搜档网
当前位置:搜档网 › 不等式性质及证明

不等式性质及证明

不等式性质及证明
不等式性质及证明

普通高中课程标准实验教科书—数学 [人教版]

高三新数学第一轮复习教案(讲座31)—不等式性质及证明

一.课标要求:

1.不等关系 通过具体情境,感受在现实世界和日常生活中存在着大量的不等关系,了解不等式(组)的实际背景;

2.基本不等式:(a ,b ≥0)

①探索并了解基本不等式的证明过程;

②会用基本不等式解决简单的最大(小)问题。

二.命题走向

不等式历来是高考的重点内容。对于本将来讲,考察有关不等式性质的基础知识、基本方法,而且还考察逻辑推理能力、分析问题、解决问题的能力。本将内容在复习时,要在思想方法上下功夫。

预测2007年的高考命题趋势:

1.从题型上来看,选择题、填空题都有可能考察,把不等式的性质与函数、三角结合起来综合考察不等式的性质、函数单调性等,多以选择题的形式出现,解答题以含参数的不等式的证明、求解为主;

2.利用基本不等式解决像函数)0(,)(>+=a x

a

x x f 的单调性或解决有关最值问题是考察的重点和热点,应加强训练。

三.要点精讲

1.不等式的性质

比较两实数大小的方法——求差比较法 0a b a b >?->; 0a b a b =?-=; 0a b a b

定理1:若a b >,则b a <;若b a <,则a b >.即a b >?b a <。

说明:把不等式的左边和右边交换,所得不等式与原不等式异向,称为不等式的对称性。 定理2:若a b >,且b c >,则a c >。

说明:此定理证明的主要依据是实数运算的符号法则及两正数之和仍是正数;定理2称不等式的传递性。

定理3:若a b >,则a c b c +>+。 说明:(1)不等式的两边都加上同一个实数,所得不等式与原不等式同向; (2)定理3的证明相当于比较a c +与b c +的大小,采用的是求差比较法; (3)定理3的逆命题也成立;

(4)不等式中任何一项改变符号后,可以把它从一边移到另一边。 定理3推论:若,,a b c d a c b d >>+>+且则。 说明:(1)推论的证明连续两次运用定理3然后由定理2证出;(2)这一推论可以推广到任意有限个同向不等式两边分别相加,即:两个或者更多个同向不等式两边分别相加,所得不等式与原不等式同向;(3)同向不等式:两个不等号方向相同的不等式;异向不等式:两个不等号方向相反的不等式。

定理4.如果b a >且0>c ,那么bc ac >;如果b a >且0>b a 且0>>d c ,那么bd ac >。 说明:(1)不等式两端乘以同一个正数,不等号方向不变;乘以同一个负数,不等号方向改变;(2)两边都是正数的同向不等式的两边分别相乘,所得不等式与原不等式同向;(3)

推论1可以推广到任意有限个两边都是正数的同向不等式两边分别相乘。这就是说,两个或者更多个两边都是正数的同向不等式两边分别相乘,所得不等式与原不等式同向。

推论2:如果0>>b a , 那么n

n b a > )1(>∈n N n 且。 定理5:如果0>>b a ,那么n

n b a > )1(>∈n N n 且。

2.基本不等式

定理1:如果R b a ∈,,那么ab b a 222

≥+(当且仅当b a =时取“=”)。 说明:(1)指出定理适用范围:R b a ∈,;(2)强调取“=”的条件b a =。

定理2:如果b a ,是正数,那么

ab b

a ≥+2

(当且仅当b a =时取“=”

) 说明:(1)这个定理适用的范围:,a b R +

∈;(2)我们称b a b a ,2

为+的算术平均数,

称b a ab ,为的几何平均数。即:两个正数的算术平均数不小于它们的几何平均数。

3.常用的证明不等式的方法 (1)比较法

比较法证明不等式的一般步骤:作差—变形—判断—结论;为了判断作差后的符号,有时要把这个差变形为一个常数,或者变形为一个常数与一个或几个平方和的形式,也可变形为几个因式的积的形式,以便判断其正负。

(2)综合法

利用某些已经证明过的不等式(例如算术平均数与几何平均数的定理)和不等式的性质,推导出所要证明的不等式,这个证明方法叫综合法;利用某些已经证明过的不等式和不等式的性质时要注意它们各自成立的条件。

综合法证明不等式的逻辑关系是:12n A B B B B ?????L ,及从已知条件A 出发,逐步推演不等式成立的必要条件,推导出所要证明的结论B 。 (3)分析法

证明不等式时,有时可以从求证的不等式出发,分析使这个不等式成立的充分条件,把证明不等式转化为判定这些充分条件是否具备的问题,如果能够肯定这些充分条件都已具备,那么就可以断定原不等式成立,这种方法通常叫做分析法。

(1)“分析法”是从求证的不等式出发,分析使这个不等式成立的充分条件,把证明不等式转化为判定这些充分条件是否具备的问题,即“执果索因”;

(2)综合过程有时正好是分析过程的逆推,所以常用分析法探索证明的途径,然后用综合法的形式写出证明过程。 四.典例解析

题型1:考查不等式性质的题目

例1.(1)(06上海文,14)如果0,0a b <>,那么,下列不等式中正确的是( )

(A )

11

a b

< (B < (C )22a b < (D )||||a b > (2)(06江苏,8)设a 、b 、c 是互不相等的正数,则下列等式中不恒成立....的是 (A )||||||c b c a b a -+-≤- (B )a

a a a 112

2+

≥+ (C )21

||≥-+

-b

a b a (D )a a a a -+≤+-+213 解析:(1)答案:A ;显然0,0a b <>,但无法判断b a ,-与|||,|b a 的大小; (2)运用排除法,C 选项21

≥-+

-b

a b a ,当a -b <0时不成立,运用公式一定要

注意公式成立的条件,如果)""(2R,,2

2号时取当且仅当那么==≥+∈b a ab b a b a ,如果a ,b 是正数,那么

).""(2

号时取当且仅当==≥+b a ab b

a 点评:本题主要考查.不等式恒成立的条件,由于给出的是不完全提干,必须结合选择支,才能得出正确的结论。

例2.(1)(2003京春文,1)设a ,b ,c ,d ∈R ,且a >b ,c >d ,则下列结论中正确的是( )

+c >b +d

-c >b -d >bd D.

c

b d a > (2)(1999上海理,15)若a

b a 1

1>和|

|1||1b a >均不能成立

B .

b

b a 1

1>-和||1||1b a >均不能成立 C .不等式

a b a 11>-和(a +b 1

)2>(b +a

1)2均不能成立

D.不等式

||1||1b a >和(a +a

1)2>(b +b 1

)2均不能成立 解析:(1)答案:A ;∵a >b ,c >d ,∴a +c >b +d ;

(2)答案:B

解析:∵b <0,∴-b >0,∴a -b >a ,又∵a -b <0,a <0,∴

a

b a 1

1<-。 故

a

b a 1

1>-不成立。 ∵a |b |,∴

||1||1b a <故|

|1||1b a >不成立。由此可选B 。 另外,A 中

b a 11>成立.C 与D 中(a +b 1)2>(b +a

1

)2成立。 其证明如下:∵a

a b 11<<0,∴a +b 1|b +a

1

|, 故(a +

b 1)2>(b +a

1

)2。

点评:本题考查不等式的基本性质。 题型2:基本不等式

例3.(06浙江理,7)“a >b >0”是“ab <2

2

2b a +”的( )

