搜档网
当前位置:搜档网 › 三角函数图像的平移、变换练习题

三角函数图像的平移、变换练习题

三角函数图像的平移、变换练习题
三角函数图像的平移、变换练习题

三角函数图像的平移、变换练习题

1、为了得到函数sin(2)3y x π=-的图像,只需把函数sin(2)6y x π=+的图像( ) (A )向左平移4π个长度单位 (B )向右平移4

π个长度单位 (C )向左平移2π个长度单位 (D )向右平移2

π个长度单位 2、将函数sin y x =的图像上所有的点向右平行移动10

π个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图像的函数解析式是

(A )sin(2)10y x π=- (B )sin(2)5

y x π

=- (C )1sin()210y x π=- (D )1sin()220y x π=- 5y Asin x x R 66ππω???=∈????

右图是函数(+)()在区间-,上的图象,为了得到这个

函数的图象,只要将y sin x x R =∈()的图象上所有的( )

(A)向左平移

3π个单位长度,再把所得各点的横坐标缩短到原来的12

倍,纵坐标不变 (B) 向左平移3

π个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变

(C) 向左平移

6

π个单位长度,再把所得各点的横坐标缩短到原来的12倍,纵坐标不变 (D) 向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变 4、若将函数()tan 04y x πωω?

?=+> ???的图像向右平移6

π个单位长度后,与函数tan 6y x πω??=+ ??

?的图像重合,则ω的最小值为( ) A .16 B. 14 C. 13 D. 12

5、已知函数()sin()(,0)4f x x x R π

??=+∈>的最小正周期为π,为了得到函数

()cos g x x ?=的图象,只要将()y f x =的图象( )

A 向左平移

8π个单位长度 B 向右平移8

π个单位长度 C 向左平移4π个单位长度 D 向右平移4π个单位长度 6、为了得到函数y=x x x cos sin 3sin 2

+的图象,可以将函数y=sin2x 的图象( ) A.向左平移6π

个单位长度,再向下平移21

个单位长度

B.向右平移6π

个单位长度,再向上平移21

个单位长度

C.向左平移12π

个单位长度,再向下平移21

个单位长度

D.向右平移12π

个单位长度,再向上平移21

个单位长度

7、为得到函数cos(2)3y x π

=+的图象,只需将函数sin 2y x =的图象(

) A .向左平移512π个长度单位 B .向右平移512π

个长度单位

C .向左平移56π

个长度单位 D .向右平移56π

个长度单位

8、)33sin(32)(π

ω+=x x f (ω>0)

(1)若f (x +θ)是周期为2π的偶函数,求ω及θ值

(2)f (x )在(0,3π

)上是增函数,求ω最大值。

三角函数图象的平移和伸缩

三角函数图象的平移和 伸缩 -CAL-FENGHAI.-(YICAI)-Company One1

三角函数图象的平移和伸缩 函数sin()y A x k ω?=++的图象与函数sin y x =的图象之间可以通过变化A k ω?,,,来相互转化.A ω,影响图象的形状,k ?,影响图象与x 轴交点的位置.由A 引起的变换称振幅变换,由 ω引起的变换称周期变换,它们都是伸缩变换;由?引起的变换称相位变换,由k 引起的变换 称上下平移变换,它们都是平移变换. 既可以将三角函数的图象先平移后伸缩也可以将其先伸缩后平移. 变换方法如下:先平移后伸缩 sin y x =的图象???0)或向右(0)平移个单位长度 得sin()y x ?=+的图象() ωωω ?????????→横坐标伸长(0<<1)或缩短(>1) 1 到原来的纵坐标不变 得sin()y x ω?=+的图象()A A A >?????????→纵坐标伸长(1)或缩短(0<<1) 为原来的倍横坐标不变 得sin()y A x ω?=+的图象(0)(0) k k k >

先伸缩后平移 sin y x =的图象(1)(01) A A A ><?????????→横坐标伸长或缩短到原来的纵坐标不变 得sin()y A x ω=的图象 (0)(0) ???ω >

三角函数图象的平移和伸缩(后面有高考题练习)

