搜档网
当前位置:搜档网 › 电流转速双闭环直流调速系统的工作原理

电流转速双闭环直流调速系统的工作原理

电流转速双闭环直流调速系统的工作原理
电流转速双闭环直流调速系统的工作原理

******************************************************************** ***********

电流转速双闭环直流调速系统的工作原理

论文

姓名:范洪峰

班级:电气111

学号:11055103

2014年9月18日

******************************************************************** ***********

******************************************************************** ***********

电流转速双闭环直流调速系统的工作原理

范洪峰

(山东工商学院信息与电子工程学院,山东烟台,264005)

摘要:转速闭环调速系统可以在保证系统稳定的前提下实现转速的无静差,但是对动态性能要求较高的系统,转速闭环系统很难对电流(转矩)进行控制。电机经常工作在启动、制动、反转等过渡过程中,启动和制动过程的时间在很大程度上决定了电机的效率。如何缩短这一部分时间,以充分发挥电机的效率,是转速控制系统首先要解决的问题。直流电动机调速控制器选用了转速、电流双闭环调速控制电路。在设计中调速系统的主电路采用了三相全控桥整流电路来供电。控制系统中设置两个调节器,分别调节转速和电流,二者之间实行嵌套联接。

关键词:双闭环;转速调节器;电流调节器

Current Speed Working Principle of Doubleclosed-loop dc

speed Regulating System

Fan Hongfeng

(Shandong province industrial and commercial college of information and electronic engineering institute, Yantai,

Shandong province, 264005)

Abstract: the speed closed-loop speed control system can guarantee the stability of the system under the premise of implementation speed astatic, but system ofhigh dynamic performance requirements, it is difficult to the current (torque) of theclosed-loop control. Motor often work in the process of starting, braking and reverse transition, in the process of starting and braking time to a great exten t, determines the efficiency of the motor. How to shorten this part time, in order to give full play to the efficiency of

******************************************************************** ***********

*******************************************************************************

*******************************************************************************

the motor, speed control system is the problem to be solved in the first place. Dc motor speed controller to choose the speed and current double closed loop speed control circuit. Speed control system in the design of main circuit adopts three-phase fully-controlled bridge rectifier circuit for power supply. Two regulator set in the control system, adjusting the rotational speed and current respectively, a nested connection between them.

Key words: double closed loop; Speed governor; Current regulator

1直流调速系统

1.1直流调速系统的概述

三十多年来,直流电机调速控制经历了重大的变革。首先实现了整流器的更新换代,以晶闸管整流装置取代了习用已久的直流发电机电动机组及水银整流装置使直流电气传动完成了一次大的跃进。同时,控制电路已经实现高集成化、小型化、高可靠性及低成本。以上技术的应用,使直流调速系统的性能指标大幅提高,应用范围不断扩大。直流调速技术不断发展,走向成熟化、完善化、系列化、标准化,在可逆脉宽调速、高精度的电气传动领域中仍然难以替代。直流调速是指人为地或自动地改变直流电动机的转速,以满足工作机械的要求。从机械特性上看,就是通过改变电动机的参数或外加工电压等方法来改变电动机的机械特性,从而改变电动机机

械特性和工作特性机械特性的交点,使

电动机的稳定运转速度发生变化。直流电动机具有良好的起、制动性能,宜于在广泛范围内平滑调速,在轧钢机、矿

井卷扬机、挖掘机、海洋钻机、金属切削机床、造纸机、高层电梯等需要高性能可控电力拖动的领域中得到了广泛的应用。近年来,交流调速系统发展很快,然而直流拖动系统无论在理论上和实践上都比较成熟,并且从反馈闭环控制的角度来看,它又是交流拖动控制系统的基础,所以直流调速系统在生产生活中有着举足轻重的作用。

1.2研究的目的和意义

在单闭环调速系统中,电网电压扰动的作用点离被调量较远,调节作用受到多个环节的延滞,因此单闭环调速系统抵抗电压扰动的性能要差一些。双闭环系统中,由于增设了电流内环,电压波动可以通过电流反馈得到比较及时的调节,不必等它影响到转速以后才能反

*******************************************************************************

*******************************************************************************

馈回来,抗扰性能大有改善因此,在双闭环系统中,由电网电压波动引起的转速动态变化会比单闭环系统小得多。用经典的动态校正方法设计调节器须同时解决稳、准、快、抗干扰等各方面相互有矛盾的静、动态性能要求,需要设计者有扎实的理论基础和丰富的实践经验,而初学者则不易掌握,于是有必要建立实用的设计方法。大多数现代的电力拖动自动控制系统均可由低阶系统近似。若事先深入研究低阶典型系统的特性并制成图表,那么将实际系统校正或简化成典型系统的形式再与图表对照,设计过程就简便多了。这样,就有了建立工程设计方法的可能性。

2双闭环调速系统的工作原理

2.1 转速控制的要求和调速指标

(1) 调速范围D 生产机械要求电动机提供的最高转速和最低转速之比叫做调速范围,即

min max

n n D =

(1)

(2) 静差率s 当系统在某一转速下运行时,负载由理想空载增加到额定值所对应的转速降落,与理想空载转速之比,

称作静差率,即

%1000

??=

n n s nom

(2)

静差率是用来衡量调速系统在负载变化下转速的稳定度的。

带电流截止负反馈的单闭环调速系统起动时的电流和转速波形如图2-2所示。

图2-1 调速系统启动过程的电流和转速波形

a)单闭环调速系统的启动过程

b) 理想快速启动过程

2.2 调速系统的双闭环调节原理

见图2-2,图2-3:

I

t

*******************************************************************************

*******************************************************************************

图2-2双闭环调速系统的电路图

U n *

U n

-W ASR (s)W ACR (s)U *

U -U ct

U d01

/1+s T R 1

+S T K s s I d -I dl

s

T R m n Ce

β

图2-3 双闭环调速系统的原理框图

为了实现转速和电流两种负反馈分别起作用,在系统中设置了两个调节器,分别调节转速和电流,二者之间实行串级连接.把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制晶闸管整流器的触发装置。从闭环结构上看,电流调节环在里面,叫做内环;转速调节环在外面,叫做外环。这样就形成了转速、电流双闭环调速系统。为了获得良好的动、静态性能,双闭环调速系统的两个调节器一般都采用PI 调节器,转速调节器ASR 的输出限幅电压是Unmax ,它决定了电流调节器给定电压的最大值;电流调节器ACR 的输出限幅电压是Uimax ,它限制了晶闸管

整流器输出电压的最大值。

2.3双闭环调速系统的起动过程分析

双闭环调速系统起动过程的电流和转速波形是接近理想快速起动过程波形的。按照转速调节器在起动过程中的饱和与不饱和状况,可将起动过程分为三个阶段,即电流上升阶段;恒流升速阶段;转速调

