搜档网
当前位置:搜档网 › 软件无线电.期末考试

软件无线电.期末考试

软件无线电.期末考试
软件无线电.期末考试

1.什么是软件无线电?软件无线电的特点是什么?

定义:

软件无线电是多频带无线电,它具有宽带的天线、射频转换、模/数转和数/模变换,能支持多个空中接口和协议,在理想状态下,所有方面(包括物理空中接口)都可以通过软件定义。

软件无线提供了一种建立多模式、多频段、多功能无线设备的有效并且相当经济的解决方案,可以通过软件升级实现功能提高

特点:

多频带/多模式/多功能(M3)工作:多频带是指软件无线电可以工作在很宽的频带范围内;

多模式是指软件无线电能够使用多种类型的空中接口,其调制方式、编码、帧结构、压缩算法、协议等可以选择;多功能是指采用相同的无线电设备用于不同的应用中。

具有可重配、重编程能力:可重配置是指系统的操作软件(包括程序、参数以及处理环境的软件方面)或硬件(处理环境的硬件方面)的改变。软件无线电采用多个软件模块在相同的系统上可实现不同的标准,只需要选择不同的模块运行就可实现系统的动态配置。所需要的模块可以通过空中接口或人工下载获得并升级。

功能的灵活性:软件无线电的功能由软件决定的,软件模块可以通过空中接口或人工下载的方式获得,以增加或改变其无线电功能,因此其功能的使用和配置非常方便、灵活。

结构的开放性:软件无线电的结构分为硬件和软件两大部分。这两大部分都具有模块化和标准化的特点,是一种开放式的体系结构,使得研制、生产和使用各环节可以共享已有成果,共同推进软件无线电技术的发展。

2.无线电技术经历了或正在经历哪几个阶段?各有什么特征?

第0级:数字硬件无线电。系统不能做任何修改,系统操作由开关、拨号盘和按钮等来完成。

第1级:软件控制无线电。系统通过软件实现控制功能,但是在不改变硬件的条件下,软件控制无线电设备是不能改变像频带或调制方式这样的特征参量的。

第2级:软件定义无线电。系统使用软件对调制、宽/窄带、安全、波形产生和检测等方面的具体应用技术和参数进行控制,不需要对硬件做任何修改,但通常收到频带的约束,依然存在模拟部分,比如还有射频或中频电路。尽管前端的带宽是个限制因素,但由于SDR 能够提供宽带和窄带两种操作中的多种调制技术,因为利用软件可以控制相当宽的频带范围。SDR能够存储大量的波形或空间接口,并可以通过软件下载来添加新的内容。

第3级:(理想的)软件无线电。系统完全可以编程,在接收端或发射端无需任何下变频或上变频转换,将天线前段的输入/输出直接接入ADC/DAC,消除了大部分模拟部件,从而降低了失真和噪声,但仍然受到一定的频率约束。

第4级:终极软件无线电。这种软件无线电没有外置天线、运行频率或带宽的限制,完全可编程,同时支持广泛的频率和功能,能够快速实现空中接口的检测和转换。

3.为什么软件无线电一定要采用“硬件通用化”的设计准则?在软件无线电中是如何

体现“硬件通用化”这一设计思路的?

体系结构:为了让软件和硬件下的用户独立,是系统功能软件化的前提。

设备生产商:满足设计指标,使生产专业化、批量化,提高生茶效率,降低生产成本。

运营商:降低维护成本,维护难度,建设成本。

硬件开发商:继承性,重用性更好。从而减少重复劳动提高研发效率

消费者:减少重复投资

4.你是如何理解软件无线电“功能软件化”这一本质特征的?为什么软件无线电的功

能可以采用软件来实现?

功能软件化:软件无线电的功能由软件决定,软件模块可以通过空中接口或人工下载的方式获得,从而增加或改变其无线电功能。

软件无线电提出的设想是构造一种无线设备,来满足多种无线通信需求,当然这一实现的原则为硬件通用化。在数字无线电技术出现后,构成通道的很多电路模块数字化,而且引入数字信号处理,使得原来模拟无线电通信系统的一些功能可以通过软件实现,具有一定的可重配能力。

5.理想软件无线电和软件定义无线电的主要区别是什么?Joseph Mitola提出的理想

软件无线电的重要意义是什么?

区别:ISR是指信号数字化在天线或紧接着天线后进行,并且采用宽带ADC/DAC,通信所需要的所有处理均在高速运行的数字信号处理器件中完成。SDR是指能够配置和定义处理单元,信号的数字化不一定是紧接在天线后(一般在中频以后)完成,即便是紧接着天线实现数字化,其实现多频带信号数字化也是通过多个窄带ADC/DAC实现的,而不是单片ADC/DAC。

显然ISR一定是SDR,但SDR不一定是ISR。

意义:为技术和产品研究开发提供一个新概念和通用无线通信平台,大大降低开发成本和周期;为设备制造商降低投资风险,提高经济效益;为运营商降低投资风险;为最终用户提供一个通用的终端设备平台,实现不同制式,不同标准的移动设备之间的兼容、互联、互通和资源共享。

6.设某无线发射台发射的射频信号功率为,频率为,用于接收该射频

信号的无线电终端的接收灵敏度为-。为了保证无线电终端能够正确处理

接收信号,要求接收信号功率≥接收灵敏度。(假设电磁波在空气中的传播可以当成是自由空间传播)

a)试求该无线电终端到发射台之间的最大通信距离。

自由空间传播损耗:,为距离,为工作频率

b)如果该无线电终端与发射台之间隔了一堵承重墙(一堵承重墙将对的

射频信号产生约的衰减),试求此情况下的最大通信距离。

7.软件无线电的实现技术有哪些?其发展的技术瓶颈有哪些?

开放式总线结构:软件无线电的硬件结构具有开放性,其硬件必将采用总线结构。用标准的高性能的开放式总线结构便于硬件模块的不断升级和扩展。

软件的模块化设计:软件无线电的软件应具有开放性,可以不断更新或者升级,而软件的加载可以通过空中接口或人工下载的方式来获得,使用起来快捷方便。同时,应根据API 来进行区分、模块化,采用通用对象请求代理(CORBA)技术,以面向对象方法为基础,为分布环境中各类网络访问、协同工作提供了一个一致的服务平台。

宽带/多频段天线、智能天线:射频频率与传播条件的不同使各频段对天线的要求存在巨大差异。智能天线(自适应天线阵)的研究和发展

高速宽带ADC、DAC:ADC和DAC在软件无线电系统所处的位置是非常关键的,它直接反映了软件无线电台的软件化程度。对于理想软件无线电而言,ADC的动态范围必须在

100~120dB或者16~20位,最大输入信号频率要在1GHz和5GHz之间。

数字下变频技术:数字下变频技术是软件无线电的核心技术之一。其作用是提高或降低数据流速率,并实现频谱的搬移。数字下变频(DDC)是ADC后首先要完成的处理工作,包括数字下变频,滤波和二次采样,使系统数字处理运算量最大的部分,也是最难完成的部