(A )充分而不必要条件 (B )必要而不充分条件

(C )充分必要条件 (D)既不允分也不必要条件

解析:A ;2

2

b a +ab 2≥中参数的取值不只是指可以取非负数。均值不等式满足

)0,0(,2

>>≥+b a ab b

a 。 点评:该题考察了基本不等式中的易错点。 例4.(1)(2001京春)若实数a 、

b 满足a +b =2,则3a +3b 的最小值是( )

3

4

3

(2)(2000全国,7)若a >b >1,P =b a lg lg ?,Q =2

1(lg a +lg b ),R =lg (2b a +),

则( )

<P <Q

<Q <R <P <R

<R <Q

解析:(1)答案:B ;3a +3b ≥2b a b a +=?3233=6,当且仅当a =b =1时取等号。故3a +3b 的最小值是6;

(2)答案:B ;∵lg a >lg b >0,∴

2

1

(lg a +lg b )>b a lg lg ?,即Q >P , 又∵a >b >1,∴

ab b

a >+2

, ∴2

1

lg )2lg(

=<+ab b a (lg a +lg b ), 即R >Q ,∴有P <Q <R ,选B 。

点评:本题考查不等式的平均值定理,要注意判断等号成立的条件。 题型3:不等式的证明

例5.已知a >0,b >0,且a +b =1 求证 (a +

a 1)(

b +b 1)≥4

25。 证法一: (分析综合法)

欲证原式,即证4(ab )2+4(a 2+b 2)-25ab +4≥0,

即证4(ab )2-33(ab )+8≥0,即证ab ≤

4

1

或ab ≥8 ∵a >0,b >0,a +b =1,∴ab ≥8不可能成立

∵1=a +b ≥2ab ,∴ab ≤4

1

,从而得证。 证法二: (均值代换法) 设a =

21+t 1,b =2

1

+t 2。 ∵a +b =1,a >0,b >0,∴t 1+t 2=0,|t 1|<

21,|t 2|<2

1

, .

425

4

11625412316254

1)45(41)141)(141()21)(21()

141)(14

1(211)21(211)21(1

1)1)(1(224

2

222222

22222222211212

2221122212122=≥-++=--+=-++++++=++++++++=+++?+++=+?

+=++∴t t t t t t t t t t t t t t t t t t t t t b b a a b b a a 显然当且仅当t =0,即a =b =2

1

时,等号成立。

证法三:(比较法)

∵a +b =1,a >0,b >0,∴a +b ≥2ab ,∴ab ≤4

1

425)1)(1(0

4)8)(41(4833442511425)1)(1(2222≥

++∴≥--=++=-+?+=-++b b a a ab ab ab ab ab b a b b a a b b a a 证法四:(综合法)

∵a +b =1, a >0,b >0,∴a +b ≥2ab ,∴ab ≤4

1

2

2

2

25(1)1139(1)1251611(1)144164

4ab ab ab ab ab ab

?-+≥?-+?∴-≥-=?-≥??≥

??≥??

4

25

)1)(1(≥

++b b a a 即。 证法五:(三角代换法)

∵ a >0,b >0,a +b =1,故令a =sin 2α,b =c os 2α,α∈(0,

2

π),

.

4

25

)1)(1(425

2sin 4)2sin 4(412sin 125162sin 24.3142sin 4,12sin 2sin 416)sin 4(2sin 42cos sin 2cos sin )cos 1)(cos sin 1(sin )1)(1(2

222

2222222

22442

2

22≥++≥-???

???

≥≥+-=-≥-∴≤+-=+-+=++=++b b a a b b a a 即得ααααααα

ααααααα

αααΘ 点评:比较法证不等式有作差(商)、变形、判断三个步骤,变形的主要方向是因式分解、

配方,判断过程必须详细叙述:如果作差以后的式子可以整理为关于某一个变量的二次式,则考虑用判别式法证。

例6.求使y x +

≤a y x +(x >0,y >0)恒成立的a 的最小值。

分析:本题解法三利用三角换元后确定a 的取值范围,此时我们习惯是将x 、y 与c os

θ、sin θ来对应进行换元,即令x =c os θ,y =sin θ(0<θ<

2

π

=,这样也得a ≥sin θ+c os θ,但是这种换元是错误的 其原因是:(1)缩小了x 、y 的范围;(2)这样换元相当于本题又增加了“x 、y =1”这样一个条件,显然这是不对的。

除了解法一经常用的重要不等式外,解法二的方法也很典型,即若参数a 满足不等关系,a ≥f (x ),则a min =f (x )m a x 若 a ≤f (x ),则a m a x =f (x )min ,利用这一基本事实,可以较轻松地解决这一类不等式中所含参数的值域问题。还有三角换元法求最值用的恰当好处,可以把原问题转化。

解法一:由于a 的值为正数,将已知不等式两边平方,

得:x +y +2xy ≤a 2(x +y ),即2xy ≤(a 2-1)(x +y ), ①

∴x ,y >0,∴x +y ≥2xy ,

当且仅当x =y 时,②中有等号成立。 比较①、②得a 的最小值满足a 2-1=1, ∴a 2=2,a =2 (因a >0),∴a 的最小值是2。 解法二:设

y x xy y x y x y x y

x y

x u =+++=++=++=

2)(2

∵x >0,y >0,∴x +y ≥2xy (当x =y 时“=”成立),

y x xy +2≤1,y

x xy

+2的最大值是1。 从而可知,u 的最大值为211=+,

又由已知,得a ≥u ,∴a 的最小值为2, 解法三:∵y >0, ∴原不等式可化为

y x

+1≤a 1+y

x

, 设

y x =t a n θ,θ∈(0,2

π)。 ∴t a n θ+1≤a 1tan 2+θ,即t a n θ+1≤a se c θ ∴a ≥sin θ+c os θ=2sin(θ+4

π

), ③

又∵sin(θ+

4π)的最大值为1(此时θ=4

π)。 由③式可知a 的最小值为2。

点评:本题考查不等式证明、求最值函数思想、以及学生逻辑分析能力。该题实质是给

定条件求最值的题目,所求a 的最值蕴含于恒成立的不等式中,因此需利用不等式的有关性质把a 呈现出来,等价转化的思想是解决题目的突破口,然后再利用函数思想和重要不等式等求得最值。

题型4:不等式证明的应用

例7.(06浙江理,20)已知函数f (x)=x 3

+ x 3

,数列|x n |(x n >0)的第一项x n =1,以后各项按如下方式取定:曲线x=f (x)在))(,(11++n n x f x 处的切线与经过(0,0)和(x n ,f (x n ))两点的直线平行(如图)

.

求证:当n *N ∈时,(Ⅰ)x ;231212+++=+n n n n x x x (Ⅱ)21

)2

1()

21(--≤≤n n n x 。 证明:(I )因为'2

()32,f x x x =+

所以曲线()y f x =在11(,())n n x f x ++处的切线斜率12

1132.n n n k x x +++=+

因为过(0,0)和(,())n n x f x 两点的直线斜率是2

,n n x x + 所以22

1132n n n n x x x x +++=+.