节阶段。从起动时间上看,第二段恒流升速是主要阶段,因此双闭环系统基本上实现了在电流受限制下的快速起动,利用了饱和非线性控制方法,达到“准时间最优控制”。带PI 调节器的双闭环调速系统还有一个特点,就是起动过程中转速一定有超调。其起动过程波形如图2-4所示。

图2-4 双闭环调速系统起动时的转速和电流波形

从图2-4知,整个起动过程分

为三个阶段:

*******************************************************************************

*******************************************************************************

第I 阶段是电流上升阶段。突加给定电压Un*后,通过两个调节器的控制作用,使Uct 、Ud0、Id 都上升,当Id≥IdL 后,电动机开始转动。由于机械惯性作用,转速的增长不会很快,因而转速调节器ASR 的输入偏差电压△Un=Un*-Un 数值较大,其输出很快达到限幅值Uim*,强迫电流Id 迅速上升。当Id≈Idm 时,Ui≈Uim*,电流调节器的作用使I 不再迅猛增长,标志着这一阶段的结束。在这一阶段中,ASR 由不饱和很快达到饱和,而ACR 一般应该不饱和,以保证电流环的调节作用。

第II 阶段是恒流升速阶段。从电流升到最大值Idm 开始,到转速升到给定值n*为止,属于恒流升速阶段,是启动过程中的主要阶段。在这个阶段中ASR 始终是饱和的,转速环相当于开环状态,系统表现为在恒值电流给定Uim*作用下的电流调节系统,基本上保持电流Id 恒定,因而拖动系统的加速度恒定,转速成线性增长。

第III 阶段是转速调节阶段。在这阶段开始时,转速已经达到给定值,转速调节器的给定与反馈电压平衡,输入偏差为零,但其输出却由于积分作用还维持在限幅值Uim*,所以电动机仍在最大电流下加速,必然使转速超调。转速超调以后,ASR 的输入端出现负的偏差电压,使它退出饱和状态,其输出电压及ACR 的给定电压Ui*立即从限幅值下

来,主电流Id 也因此下降。但是,由于Id 仍大于负载电流IdL ,在一段时间内,转速仍继续上升。到Id=IdL 时,转距Te=TL ,则dn/dt=0,转速n 达到峰值。此后,电动机才开始在负载的阻力下减速,与此相应,电流Id 也出现一小段小与IdL 的过程,直到稳定。

综上所述,双闭环调速系统有如下三个特点:

1)饱和非线性控制:随着ASR 的饱和和不饱和,整个系统处于完全不同的两个状态。当ASR 饱和时,转速环开环。系统表现为恒流电流调节的单闭环系统,当ASR 不饱和时,转速闭环,整个系统是一个无静差调速系统,而电流内环则表现为电流随动系统。在不同情况下,表现为不同结构的现行系统,这就是饱和非线性控制的特征。

2)准时间控制:启动过程中主要阶段实第II 阶段,即恒流升速阶段。它的特征是电流保持恒定,一般选择为允许的最大值,以便充分发挥电动机的过载能力,使启动过程尽可能更快。这个阶段属于电流受限制的条件下的最短时间控制,或称时间最优控制。

3)转速超调:由于采用了饱和非线性控制,启动过程结束进入第III 阶段即转速调节阶段后,必须使转速调节器退出饱和状态。按照PI 调节器的特性,只有使转速超调,ASR 的输入偏差电压△Un 为负值,才能使ASR 退出饱和。这

*******************************************************************************

*******************************************************************************

就是说,采用PI 调节器的双闭环调速系统的转速动态响应必然有超调[6]。

2.4转速和电流两个调节器的作用

转速调节器和电流调节器在双闭环调速系统中的作用,可以归纳为 (1)、转速调节器的作用:

1)使转速n 跟随给定电压Um*变化,稳态无静差;

2)对付在变化起抗扰作用; 3)其输出限幅决定允许的最大电流。

(2)、电流调节器的作用:

1)对电网电压波动起及时抗扰作用;

2)起动时保证获得允许的最大电流;

3)在转速调节过程中,使电流跟随起给定电压Um*变化;

4)当电动机过载甚至于堵转时,限制电枢电流的最大值,从而起到快速的安全保护最用。如果故障消失,系统能够自动恢复正常。

3双闭环调速系统主电路数学模型

3.1 额定励磁下的直流电动机的数学

描述

E

dt

d L

R I I U d d d ++=0 (3)

(主电路,假定电流连续)

n

E C e = (4)

(额定励磁下的感应电动势)

I

C T d

m

e

= (5)

(额定励磁下的电磁转矩) 式中:

TL —包括电机空载转矩在内的负载转矩,单位为Nm ;

GD2—电力拖动系统运动部分折算到电机轴上的飞轮转矩,单位为Nm2;

Cm=30Ce/Л—电动机额定励磁下的转矩电流比,单位为Nm/A ;

定义下列时间常数:

TL=L/R —电枢回路电磁时间常数,单位为s ;

Tm=(GD2R)/(375CeCm)—电力拖动系统机电时间常数,单位为s 。

整理后得

*******************************************************************************

*******************************************************************************

)

(0

dt I d T

I U

d l

R E d d +=- (6)

dt dE R T I I m dl d ?=- (7)

式中 IdL=TL/Cm —负载额定电流. 在零初始条件下,取等式两侧的拉式变换,得电压与电流间的传递函数

1

1

)()

()(0

+=

-s R s E s s T U

I

l d d

(8)

电流与电动势间的传递函数为:

s

R

s s s E T I I m dl d =

-)()()( (9)

由以上传递函数,可以得到额定励磁下直流电动机的动态结构图如图3-1所示:

图3-1 额定励磁下直流电动机动态结构图

由上图可以看出,直流电动机有两个输入量。一个是理想空载整流电压Ud0,另一个是负载电流IdL 。前者是控制输入量,后者是扰动输入量。如果不需要在结构图中把电流Id 表现出来,可将扰动量IdL 的综合点前移,并进行等效变换,如图3-2所示

a)

U d0(s)

n(s)

1

/12++s T s T T Ce m l m b)

图3-2 直流电动机动态结构图的简化和变换

a) 0≠dl

I b) 0=dl I

参考文献

[1]陈维钧,阮毅.运动控制系统[M].北京:清华大学出版社,2007 [2]倪忠远.直流调速系统[M].北京:机械工业出版社,2008 [3]黄俊,王兆安.电力电子技术[M].北京:机械工业出版社,2008

******************************************************************** ***********

******************************************************************** ***********

双闭环直流调速系统

题目:双闭环直流调速系统的设计与仿真 已知:直流电动机:P N=60KW,U N=220V,I N=305A,n N=1000r/min,λ=2,R a=0.08, R rec=0.1, T m=0.097s, T l=0.012s, T s=0.0017s, 电枢回路总电阻R=0.2Ω。设计要求:稳态无静差,σ ≤5%,带额定负载起动到额定转速的转速超调σn≤10%。(要求完 i 成系统各环节的原理图设计和参数计算)。 系统各环节的原理图设计和参数计算,包括主电路、调节器、电流转速反馈电路和必要的保护等,并进行必要的计算。按课程设计的格式要求撰写课程设计说明书。 设计内容与要求:1、分析双闭环系统的工作原理 2、改变调节器参数,分析对系统动态性能的影响 3、建立仿真模型