三角函数图象的平移和伸缩 函数sin()y A x k ω?=++的图象与函数sin y x =的图象之间可以通过变化A k ω?,,,来相互转化.A ω,影响图象的形状,k ?,影响图象与x 轴交点的位置.由A 引起的变换称振幅变换,由ω引起的变换称周期变换,它们都是伸缩变换;由?引起的变换称相位变换,由k 引起的变换称上下平移变换,它们都是平移变换. 既可以将三角函数的图象先平移后伸缩也可以将其先伸缩后平移. 变换方法如下:先平移后伸缩 sin y x =的图象???0)或向右(0) 平移个单位长度 得sin()y x ?=+的图象()ωωω ?????????→横坐标伸长(0<<1)或缩短(>1) 1 到原来的纵坐标不变 得sin()y x ω?=+的图象()A A A >?????????→纵坐标伸长(1)或缩短(0<<1) 为原来的倍横坐标不变 得sin()y A x ω?=+的图象(0)(0) k k k ><?????????→横坐标伸长或缩短到原来的纵坐标不变 得sin()y A x ω=的图象 (0)(0) ???ω >

三角函数图像平移变换及图像解析式

三角函数图像题 ---图像求解析式及平移变换 一.根据图像求解析式 1.图 1 是函数π2sin()2y x ω??? ?=+< ???的图象上的一段,则( ) A.10π116ω?= =, B.10π116ω?==-, C.π 26ω?==, D.π 26 ω?==-, 2.已知函数()sin()f x A x ω?=+,x ∈R (其中2 2 ,0,0π π ω< <->>x A ),其部 分图像如图5所示.求函数()f x 的解析式; 3.下列函数中,图像的一部分如右图所示的是( ) A.sin()6y x π=+ B.cos(2)6y x π=- C.cos(4)3y x π=- D.sin(2)6y x π=- 4.已知函数()?? ? ? ? <>+=2,0sin π?ω?ωx y 的部分图象如右图所示,则( ) A. 6 ,1π ?ω= = B. 6 ,1π ?ω- == C. 6 ,2π ?ω= = D. 6 ,2π ?ω- == 5.下列函数中,图象的一部分如右图所示的是 A.sin 6y x π?? =+ ?? ? B.sin 26y x π?? =- ?? ? C.cos 43y x π?? =- ?? ? D.cos 26y x π?? =- ?? ? 6.函数()?ω+=x A y sin 的一个周期内的图象如下图,求y 的解析式。(其中 π?πω<<->>,0,0A ) 7.已知函数)sin(?ω+=x A y (0>A , 0ω>,π?<||)的一段图象如图所示,求函数的解析式; 二.图像平移变换问题 1.为了得到函数sin(2)3y x π=- 的图像,只需把函数sin(2)6 y x π =+的图像( ) A.向左平移4π B.向右平移4π C.向左平移2π D.向右平移2 π 图5 y x 2 -1-0 1 -1 1 2345 6

三角函数图像的平移变换专项练习

三角函数图像的平移变换专项练习 1.为了得到函数)6 3sin(π +=x y 的图象,只需把函数x y 3sin =的图象 ( ) A 、向左平移 6π B 、向左平移18π C 、向右平移6π D 、向右平移18 π 6、将函数)(sin )(R x x x f y ∈?=的图象向右平移4 π 个单位后,再作关于x 轴的对 称变换,得到函数x y 2sin 21-=的图象,则)(x f 可以是_______。 1、要得到函数)4 2sin(3π +=x y 的图象,只需将函数x y 2sin 3=的图象( ) (A )向左平移 4π个单位 (B )向右平移4π 个单位 (C )向左平移8π个单位 (D )向右平移8 π 个单位 2、将函数y=sin3x 的图象作下列平移可得y=sin(3x+ 6 π )的图象 (A) 向右平移 6π 个单位 (B) 向左平移6π 个单位 (C )向右平移18π 个单位 (D )向左平移18 π 个单位 3.将函数sin y x =的图象上每点的横坐标缩小为原来的1 2 (纵坐标不变),再把 所得图象向左平移6π 个单位,得到的函数解析式为( ) ()sin 26A y x π?? =+ ?? ? ()sin 23B y x π? ?=+ ?? ? ()sin 26x C y π??=+ ??? ()s i n 212x D y π??=+ ??? 4、把函数x y cos =的图象上所有的点的横坐标缩小到原来的一半,纵坐标保持不变,然后把图象向左平移4 π 个单位长度,得到新的函数图象,那么这个新函数的解析式为 (A )??? ??+=42cos πx y (B )??? ??+=42cos πx y (C )x y 2sin = (D )x y 2sin -= 5.要得到函数x y cos 2=的图象,需将函数)42sin(2π +=x y 的图象( ) (A)横坐标缩短到原来的21倍(纵坐标不变),再向左平行移动8π 个单位长度 (B)横坐标缩短到原来的 21倍(纵坐标不变),再向右平行移动4 π个单位长度