(II )因为函数2

()h x x x =+当0x >时单调递增,

而221132n n n n x x x x +++=+21142n n x x ++≤+2

11(2)2n n x x ++=+,

所以12n n x x +≤,即

11

,2

n n x x +≥ 因此1121211().2

n n n n n n x x x x x x x ----=

??????≥ 又因为122

12(),n n n n x x x x +++≥+令2,n n n y x x =+则

11

.2

n n y y +≤ 因为21112,y x x =+=所以12

111()().2

2

n n n y y --≤?=

因此2

21(),2n n n n x x x -≤+≤故1211()().22

n n n x --≤≤

点评:本题主要考查函数的导数、数列、不等式等基础知识,以及不等式的证明,同时考查逻辑推理能力。

例8.(2002江苏,22)已知a >0,函数f (x )=ax -bx 2。

(1)当b >0时,若对任意x ∈R 都有f (x )≤1,证明a ≤2

b ;

(2)当b >1时,证明:对任意x ∈[0,1],|f (x )|≤1的充要条件是b -1≤a ≤2b ;

(3)当0<b ≤1时,讨论:对任意x ∈[0,1],|f (x )|≤1的充要条件。 (Ⅰ)证明:依设,对任意x ∈R ,都有f (x )≤1,

∵f (x )=b

a b a x b 4)2(2

2+--, ∴b

a b a f 4)2(2

=≤1,∵a >0,b >0,∴a ≤2b .

(Ⅱ)证明:必要性:对任意x ∈[0,1],|f (x )|≤1?-1≤f (x ),据此可以推出

-1≤f (1),

即a -b ≥-1,∴a ≥b -1;

对任意x ∈[0,1],|f (x )|≤1?f (x )≤1,因为b >1,可以推出f (

b

1

)≤1,即a ·

b

1

-1≤1,∴a ≤2b ;

∴b -1≤a ≤2

b .

充分性:因为b >1,a ≥b -1,对任意x ∈[0,1],

可以推出:ax -bx 2≥b (x -x 2)-x ≥-x ≥-1,即ax -bx 2≥-1; 因为b >1,a ≤2

b ,对任意x ∈[0,1],

可以推出ax -bx 2≤2b x -bx 2≤1,

即ax -bx 2≤1。

∴-1≤f (x )≤1。

综上,当b >1时,对任意x ∈[0,1],|f (x )|≤1的充要条件是b -1≤a ≤2

b .

(Ⅲ)解:因为a >0,0<b ≤1时,对任意x ∈[0,1]: f (x )=ax -bx 2≥-b ≥-1,即f (x )≥-1; f (x )≤1?f (1)≤1?a -b ≤1,即a ≤b +1,

a ≤

b +1?f (x )≤(b +1)x -bx 2≤1,即f (x )≤1。 所以,当a >0,0<b ≤1时,对任意x ∈[0,1],|f (x )|≤1的充要条件是a ≤b +1. 22.解:原式?(x -a )(x -a 2)<0,∴x 1=a ,x 2=a 2。

当a =a 2时,a =0或a =1,x ∈?,当a <a 2时,a >1或a <0,a <x <a 2, 当a >a 2时0<a <1,a 2<x <a ,

∴当a <0时a <x <a 2,当0<a <1时,a 2<x <a ,当a >1时,a <x <a 2,当a =0或a =1时,x ∈?。

点评:此题考查不等式的证明及分类讨论思想。 题型5:课标创新题

例9.(06上海理,12)三个同学对问题“关于x 的不等式2

x +25+|3

x -52

x |≥ax 在[1,12]上恒成立,求实数a 的取值范围”提出各自的解题思路。

甲说:“只须不等式左边的最小值不小于右边的最大值”; 乙说:“把不等式变形为左边含变量x 的函数,右边仅含常数,求函数的最值”; 丙说:“把不等式两边看成关于x 的函数,作出函数图像”;

参考上述解题思路,你认为他们所讨论的问题的正确结论,即a 的取值范围是 。 答案:a ≤10。 点评:该题通过设置情景,将不等式知识蕴含在一个对话情景里面,考查学生阅读能力、分析问题、解决问题的能力。

例10.(06湖南文,20)在m (m ≥2)个不同数的排列P 1P 2…P n 中,若1≤i <j ≤m 时P i >P j (即前面某数大于后面某数),则称P i 与P j 构成一个逆序. 一个排列的全部逆序的总数称为该排列的逆序数. 记排列321)1()1(Λ-+n n n 的逆序数为a n ,如排列21的逆序数11=a ,排列321的逆序数63=a 。

(Ⅰ)求a 4、a 5,并写出a n 的表达式;

(Ⅱ)令n n n n n a a

a a

b 11+++=,证明32221+<++

解 (Ⅰ)由已知得15,1054==a a ,2

)

1(12)1(+=+++-+=n n n n a n Λ。 (Ⅱ)因为Λ,2,1,22

222211==+?+>+++=+=

++n n

n n n n n n n a a a a b n n n n n ,

所以n b b b n 221>+++Λ. 又因为Λ,2,1,2

22222=+-+=+++=n n n n n n n b n , 所以

)]2

1

1()4121()3111[(2221+-++-+-+=+++n n n b b b n ΛΛ

=322

2

1232+<+-+-

+n n n n 。 综上,ΛΛ,2,1,32221=+<++

点评:该题创意新,知识复合到位,能很好的反映当前的高考趋势。

五.思维总结

1.不等式证明常用的方法有:比较法、综合法和分析法,它们是证明不等式的最基本的方法。

(1)比较法证不等式有作差(商)、变形、判断三个步骤,变形的主要方向是因式分解、配方,判断过程必须详细叙述:如果作差以后的式子可以整理为关于某一个变量的二次式,则考虑用判别式法证;

(2)综合法是由因导果,而分析法是执果索因,两法相互转换,互相渗透,互为前提,充分运用这一辩证关系,可以增加解题思路,开扩视野。

2.不等式证明还有一些常用的方法:换元法、放缩法、反证法、函数单调性法、判别式法、数形结合法等。换元法主要有三角代换,均值代换两种,在应用换元法时,要注意代换的等价性。放缩性是不等式证明中最重要的变形方法之一,放缩要有的放矢,目标可以从要证的结论中考查。有些不等式,从正面证如果不易说清楚,可以考虑反证法 凡是含有“至少”、“惟一”或含有其他否定词的命题,适宜用反证法。

证明不等式时,要依据题设、题目的特点和内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤、技巧和语言特点。

3.几个重要不等式

(1)0,0||,2≥≥∈a a R a 则若

(2)2222,2(2||2)a b R a b ab a b ab ab ∈+≥+≥≥若、则或(当仅当

a =b

时取等号)

(3)如果a ,b 都是正数,那么

.2

a b +(当仅当a =b 时取等号)

最值定理:若

,,,,x y R x y S xy P +

∈+==则: ○

1如果P 是定值, 那么当x=y 时,S 的值最小;○2如果S 是定值, 那么当x =y 时,P 的值最大;

注意:○1前提:“一正、二定、三相等”,如果没有满足前提,则应根据题目创设情境;