1.双闭环直流调速系统的原理及组成 对于正反转运行的调速系统,缩短起,制动过程的时间是提高生产率的重要因素。为此,在起动(或制动)过渡过程中,希望始终保持电流(电磁转矩)为允许的最大值,是调速系统以最大的加(减)速度运行。当到达稳态转速时,最好使电流立即降下来,使电磁转矩与负载转矩相平衡,从而迅速转入稳态运行。实际上,由于主电路电感的作用,电流不可能突变,为了实现在允许条件下的最快起动,关键是要获得一段使 电流保持为最大值dmI的恒流过程。按照反馈控制规律,采用某个物理量的负反馈就可以保持该量基本不变,采用电流负反馈应该能够得到近似的恒流过程。 为了使转速和电流两种负反馈分别起作用,可在系统中设置两个调节器,分别引入转速负反馈和电流负反馈以调节转速和电流,二者之间实行嵌套连接,如图1所示。把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变换器。从闭环结构上看,电流环在里面,称做内环;转速环在外面,称做外环。这就形成了转速电流负反馈直流调速系统。为了获得良好的静动态性能,转速和电流两个调节器一般采用PI调节器。 2.双闭环控制系统起动过程分析 前面已经指出,设置双闭环控制的一个重要目的就是要获得接近于理想的起动过程,因此在分析双闭环调速系统的动态性能时,有必要先探讨它的起动过程。双闭环调速系统突加给定电压*nU由静止状态起动时,转速和电流的过渡过程如图4所示。由于在起动过程中转速调节器ASR经历了不饱和、饱和、退饱和三

转速电流双闭环直流调速系统实训设计说明

摘要 电机自动控制系统广泛应用于机械,钢铁,矿山,冶金,化工,石油,纺织,军工等行业。这些行业中绝大部分生产机械都采用电动机作原动机。有效地控制电机,提高其运行性能,对国民经济具有十分重要的现实意义。 20世纪90年代前的大约50年的时间里,直流电动机几乎是唯一的一种能实现高性能拖动控制的电动机,直流电动机的定子磁场和转子磁场相互独立并且正交,为控制提供了便捷的方式,使得电动机具有优良的起动,制动和调速性能。尽管近年来直流电动机不断受到交流电动机及其它电动机的挑战,但至今直流电动机仍然是大多数变速运动控制和闭环位置伺服控制首选。因为它具有良好的线性特性,优异的控制性能,高效率等优点。直流调速仍然是目前最可靠,精度最高的调速方法。 本次设计的主要任务就是应用自动控制理论和工程设计的方法对直流调速系统进行设计和控制,设计出能够达到性能指标要求的电力拖动系统的调节器,通过在DJDK-1型电力电子技术及电机控制试验装置上的调试,并应用MATLAB软件对设计的系统进行仿真和校正以达到满足控制指标的目的。

在转速闭环直流调速系统中,只有电流截止负反馈环节对电枢电流加以保护,缺少对电枢电流的精确控制,也就无法充分发挥直流伺服电动机的过载能力,因而也就达不到调速系统的快速起动和制动的效果。通过在转速闭环直流调速系统的基础上增加电流闭环,即按照快速起动和制动的要求,实现对电枢电流的精确控制,实质上是在起动或制动过程的主要阶段,实现一种以电动机最大电磁力矩输出能力进行启动或制动的过程。 一、设计要求 设一个转速、电流双闭环直流调速系统,采用双极式H桥PWM方式驱动,已知电动机参数为:

转速电流双闭环可逆直流调速系统仿真与设计方案

《运动控制》课程设计题目:转速,电流双闭环可逆直流宽频调速系统设计 系部:自动化系 专业:自动化 班级:自动化1班 学号:11423006 11423025 11423015 姓名:杨力强.丁珊珊.赵楠 指导老师:刘艳 日期:2018年5月26日-2018年6月13日

一、设计目的 应用所学的交、直流调速系统的基本知识与工程设计方法,结合生产实际,确定系统的性能指标与实现方案,进行运动控制系统的初步设计。 应用计算机仿真技术,通过在MA TLAB软件上建立运动控制系统的数学模型,对控制系统进行性能仿真研究,掌握系统参数对系统性能的影响。 在原理设计与仿真研究的基础上,应用PROTEL进行控制系统的印制板的设计,为毕业设计的综合运用奠定坚实的基础。 二、系统设计参数 直流电动机控制系统设计参数:< 直流电动机(3> ) 输出功率为:5.5Kw 电枢额定电压220V 电枢额定电流 30A 额定励磁电流1A 额定励磁电压110V 功率因数0.85 电枢电阻0.2欧姆 电枢回路电感100mH 电机机电时间常数1S 电枢允许过载系数=1.5 额定转速 970rpm 直流电动机控制系统设计参数 环境条件: 电网额定电压:380/220V。电网电压波动:10%。 环境温度:-40~+40摄氏度。环境湿度:10~90%. 控制系统性能指标: 电流超调量小于等于5%。 空载起动到额定转速时的转速超调量小于等于30%。 调速范围D=20。 静差率小于等于0.03.

1、设计内容和数据资料 某直流电动机拖动的机械装置系统。 主电动机技术数据为: ,,,电枢回路总电阻,机电时间常数 ,电动势转速比,Ks=40,,Ts=0.0017ms,电流反馈系数,转速反馈系数,试对该系统进行初步设计。2、技术指标要求 电动机能够实现可逆运行。要求静态无静差。动态过渡过程时间,电流超调量,空载起动到额定转速时的转速超调量。 三、主电路方案和控制系统确定 主电路选用直流脉宽调速系统,控制系统选用转速、电流双闭环控制方案。主电路采用25JPF40电力二极管不可控整流,逆变器采用带续流二极管的功率开关管IGBT构成H型双极式控制可逆PWM变换器。其中属于脉宽调速系统特有的部分主要是UPM、逻辑延时环节DLD、全控型绝缘栅双极性晶体管驱动器GD和PWM变换器。系统中设置了电流检测环节、电流调节器以及转速检测环节、转速调节器,构成了电流环和转速环,前者通过电流元件的反馈作用稳定电流,后者通过转速检测元件的反馈作用保持转速稳定,最终消除转速偏差, 从而使系统达到调节电流和转速的目的。该系统起动时,转速外环饱和不起作用,电流内环起主要作用,调节起动电流保持最大值,使转速线性变化,迅速达到给定值;稳态运行时,转速负反馈外环起主要作用,使转速随转速给定电压的变化而变化,电流内环跟随转速外环调节电机的电枢电流以平衡负载电流原理图