分。

灵活的射频前端设计:由于射频带宽较宽,而且会处于多载波工作状态,混合信号中信号的包络幅度相差很大,因此对放大器的非线性特别敏感,需要解决互调分量的抑制问题。 高速数字信号处理:由于现在设计与制造的技术限制,数字信号处理器的性能是一个瓶颈;软件无线电台的覆盖频段为2MHz~2000MHz ,就目前水平而言,制造一种全频段天线是不可能的。一般情况下,大多数系统能够只要覆盖不同频段的几个窗口,不必覆盖全部频段。

8. 无线电系统各级滤波器的品质因数的计算方法。

设调制信号为单频正弦信号,其频率为

,调制方式为DSB ,载波频率 ,设混频器本振频率为 。调制和混频均采用非线性器件实现。试求出各级滤波器的品质因数(Q 值)的最大值和最小值。

解:

a) 调制前信号的频谱示意图如下:

f (kHz)

调制方式为DSB ,所以调制后的频谱中没有载波分量;又由于调制采用非线性器件,因此调制后的频谱中除有用信号外,还会包含谐波分量。调制后的频谱示意图如下(其中红粗线表示有用信号的谱线,黑细线表示谐波分量):

f (kHz)

68727680848892

调制后,用滤波器将有用信号频谱滤出来,谐波分量均被滤除,得频谱示意图如下:

f (kHz)

768084

混频后的频谱示意图如下:

f (kHz)

1836184419162076208421562164

20001924 b) 调制滤波器的最小带宽为 带宽为 (注:当采用理想带通滤波器时,可以得到最小带宽;但实际滤波器做不到理想性能,为保证滤波效果,可以取最大带宽,即最靠近红线谱线的两根谐波谱线的距离)。因此其品质因数的最大值和最小值分别为:

混频滤波器的最小带宽为 带宽为 其品质因数的最大值和最小值分别为:

9. 带通采样定理及带通采样频谱图的画法。什么是

Nyquist 区?

设某带通模拟信号的频谱如下图所示:

f

设 , 。(假设不关心频谱的高度)

a) 如果采用Nyquist 低通采样技术对其进行采样,试画出采样后的频谱示意图。 b) 如果采用Nyquist 带通采样技术对其进行采样,试求其最小采样频率,并画出采样后的频谱示意图。

c) 出现频谱反转后,可以采用什么方法解决?

解:

Nyquist 区:

原始频谱如下:

f(MHz)

a)低通采样频率为,低通采样后的频谱如下:

(MHz)

b)该带通信号带宽为,且是的整数倍,所以最小带通采样频率为

,带通采样的频谱如下:

(MHz)

c)出现频谱反转后,只要把采样的数字序列进行隔位取反,即可解决频谱反转问题

10.什么是抽取?什么是内插?它们的作用是什么?

抽取:减小信号采样率以减少冗余的过程,即用很窄的脉冲按一定周期读取模拟信号的瞬时值。

内插:增大信号采样率以增大冗余的过程,即在函数值之间插入一些零点。

作用:抽取提高了频域分辨率,内插提高了时域的分辨率;一般是,内插→滤波→抽取,如果先进行抽取会造成频谱失真。

11.软件无线电有哪三种结构?它们各自采用什么样的采样体制?各有什么特点?

基于射频低通采样结构的软件无线电:是一种理想的软件无线电系统,这种系统的输入、输出都是在射频上基于低通采样定理进行采样,因而具有最大的灵活性和全部的可编程性。

基于射频带通采样结构的软件无线电:射频输入是基于带通采样的,射频输出依然是基于低通采样的,只能同时处理一定频段的射频信号,系统对宽频段射频信号的覆盖需要通过模拟点调谐带通滤波器分时来完成,从而降低了系统的灵活性和可编程性,其并行处理通道数也相对较少,但是这种功能结构所需的ADC的转换速率较低,更容易获得实际的器件;

输出数字信号的数据率也随之减少因而也降低了对实时数字信号处理速度的要求

基于中频带通采样结构的软件无线电:本结构为宽带中频结构;射频前端复杂,足以将射频信号转换为合适于A/D采样的宽带中频或把D/A输出的宽带中频转换为射频信号,而且这些都是有软件完成

12.软件无线电三种结构的应用场合各有什么不同?哪种结构目前应用最多?为什

么?

第一种结构适用于较低的波段,如软件无线电的短波通信系统

第二种结构适用于窄带的数字无线电系统和射频信号频段范围不太宽的软件无线电系统第三种结构适用于处理多个信道的信号,能覆盖较宽的频段范围

13.根据各个功能模块的连接方式不同,软件无线电系统的硬件体系结构可以分成哪几

种?每种结构的功能框图是什么样的?各有什么优缺点?§2.2.2 P15

流水式结构:

优点:延时短、硬件简单;实时性好、处理速率高

缺点:耦合相当紧密,独立性不高;去除或调整某一模块,会导致总体结构的改变总线式结构:

优点:支持多处理器系统;带宽高速;良好的机械和电磁特性

缺点:需要复杂的控制机制,如采用分级总线或多总线方式

交换式结构:

优点:效率高、带宽高以及通用性好,并且具有较好的吞吐量和实时性能

缺点:时延长、硬件复杂;不易实现和成本高

PC+LAN结构:

优点:计算机技术和网络技术成熟,只需要安装适配器和相关软件即可在现存的计算

机上使用,该方案非常经济;该系统是基于网络的,因此可以为最近出现的互联网络

和与移动通信结合的趋势提供有力的支持,使无线网络更容易使容易与计算机网络融

合;这种结构的效率高、带宽高和通用性很好;该系统比DSP-FPGA方案的软件化程

度高、更灵活、更接近理想无线电

缺点:该技术还不够成熟,所以实现的系统和任务相比代价偏高,器件体积较大,不

便利于应用到个人终端中去。

14.智能天线的优点是什么?它是如何提高无线电系统的性能的?

优点:减小小区间干扰;降低多径干扰;对每一个用户增强信噪比;优化链路预算;增加容量和小区半径

性能提升:提高整个系统的容量;提高频谱利用率;提高接收机灵敏度,降低发射功率,节省软件无线电系统的成本;提高信噪比,改善信道质量;

15.软件无线电系统中ADC的选择原则是什么?

采样速率与采样精度、量化信噪比、孔径误差和无杂散动态范围是ADC的主要性能指标。

对于理想的软件无线电而言,ADC的动态范围为100~120dB或者16~20位,最大输入信号频率要在1GHz到5GHz之间,带宽高,速度高

16.在一个数字通信系统中,需要实现哪些同步?这些同步的作用分别是什么?