三角函数的平移及伸缩变换(含答案)

三角函数的平移及伸缩变换 一、单选题(共8道,每道12分) 1.将函数的图象上所有点的纵坐标不变,横坐标缩小到原来的,再把图象上各点向左平移个单位长度,则所得的图象的解析式是( ) A. B. C. D. 答案:C 解题思路: 试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换 2.已知函数y=f(x)图象上每个点的纵坐标保持不变,横坐标伸长到原来的2倍,然后再将整 个图象沿x轴向左平移个单位,沿y轴向下平移1个单位,得到函数,则y =f(x)的表达式时( ) A. B. C. D.

答案:B 解题思路: 试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换 3.已知函数,若f(x)的图象向左平移个单位所得的图象与f(x)的图象向右平移个单位所得的图象重合,则的最小值是( ) A.2 B.3 C.4 D.5 答案:C 解题思路:

试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换 4.已知函数的最小正周期为,将的图象向左平移个单位长度,所得图象关于y轴对称,则的一个值是( ) A. B. C. D. 答案:D 解题思路:

试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换 5.偶函数的图象向右平移个单位得到的图象关于原点对称,则的值可以是( ) A.1 B.2 C.3 D.4 答案:B 解题思路:

试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换 6.已知函数的周期为π,若将其图象沿x轴向右平移a个单位(a >0),所得图象关于原点对称,则实数a的最小值是( ) A.π B. C. D. 答案:D

(精心整理)三角函数之平移

三角函数图像的平移、变换 一、 引入 以简单函数为例,讲解“左加右减、上加下减”。讲清横移的实质是把所有x 替换为x+a ; 二、三角函数图像的平移之历年高考真题 1、(2010全国卷2理)(7)为了得到函数sin(2)3y x π=- 的图像, 只需把函数sin(2)6 y x π =+的图像( )向左平移4π个长度单位 (B )向右平移4 π 个长度单位 (C )向左平移2π个长度单位 (D )向右平移2π 个长度单位 2、(2010四川理)(6)将函数sin y x =的图像上所有的点向右平行移动10 π 个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图像的函数解析式是 (A )sin(2)10y x π=- (B )sin(2)5y x π =- (C )1sin()210y x π=- (D )1sin()220 y x π =- 3、(2010天津文)(8) 5y Asin x x R 66ππω??? =∈???? 右图是函数(+)()在区间-,上的图象,为了得到这个函数的图象,只 要将y sin x x R =∈()的图象上所有的点 (A)向左平移3 π 个单位长度,再把所得各点的横坐标缩短到原来的 1 2 倍,纵坐标不变 (B) 向左平移3 π 个单位长度,再把所得各点的横坐标伸长到原 来的2倍,纵坐标不变 (C) 向左平移6 π 个单位长度,再把所得各点的横坐标缩短到原来的12倍,纵坐标不变 (D) 向左平移6 π 个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变 4、(2009山东卷理)将函数sin 2y x =的图象向左平移4 π 个单位, 再向上平移1个单位,所得图象的函数解 析式是( ).A.cos 2y x = B.2 2cos y x = C.)4 2sin(1π++=x y D.2 2sin y x =

三角函数图像变换顺序详解(全面).