双闭环直流调速系统

转速、电流双闭环调速系统 班级:铁道自动化091 姓名:陈涛 指导老师:严俊 完成日期:2011-10-31 湖南铁道职业技术学院

目录 摘要 (3) 一、直流调速介绍 (4) 1、调速定义 (4) 2、调速方法 (4) 3、调速指标 (4) 二、双闭环直流调速系统介绍 (5) 1、转速、电流双闭环调速系统概述 (5) 2、转速、电流双闭环调速系统的组成 (6) 3、PI调节器的稳态特征 (7) 4、起动过程分析 (8) 5、动态性能 (11) 6、两个调节器的作用 (11) 三、总结 (12)

摘要 随着近代电力电子技术和计算机的发展以及现代控制理论的应用,自动化电力拖动正向着计算机控制的生产过程自动化的方向迈进,以达到高速、优质、高效率地生产。在大多数综合自动化系统中,自动化的电力拖动系统仍然是不可缺少的组成部分。 本文讲述的是转速、电流双闭环直流调速系统,通过学习使我对转速、电流双闭环直流调速系统的组成、调速器的稳态特性和作用以及系统的动态特性有了一定的了解。该系统是在单闭环系统的基础上加以改进后完成的,通过对电力拖动自动控制系统的学习,我们里了解到转速、电流双闭环直流调速系统相对于单闭环调速系统的一些优势,它是通过转速反馈和电流反馈两个环节分别起作用的。 通过这次的学习,我懂得了很多,具有了通过运用理论上所掌握的知识来独立发现问题、思考问题、解决问题的能力,在这次的论文中,我有一次重新学习了转速、电流双闭环直流调速系统,使我这一系统有了更进一步的了解。

转速、电流双闭环调速系统 一、直流调速介绍 1、调速定义 调速是指在某一具体负载情况下,通过改变电动据或电源参数的方法,使机械特性曲线得以改变,从而使电动机转速发生变化或保持不变。 2、调速方法 1.调节电枢供电电压U。改变电枢电压主要是从额定电压往下降低电枢电压,从电动机额定转速向下变速,属恒转矩调速方法。对于要求在一定范围内无 级平滑调速的系统来说,这种方法最好。变化遇到的时间常数较小,能快速响应,但是需要大容量可调直流电源。 2.改变电动机主磁通。改变磁通可以实现无级平滑调速,但只能减弱磁通进行调速(简称弱磁调速),从电机额定转速向上调速,属恒功率调速方 法。变化时间遇到的时间常数同变化遇到的相比要大得多,响应速度较慢,但所需电源容量小。 3.改变电枢回路电阻 <。在电动机电枢回路外串电阻进行调速的方法,设备简单,操作方便。但是只能进行有级调速,调速平滑性差,机械特性较软;空载时几乎没什么调速作用;还会在调速电阻上消耗大量电能。 3、调速指标 1.调速范围(包括:恒转矩调速范围/恒功率调速范围),

转速电流双闭环直流调速系统 课程设计

课程设计任务书 某晶闸管供电的双闭环直流调速系统,整流装置采用三相桥式电路,基本数据为: 直流电动机:U N=220V,I N=205A,=575r/min , R a=0.1,电枢电路总电阻R=0.2,电枢电路总电感L=7.59mH,电流允许过载倍数,折算到电动机轴的飞轮惯量。 晶闸管整流装置放大倍数,滞后时间常数 电流反馈系数( 转速反馈系数() 滤波时间常数取,。 ;调节器输入电阻R0=40。 设计要求: 稳态指标:无静差; 动态指标:电流超调量;空载起动到额定转速时的转速超调量。

目录 课程设计任务书 (1) 第一章直流双闭环调速系统原理 (3) 1.1系统的组成 (3) 1.2 系统的原理图 (4) 第二章转速、电流双闭环直流调速器的设计 (6) 2.1 电流调节器的设计 (6) 2.2 转速调节器的设计 (13) 第三章系统仿真 (21) 心得体会 (26) 参考文献 (27)

第一章直流双闭环调速系统原理 1.1系统的组成 转速、电流双闭环控制直流调速系统是性能很好、应用最广的直流调速系统。采用PI调节的单个转速闭环调速系统可以在保证系统稳定的前提下实现转速无静差。但是对系统的动态性能要求较高的系统,单闭环系统就难以满足需要了。 为了实现在允许条件下的最快启动,关键是要获得一段使电流保持为最大值的恒流过程。按照反馈控制规律,采用某个物理量的负反馈就可以保持该量基本不变,那么,采用电流负反馈应该能够得到近似的恒流过程。所以,我们希望达到的控制:启动过程只有电流负反馈,没有转速负反馈;达到稳态转速后只有转速负反馈,不让电流负反馈发挥作用。故而采用转速和电流两个调节器来组成系统。 为了实现转速和电流两种负反馈分别起作用,可以在系统中设置两个调节器,分别调节转速和电流,即分别引入转速负反馈和电流负反馈。二者之间实行嵌套(或称串级)联接,如图1-1所示。把转速调节器的输出当作电流调节器的输入,再把电流调节器的输出去控制电力电子变换器UPE。从闭环结构上看,电流环在里面,称作内环;转速换在外边,称作外环。这就形成了转速、电流双闭环调速系统。

实验二转速、电流双闭环直流调速系统

实验二 转速、电流双闭环直流调速系统 一、实验目的 1.了解转速、电流双闭环直流调速系统的组成。 2.掌握双闭环直流调速系统的调试步骤,方法及参数的整定。 3.测定双闭环直流调速系统的静态和动态性能及其指标。 4.了解调节器参数对系统动态性能的影响。 二、实验系统组成及工作原理 双闭环调速系统的特征是系统的电流和转速分别由两个调节器控制,由于调速系统调节的主要参量是转速,故转速环作为主环放在外面,而电流环作为副环放在里面,可以及时抑制电网电压扰动对转速的影响。实际系统的组成如实验图2-1所示。 实验图2-1 转速、电流双闭环直流调速系统 主电路采用三相桥式全控整流电路供电。系统工作时,首先给电动机加上额定励磁,改 变转速给定电压* n U 可方便地调节电动机的转速。速度调节器ASR 、电流调节器ACR 均设有 限幅电路,ASR 的输出*i U 作为ACR 的给定,利用ASR 的输出限幅*im U 起限制起动电流的作 用;ACR 的输出c U 作为触发器TG 的移相控制电压,利用ACR 的输出限幅cm U 起限制αmin 的作用。 当突加给定电压*n U 时,ASR 立即达到饱和输出* im U ,使电动机以限定的最大电流I dm 加速起动,直到电动机转速达到给定转速(即* n n U U )并出现超调,使ASR 退出饱和,最后稳 定运行在给定转速(或略低于给定转速)上。 三、实验设备及仪器 1.主控制屏NMCL-32 2.直流电动机-负载直流发电机-测速发电机组 3. NMCL -18挂箱、NMCL-333挂箱及电阻箱 4.双踪示波器 5.万用表 四、实验内容