还要注意选择恰当的公式;○2“和定 积最大,积定 和最小”,可用来求最值;○3均值不等式具有放缩功能,如果有多处用到,请注意每处取等的条件是否一致。

,3

a b c a b c R +++∈≥(4)若、、则

a =

b =

c 时取等号); 0,2b a

ab a b

>+≥(5)若则(当仅当a =b 时取等号)。

不等式性质的两个重要应用

不等式性质的两个重要应用 一.利用不等式性质证明不等式 利用不等式的性质及其推论可以证明一些不等式。解决此类问题一定要在理解的基础上,记准、记熟不等式的性质并注意在解题中灵活准确地加以应用. 例1:若0>>b a ,0<-. 分析:本题考查学生对不等式性质的掌握及灵活应用。注意性质的使用条件. 解:∵0<< d c ,0>->-d c ,又0>>b a ∴0>->-d b c a ,故 d b c a -<-11。 而0< e ,∴d b e c a e ->-. 二.利用不等式性质求范围 利用几个不等式的范围来确定某个不等式的范围是一类常见的综合问题,对于这类问题要注意:“同向(异向)不等式的两边可以相加(相减)”,这种转化不是等价变形,在一个解题过程中多次使用这种转化时,就有可能扩大真实的取值范围,解题时务必小心谨慎,先建立待求范围的整体与已知范围的整体的等量关系,最后通过“一次性不等关系的运算,求得待求的范围”,是避免犯错误的一条途径. 三.利用不等式性质,探求不等式成立的条件 不等式的性质是不等式的基础,包括五个性质定理及三个推论,不等式的性质是解不等式和证明不等式的主要依据,只有正确地理解每条性质的条件和结论,注意条件的变化才能正确地加以运用,利用不等式的性质,寻求命题成立的条件是不等式性质的灵活运用. 例2:已知三个不等式:①0>ab ;②b d a c >;③ad bc >。以其中两个作条件,余下一个作结论,则可组成_____________个正确命题. 解:对命题②作等价变形:0>-?>ab ad bc b d a c 于是,由0>ab ,ad bc >,可得②成立,即①③?②; 若0>ab ,0>-ab ad bc ,则ad bc >,故①②?③; 若ad bc >, 0>-ab ad bc ,则0>ab ,故②③?①。 ∴可组成3个正确命题.

七年级下册不等式及其基本性质讲义

(完整word版)七年级下册不等式及其基本性质讲义 亲爱的读者: 本文内容由我和我的同事精心收集整理后编辑发布到文库,发布之前我们对文中内容进行详细的校对,但难免会有错误的地方,如果有错误的地方请您评论区留言,我们予以纠正,如果本文档对您有帮助,请您下载收藏以便随时调用。下面是本文详细内容。 最后最您生活愉快 ~O(∩_∩)O ~

环球雅思教育学科教师讲义 年级:上课次数: 学员姓名:辅导科目:学科教师: 课题 课型□预习课□同步课□复习课□习题课 授课日期及时段 教学内容 【基础知识网络总结与新课讲解】 知识点一、不等式的有关概念: 1.不等式的概念:用不等号把两个代数式连接起来,表示不等关系的式子,叫做不等式。注意:常见的不等号有五种:“≠”、“>”、“<”、“≥”、“≤”. 例1.请指出下列各式哪些是不等式:①x+y=y+x②4+x>5③-3<0④a+b≤c+b⑤a≠0⑥ 2x-7=5x+4 例2.列出表示下列各数量关系的不等式:(1)a是正数;(2)y与2的差是非负数;(3)a与6的和大于7;(4)y的一半不小于3;(5)8与x的3倍的和不大于1。

而2,+4,4.5不是不等式2x+1<5的解。 例4.指出下面变形是根据不等式的哪一条基本性质。 (1)由2a>5,得a>(2)由a-7>,得a>7 (3)由- a>0,得a<0 (4)由3a>2a-1,得a>-1。 例5.设a>b;用">"或"<"号填空: (1)(2) a-5 b-5 (3)- a - b (4)6a 6b (5)-(6)-a -b 参考答案:(1)>(2)>(3)<(4)>(5)<(6)< 例5.试比较下列两个代数式值的大小: (1)5a+2与4a+2 (2)x3+3x2-7与x3+2x2-7 提示:我们知道,若a-b>0,则a>b;若a-b=0,则a=b;若a-b<0,则a<b,所以要比较a与b的大小,可以先求出a与b的差,再看这个差是正数、负数还是零。 参考答案:(1)(5a+2)-(4a+2)=5a+2-4a-2=a ∵a可取正数,负数或零,∴5a+2和4a+2间的大小关系有三种可能: ①当a>0时,5a+2>4a+2 ②当a=0时,5a+2=4a+2 ③当a<0时,5a+2<4a+2。 (2)(x3+3x2-7)-(x3+2x2-7)=x3+3x2-2x2+7=x2∵x2≥0(对任意x) ∴x3+3x2-7≥x3+2x2-7

不等式的性质和证明

不等式的性质和证明 一、基础知识 1.性质 对称性a>b?b<a 传递性a>b,b>c T a>c 加法单调性a>b T a+c>b+c 乘法单调性a>b,c>0 T ac>bc;a>b,c<0 T ac<bc开方法则a>b>0 T移项法则a+b >c T a>c-b 同向不等式相加a>b,c>d T a+c>b+d 同向不等式相乘a>b>0,c >d>0 T ac>bd 乘方法则a>b>0 T a n>b n倒数法则a>b,ab>0 T 2.证明方法:比较法,综合法,分析法,反证法,换元法 证明技巧:逆代,判别式,放缩,拆项,单调性 3.主要公式及解题思路 公式:a2+b2≥2ab(a,b∈R) a3+b3+c3≥3abc(a,b,c∈R+) 思路:① ② ③ ④正数x,y且x+y=1,求证:≥ 二、例题解析 1.(1)a,b∈R+且a<b,则下列不等式一定成立的是() A.B. C.D. (2)若0<x<1,0<y<1且x≠y,则x2+y2,x+y,2xy,中最大的一个是() A.x2+y2B.x+y C.2xy D.

(3)若a,b为非零实数,则在①a2+b2≥2ab ②≤ ③≥ ④≥2中恒成立的个数为() A.4B.3C.2D.1 (4)下列函数中,y的最小值是4的是() A.B.C.y= D.y=lgx+4log x10 (5)若a2+b2+c2=1,则下列不等式成立的是() A. a2+b2+c2>1 B.ab+bc+ca≥ C.|abc|≤ D a3+b3+c3≥ 2.(1)已知x,y∈R+且2x+y=1,则的最小值为 (2)已知x,y∈R 且x2+y2=1,则3x+4y的最大值为 (3)在等比数列{a n}和等差数列{b n}中,a1=b1>0,a3=b3>0,a1≠a3,试比较大小:a5b5 (4)已知a>0,b>0,a + b=1,则的最小值为 (5)已知:x+2y=1,则的最小值为 (6)已知:x>0,y>0且x+2y=4,则lg x + lg y的最大值为 (7)若x>0,则,若x<0,则 (8)建造一个容积为8 m3,深为2m的长方体无盖水池,如果池底和池壁造价分别为120元和80元,那么水池的最低总造价为元。 (9)某工厂生产机器的产量,第二年比第一年增长的百分率为a,第三年比第二年增长的百分率为b,第四年比第三年增长的百分率为c,设年平均增长的百分率为P,且a+b+c 为定值,则P的最大值为 3.求证:a2+b2≥ab+a+b-1 4.已知a>0,b>0,c>0,求证:≥ 5.已知:a,b,c∈R+且a+b+c=1,求证:

2.1 等式性质与不等式性质

2.1等式性质与不等式性质 (一) 1.数轴上的点与实数是一一对应的.数轴上右边的点表示的实数比左边的点表示的实数 大. 2.实数的运算性质与大小顺序之间的关系(教材中方框内的三个等价关系). 3.差值比较法比较两个实数的大小. (二) 1.掌握差值比较法. 2.会用差值比较法比较两个实数的大小. (三) 1.培养学生转化的数学思想和逻辑推理能力. 2.培养学生数形结合的数学思想和灵活应变的解题能力. 3.培养学生分类讨论的数学思想和思考问题严谨周密的习惯. ●教学重点 理解在两个实数a、b之间具有以下性质:a>b?a-b>0;a=b?a-b=0;a<b?a -b<0.这是不等式这一章内容的理论基础,是不等式性质证明、证明不等式和解不等式的主要依据. ●教学难点 比较两个代数式的大小,实际上是比较它们的值的大小,而这又归结为判断它们的差的符号(注意是指差的符号,至于值是多少,在这里无关紧要).差值比较法是比较实数大小的 基本方法,通常的步骤是:作差→变形→判断差值的符号. ●教学方法 ●教具准备 投影片两张. ●教学过程 Ⅰ.课题导入 在客观世界中,不等关系具有普遍性、绝对性,是表述和研究数量取值范围的重要工具.研究不等关系,反映在数学上就是证明不等式与解不等式.实数的差的正负与实数的大小的比较有着密切关系,这种关系是本章内容的基础,也是证明不等式与解不等式的主要依据.因此,本节课我们有必要来研究探讨实数的运算性质与大小顺序之间的关系. Ⅱ.