《图象变换的顺序寻根》 题根研究 一、图象变换的四种类型 从函数y = f (x)到函数y = A f ()+m,其间经过4种变换: 1.纵向平移——m 变换 2.纵向伸缩——A变换 3.横向平移——变换 4.横向伸缩——变换 一般说来,这4种变换谁先谁后都没关系,都能达到目标,只是在不同的变换顺序中,“变换量”可不尽相同,解题的“风险性”也不一样. 以下以y = sin x到y = A sin ()+m为例,讨论4种变换的顺序问题. 【例1】函数的图象可由y = sin x的图象经过怎样的平移和伸缩变换而得到? 【解法1】第1步,横向平移: 将y = sin x向右平移,得 第2步,横向伸缩: 将的横坐标缩短倍,得 第3步:纵向伸缩: 将的纵坐标扩大3倍,得 第4步:纵向平移: 将向上平移1,得 【解法2】第1步,横向伸缩: 将y = sin x的横坐标缩短倍,得y = sin 2x 第2步,横向平移:

将y = sin 2x向右平移,得 第3步,纵向平移: 将向上平移,得 第4步,纵向伸缩: 将的纵坐标扩大3倍,得 【说明】解法1的“变换量”(如右移)与参数值()对应,而解法2中有的变 换量(如右移)与参数值()不对应,因此解法1的“可靠性”大,而解法2的“风险性”大. 【质疑】对以上变换,提出如下疑问: (1)在两种不同的变换顺序中,为什么“伸缩量”不变,而“平移量”有变? (2)在横向平移和纵向平移中,为什么它们增减方向相反—— 如当<0时对应右移(增方向),而m < 0时对应下移(减方向)? (3)在横向伸缩和纵向伸缩中,为什么它们的缩扩方向相反—— 如|| > 1时对应着“缩”,而| A | >1时,对应着“扩”? 【答疑】对于(2),(3)两道疑问的回答是:这是因为在函数表达式y = A f ()+m 中x和y的地位在形式上“不平等”所至. 如果把函数式变为方程式 (y+) = f (),则x、y在形式上就“地位平等”了. 如将例1中的变成 它们的变换“方向”就“统一”了. 对于疑问(1):在不同的变换顺序中,为什么“伸缩量不变”,而“平移量有变”?这是因为在“一次”替代:x→中,平移是对x进行的. 故先平移(x→)对后伸缩(→)没有影响; 但先收缩(x→)对后平移(→)却存在着“平移”相关. 这

三角函数图象的平移和伸缩

3 得 y =A sin( x + )的图象? 向 ?上平 ( ? 移 k k ? 个 )或 单 向? 位 下长 ? (k 度 ?) → 得 y = A sin(x + )+k 的图象. y = sin x 纵坐标不变 横坐标向左平移 π/3 个单位 纵 坐标不变 横坐标缩短 为原来的1/2 y = sin(x + ) y = sin(2 x + ) 横坐标不变 纵坐标伸长为原 来的3倍 先伸缩后平移 纵坐标伸长(A 1)或缩短(0A 1) y =sin x 的图象 ??? ??????→ y = 3sin(2x + 三角函数图象的平移和伸缩 函数y = A sin(x + ) + k 的图象与函数 y = sin x 的图象之间可以通过变化 A , , ,k 来相互转 化. A ,影响图象的形状, ,k 影响图象与x 轴交点的位置.由A 引起的变换称振幅变换,由 引起的变 换称周期变 换,它们都是伸缩变换;由 引起的变换称相位变换,由k 引起的变换称上下平移变换,它们都 是平移变换. 既可以将三角函数的图象先平移后伸缩也可以将其先伸缩后平移. 变换方法如下:先平移后伸缩 向左( >0)或向右( 0) y = sin x 的图象 ??平 ? 移 ? 个单 ? 位长 ? 度 ?→ 得 y = sin(x +)的图象 横坐标伸长(0<<1)或缩短 (>1) 到原来的1(纵坐标不变) 得 y = sin(x +)的图象 纵坐标伸长(A 1)或缩短(0