1.调整触发单元并确定其起始移相控制角,检查和调整ASR 、ACR ,整定其输出正负限幅值。 2.测定电流反馈系数β和转速反馈系数α,整定过电流保护动作值。 3.研究电流环和转速环的动态特性,将系统调整到可能的最佳状态,画出)(t f I d =和)(t f n =的波形,并估算系统的动态性能指标(包括跟随性能和抗扰性能) 。 4.测定高低速时系统完整的静特性)(d I f n =(包括下垂段特性),并计算在一定调速范围内系统能满足的静态精度。 五、实验步骤及方法 1.多环调速系统调试的基本原则 (1)先部件,后系统。即先将各环节的特性调好,然后才能组成系统。 (2)先开环,后闭环。即先使系统能正常开环运行,然后在确定电流和转速均为负反馈后组成闭环系统。 (3)先内环,后外环。即闭环调试时,先调电流内环,然后再调转速外环。 2.单元部件参数整定和调试 (1)主控制屏开关按实验内容需要设置 (2)触发器整定 将面板上的U blf 端接地,调整锯齿波触发器的方法同实验1。 (3)调节器调零 断开主回路电源开关SW ,给定电压U g 接到零速封锁器DZS 输入端,并将DZS 的输出接到ASR 和ACR 的封锁端。控制系统按开环接线,ASR 、ACR 的反馈回路电容短接,形成低放大系数的比例调节器。 a)ASR 调零 将调节器ASR 的给定及反馈输入端接地,调节ASR 的调零电位器,使ASR 的输出为零。 b)ACR 调零 将调节器ACR 的给定及反馈输入端接地,调节ACR 的调零电位器,使ACR 的输出为零。 (4)调节器输出限幅值整定 a)ASR 输出限幅值整定 ASR 按比例积分调节器接线,将U g 接到ASR 的输入端,当输入U g 为正而且增加时,调节 ASR 负限幅电位器,使ASR 输出为限幅值* im U ,其值一般取为8~6--V 。 b)ACR 输出限幅值整定 整定ACR 限幅值需要考虑负载的情况,留有一定整流电压的余量。ACR 按比例积分调节器接线,将g U 接到ACR 的输入端,用ACR 的输出c U 去控制触发移相,当输入g U 为负且增加时,通过示波器观察到触发移相角α移至οο30~15min =α时的电压即为ACR 限幅值U cm ,可通过ACR 正限幅电位器锁定。 3.电流环调试(电动机不加励磁) (1)电流反馈极性的测定及过电流保护环节整定。 整定时ASR 、ACR 均不接入系统,系统处于开环状态。直接用给定电压g U 作为c U 接到移相触发器GT 以调节控制角α,此时应将电动机主回路中串联的变阻器M R 放在最大值处,

电流转速双闭环直流调速系统matlab仿真实验

仿真设计报告

转速、电流双闭环直流调速系统的Simulink仿真设计 一、系统设计目的 直流调速系统具有调速范围广、精度高、动态性能好和易于控制等优点,所以在电气传动中获得了广泛应用。根据直流电动机的工作原理建立了双闭环直流调速系统的数学模型,并详细分析了系统的原理及其静态和动态性能。按照自动控制原理,对双闭环调速系统的设计参数进行分析和计算,利用Simulink对系统进行了各种参数给定下的仿真,通过仿真获得了参数整定的依据。在理论分析和仿真研究的基础上,设计了一套实验用双闭环直流调速系统。对系统的性能指标进行了实验测试,表明所设计的双闭环调速系统运行稳定可靠,具有较好的静态和动态性能,达到了设计要求。采用MATLAB 软件中的控制工具箱对直流电动机双闭环调速系统进行计算机辅助设计,并用SIMULINK进行动态数字仿真,同时查看仿真波形,以此验证设计的调速系统是否可行。 二、系统理论分析 2.1双闭环直流调速系统工作原理 电动机在启动阶段,电动机的实际转速低于给定值,速度调节器的输入端偏差信号,经放大后输出的电压保持为限幅值,速度调节器工作在开环状态,速度调节器的输出电压作为电流给定值送入电流调节器,此时以最大电流给定值使电流调节器输出移相信号直流电压迅速上升,电流也随即增大直到最大给定值,电动机以最大电流恒流加速启动。电动机的最大电流可通过整定速度调节器的输出限幅值来改变。在转速上升到给定转速后,速度调节器输入端的偏差信号减小到近于零,速度调节器和电流调节器退出饱和状态,闭环调节开始起作用。对负载引起的转速波动,速度调节器输入端偏差信号将随时通过速度调节器、电流调节器修正触发器的移相电压,使整流桥输出的直流电压相应变化校正和补偿电动机的转速偏差。另外电流调节器的小时间常数,还能对因电网波动引起的电枢电流的变化进行快速调节,可在电动机转速还未来得及发生改变时,迅速使电流恢

案例转速电流双闭环直流调速系统

案例转速、电流双闭环直流调速系统 一、概述 现以ZCC1系列晶闸管—电动机直流调速装置(简称ZCC1系列)为例,来阐述晶闸管—电动机直流调速系统分析、调试的一般方法与步骤。该装置的基本性能如下: (1)装置的负荷性质按连续工作制考核。 (2)装置在长期额定负荷下,允许150%额定负荷持续二分钟,200%额定负荷持续10秒钟,其重复周期不少于1小时。 (3)装置在交流进线端的电压为(0.9~1.05)380伏时,保证装置输出端处输出额定电压和额定电流。电网电压下降超过10%范围时输出额定电压同电源电压成正比例下降。 (4)装置在采用转速反馈情况下,调速范围为20∶1,在电动机负载从10%~100%额定电流变化时,转速偏差为最高转速的0.5%(最高转速包括电动机弱磁的转速)。转速反馈元件采用ZYS型永磁直流测速发电机。 (5)装置在采用电动势反馈(电压负反馈、电流正反馈)时,调速范围为10∶1,电流负载从10%~100%变化时,转速偏差小于最高转速的5%(最高转速包括电动机弱磁的转速)。 (6)装置在采用电压反馈情况下,调压范围为20∶1,电流负载从10%~100%变化时,电压偏差小于额定电压的0.5%。 (7)装置给定电源精度,在电源电压下降小于10%以及温度变化小于±10℃时,其精度为1%。 二、系统的组成 1、主电路 ZCC1系列装置主电路采用三相桥式全控整流电路,交流进线电源通过三相整流变压器或者交流进线电抗器接至380V交流电源。为了使电机电枢电流连续并减小电流脉动以改善电动机的发热和换向,在直流侧接有滤波电抗器L。 2、控制系统 ZCC1系列晶闸管直流调速装置的控制系统采用速度(转速)电流双闭环控制系统,其原理方框图如图3-1所示