(一)打出投影片§6.1.1 A [师]数轴的三要素是什么? [生]原点、正方向、单位长度. [师]把下列各数在数轴上表示出来,并从小到大排列: 213-,5-,0,-4,2 3 [生] ∴213-<-4<0<2 3<|-5|. [师生共析]在数轴上不同的两点中,右边的点表示的实数比左边的点表示的实数大. (二)请同学们预习课本,(教师打出投影片§6.1.1 A ,§6.1.1 B),在解决了投影片 §6.1.1 A 问题基础上解决下列问题: [师]若a >b ,则a -b 0;若a =b ,则a -b 0;若a <b ,则a -b 0. [生]若a >b ,则a -b >0;若a =b ,则a -b =0;若a <b ,则a -b <0,反之亦然. [师]“a >b ”与“a -b >0”等价吗? [生]显然,“a >b ”与“a -b >0”等价. [师生共析] 此等价关系提供了比较实数大小的方法:即要比较两个实数的大小,只要考查它们的差就可以了. (三) [例1]比较(a +3)(a -5)与(a +2)(a -4)的大小. [师]比较两个实数a 与b 的大小,可归纳为判断它们的差a -b 的符号(注意是指差的符号,至于差的值究竟是多少,在这里无关紧要).由此,把比较两个实数大小的问题转化为实数运算符号问题. 本题知识点:整式乘法,去括号法则,合并同类项. [生]由题意可知: (a +3)(a -5)-(a +2)(a -4) =(a 2-2a -15)-(a 2-2a -8) =-7<0 ∴(a +3)(a -5)<(a +2)(a -4) [例2]已知x ≠0,比较(x 2+1)2与x 4+x 2+1的大小. [师]同例1方法类似,学生在理解基础上作答. 本题知识点:乘法公式,去括号法则,合并同类项. [生]由题意可知: (x 2+1)2-(x 4+x 2+1) =(x 4+2x 2+1)-(x 4+x 2+1) =x 4+2x 2+1-x 4-x 2-1 =x 2

初一数学-不等式易错题、难题集合--不等式性质应用

学生姓名陈 年级初一 授课时间2012.6 .2 教师姓名刘 课时 2 不等式易错题、难题集合 (注意:运用不等式的性质是解题的关键! ! ! ! ! !不等式的性质切记! !!!!!!!) -,选择题 1.下列不等式一定成立的是() A.5a >4a B.X +2 v X +3 C. — a >— 2a D.- a 2. 右一a >a ,贝U a 必为() A.正整数B .负整数C .正数D .负数 3. 若a > b ,则下列不等式一定成立的是( ) b a A . <1 B. >1 C.-a>-b D.a-b>0 a b 4. 若a — b v 0,则下列各式中一定正确的是( ) a <0 D . b A. a >b B . ab>0 C —a >— b 5.如果b A.- a 那么 1 1 b 6. 若果 x-y>x,x+y>y A.00,y<0 D.x<0,y>0 a b 2 2ab 的值是( B .负数 C .等于零 D.不能确定 ,则下列不等式成立的( 10.不等式ax v b 的解集是 11.若不等式组 A. n 8 B. 12.不等式组 A. m 4 13.已知关于 x v -,那么a 的取值范围是() a > 0 D 、 n 有解,那么 8 C. 2 x n 8 6 的解集是 n 的取值范围是( D. 4,那么m 的取值范围是 X 的不等式组 2X a 2b 的解集为3 x 5,则 1 -的值为。 a 1 -C 2 14. 已知函数y=mx+2x — 2,要使函数值y 随自变量x 的增大而增大, A. m>— 2 B . m>— 2 C . m<— 2 D . m<— 2 15. 要使函数y =(2 m- 3)x +(3n +1)的图象经过x 、y 轴的正半轴,则 A. -2 B .-4 则m 的取值范围是() m 与n 的取值应为 ()

人教A版新课标高中数学必修一教案-《等式性质与不等式性质》

《 等式性质与不等式性质》 1、知识与技能 (1)能用不等式 (组)表示实际问题的不等关系; (2)初步学会作差法比较两实数的大小; (3)掌握不等式的基本性质,并能运用这些性质解决有关问题. 2、过程与方法 使学生感受到在现实世界和日常生活中存在着大量的不等关系;以问题方式代替例题,学习如何利用不等式研究及表示不等式,利用不等式的有关基本性质研究不等关系. 3、情感态度与价值观 通过学生在学习过程中的感受、体验、认识状况及理解程度,注重问题情境、实际背景的设置,通过学生对问题的探究思考,广泛参与,改变学生学习方式,提高学习质量. 【教学重点】 能用不等式(组)表示实际问题的不等关系, 会作差法比较两实数的大小 ,通过类比法,掌握不等式的基本性质. 【教学难点】 运用不等式性质解决有关问题. (一)新课导入 用不等式(组)表示不等关系

中国"神舟七号”宇宙飞船飞天取得了最圆满的成功.我们知道,它的飞行速度(v )不小于第一宇宙速度(记作2v ),且小于第二宇宙速度(记 1v ). 12v v v ≤< (二)新课讲授 问题1:你能用不等式或不等式组表示下列问题中的不等关系吗 (1)某路段限速40km /h ; (2)某品牌酸奶的质量检查规定,酸奶中脂肪的含量f 应不少于%,蛋白质的含量p 应不少于%; (3)三角形两边之和大于第三边、两边之差小于第三边; (4)连接直线外一点与直线上各点的所有线段中,垂线段最短. 对于(1),设在该路段行驶的汽车的速度为vkm /h ,“限速40km /h ”就是v 的大小不能超过40,于是0<v ≤40. 对于(2)某品牌酸奶的质量检查规定,酸奶中脂肪的含量f 应不少于%,蛋白质的含量p 应不少于%. 2.5%2.3% f p ≥??≥? 对于(3),设△ABC 的三条边为a ,b ,c ,则a +b >c ,a -b <c . 对于(4),如图,设C 是线段AB 外的任意一点,CD 垂直于AB ,垂足 为D ,E 是线段AB 上不同于D 的任意一点,则CD <CE . 以上我们根据实际问题所蕴含的不等关系抽象出了不等式图接着, 就可以用不等式研究相应的问题了 问题2:某种杂志原以每本元的价格销售,可以售出8万本.据市场调查,杂志的单价每提高元,销售量就可能减少2000本.如何定价才能使提价后的销售总收入不低于20万元 解:提价后销售的总收入为错误!x 万元,那么不等关系“销售的总收入仍不低于20万元”可以表示为不等式

