11 n n 同敛散,所以发散; 当0=x 时,∑∞ =+122)1(n n x x 绝对收敛,当0≠x 时,∑∞ =+122 ) 1(n n x x 绝对收敛;

相关主题