直流电动机转速电流双闭环调速系统设计

直流电动机调速系统课程设计 班级:电气0802 姓名:刘志勇 学号: 08140218

目录 第一章:设计内容 (2) 1.1设计内容: (2) 第二章:设计要求 (2) 2.1设计要求 (2) 2.2设计参数: (2) 第三章:双闭环直流调速系统设计 (3) 3.1转速、电流双闭环直流调速系统的成 (3) 3.2系统电路结构 (4) 3.3调节器的设计 (7) 第四章单闭环直流调速系统设计 (14) 4.1闭环系统调速的组成及其静特性 (14) 4.2 稳态参数计算 (16) 第五章相关原理图设计波形图 (19) 5.1.主电路图 (19) 5.2.控制电路图 (20) 第六章设计总结及参考文献 (23) 6.1设计总结 (23) 6.2 参考资料 (23) 1

第一章:设计内容 1.1设计内容: (1)根据给定参数设计转速电流双闭环直流调速系统 (2)根据给定参数设计转速单闭环直流调速系统,使用模拟电路元件实现转速单闭环直流调速系统 第二章:设计要求 2.1设计要求 2.1.1根据设计要求完成双闭环系统的稳态参数设计计算、判断系统的稳定性、绘制系统的稳态结构图 2.1.2直流调速系统的调节器,选择调节器结构、利用伯德图完成系统动态校正、计算系统的稳定余量γ及GM、计算调节器参数、绘系统动态结构图 2.1.3设计采用模拟调节器及MOSFET功率器件实现的转速单闭环调速系统,绘制控制电路及主电路电路图 2.1.4测试单闭环调速系统的PWM驱动信号波形、电压电流波形、转速反馈波形和直流电动机转速及控制电路各单元的相关波形。 2.2设计参数: =1.8Ω 2.2.1电枢电阻R a 电枢电感L =9.76mH、GD2=16.68N·cm2、Tm=35ms a 2

双闭环直流调速系统工作原理

双闭环直流调速系统设计 内容摘要 电机自动控制系统广泛应用于各行业,尤其是工业。这些行业中绝大部分生产机械都采用电动机作原动机。有效地控制电.直流电动机具有良好的起动、制动性能,宜于在大范围内平滑调速,在许多需要调速或快速正反向的电力拖动领域中得到了广泛的应用。有效地控制电机,提高其运行性能,具有很好的现实意义。本文介绍了基于工程设计对直流调速系统的设计,根据直流调速双闭环控制系统的工作原理以及介绍变频调速技术的发展概况,变频调速技术的发展趋势关键词:双闭环控制系统,转速控制环,系统现状,发展趋势 英文翻译:Electrical automatic control system widely used in various industries, especially in industry. Most of the production machinery used in these industries motor as a prime mover. Effectively control electricity. Dc motor has a good start, braking performance, adaptable to smooth speed regulation in large scale, in many need to speed or fast forward and reverse has been widely used in the area of electric drive. Effectively control motor, improve its operation performance, has the very good practical significance. I ntroduced in this paper, based on the engineering design to the design of dc speed regulating system, the working principle of the double closed loop control system of dc speed regulating and also I ntroduce the development general situation and the development trend Key words: double closed loop control system, speed control loop, th e status quo,the development of trend 一:引言 矿井提升机是煤矿、有色金属矿中的重要运输设备,是“四大运转设备”之一。矿井提升系统具有环节多、控制复杂、运行速度快、惯性质量大、运行特性复杂的特点,且工作状况经常交替转换。 近几年,交流调速飞速发展,逐渐有赶超并代替直流调速的趋势。直流调速理论基础是经典控制理论,而交流调速主要依靠现代控制理论。不过最近研制成功的直流调速器,具有和交流变频器同等性能的高精度、高稳定性、高可靠性、

转速电流双闭环直流调速系统仿真设计

转速电流双闭环直流调速系统仿真 摘要:本设计主要研究了直流调速转速电流双闭环控制系统以及对MATLAB软件的使用。系统模型由晶闸管-直流电动机组成的主电路和转速电流调节器组成的控制电路两部分组成。主电路采用三相可控晶闸管整流电路整流,用PI调节器控制,通过改变直流电动机的电枢电压从而进行调压调速。控制电路设置两个PI调节器,分别调节转速和电流,即分别引入转速负反馈和电流负反馈。二者实行嵌套连接,把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变换器UPE,形成转速电流双闭环直流调速系统。在Simulink中建立仿真模型,设置各个模块的参数,仿真算法和仿真时间,运行得出仿真模型的波形图。通过对波形图的分析,说明直流调速转速电流双闭环控制系统具有良好的静态和动态特性。 关键词:双闭环直流调速系统,MATLAB/SIMULINK仿真,ASR,ACR。 课程概述:直流调速是现代电力拖动自动控制系统中发展较早的技术。随着交流调速的迅速发展,交流调速技术越趋成熟,以及交流电动机的经济性和易维护性,使交流调速广泛受到用户的欢迎。但是直流电动机调速系统以其优良的调速性能仍有广阔的市场,并且建立在反馈控制理论基础上的直流调速原理也是交流调速控制的基础。采用转速负反馈和PI调节器的单闭环调速系统可以在保证系统稳定的条件下实现转速无静差。但如果对系统的动态性能要求较高,如要求快速起制动、突加负载动态速降时,单闭环系统就难以满足。这主要是因为在单闭环系统中不能完全按照需要来控制动态过程中的电流或转矩。在单闭环系统中,只有电流截至负反馈环节是专门用来控制电流的,但它只是在超过临界电流值以后,靠强烈的负反馈作用限制电流的冲击,并不能很理想的控制电流的动态波形。实际工作中,在电机最大电流受限的条件下,充分利用电机的允许过载能力,最好是在过渡过程中始终保持电流转矩为允许最大值,使电力拖动系统尽可能用最大的加速度启动,到达稳定转速后,又让电流立即降下来,使转矩马上与负载相平衡,从而转入稳态运行。实际上,由于主电路电感的作用,电流不能突跳,为了实现在允许条件下最快启动,关键是要获得一段使电流保持为最大值的恒流过程,按照反馈控制规律,电流负反馈就能得到近似的恒流过程。问题是希望在启动过程中只有电流负反馈,而不能让它和转速负反馈同时加到一个调节器的输入端,到达稳态转速后,又希望只要转速负反馈,不要电流负反馈发挥主作用,因此需采用双闭环直流调速系统。这样就能做到既存在转速和电流两种负反馈作用又能使它们作用在不同的阶段。其次并基于双闭环的电气原理图的SIMULINK的仿真,分析了直流调速系统的动态抗干扰性能。采用工程设计方法

转速电流双闭环直流调速系统设计

电力拖动自控系统课程设 计报告 题目转速电流双闭环直流调速系统设 计 学院:电子与电气工程学院 年级专业:2012级电气工程及其自动化(电力传动方向)姓名: 学号: 指导教师: 成绩:

电力拖动自动控制系统综合课程设计 设计任务书 某晶闸管供电的双闭环直流调速系统,整流装置采用三相桥式电路,基本数据为: 直流电动机:kW 5.7P N =,V 400U N =,A 8.21I N = ,min /r 3000N =n , W 716.0R a =,电枢回路总电阻Ω=75.1R ,电枢电路总电感mH 60L =,电流允许 过载倍数5.1=λ,折算到电动机轴的飞轮惯量22m N 64.2GD ?=。励磁电流为1.77A 。 晶闸管整流装置放大倍数40K s =,滞后时间常数s 0017.0T s = 电流反馈系数)I 5.1/V 15(A /V 4587.0βN ≈= 电压反馈系数)/V 15(r m in/V 005.0αN n ≈?= 滤波时间常数s 002.0T oi =,s 01.0T on = V 15U U U cm *im *nm ===;调节器输入电阻Ω=K 40R o 。

设计要求:稳态指标:无静差; 动态指标:电流超调量00i 5≤σ;采用转速微分负反馈使转速超调量等于0。 目 录 1 概述 (1) 1.1问题的提出 ............................................................................................................ 1 1.2解决的问题 ............................................................................................................ 1 1.3实现目标要求设计 . (1) 2 主电路计算 (2) 2.1整流变压器的计算 .............................................................................................. 2 2.2晶闸管及其元件保护选择 (2) 3 直流双闭环调速系统设计 (8) 3.1转速和电流双闭环调速系统的组成 .............................................................. 8 3.2系统静态结构图及性能分析 ............................................................................ 9 3.3系统动态结构图及性能分析 .. (10)

转速电流双闭环直流调速系统

课程设计说明书 课程名称:电力拖动自动控制系统 设计题目:转速电流双闭环直流调速系统 院系: 学生姓名: 学号: 专业班级: 指导教师:

2010年12 月30 日

转速电流双闭环直流调速控制系统 摘要:此设计利用晶闸管、二极管等器件设计了一个转速、电流双闭环直流调速系统。该系统中设置了电流检测环节、电流调节器以及转速检测环节、转速调节器,构成了电流环和转速环,前者通过电流元件的反馈作用稳定电流,后者通过转速检测元件的反馈作用保持转速稳定,最终消除转速偏差,从而使系统达到调节电流和转速的目的。该系统起动时,转速外环饱和不起作用,电流内环起主要作用,调节起动电流保持最大值,使转速线性变化,迅速达到给定值;稳态运行时,转速负反馈外环起主要作用,使转速随转速给定电压的变化而变化,电流内环跟随转速外环调节电机的电枢电流以平衡负载电流。 关键词:双闭环,晶闸管,转速调节器,电流调节器

目录 第一章.直流拖动控制系统总体设计 (1) 一、直流调速系统拖动方案的对比 (1) 二、直流调速系统控制方案的确定 (2) 三、直流电动机的调速方式 (2) 第二章.主电路参数计算和保护环节设计 (3) 一、整流变压器额定参数的计算 (3) 二、主电路器件的计算与选择 (3) 三、主电路保护环节的设计与计算 (3) 四、电抗器参数计算与选择 (4) 第三章.调速系统控制单元的确定和调整 (4) 一、检测环节 (4) 二、调节器的选择与调整 (5) 三、系统的给定电源 (11) 第四章.触发电路的设计 (12) 第五章.调速系统动态参数的工程计 (12) 心得体会 (12) 参考文献 (13) 附件.课程设计要求 (13)

双闭环直流调速系统(精)

直流双闭环调速系统设计 1设计任务说明书 某晶闸管供电的转速电流双闭环直流调速系统,整流装置采用三相桥式电路,基本数据为: 直流电动机:V U N 750=,A I N 780=,min 375r n N =,04.0=a R ,电枢电路 总电阻R=0.1Ω,电枢电路总电感mH L 0.3=,电流允许过载倍数5.1=λ,折算到电动机轴的飞轮惯量2 2 4.11094Nm GD =。 晶闸管整流装置放大倍数75=s K ,滞后时间常数s T s 0017.0= 电流反馈系数?? ? ??≈=N I V A V 5.11201.0β 电压反馈系数?? ? ??=N n V r V 12min 032.0α 滤波时间常数.02.0,002.0s T s T on oi == V U U U cm im nm 12===* *;调节器输入电阻Ω=K R O 40。 设计要求: 稳态指标:无静差 动态指标:电流超调量005≤i σ;空载起动到额定转速时的转速超调量 0010≤n σ。

目录 1设计任务与分析? 2调速系统总体设计...................................................................................................................................... 3直流双闭环调速系统电路设计? 3.1晶闸管-电动机主电路的设计........................................................ 3.1.1主电路设计? 3.1.2主电路参数计算................................................................. 3.2转速、电流调节器的设计? 3.2.1电流调节器.................................................................. 3.2.1.1电流调节器设计? 3.2.1.2电流调节器参数选择........................................................ 3.2.2转速调节器.................................................................... 3.2.2.1转速调节器设计.............................................................. 3.2.2.2转速调节器参数选择.......................................................... 4计算机仿真.................................................................................................................................................. 4.1空载起动? 4.2突加负载........................................................................................................................................ 4.3突减负载 5设计小结与体会? 6参考文献.....................................................................................................................................................

传动教材第2章转速电流双闭环直流调速系统和调节器的工程设计方法

第2章 转速、电流双闭环直流调速系统 和调节器的工程设计方法 2.1 转速、电流双闭环直流调速系统及其静特性 采用PI 调节的单个转速闭环直流调速系统可以在保证系统稳定的前提下实现转速无静差。但是,如果对系统的动态性能要求较高,单闭环系统就难以满足需要,这主要是因为在单闭环系统中不能控制电流和转矩的动态过程。电流截止负反馈环节是专门用来控制电流的,并不能很理想地控制电流的动态波形,图2-1a)。 在起动过程中,始终保持电流(转矩)为允许的最大值,使电力拖动系统以最大的加速度起动,到达稳态转速时,立即让电流降下来,使转矩马上与负载相平衡,从而转入稳态运行。这样的理想起动过程波形示于图2-1b 。 为了实现在允许条件下的最快起动,关键是要获得一段使电流保持为最大值dm I 的恒流过程。按照反馈控制规律,采用某个物理量的负反馈就可以保持该量基本不变,那么,采用电流负反馈应该能够得到近似的恒流过程。应该在起动过程中只有电流负反馈,没有转速负反馈,达到稳态转速后,又希望只要转速负反馈,不再让电流负反馈发挥作用。 2.1.1 转速、电流双闭环直流调速系统的组成 系统中设置两个调节器,分别调节转速和电流,如图2-2所示。把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变换器UPE 。从闭环结构上看,电流环在里面,称作内环;转速环在外边,称作外环。这就形成了转速、电流双闭环调速系统。 转速和电流两个调节器一般都采用PI 调节器,图2-3。两个调节器的输出都是带限幅 + TG n ASR ACR U *n + - U n U i U * i + - U c TA M + - U d I d UPE - M T 图2-2 转速、电流双闭环直流调速系统结构 ASR —转速调节器 ACR —电流调节器 TG —测速发电机 TA —电流互感器 UPE —电力电子变换器 内外 n i