七年级下册不等式及其基本性质讲义

环球雅思教育学科教师讲义年级:上课次数: 学员姓名:辅导科目:学科教师: 课题 课型□预习课□同步课□复习课□习题课 授课日期及时段 教学内容 【基础知识网络总结与新课讲解】 知识点一、不等式的有关概念: 1.不等式的概念:用不等号把两个代数式连接起来,表示不等关系的式子,叫做不等式。 注意:常见的不等号有五种:“≠”、“>”、“<”、“≥”、“≤”. 例1.请指出下列各式哪些是不等式:①x+y=y+x②4+x>5③-3<0④a+b≤c+b⑤a≠0⑥2x-7=5x+4 例2.列出表示下列各数量关系的不等式:(1)a是正数;(2)y与2的差是非负数;(3)a与6的和大于7;(4)y的一半不小于3;(5)8与x的3倍的和不大于1。 提示:注意一个数的"和","差","倍","分"的表示法以及"大于","不小于","不大于"应该用哪一个不等号来表示,另外。正数都大于0,负数都小于0,所以"是正数"可表示为">0","是负数"可表示为"<0","非负数"可表示为"≥0"。 参考答案:

(1)a >0 (2)y-2≥0 (3)a+6>7 (4) ≥3 (5)8+3x ≤1 注意:列不等式时应注意两点: ①"是正数"表示为>0","是负数"表示为<0";"非正数"表示为"≥0"。 ②"不大于"用"≤"表示,"不小于"用"≥"表示。 2.不等式的基本性质 (1)不等式的基本性质1:不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。 用式子表示:如果a>b ,那a+c>b+c (或a –c>b –c ) (2)不等式的基本性质2:不等式两边都乘以(或除以)同一个正数,不等号的方向不变。 用式子表示:如果a>b ,且c>0,那么ac>bc , c b c a >。 (3)不等式的基本性质3:不等式两边都乘以(或除以)同一个负数,不等号的方向改变。 用式子表示:如果a>b ,且c<0,那么acb ,那么bb ,b>c 那么a>c 。 注意:不等式的基本性质是对不等式变形的重要依据。不等式的性质与等式的性质类似,但等式的结论是“仍是等式”,而不等式的结论则是“不等号方向不变或改变”。在运用性质(2)和性质(3)时,要特别注意不等式的两边乘以或除以同一个数,首先认清这个数的性质符号,从而确定不等号的方向是否改变。 说明:常见不等式所表示的基本语言与含义还有: ①若a -b >0,则a 大于b ; ②若a -b <0,则a 小于b ; ③若a -b ≥0,则a 不小于b ; ④若a -b ≤0,则a 不大于b ; ⑤若ab >0或0a b >,则a 、b 同号; ⑥若ab <0或0a b <,则a 、b 异号。 任意两个实数a 、b 的大小关系: ①a-b>O ?a>b ; ②a-b=O ?a=b ; ③a-b

高中数学知识点总结不等式的性质与证明

要点重温之不等式的性质与证明 1.在不等式两边非负的条件下能同时平方或开方,具体的:当a>0,b>0时,a>b ?a n >b n ; 当a<0,b<0时,a>b ?a 2b 2?|a|>|b|。在不等式两边同号的条件下能同时取倒数,但不等号的方向要改变,如:由 x 1<2推得的应该是:x>21或x<0,而由x 1>2推得的应该是: 00即可。以下用“取倒数”求:3-f(x)<3,分两段取倒数即0<3-f(x)<3得)(31x f ->31或3-f(x)<0得)(31x f -<0, ∴g(x )∈(-∞,0)∪(31,+∞);f(x)+3>3?0<3)(1+x f <31?1③b a <;④2>+b a a b 中,正确的不等式有 ( ) A .1个 B .2个 C .3个 D .4个 [巩固2] 下列命题:①若a>b,则ac 2>bc 2;②若ac 2>bc 2,则a>b ;③若a>b,c>d 则a -d>b -c ; ④若a>b,则a 3>b 3;⑤若a>b,则),1lg()1lg(22+>+b a ⑥若aab>b 2; ⑦若a|b|;⑧若a;⑨若a>b 且b a 11>,则a>0,b<0; ⑩若c>a>b>0,则b c b a c a ->-;其中正确的命题是 。 [迁移]若a>b>c 且a+b+c=0,则:①a 2>ab ,②b 2>bc ,③bc

不等式的基本性质知识点

不等式的基本性质知识点 1 .不等式的定义:a-b>0 a>b, a-b=O a=b, a-b a0, X1-X2<0,可得 f(X l)b三bb, b>c 二a>c (传递性) ⑶ a>b = a+c>b+c (c € R) (4) c>0 时,a>b A,ac>bc c<0 时,a>b acb, c>d —a+c>b+d。 ⑵ a>b>0,c>d>0 ac>bd。

⑶ a>b>0 —a n>b n(n € N, n>1)。 ⑷ a>b>0= 川>w (n € N, n>1)。 应注意,上述性质中,条件与结论的逻辑关系有两种:“ ”和“ ”即推出关系和等价关系。一般地,证明不等式就是从条件出发施行一系列的推出变换。解不等式就是施行一系列的等价变换。因此,要正确理解和应用不等式性质。 ②关于不等式的性质的考察,主要有以下三类问题: (1)根据给定的不等式条件,禾U用不等式的性质,判断不等式能否成立。 ⑵利用不等式的性质及实数的性质,函数性质,判断实数值的大小。 ⑶利用不等式的性质,判断不等式变换中条件与结论间的充分或必要关系。

不等式的意义、性质及其应用

不等式的意义、性质及其应用 教学重点:不等式的性质 教学难点:不等式的实际应用 一、问题引入 某班同学去植树,原计划每位同学植树4棵,但由于某组的10名同学另有任务,未能参加植树,其余同学每位植树6棵,结果仍未能完成计划任务,若以该班同学的人数为x,此时的x应满足怎样的关系式? 依题意得4x>6(x-10) 二、概念回顾 1.不等式:用“>”或“<”号表示大小关系的式子,叫不等式. 解析:(1)用≠表示不等关系的式子也叫不等式 (2)不等式中含有未知数,也可以不含有未知数; (3)注意不大于和不小于的说法 例1 用不等式表示 (1)a与1的和是正数; (2)y的2倍与1的和大于3; (3)x的一半与x的2倍的和是非正数; (4)c与4的和的30%不大于-2; (5)x除以2的商加上2,至多为5; (6)a与b两数的和的平方不可能大于3. 三.不等式的解 不等式的解:能使不等式成立的未知数的值,叫不等式的解. 解析:不等式的解可能不止一个. 例2 下列各数中,哪些是不等是x+1<3的解?哪些不是? -3,-1,0,1,1.5,2.5,3,3.5 练习: 1.判断数:-3,-2,-1,0,1,2,3,是不是不等式2x+3<5 的解?再找出另外的小于0的解两个. 2.下列各数:-5,-4,-3,-2,-1,0,1,2,3,4,5中,同时适合x+5<7和2x+2>0的有哪几个数? 四.不等式的解集 1.不等式的解集:一个含有未知数的不等式的所有解组成这个不等式的解集. 例3 下列说法中正确的是( )