载波同步:实现相干解调的先决条件

位同步:定时的基础,正确抽样判决的基础

帧同步:在位同步的基础上识别出这些数字信息帧的“开头”和“结尾”的时刻,使接收设备的帧定时与接收到的信号中的帧定时处于同步状态

17.美军的SPEAKeasy计划提出了哪些软件无线电方面的设计思想?§9.2.1

具有多频段、多模式的电台;可编程处理;软件模块化;开放的体系结构

18.常用调制信号的正交解调方法。

已调信号通用表达式:

正交分解为:

模拟调制的解调算法:

AM解调:

DSB解调:

SSB解调:

为调制信号

FM解调:

数字调制信号解调算法:

ASK解调:

对进行抽样判决即可得到调制码元FSK解调:

对抽样门限判决,可得到基带信号MSK解调:

对抽样门限判决,可得到基带信号

PSK解调:

对抽样门限判决,可得到基带信号

QAM解调:

对和进行抽样判决,即可恢复并行数据

并串转换,得到调制信号

软件无线电(个人整理)

1. 软件无线电是什么
无线通信在现代通信中占据着极其重要的位置, 几乎任何领域都使用无线通信, 包括有 商业、气象、金融、军事、工业、民用等。我们可从通信系统、调制方式、多址方式等几方 面可看到无线通信系统种类的繁多。 类 别 通信系统 调制方式 多址方式 种 类
卫星通信系统、蜂窝移动通信系统、无线寻呼系统、短波通信系统、 微波通信系统等 AM、FM、LSB、USB、ISB、FSK、PSK、MSK、GMSK、QAM 等 时分多址(TDMA) 、频分多址( FDMA)和码分多址(CDMA)等
各种通信系统由于自身的特点而适用于各种特定的场合,例如: 短波电台适合远距离,其所需的发射功率不大,传输的“中继系统” —电离层不会被 摧毁;卫星通信能传播高质量的信息,所能提供的频带很宽 微波通信抗干扰能力强,适合大量的数据传输,但只能在点与点之间传输,传输距离 又有一定的限制 由于无线通信的设备简单、便于携带、易于操作、架设方便等特点,在军事和民用通信领域 中都是不可缺的重要通信手段。 然而, 电台往往是根据某种特定的用途而设计的, 功能单一, 有些电台的基本结构相似,而信号特征差异很大。比如,工作的频段不同,调制方式不同, 波形结构不同,通信协议不同,数字信息的编码方式、加密方式不同等等。电台之间的这些 差异极大地限制了不同电台之间的互通互连。 经过几十年的发展, 无线通信已有很大的发展, 通信系统由模拟体制不断向数字化体制过渡, 因此是否可能在数字化体制础上一个电台能满足多调制方式和多址方式, 从而根椐需要构成 多种通信系统呢。 我们先看一下一个数字蜂窝网接收站, 显示在图 1 中。 (注意: 为了说明软件无线电的概念, 这里给出了无线电的接收装置部分) 。
图 1:窄带无线接收装置

认知无线电的发展历程与现状

认知无线电的发展历程与现状 认知无线电的发展历程与现状 摘要:认知无线电是一种通过与其运行环境交互而改变其发射参数从而提高频谱利用率的新的智能技术,其核心思想是CR具有学习能力,能与周围环境交互 信息,以感知和利用在该空间的可用频谱,并限制和降低冲突的发生,认知无线电就是通过频谱感知(Spectrum Sensing )和系统的智能学习能力,实现动态频谱分配(DSA dynamic spectrum allocation )和频谱共享(Spectrum Shari ng )。本文主要分析认知无线电的起源,认知无线电的关键技术概要,认知无线电的相关标准化进程以及认知无线电的应用场景等多个方面,对认知无线电进行一个概述,从而加深对无线电的认知与了解。关键字:认知无线电、起源、关键技术、标准化、应用 随着无线通信需求的不断增长,对无线通信技术支持的数据传输速率的要求越来越高。根据香农信息理论,这些通信系统对无线频谱资源的需求也相应增长,从而导致适用于无线通信的频谱资源变得日益紧张,成为制约无线通信发展的新瓶颈。另一方面,已经分配给现有很多无线系统的频谱资源却在时间和空间上存在不同程度的闲置。为解决无线频谱资源紧张的问题,出现了许多先进的无线通信理论与技术,如链路自适应技术、多天线技术等。这些技术虽然能提高频谱效率,但仍受限于Sha nnon理论。 美国联邦通信委员会的大量研究表明:ISM频段以及适用于陆地移动通信的2GHz 左右授权频段过于拥挤,而有些授权频段却经常空闲。因而提出了认知无线电。认知无线电是一种智能频谱共享技术。它通过感知频谱环境、智能学习并实时调整其传输参数,实现频谱的再利用,进而显著地提高频谱的利用率,通过从时间和空间上充分利用那些空闲的频谱资源,从而有效解决上述难题。 1. 认知无线电的发展历程

软件无线电发展现状

<<移动通信>.>>2002年第 4期 软件无线电发展现状 罗序梅信息产业部电子七所 1 前言 — 软件无线电是实现无线通信新体系结构的一种技术,在经过近几年的发展之后,其重要性和可 行性正逐步被越来越多的人所认识和接受。软件无线电技术的重要价值体现在:硬件只是作为 无线通信的基本平台,而许多的通信功能则是通过软件来实现的,这就打破了长期以来设备的 通信功能实现仅仅依赖于硬件的发展格局。所以有人称,软件无线电技术的出现是通信领域继 固定到移动,模拟到数字之后的第三次革命。本文主要介绍全球软件无线电技术研究动态、对 实现软件无线电台至关重要的器件技术的发展以及软件无线电台商用前景。 2 全球软件无线电技术研究动态 软件无线电技术具有结构的开放性、软件的可编程性、硬件的可重构性以及功能和频段的… 多样性等特点,无论在军事还是在商用通信中都有着巨大的应用潜力。也正是因为这些独特的 优势,引发了全球对软件无线电技术的关注和研发热潮。除美国在 90年代初开始实施易通话计 划并成功地研制出多功能多频段电台外,欧洲、日本、中国等全球其它地区也纷纷开展了各自 的软件无线电技术项目。 欧洲委员会已将软件无线电技术列为重要的研发项目,大量与软件无线电技术相关的研究项目正在其 ACTS计划中进行。受潜在的商业利益所驱动,其研究重点集中在第三代标准上, 这包括 FIRST(灵活的综合无线电系统和技术)、FRAMES(未来无线电宽频段多址系统)和 · SORT等项目。前两个项目利用软件无线电台样机研究开发下一代无线接口。其中

FIRST项目 主要是评估实现软件重构空中接口的问题。目前最公开的工作集中在 RF结构最佳划分方法及 数字处理的实现上。 SORT主要是开展有关第三代系统( UMTS)在地面和卫星接入方面的硬件 重构问题的研究,演示灵活而有效的软件可编程电台,实施该项目的目标是:

认知无线电验证平台场景设计

认知无线电 验证平台场景设计 2008-11-14 赵琳陈翼翼

目录 一、系统结构图 (3) 二、系统基本背景介绍 (3) 三、缩略语说明 (4) 四、场景案例设计 (4) 1.CR001:全频段内不存在PU时,SU接入核心网 (4) 2.CR002:全频段内不存在PU时,SU间进行网内通信 (5) 3.CR003:仅某几个子信道存在PU时,SU接入核心网 (5) 4.CR004:仅某几个子信道存在PU时,SU间进行网内通信 (6) 5.CR005:全频段内存在PU时,SU不能进行通信 (7) 6.CR006:全频段内不存在PU时,某SU伪装成PU占用某几个子信 道 (7) 7.CR007:全频段内不存在PU时,某SU伪装成PU占用全频段 (8) 8.CR008:仅某几个子信道存在PU时,系统未检出,但SUBS执行 的信道分配策略不会对通信造成干扰 (9) 9.CR009:仅某几个子信道存在PU时,系统未检出,且SUBS执行 的信道分配策略会对通信造成干扰 (10) 10.CR010:SU占用某几个信道时,PU强行接入 (11) 11.CR011:SU占用某几个信道时,PU退避接入 (11) 12.CR012:比较不同检测方法 (12) 13.CR013:比较不同合并算法 (13) 五、附录 (14) 1.利用峰均功率比的增强型能量检测法 (14) 2.合并算法介绍 (15) 2.1结果合并模型的背景介绍 (15) 2.2不同的结果合并模型 (15) 2.3模型比较及优缺点分析 (17)

一、系统结构图 图1 系统结构图 二、系统基本背景介绍 1.该系统内存在2个主要用户(PU)。PU编号为PU0~PU1。 2.该系统内存在1个次级用户基站(SUBS),3个次级用户(SU)。SU编号 为SU0~SU2,都具有感知功能,并且均可采用不同的频谱检测方法进行检测。 3.在广播电视频段54~862MHz上选取20MHz。设定该系统工作在这20MHz 的频段内。将整个频段划分为40个500KHz的子信道(SCH),编号为0~39。 4.采用集中式的结构,1个SUBS管理所有的SU。SUBS具有绝对管理权,即 SUBS控制SU的频谱检测、接入空闲频段等一切操作。 5.SUBS维持一个子信道可用性分类的可见表格。这个功能表中,将子信道按 可用状态分类,比如被占用(如正在传输PU信号)、可用(可被SU用户占用)、禁止使用(不能被使用)等。 6.BS接入核心网(CN)。SU可以通过SUBS接入CN进行网间通信。网间通 信包括语音、图像、视频等业务。 7.SU之间可以通过SUBS的中转实现网内通信,但SU之间不能直接进行通信。 网内通信包括语音、图像、视频等业务。 8.存在一个静默期,划分为检测期和上报期。在检测期内,SUBS控制SU进行 频谱检测;在上报期内,SU向SUBS上报检测结果。[猜想] 9.基本场景中,SU采用能量检测法进行频谱检测。SUBS采用K秩准则进行结 果合并。有关不同检测算法、合并算法的比较均在扩展场景中进行。

认知无线电的发展历程与现状

认知无线电的发展历程与现状 摘要:认知无线电是一种通过与其运行环境交互而改变其发射参数从而提高频谱利用率的新的智能技术,其核心思想是CR具有学习能力,能与周围环境交互信息,以感知和利用在该空间的可用频谱,并限制和降低冲突的发生,认知无线电就是通过频谱感知(Spectrum Sensing)和系统的智能学习能力,实现动态频谱分配(DSA:dynamic spectrum allocation)和频谱共享(Spectrum Sharing)。本文主要分析认知无线电的起源,认知无线电的关键技术概要,认知无线电的相关标准化进程以及认知无线电的应用场景等多个方面,对认知无线电进行一个概述,从而加深对无线电的认知与了解。 关键字:认知无线电、起源、关键技术、标准化、应用 随着无线通信需求的不断增长,对无线通信技术支持的数据传输速率的要求越来越高。根据香农信息理论,这些通信系统对无线频谱资源的需求也相应增长,从而导致适用于无线通信的频谱资源变得日益紧张,成为制约无线通信发展的新瓶颈。另一方面,已经分配给现有很多无线系统的频谱资源却在时间和空间上存在不同程度的闲置。为解决无线频谱资源紧张的问题,出现了许多先进的无线通信理论与技术,如链路自适应技术、多天线技术等。这些技术虽然能提高频谱效率,但仍受限于Shannon理论。 美国联邦通信委员会的大量研究表明:ISM频段以及适用于陆地移动通信的2GHz左右授权频段过于拥挤,而有些授权频段却经常空闲。因而提出了认知无线电。认知无线电是一种智能频谱共享技术。它通过感知频谱环境、智能学习并实时调整其传输参数,实现频谱的再利用,进而显著地提高频谱的利用率,通过从时间和空间上充分利用那些空闲的频谱资源,从而有效解决上述难题。 1.认知无线电的发展历程 认知无线电的概念是由Joseph Mitola博士在1999年提出的,他认为认知无线电可以使SDR从预置程序的盲目执行者转变为无线电领域的智能代理,并在论文中描述了认知无线电如何通过无线电知识表示语言(RKRL)来提高个人无线业务的灵活性。2004年Rieser支出认知无线电不一定必须有SDR的支撑,他提出基于遗传算法的生物启发认知模型更适用于可快速部署的灾难通信系统。该认知模型可对无线电系统的物理层和MAC层烦人演进建模,主要由三部分组成,包括用于监听无线环境,进行信道建模的无线信道遗传算法(WCGA)、演进并自适应无线环境的无线通信遗传算法(WSGA)和根据无线电信道模型和无线电参数,监视并改变系统的状态,以决定如何适应无线电的认知监视系统(CSM)。 2003年5月,FCC召开了无线电研讨会,讨论了利用认知无线电技术实现灵活频谱利用的相关技术问题。并且对从频谱管理的角度出发对认知无线网进行了官方定义,认为认知无线电是指能够通过与工作环境的交互,改变发射参数的无线电设备。针对频谱利用率低的现状,FCC提出采用认知无线电技术实现“开放

认知无线电技术

现代通信系统 论文 题目:认知无线电技术 姓名:朱雪峰 学院:潇湘学院 专业:通信工程 班级: 001 学号: 1254040121 指导教师:钟斌 2015年11月1日

目录 一、引言 (2) 二、认知无线电的基本概念 (2) 三、认知无线电的功能与实现 (4) 1.认知无线电的主要功能 (4) 2.认知无线电的实现关键 (5) 四、认知无线电的标准化 (7) 五、认知无线电的管制与应用情况 (8) 六、未来发展与展望 (9)