转速、电流双闭环直流调速系统设计

运动控制课程设计 专业:自动化 班级: 姓名: 学号: 指导教师: 2015年07月 16 日

转速、电流双闭环直流调速系统设计 1.设计目的 一般来说,我们总希望在最大电流受限制的情况下,尽量发挥直流电动机的过载能力,使电力拖动控制系统以尽可能大的加速度起动,达到稳态转速后,电流应快速下降,保证输出转矩与负载转矩平衡,进入稳定运行状态。为实现在约束条件快速起动,关键是要有一个使电流保持在最大值的恒流过程。根据反馈控制规律,要控制某个量,只要引入这个量的负反馈。因此采用电流负反馈控制过程,起动过程中,电动机转速快速上升,而要保持电流恒定,只需电流负反馈;稳定运行过程中,要求转矩保持平衡,需使转速保持恒定,应以转速负反馈为主。故采用转速、电流双闭环控制系统。 2.设计任务 某晶闸管供电的双闭环直流调速系统,整流装置采用三相桥式电路;基本数据如下: (1)直流电动机:220V、160A、1460r/min、Ce=0.129Vmin/r,允许过载倍数λ=1.5; (2)晶闸管装置放大系数:K s=40; (3)电枢回路总电阻:R=0.5Ω; (4)时间常数:T l=0.03s,T m=0.19s; (5)电流反馈系数:β=0.042V/A; (6)转速反馈系数:α=0.0068Vmin/r; 试按工程设计方法设计双闭环系统的电流调节器和转速调节器,并用Simulink建立系统模型,给出仿真结果。 3.设计要求 根据电力拖动自动控制理论,按工程设计方法设计双闭环调速系统: (1)设计电流调节器的结构和参数,将电流环校正成典型I型系统; (2)分析电流环不同参数下的仿真曲线; (3)在简化电流环的条件下,设计速度调节器的结构和参数,将速度环校正成典型II型系统; (4)分析转速环空载起动、满载起动、抗扰波形图仿真曲线 (5)进行Simulink仿真,验证设计的有效性。 4.设计内容 4.1双闭环直流调速系统的组成

转速电流双闭环直流调速系统设计

《电力拖动自动控制系统》课程设计 设计报告 题目:转速电流双闭环直流调速系统设计 学院信息科学与工程学院 专业自动化 班级0603 学号 2 学生姓名杨明 指导老师潘炼 日期2009/7/2

转速电流双闭环直流调速系统设计 1. 设计题目 转速、电流双闭环直流调速系统设计 2. 设计任务 已知某晶闸管供电的双闭环直流调速系统,整流装置采用三相桥式电路,基本数据如下: 1)直流电动机:160V、120A、1000r/min、C e=0.136Vmin/r,允许过载倍数λ=1.4 2)晶闸管装置放大系数:K s=30 3)电枢回路总电阻:R=0.4Ω 4)时间常数:T l=0.023s,T m=0.2s,转速滤波环节时间常数T on取0.01s 5)电压调节器和电流调节器的给定电压均为10V 试按工程设计方法设计双闭环系统的电流调节器和转速调节器,并用Simulink建立系统模型,给出仿真结果。 系统要求: 1)稳态指标:无静差 2)动态指标:电流超调量σi ≤5%;空载起动到额定转速时超调量σn ≤10% 3. 设计要求 根据电力拖动自动控制理论,按工程设计方法设计双闭环调速系统的步骤如下: 1)设计电流调节器的结构和参数,将电流环校正成典型I型系统; 2)在简化电流环的条件下,设计速度调节器的结构和参数,将速度环校正成典型II型系统; 3)进行Simulink仿真,验证设计的有效性。 4.设计内容 1)设计思路: 带转速负反馈的单闭环系统,由于它能够随着负载的变化而相应的改变电枢电压,以补偿电枢回路电阻压降的变化,所以相对开环系统它能够有效的减少稳态速降。 当反馈控制闭环调速系统使用带比例放大器时,它依靠被调量的偏差进行控制的,因此是有静差率的调速系统,而比例积分控制器可使系统在无静差的情况下保持恒速,实现无静差调速。 对电机启动的冲击电流以及电机堵转时的堵转电流,可以用附带电流截止负

运动控制系统双闭环直流调速系统

运动控制课程设计任务书 题目:双闭环直流调速系统设计 使用班级:电气081、082 设计内容 已知电机参数为:PN=500kW,UN=750V,IN=760AΩ,允许过载倍数λ=,触发整流环节Ks=75,Tl=,Tm=,调节器输入输出最大电压为10V,设计双闭环调速系统,达到最理想的调速性能。 主要设计内容包括:1、ACR、ASR调节器类型选择与参数计算。2、系统建模与仿真。3、调节器电路设计。4、主电路设计。5、反馈电路设计。6、触发电路设计。7、故障处理电路设计。 设计步骤 一、总体方案设计 二、参数初步计算。 三、控制系统的建模和MALAB仿真 四、根据仿真结果调整参数 五、主电路及控制电路设计 六、编写课程设计说明书,绘制完整的系统电路图( A3 幅面)。 课程设计说明书要求 1 .课程设计说明书应书写认真.字迹工稚,论文格式参考国家正式出版的书籍和论文编排。 2 .论理正确、逻辑性强、文理通顾、层次分明、表达确切,并提出自己的见解和观点。 3 .课程设计说明书应有目录、摘要、序言、主干内容(按章节编写)、主要结论和参考书,附录应有系统方枢图和电路原理图。 4 .课程设计说明书应包括按上述设计步骤进行设计的分析和思考内容和引用的相关知识

摘要 双闭环(转速环、电流环)直流调速系统是一种当前应用广泛,经济,适用的电力传动系统。它具有动态响应快、抗干扰能力强的优点。直流双闭环调速系统中设置了两个调节器, 即转速调节器(ASR)和电流调节器(ACR), 分别调节转速和电流。可实现频繁的无级快速起动、制动和反转;能满足生产过程自动化系统各种不同的特殊运行要求,历来是自动控制系统的主要执行元件,在轧钢及其辅助机械、矿井卷扬机、挖掘机、海洋钻机、大型起重机、金属切削机床、造纸机、纺织机械等领域中得到了广泛的应用。换向器是直流电机的主要薄弱环节,它使直流电机的单机容量、过载能力、最高电压、最高转速等重要指标都受到限制,也给直流电机的制造和维护添了不少麻烦。然而,鉴于直流拖动控制系统的理论和实践都比较成熟,直流电机仍在广泛的使用。因此,长期以来,在应用和完善直流拖动控制系统的同时,人们一直不断在研制性能与价格都赶得上直流系统的交流拖动控制系统,近年来,在微机控制和电力电子变频装置高度发展之后,这个愿望终于有了实现的可能。在许多需要调速或快速正反向的电力拖动系统领域中得到了广泛的应用。并且随着电力电子器件开关性能的不断提高,直流脉宽调制( PWM) 技术得到了飞速的发展。 关键词: 双闭环,晶闸管,转速调节器,电流调节器,MALAB仿真

相关主题