A.x=3是不是不等式2x>1的解 B.x=3是不是不等式2x>1的唯一解; C.x=3不是不等式2x>1的解; D.x=3是不等式2x>1的解集 2.不等式解集的表示方法 例4 在数轴上表示下列不等式的解集 (1)x>-1;(2)x ≥-1;(3)x<-1;(4)x ≤-1 分析:按画数轴,定界点,走方向的步骤答 五、不等式的性质 不等式性质1:不等式两边都加上(或减去)同一个数(或式子),不等号的方向不变. 不等式性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变. 不等式性质3:不等式两边都乘(或除以)同一个负数,不等号的方向改变. 例1 利用不等式的性质,填”>”,:<” (1)若a>b,则2a+1 2b+1; (2)若-1.25y<10,则y -8; (3)若a0,则ac+c bc+c; (4)若a>0,b<0,c<0,则(a-b)c 0. 例2 利用不等式性质解下列不等式 (1)x-7>26; (2)3x<2x+1; (3)3 2x>50; (4)- 4x>3. 分析:利用不等式性质变形为最基本形,利用数轴表示解集 练习: 1.根据不等式的性质,把下列不等式化为x>a 或xx x (2)22 121--≤x x (3)-3x>2 (4)-3x+2<2x+3 3. 已知不等式3x-a ≤0的解集是x ≤2,求a 的取值范围. 六、不等式的实际应用 问题一:某学校计划购买若干台电脑,现从两家商店了解到同一型号的电脑每台报价均为6000元,并且多买都有一定的优惠.甲商场的优惠条件是:第一台按原报价收款,其余每台优惠25%;乙商场的优惠条件是:每台优惠20%.学校经核算选择甲商场比较合算,你知道学校至少要买多少台电脑? 解:设购买x 台电脑,到甲商场比较合算,则 6000+6000(1-25%)(x -1)<6000(1-20%)x 去括号,得:6000+4500x -45004<4800x 移项且合并,得:-300x <1500 不等式两边同除以-300,得:x>5 ∵x 为整数 ∴x ≥6 答:至少要购买6台电脑时,选择甲商场更合算. 问题二 :甲、乙两个商店以同样的价格出售同样的商品,同时又各自推出不同的优惠方案:在甲商店累计购买100元商品后,再买的商品按原价的90%收费;在乙商累计购买50元商品后,再买的商品按原价的95%收费.顾客选择哪个商店购物能获得更大的优惠?

高中数学第三章不等式3.1不等关系不等式的性质及其应用素材北师大版必修

不等式的性质及其应用 不等式的性质是证明不等式和解不等式的理论依据,不等式性质的应用也是历年高考的重点。因此掌握不等式的性质及其应用是非常必要的,本文就不等式的性质及其应用加以探讨。 一、不等式最基本的性质 对称性:a b b a >?< 传递性:,a b b c a c >>?> 加法性: ,a b c R a c b c >∈?+>+ 乘法性: 00 a b ac bd c d >≥??>? >≥? 除法性: 110a b ab a b >??? 乘方性: 0()n n a b a b n N *>≥?>∈ 开方性: 0)a b n N *>≥>∈ 倒数法则:011ab a b a b >??? 二、不等式性质的应用 (1)比较实数的大小 因为“0a b a b ->?>;0a b a b -=?=;0a b a b -≠且的大小 分析:对于1(1)log a a +和(1)log a a +这两个对数,由于式中含有参数a ,故我们不能直接确定它 们之间的大小关系,于是可用上面的不等式的最基本的性质,让它们作差从而比较大小。 解:∵1 111(1)(1)1log log log log 10a a a a a a a a a ++++-===-<,∴1(1)(1)log log a a a a ++< 点评:通过让两个式子作差,并经过恒等变形,从而确定了两式差的符号,即确定了两式的大小。 例2、(2006年上海卷)如果0,0a b <>,那么,下列不等式中正确的是( ) A. 11a b < 22a b < D.||||a b > 解:对于A :如果0,0a b <>,那么110,0a b <>,由不等式的传递性知 11a b <,故选A 点评:在运用不等式性质时,不要忽略性质成立的条件 (2)求范围 利用几个不等式的范围来确定某个不等式的范围是一类常见的综合问题,求解步骤:先建立待求范围的整体与已知范围的整体的等量关系,然后通过“一次性不等关系的运算,求得待求的范围”。 例2、若二次函数)(x f 图像关于y 轴对称,且2)1(1≤≤f ,4)2(3≤≤f ,求)3(f 的范围。

高中数学知识要点重温(11)不等式的性质与证明知识点分析

高中数学知识要点重温(11)不等式的性质与证明 1.在不等式两边非负的条件下能同时平方或开方,具体的:当a>0,b>0时,a>b ?an>bn ; 当a<0,b<0时,a>b ?a2b2?|a|>|b|。在不等式两边同号的条件下能同时取倒数,但不等号的方向要改变,如:由x 1<2推得的应该是:x>21或x<0,而由x 1 >2推得的应该是: 00即可。以下用“取倒数” 求:3-f(x)<3,分两段取倒数即0<3-f(x)<3得)(31x f ->31 或3-f(x)<0得)(31x f -<0, ∴g(x)∈(-∞,0)∪(31,+∞);f(x)+3>3?0<3)(1+x f <31?1③b a <;④2>+b a a b 中, 正确的不等式有 ( ) A .1个 B .2个 C .3个 D .4个 [巩固2] 下列命题:①若a>b,则ac2>bc2;②若ac2>bc2,则a>b ;③若a>b,c>d 则a-d>b-c ; ④若a>b,则a3>b3;⑤若a>b,则 ),1lg()1lg(22+>+b a ⑥若aab>b2; ⑦若a|b|;⑧若a;⑨若a>b 且 b a 11>,则a>0,b<0; ⑩若c>a>b>0,则b c b a c a -> -;其中正确的命题是 。 [迁移]若a>b>c 且a+b+c=0,则:①a2>ab ,②b2>bc ,③bc

人教课标版高中数学选修4-5:《不等式的基本性质》教案(1)-新版

1.1 课时1 不等式的基本性质 一、教学目标 (一)核心素养 在回顾和复习不等式的过程中,对不等式的基本性质进行系统地归纳整理,并对“不等式有哪些基本性质和如何研究这些基本性质”进行讨论,使学生掌握相应的思想方法,以提高学生对不等式基本性质的认识水平. (二)学习目标 1.理解用两个实数差的符号来规定两个实数大小的意义,建立不等式研究的基础. 2.掌握不等式的基本性质,并能加以证明. 3.会用不等式的基本性质判断不等关系和用比较法. (三)学习重点 应用不等式的基本性质推理判断命题的真假;代数证明. (四)学习难点 灵活应用不等式的基本性质. 二、教学设计 (一)课前设计 1.预习任务 (1)读一读:阅读教材第2页至第4页,填空: a b >? a b =? a b >?> ②a c b c a b +>+?> ③ac bc a b >?> ④33a b a b >?> ⑤22a b a b >?> ⑥,a b c d ac bd >>?> 2.预习自测 (1)当x ∈ ,代数式2(1)x +的值不大于1x +的值. 【知识点】作差比较法 【解题过程】2(1)(1)x x +-+=2(1)x x x x -=- 【思路点拨】熟悉作差比较法 【答案】[0,1]

(2)若c ∈R ,则22ac bc > a b > A.? B.? C.? D.≠ 【知识点】不等式的基本性质 【解题过程】由22ac bc >,得0c ≠,所以20c >;当,0a b c >=时,22ac bc =. 【思路点拨】掌握不等式的基本性质 【答案】A. (3)当实数,a b 满足怎样条件时,由a b >能推出 11a b ,所以当0ab >时,11a b <. 【思路点拨】掌握作差比较法 【答案】当0ab >时, 11a b <. (二)课堂设计 1.问题探究 探究一 结合实例,认识不等式 ●活动① 归纳提炼概念 人与人的年龄大小、高矮胖瘦,物与物的形状结构,事与事成因与结果的不同等等都表现出不等的关系,这表明现实世界中的量,不等是普遍的、绝对的,而相等则是局部的、相对的. 【设计意图】从生活实例到数学问题,从特殊到一般,体会概念的提炼、抽象过程. ●活动② 认识作差比较法 关于实数,a b 的大小关系,有以下基本事实: 如果a b >,那么a b -是正数;如果a b =,那么a b -等于零;如果a b <,那么a b -是负数.反过来也对. 这个基本事实可以表示为:0;0;0a b a b a b a b a b a b >?->=?-=