认知无线电技术的研究及发展 【摘要】认知无线电技术作为软件无线电技术的一个特殊扩展,受到日益广泛的关注。由于该技术能够自动检测无线电环境,调整传输参数,从空间、时间、频率、调制方式等多维度共享无线频谱,可以大幅度提高频谱利用效率。本文首先从认知无线电技术的定义入手,分别讨论了认知无线电的基本概念、功能与实现、标准化的进程。然后介绍了当前应用状况,最后分析了未来的发展及面临的挑战。 一、引言 随着无线通信技术的发展,人们可以获得的带宽不断地增加,移动通信的数据速率从10 kbit/s增长到2 Mbit/s,在不久的将来还可能提高到上百兆比特每秒。但即使如此,也无法满足人们日益增长的无线接入需求。为了缓解这一矛盾,一方面,人们不断开发新的无线接入技术,利用新的频段来提供各种业务;另一方面,不断改进各种编码调制方式,提高频谱效率。但由于移动终端天线尺寸和功率的限制,可以用于无线接入的频段很有限。在提高频谱效率方面,目前较为先进的CDMA空中接口技术,如HSDPA可以达到1 bit/(s·Hz)的频谱效率,将来OFDM和MIMO技术的应用也只能达到3-4 bit/(s·Hz)的频谱效率。3-4倍的频谱效率的提高对于人们成百上千倍的带宽需求增长是微不足道的。认知无线电技术的出现,为解决频谱资源不足、实现频谱动态管理及提高频谱利用率开创了崭新的局面。 二、认知无线电的基本概念 认知无线电(cognitive radio,CR)的概念是由Joseph Mitola博士提出的,他在1999年发表的一篇学术论文[1]中描述了认知无线电如何通过一种“无线电知识表示语言(RKRL)”的新语言提高个人无线业务的灵活性。随后在2000年瑞典皇家科学院举行的博士论文答辩中详细探讨了这一理论[2]。 认知无线电也被称为智能无线电。从广义上来说是指无线终端具备足够的智能或者认知能力,通过对周围无线环境的历史和当前状况进行检测、分析、学习、推理和规划,利用相应结果调整自己的传输参数,使用最适合的无线资源(包括频率、调制方式、发射功率等)完成无线传输。认知无线电能够帮助用户自动选择最好的、最廉价的服务进行无线传输。甚至能够根据现有的或者即将获得的无线资源延迟或主动发起传送。 由定义可以看出。认知无线电的一个最大优势就是无线用户可以通过该技术实现“频谱共享”。目前大多数频谱已经被划分给不同的许可持有者(又称为首要用户),包括移动通信、应急通信、广播电视等。但是随着用户需求的增长,简单地通过开发新的无线接入技术和使用新的频点已经无法充分满足市场需求。 近年来,很多学者通过监测分析当前无线频谱使用状况发现,虽然大部分频谱已经被分配给不同的用户,但是在相同时间、相同地点频谱的使用却非常有限。常常是大部分频点未被使用,而某些热点频率又处于超负荷运行。美国联邦通信管理委员会(FCC)充分注意到了这一点,于2002年11月出版了频谱政策任务组撰写的一份报告[3],该报告指出,当前分配的绝大多数频谱的利用率为15%-85%。因此FCC认为当前存在的最主要问题并不是没有频谱可用,而是现有的频谱分配方式导致资源没有被充分利用。只有彻底改变当前固定频谱分配政策,部分甚至全部采用动态频谱分配政策,使多种技术可以实现“频谱共享”,才能

软件无线电系统综述

软件无线电系统综述 [摘要] 软件无线电的基本思想是以一个通用、标准、模块化的硬件平台为依托,通过软件编程来实现无线电台的各种功能。本文介绍了其系统的软硬件组成和发展情况。 [关键词]软件无线电GNU Radio USRP 一、引言 由于无线电系统,特别是移动通信系统的领域的扩大和技术复杂度的不断提高,投入的成本越来越大,硬件系统也越来越庞大。为了克服技术复杂度带来的问题和满足应用多样性的需求,特别是军事通信对宽带技术的需求,提出在通用硬件基础上利用不同软件编程的方法。软件无线电将把无线电的功能和业务从硬件的束缚中解放出来。 二、软件无线电系统简介 软件无线电的基本思想是以一个通用、标准、模块化的硬件平台为依托,通过软件编程来实现无线电台的各种功能,从基于硬件、面向用途的设计方法中解放出来。功能的软件化实现势必要求减少功能单一、灵活性差的硬件电路,尤其是减少模拟环节,把数字化处理(A/D和D/A变换)尽量靠近天线。软件无线电强调体系结构的开放性和全面可编程性,通过软件更新改变硬件配置结构,实现新的功能。软件无线电采用标准的、高性能的开放式总线结构,以利于硬件模块的不断升级和扩展。 上图表示一个典型的软件无线电处理流程图。为了理解无线电的软件模块,首先需要理解和其关联的硬件。在这个图中的接收路径上,能够看到一个天线,一个RF前端,一个模拟数字转换器ADC和一堆代码。ADC是一个连接连续模拟的自然世界和离散的数字世界的桥梁。 三、软件无线电软件平台GNU Radio GNU Radio是一种运行于普通PC上的开放的软件无线电平台,其软件代码设计完全公开。基于该平台,用户能够以软件编程的方式灵活地构建各种无线应用。 GNU Radio是一个对学习,构建和部署软件定义无线电系统的免费软件工具包。GNU Radio是一个无线电信号处理方案。它的目的是给普通的软件编制者提供探索电磁波的机会,并激发他们聪明的利用射频电波的能力。 它提供信号运行和处理模块,用它可以在易制作的低成本的射频(RF)硬件和通用微处理器上实现软件定义无线电。这套套件广泛用于业余爱好者,学术机构

认知无线电原理技术与发展趋势

摘要:认知无线电是指具有自主寻找和使用空闲频谱资源能力的智能无线电技术。认知无线电技术的提出,为解决不断增长的无线通信应用需求与日益紧张的无线频谱资源之间的矛盾提供了一种有效的解决途径。当前,认知无线电技术从理论到实践都面临很多困难。文章简述了认知无线电的基本原理,对认知无线电涉及的射频、频谱感知和数据传输等物理层核心关键技术进行了总结分析,并结合当前的发展状况对该技术未来的发展趋势进行了预测。 关键词:认知无线电;频谱感知;数据传输;网络体系与协议 Abstract: Cognitive Radio (CR) is an intelligent radio technology which has the capability to search and utilize underutilized spectrum resources. CR has been recognized as an effective solution to the dilemma introduced by the rapid growth of wireless communications and the scarcity of spectrum resources. However, from theory to practical applications, there are many challenges faced by CR currently. In this paper, the key physical layer techniques of CR, such as radio frequency front-end, spectrum sensing and data transmission, are discussed. According to the status of the research, the development tendency of this technology is also predicted. Key words: cognitive radio; spectrum sensing; data transmission; network architecture and protocol 随着无线通信需求的不断增长,对无线通信技术支持的数据传输速率的要求越来越高。根据香农信息理论,这些通信系统对无线频谱资源的需求也相应增长,从而导致适用于无线通信的频谱资源变得日益紧张,成为制约无线通信发展的新瓶颈。另一方面,已经分配给现有很多无线系统的频谱资源却在时间和空间上存在不同程度的闲置。因此,人们提出采用认知无线电(CR)技术,通过从时间和空间上充分利用那些空闲的频谱资源,从而有效解决上述难题。 这一思想在2003年美国联邦通信委员会(FCC)的《关于修改频谱分配规则的征求意见通知》中得到了充分体现,该通知明确提出采用CR技术作为提高频谱利用率的技术手段。此后,CR技术受到了产业界和学术界的广泛关注,成为了无线通信研究和市场发展的新热点。然而,CR技术从理论到大规模实际应用,还面临很多挑战。这些挑战包括了技术、政策和市场等诸多方面。本文从技术的角度,总结分析CR的基本原理、关键技术,并对将来技术发展趋势进行预测。 1 认知无线电基本原理 1.1 认知无线电的概念与特征 自1999年“软件无线电之父”Joseph Mitola Ⅲ博士首次提出了CR的概念并系统地阐述了CR的基本原理以来,不同的机构和学者从不同的角度给出了CR的定义[1-3],其中比较有代表性的包括FCC和著名学者Simon Haykin教授的定义。FCC认为:“CR是能够基于对其工作环境的交互改变发射机参数的无线电”[4]。Simon Haykin则从信号处理的角度出发,认为:“CR是一个智能无线通信系统。它能够感知外界环境,并使用人工智能技术从环境中学习,通过实时改变某些操作参数(比如传输功率、载波频率和调制技术等),使其内部状态适应接收到的无线信号的统计性变化,以达到以下目的:任何时间任何地点的高度可靠通信;对频谱资源的有效利用。”

软件无线电(software radio)

概要 软件无线电的基本思想是以一个通用、标准、模块化的硬件平台为依托,通过软件编程来实现无线电台的各种功能,从基于硬件、面向用途的电台设计方法中解放出来。功能的软件化实现势必要求减少功能单一、灵活性差的硬件电路,尤其是减少模拟环节,把数字化处理(A/D和D/A变换)尽量靠近天线。软件无线电强调体系结构的开放性和全面可编程性,通过软件更新改变硬件配置结构,实现新的功能。软件无线电采用标准的、高性能的开放式总线结构,以利于硬件模块的不断升级和扩展。 软件无线电(software radio)在一个开放的公共硬件平台上利用不同可编程的软件方法实现所需要的无线电系统。简称SWR。理想的软件无线电应当是一种全部可软件编程的无线电,并以无线电平台具有最大的灵活性为特征。全部可编程包括可编程射频(RF)波段、信道接入方式和信道调制。 一般说来,SWR就是宽带模数及数模变换器(A/D及D/A)、大量专用/通用处理器、数字信号处理器(Digital Signal Proicesser,DSP)构成尽可能靠近射频天线的一个硬件平台。在硬件平台上尽量利用软件技术来实现无线电的各种功能模块并将功能模块按需要组合成无线电系统。例如:利用宽带模数变换器(Analog Digital Converter,ADC),通过可编程数字滤波器对信道进行分离;利用数字信号处理技术在数字信号处理器(DSP)上通过软件编程实现频段(如短波、超短波等)的选择,完成信息的抽样、量化、编码/解码、运算处理和变换,实现不同的信道调制方式及选择(如调幅、调频、单边带、跳频和扩频等),实现不同的保密结构、网络协议和控制终端功能等。 在目前的条件下可实现的软件无线电,称做软件定义的无线电(Software Defin ed Radio,SDR)。SDR被认为仅具有中频可编程数字接入能力。 发展历史无线电的技术演化过程是:由模拟电路发展到数字电路;由分立器件发展到集成器件;由小规模集成到超大规模集成器件;由固定集成器件到可编程器件;由单模式、单波段、单功能发展到多模式、多波段、多功能;由各自独立的专用硬件的实现发展到利用通用的硬件平台和个性的编程软件的实现。 20世纪70~80年代,无线电由模拟向数字全面发展,从无编程向可编程发展,由少可编程向中等可编程发展,出现了可编程数字无线电(PDR)。由于无线电系统,特别是移动通信系统的领域的扩大和技术复杂度的不断提高,投入的成本越来越大,硬件系统也越来越庞大。为了克服技术复杂度带来的问题和满足应用多样性的需求,特别是军事通信对宽带技术的需求,提出在通用硬件基础上利用不同软件编程的方法。20世纪80年代初开始的软件无线电的革命,将把无线电的功能和业务从硬件的束缚中解放出来。 1992年5月在美国通信系统会议上,Jeseph Mitola(约瑟夫·米托拉)首次提出了“软件无线电”(Software Radio,SWR)的概念。1995年IEEE通信杂志(Comm unication Magazine)出版了软件无线电专集。当时,涉及软件无线电的计划有军用的SPEAKEASY(易通话),以及为第三代移动通信(3G)开发基于软件的空中接口计划,即灵活可互操作无线电系统与技术(FIRST)。

认知无线电

航天器通信技术的发展和应用课程报告 《认知无线电技术研究》 姓名房鑫 学号 151230124 学院航天学院 专业信息工程 二〇一六年三月 I

摘要 摘要 认知无线电(Cognitive Radio,CR)的概念起源于1999年Joseph Mitola博士的奠基性工作,其核心思想是CR具有学习能力,能与周围环境交互信息,以感知和利用在该空间的可用频谱,并限制和降低冲突的发生。随着无线通信技术的发展,一个日益严峻的问题摆在了我们的面前,那就是频谱资源日趋缺乏。但是另一方面,无线频谱资源在空间和时间上存在着不同程度的闲置,于是人们提出了认知无线电技术。认知无线电网络中的用户能感知周围的无线环境,并能择机进入频谱,从而提高了频谱利用率和实现了频谱的灵活分配。 本文主要对认知无线电的动态频谱分配算法进行了研究。频谱的灵活应用要求认知无线电系统能够动态地分配频谱资源,包括要为主用户的出现实现退避和切换功能,因此,频谱分配是能否充分高效利用空闲频谱的关键技术。 本文首先对认知无线电作了简要的介绍,阐述了认知无线电的概念、功能以及发展状况等。然后介绍了认知无线电关键技术及频谱分配方法,并分析了现有算法的优缺点。 关键词:认知无线电,频谱分配,图论着色,用户需求,公平。

1绪论 随着无线通信需求的不断增长,对无线通信技术支持的数据传输速率的要求越来越高。根据香农信息理论,这些通信系统对无线频谱资源的需求也相应增长,从而导致适用于无线通信的频谱资源变得日益紧张,成为制约无线通信发展的新瓶颈。另一方面,已经分配给现有很多无线系统的频谱资源却在时间和空间上存在不同程度的闲置。因此,人们提出采用认知无线电(CR)技术,通过从时间和空间上充分利用那些空闲的频谱资源,从而有效解决上述难题。 现在的频谱管理策略是基十静态控制的模型,频谱是固定授权分配的,因此导致了较低的频谱利用率。而认知无线电技术使得次用户对频谱的二次使用成为可能,极大地提高了频谱利用率,被认为是解决频谱缺乏问题的方案之一。本章将对认知无线电技术做一个简单的介绍。 1.1认知无线电的概念与特征 自1999年“软件无线电之父”Joseph MitolaⅢ博士首次提出了CR的概念并系统地阐述了CR的基本原理以来,不同的机构和学者从不同的角度给出了CR的定义,其中比较有代表性的包括FCC和著名学者Simon Haykin教授的定义。FCC认为:“CR是能够基于对其工作环境的交互改变发射机参数的无线电”。Simon Haykin则从信号处理的角度出发,认为:“CR是一个智能无线通信系统。它能够感知外界环境,并使用人工智能技术从环境中学习,通过实时改变某些操作参数(比如传输功率、载波频率和调制技术等),使其内部状态适应接收到的无线信号的统计性变化,以达到以下目的:任何时间任何地点的高度可靠通信;对频谱资源的有效利用。” 无线频谱资源在传统的无线通信系统中是固定授权分配的,这样的分配方式有利于保证系统的服务质量(QoS,Quality of Service),但是也这样的分配方式也导致了频谱利用率的低下[1][2]。FCC(Federal Communications Commissions,美国联邦通信委员会)的一份调查报告表明,分配给授权用户的频段其使用率在不同时间不同地区的波动很大,从15%-85%不等。而认知无线电的正是为了解决这个问题而提出的。 认知无线电的概念是Joseph MitolaⅢ博士于1999年在IEEE Personal Communications杂志上明确提出的[3],强调软件定义无线电(SDR,Software Defined Radio)是实现CR的理想平台,是对软件无线电的进一步的扩展。Joseph MitolaⅢ博士于2000年在他的博士论文给出了他对认知无线电的定义。他认为:

Sora高性能开源软件无线电平台

Sora : 高性能开源软件无线电平台

SORA软件无线电平台是世界上第一款100%基于PC的高性能可编程无线通信系统。它充分发挥了通用处理器(GPP)性能和灵活性,采用软硬件联合优化技术,满足高速信号处理的挑战。可以在通用的PC或者服务器上实时运行无线通信协议,速率可达54Mbps以上。 在传统的无线通讯系统,关键底层处理,如PHY层和介MAC层,通常ASIC芯片或者FPGA实现,因为有非常高的计算要求。这种设计更改或升级比较困难,对设计人员硬件水平要求很高,不适合作为科学研究或者算法工程师的研究平台。但是通用处理器(GPP)的软件和硬件系统都不是为了无线通信的信号处理而设计的,因此很难达到高性能的实时通信。例如,非常流行的USRP系列,只能实现8MHz带宽上,100多Kbps 的实时通信。 高性能的无线通信对系统有非常严格的需求,主要是以下三个方面: 1. 高速的系统吞吐量 包括远端射频头和PHY层协议之间以及PHY层协议内部的模块之间。例如,实现802.11系列协议,单天线需要大约1.2Gbps的吞吐量,如果支持4x4 MIMO应用,那么至少5Gbps以上,这个指标目前对大部分PC都是严峻的挑战。 2. 高强度的计算 无线通信的算法需要大量的计算,而且为了保证实时性,很多计算又是突发性的,因此必须充分发挥GPP的性能才能保证。目前主流的GPP都采用多核架构,所以如何将多核的计算能力汇聚起来,实现通信协议对软件开发也是一个挑战。 3. 实时的响应 无线通信协议中有很多响应门限,为了保证正常通信,这些响应门限必须满足。因此,低延迟的控制方法也很重要。例如,802.11系列的MAC层协议要在几个微秒内就可以得到响应。这对于PC和操作系统都是很难实现的。

软件无线电技术

第四代移动通信技术之软件无线电技术 【摘要】软件无线电是目前无线通信领域在固定至移动、模拟至数字之后的最新革命,其正朝着产业化、全球化的方向发展,将在4G系统中得到广泛应用。本文主要研究软件无线电技术对通信传输的改善以及4G系统中软件无线技术的应用特点等。 一、引言 软件无线电提供了一条满足未来个人通信需要的思路。软件无线电突破了传统的无线电台以功能单一、可扩展性差的硬件为核心的设计局限性,强调以开放性的最简硬件为通用平台,尽可能地用可升级、可重配置不同的应用软件来实现各种无线电功能的设计新思路。其中心思想是:构造一个具有开放性、标准化、模块化的通用硬件平台,将各种功能,如工作频段、调制解调类型、数据格式、加密模式、通信协议等用软件来完成,并使宽带A/D和D/A转换器尽可能靠近天线,以研制出具有高度灵活性、开放性的新一代无线通信系统。 图一、软件无线电原理框图 1 二、简介 软件无线电(SWR)技术是近年来提出的一种实现无线通信的新的体系结构,它的基本概念是把硬件作为无线通信的基本平台,而把尽可能多的无线通信及个人通信功能用软件实现。 1、WLAN与蓝牙融入广域网 近年来各国都在积极进行4G的技术研究,从欧盟的WINNER项目到我国的“FuTURE计划”都是直接面向4G的研究。 日本对4G技术的研究在全球范围内一直处于领先地位,早在2004年,运营商NTTdocomo就进行了1Gbit/s传输速率的试验。目前还没有4G的确切定义,但比较认同的解释是:4G采用全数字技术,支持分组交换,将WLAN、蓝牙技术等局域网技术融入广域网中,具有非对称的和超过100Mbit/s的数据传输能力,同时,因为采用高度分散的IP网络结构,使得终端具有智能和可扩展性。

认知无线电实验

武汉理工大学 现代数字信号处理在前沿学科中的应用实验 认知无线电 学院:信息工程学院 学号:1049731503279 姓名:吴志勇 班级:电子154

实验一认知无线电的开发环境与基础实验入门 一、实验目的 1、掌握Linux系统下的基本操作。 2、了解认知无线电实验平台。 3、掌握GNU Radio软件平台的搭建过程。 4、了解USRP N210设备的检测。 二、系统、硬件配备 一台配有千兆网卡的PC机,ubuntu11.10系统,GNU Radio3.5.0安装包(也可以选择其他带有UHD的GNU Radio版本)。 三、实验流程 GNU Radio的安装主要包括三个部分的安装,准备库的安装、UHD的安装、GNU Radio 的安装,下面将从这三个部分开始介绍。 1、网络连接 在ubuntu下进行网络IP设置,打开命令终端,常用的命令:使用ls命令查看当前路径下文件,使用cd命令进入文件夹。 2、准备库的安装: 在https://www.sodocs.net/doc/6c978415.html,/redmine/projects/gnuradio/wiki/UbuntuInstall中,有其安装方法,对应找到我们的ubuntu11.10所需要的准备库内容,利用apt-get来安装。 安装完毕之后可以根据build-guide程序中所提到的库进行验证。 3、UHD的安装 可以到官网上看见很多uhd的版本,我们采用的版本是003.004.000,可以直接从设备所带的光盘中获得(/tmp/uhd/host): 执行: cd /tmp/uhd/host mkdir build cd build cmake ../ make make test sudo make install 4、GNU Radio的安装 本文以GNU Radio为例,从官网上可以下到gnuradio3.5.0的安装包,我们可以通过安装包中的version.sh文件来查看其版本,选择gnuradio3.5.0来安装。 执行: cd /gnuradio

基于AD9361的软件无线电硬件平台设计与实现

基于AD9361的软件无线电硬件平台设计与实现电子科技大学 UNIVERSITY OF ELECTRONIC SCIENCE AND TECHNOLOGY OF CHINA 专业学位硕士学位论文 MASTER THESIS FOR PROFESSIONAL DEGREE 论文题目基于AD9361的软件无线电硬件平台 设计与实现 专业学位类别工程硕士 学号 201222010546 作者姓名郜泽 指导教师刘镰斧副教授 分类号密级 UDC注1 学位论文 基于AD9361的软件无线电硬件平台 (题名和副题名) 郜泽 (作者姓名) 指导教师刘镰斧副教授 电子科技大学成都 (姓名、职称、单位名称) ———————————————————————————————————————————————