不等式性质和基本不等式

第七章 不等式 知识网络 . 第1讲 不等关系与不等式 ★ 知 识 梳理 ★ 1.比较原理: 两实数之间有且只有以下三个大小关系之一:a>b;a-?>b a b a ; 0<-?, a b b a >?< (2)传递性:,a b b c >>?,a c >

(3)可加性:a b >?. a c b c +>+ 移项法则:a b c a c b +>?>- 推论:同向不等式可加. ,a b c d >>? a c b d +>+ (4)可乘性:bc ac c b a >?>>0,,,0a b c >>>>?ac bd > 推论2:可乘方(正):0a b >>? n n a b >` (,2)n N n * ∈≥ (5) 可开方(正):0a b >>? >(,2)n N n *∈≥ 第4讲 基本不等式 ★ 知 识 梳理 ★ 1.基本形式: ,a b R ∈,则222a b ab +≥; 0,0a b >>, 则a b +≥,当且仅当a b =时等号成立. 2求最值: 当ab 为定值时,22 ,a b a b ++有最小值; 当a b +或22a b +为定值时,ab 有最大值(0,0a b >>). 3.拓展:若0,0a b >>时 ,2 112a b a b +≤≤+,当且仅当a b =时等号成立. ★ 热 点 考 点 题 型 探 析★ 考点1 利用基本不等式求最值(或取值范围) 题型1. 当积ab 为定值时,求和a b +最小值 例1 . 已知0,0x y >>且满足 281x y +=,求x y +的最小值. 【解题思路】利用281x y +=,构造均值不等式 解析:∵2828()1()()28y x x y x y x y x y x y +=+?=+?+=+++,0,0x y >>,∴280,0y x x y >> 1018x y +≥+=,当且仅当28y x x y =时等号成立,即224y x =,∴2y x =,又281x y +=, ∴6,12x y == ∴当6,12x y ==时,x y +有最小值18. 【名师指引】利用基本不等式求最值要注意“一正二定三相等”即(1)要求各数均为正

不等式性质的应用

不等式性质的应用 学习目标:1、了解不等式的基本性质,并可以利用不等式的性质解决问题; 2、通过不等式性质的应用,进一步加深对不等式性质的理解; 3、在应用不等式的基本性质证明简单问题的过程中,培养思维的逻辑性和严谨性,进而 培养学生的逻辑能力. 学习重点:不等式性质的应用. 学习任务: 题型一 利用不等式性质求变量的取值范围. 1、已知),(),,(ππβπα2 2 0∈∈,求 (1) βα+;(2) βα-2 的取值范围. 2、已知31≤≤<-b a ,求b 2-a 的取值范围. 3、已知3286<<<<-b a , ,求b a 的取值范围. 题型二 利用不等式性质判断命题的真假. 1、给出下列命题:(1);,则若c b c a b a >> (2);,则若b a bc ac << (3) ;,则若22bc ac b a >>(4) ;,则若b a bc ac >>2 2 其中正确的命题是_______________. 2、给出下列命题:(1);,则若33 b a b a >> (2);,则若2 2b a b a >> (3) ;,则若2 20b a b a ><<(4) ;,则若22||b a b a >> (5) ;,则若22||b a b a >> 其中正确的命题是_______________. 3、下列说法正确的是_______________. (1) ;,则若b a b a 1 1<> (2);,则若b a b a 110<<< (3) ;,则若b a b a 110<>> (4) ;,则若b a b a 1 10<>> (5);,则若b a a b 110<>> (6);,则且若0,1 1<>>>b b a b a b a 附加题:1、已知.,0,,,ad bc b d a c a b R d c b a >-<->∈证明, 且 2、证明:.0b c b a c a b a c ->->>>,则 若 不等式性质的应用 学习目标:1、了解不等式的基本性质,并可以利用不等式的性质解决问题; 2、通过不等式性质的应用,进一步加深对不等式性质的理解; 3、在应用不等式的基本性质证明简单问题的过程中,培养思维的逻辑性和严谨性,进而 培养学生的逻辑能力. 学习重点:不等式性质的应用. 学习任务: 题型一 利用不等式性质求变量的取值范围. 1、已知),(),,(ππ βπα2 2 0∈∈,求 (1) βα+;(2) βα-2 的取值范围. 2、已知31≤≤<-b a ,求b 2-a 的取值范围. 3、已知3286<<<<-b a , ,求b a 的取值范围. 题型二 利用不等式性质判断命题的真假. 1、给出下列命题:(1);,则若c b c a b a >> (2);,则若b a bc ac << (3) ;,则若22bc ac b a >>(4) ;,则若b a bc ac >>2 2 其中正确的命题是_______________. 2、给出下列命题:(1);,则若33 b a b a >> (2);,则若2 2b a b a >> (3) ;,则若2 20b a b a ><<(4) ;,则若22||b a b a >> (5) ;,则若22||b a b a >> 其中正确的命题是_______________. 3、下列说法正确的是_______________. (1) ;,则若b a b a 1 1<> (2);,则若b a b a 110<<< (3) ;,则若b a b a 110<>> (4) ;,则若b a b a 1 10<>> (5);,则若b a a b 110<>> (6);,则且若0,1 1<>>>b b a b a b a 附加题:1、已知.,0,,,ad bc b d a c a b R d c b a >-<->∈证明, 且 2、证明:.0b c b a c a b a c ->->>>,则 若

高中数学知识点:不等式的性质及解法

不等式的性质及解法 知识要点: 不等式与等式有许多不同,主要包括: 1、等式两边同乘(或除)以一个数(或式),等式仍然成立;不等式两边同乘(或除)以一个数(或式),不等式能否成立,要考虑该数(式)的符号, 即a b ac bc c ac bc c ac bc c >?>>>=<?->?< 这个性质等式中也存在,即a b b a =?=, 对称性说明了每一个已知的不等式都有两种形式,如:a b ab a b R +≥∈2(,) 这个基本不等式本身就有a b ab 222+≥及222ab a b ≤+两种形式,要能灵活运用。当然若进行等价转化还会有许多变式。 (2) 传递性 a b b c a c >>?>, 这个性质是媒介法比较两个实数大小的依据,是放缩法证明不等式的依据。 (3) 移项法则 a b a c b c >?+>+ 如:x x +>?>-321,相当于在x +>32这个不等式两边同时加上-3得到的。 3、运算性质: (1)加法运算:a b c d a c b d >>?+>+, (2)减法运算:统一成加法运算 a b c d a b d c a d b c >>?>->-?->-,, (3)乘法运算:a b o c d ac bd >>>>?>>,00 (4)除法运算:统一成乘法运算 a b c d a b d c a d b c >>>>?>>>>?>>0001100,, (由y x =1在(0,+∞)上是减函数,c d d c >>?>>011 0) (5)乘方运算:a b a b n N n n n >>?>∈≥02(,) (6)开方运算:a b a b n N n n n >>?>∈≥02(,)