申请学位级别 工程领域名称 提交论文日期硕士专业学位类别工程硕士电子与通信工程 2015.03 论文答辩日期 2015.05 年06月学位授予单位和日期电子科技大学 2015 答辩委员会主席 评阅人 注1:注明《国际十进分类法UDC》的类号。 摘要 THE DESIGN AND IMPLEMENTATION OF SOFTWARE DEFINED RADIO HARDWARE PLATFORM BASED ON AD9361 A Master Thesis Submitted to University of Electronic Science and Technology of China Major: Master of Engineering Author: Gao Ze Advisor: Professor Liu Lianfu School : Engineering 独创性声明 本人声明所呈交的学位论文是本人在导师指导下进行的研究工 作及取得的研究成果。据我所知,除了文中特别加以标注和致谢的地 ———————————————————————————————————————————————

基于DSP的软件无线电系统设计与实现

基于D S P的软件无线 电系统设计与实现Revised on November 25, 2020

基于DSP的软件无线电系统设计与实现 1 引言 软件无线电是一种以现代通信理论为基础,以数字信号处理为核心,以微电子技术为支撑的无线电通信体系结构。它将模块化、标准化的硬件单元以总线方式连接构成通用的硬件平台,并通过软件加载实现各种无线电通信功能的一种开放式体系结构[1]。将软件无线电技术应用于移动通信领域,能够大量节省改造移动通信网络的费用,又缩短了研究到应用的周期。 软件无线电的关键技术包括:开放式总线结构及实现、智能天线技术、高速A/D技术、数字上/下变频技术,高速数字信号处理技术、信令处理技术[2]。本文在分析软件无线电基础上设计,采用TMS320VC54X系列DSP芯片与软件结合,通过基本电路和扩展电路并辅以相应的软件设计实现无线电通信功能,并设计了标准串行接口使之可同多种通信终端连接,具有很高的实用性。 2 软件无线电结构 软件无线电的核心思想是将A/D、D/A尽可能地靠近天线,尽早地将天线接收下来的模拟信号数字化,DSP对 A/D转换后的数字信号进行同步提取(载波恢复、时钟恢复和帧同步)、信号调制样式的自动识别、信道解码、信源解码、信号特征提取。理想的软件无线电结构如图1所示,

其中接收机部分是对无线电接收到射频信号直接进行全宽带A/D转换,转换后的高速数据流送DSP处理,最后由窄带D/A转换为语音、数据或者图像输出。 图1 理想的软件无线电接收结构 然而,由于目前A/D器件采样率、输入带宽无法满足所述软件无线电结构要求,而且后续的DSP也无法实时处理大量的高速数据流,在实际应用中,软件无线电主要采用折中方案,主要是:一方面把射频信号通过混频搬移到中频带通采样,使得A/D采样率、输入带宽满足系统要求;另一方面是在DSP前加数字下变频器[3][4]。 3 系统总体设计方案 根据以上分析,并根据软件无线电的功能要求,主要包括以下几部分:射频处理(含天线)前端、高速A/D、D/A、数字上/下变频器、数字信号处理部分(DSP)以及外围接口电路。(其设计框图如图2)主要器件的部分的功能如下: (1)DSP5416模块:以TMS320VC5416 高性能定点DSP 为整个系统的核心,采用流水线指令执行结构和相应的并行处理结构控制系统的运行并完成全部基带处理功能,如信号检测、同步获取、解调等基本功能,还要完成加密、纠错、均衡等功能。

认知无线电技术介绍

认知网络课程学习报告题目:认知无线电技术简介

目录 1、认知无线电简介………………………………………………………………………………………………………….- 1 - 1.1 技术产生背景...............................................................................................................- 1 - 1.2 基本理念和平台结构....................................................................................................- 2 - 1.3 认知无线电的发展及研究现状....................................................................................- 3 - 2、认知网络关键技术.................................................................................................................- 4 - 2.1 频谱检测技术................................................................................................................- 4 - 2.2 自适应频谱资源分配技术...........................................................................................- 5 - 2.3 认知无线电下的频谱管理............................................................................................- 5 - 3、认知无线电的标准化.............................................................................................................- 6 - 4、认知无线电的应用场景.........................................................................................................- 7 - 5、结语.........................................................................................................................................- 9 - 参考文献.................................................................................................................................... - 10 -

军用软件无线电通信技术发展分析

龙源期刊网 https://www.sodocs.net/doc/6c978415.html, 军用软件无线电通信技术发展分析 作者:王志田 来源:《中国新通信》2016年第24期 【摘要】无线电通信技术能够帮助人们不受地域和时间的限制进行沟通的方式,随着我 国目前社会不断发展,无线电通信技术早就成为了人们生活的一部分,为人们的生活和工作都带来很大的便利条件。同时随着通信技术的发展,一部分的通信产品开发费用上升,并且出现新通信体制同时共存现象,通信系统之间的联系也变得更加复杂和困难。软件无线电逐渐被我军研究和应用,由于它具备了灵活性和通用性的使用特点,所以不仅在商用,在军用无线电通信领域同样起到了重要的作用。本文主要介绍了软件无线电的概念和其中包含的重要技术,以及军用无线电技术的现状和发展趋势。 【关键词】军用软件软件无线电通信技术 软件无线电的概念是1992年被提出来的,它具备了完全的数字化、模块化和全程可编程性,升级系统更加的便捷和可扩充,所以这一概念也同样带动了信息领域的第三次技术变革。软件无线电实现了军用电台还有各个网系之间的互联互通和互相操作,实现了通信系统的升级换代,变得更加经济合理。所以目前更加具备灵活性、开放性和通用型的军用软件无线电通信技术是我们国家部队通信技术研究者要不断研究的课题。 一、软件无线电的概念 软件无线电就是利用硬件建设为无限通新的平台,然后实现无线通信和个人通信功能的软件实现。软件无线电是近些年来才提出的一种概念,可实现无线通信的新体系结构,该结构具备了很强的灵活性和开放型。目前软件无线电具备了很多无线通信体制达不到的优点,所以会有很广泛的应用市场。让无线电通信技术在军事方面能够实现各个军用电台的互联互通,同时能够接入各种各样的军用移动通信网。软件无线电通信技术同样在生活中实现了移动电话通用手机、多频段多种模式的移动电话通用基站、无线局域网以及通用网关软件无线电的领域使用。无线通信产品的价值都体现在了软件上,通过软件来实现通信新系统核心产品的开发,代表了无线电领域从固定发展到了移动,从模拟发展到了数字的第三次信息技术革命。 二、国内软件无线电的技术发展和军事应用现状 我们国家目前针对软件无线电技术的研究还处于初步发展阶段,在某高新科技计划中专门针对高新通信技术制定了“软件无线电技术”的专业研究项目组,充分表示了国家针对这一项目的重视。在我们的现实生活中,软件无线电技术已经成功面向800MHz商用蜂窝移动通信、卫星通信、GPS全球定位系统等领域的应用。

相关主题