横坐标伸长(0 1)或缩短(1) ????????→ 到原来的 1 (纵坐标不变) 向左( 0)或向右( 0) 得 y = A sin(x ) 的图象 ???平移 ?个 ? 单位 ??→ 得 y = A sin x ( x + )的图象??平 ?移 k ?个单 ?位长 ?度 ?→得 y = A sin( x +)+k 的图象. 纵坐标不变 y = sin x 横坐标缩短 为原来的1/2 纵坐标不变 横坐标 向左平移 π/6 个单位 横坐标不变 y = 3sin(2x + ) 纵坐标伸长为原 3 来的3倍 例1 将y = sin x 的图象怎样变换得到函数y = 2sin 2x + π +1的图象. 解:(方法一)①把y = sin x 的图象沿x 轴向左平移π个单位长度,得y = sin x + π 的图象;②将所得 图象的 横坐标缩小到原来的1,得y =sin 2x +π 的图象;③将所得图象的纵坐标伸长到原来的 2 倍,得 y = 2sin 2x + π 的图象;④最后把所得图象沿y 轴向上平移1个单位长度得到y = 2sin 2x + π +1的图象. 方法二)①把y = sin x 的图象的纵坐标伸长到原来的2倍,得y = 2sin x 的图象;②将所得图象的横坐 标缩小到原来的1 ,得y = 2sin2x 的图象;③将所得图象沿x 轴向左平移π个单位长度得y = 2sin2 x + π 的 2 8 8 图象;④最后把图象沿y 轴向上平移1个单位长度得到y = 2sin 2x + π +1的图象. 得 y = A sin x 的图象 y = sin2 x y = sin(2x + )

三角函数图像的变换

1、函数y=sin(x+π),x∈R和y=sin(x- 6- O 3 ),x∈R的图象与y=sin x的图象有什么联系?2 个单位所得的曲线是 2 sin x的图象,试求y=f(x)的解析式。 3 )y=sin2x 3 ) 3 ) 3 ) 3 ) 3 ),x∈R的简图。 π2 3 ),x∈R 6 ),x∈R 三角函数图像的变换 题型归纳: 系? π 34 ),x∈R的图象与y=sin x的图象有什么联 - π-π 3 1y π5ππ 6 34x 2、函数y=3sin(2x+π (1)y=sin x(2)y=sin x y=sin(x+π 4、函数f(x)的横坐标伸长为原来的2倍,再向左平移 π y=1 5、函数y=Asin(ωx+φA>0,ω>0,|φ|<π) 的图象如图,求函数的表达式. y=sin(2x+π y=3sin(2x+π y=sin(2x+π y=3sin(2x+π ★☆作业:(A组) 1、画出下列函数在长度为一个周期的闭区间上的简图: 3、画出函数y=3sin(2x+π y 2x+ 3 x 3sin(2x+π) 3 (3)y=4sin(x- π (4)y=sin(2x+π 第1页共2页

6 ) ,x ∈R (2) y = 1 sin( 3 x - (1) y = 5 sin( 1 x + 4 ) ,x ∈R 6、把函数 y =cos(3x + π A.向右平移 π 4 C.向右平移 12 (3) y = 3sin(2 x - ) ,x ∈R (4) y = 2 cos( x + π ) ,x ∈R 3 ,φ =- 6 B.A =1,T= 2 3 ,φ =- 4 D.A =1,T= 3 sin(2x + 3 sin(2x + (1) y = 8sin( - ) ,x ∈[0,+∞) (2) y = 1 7 ) ,x ∈[0,+∞) 2 的图象的一部分,求这个函数的解析式。 4、(1)y =sin(x + π (2)y =sin(x - π (3)y =sin(x - π 4 )是由 y =sin(x + 4 )向 5、若将某函数的图象向右平移 π 10、设函数 y = sin (x - π A.y =sin(x + 3π B.y =sin( x + π C.y =sin(x - π D.y =sin(x + π 2、说明下列函数的图像由正弦函数或余弦函数经过了怎样的变换。 π 2 2 π 4 )的图象适当变动就可以得到 y =sin(-3x )的图象,这种变动 可以是( ) π π π 4 B.向左平移 D.向左平移 12 ★★☆☆作业( B 组): 7、如图:是函数 y =A sin(ω x +φ )+2 的图象的一部分,它 的振幅、周期、初相各是 ( ) π 1 1 6 4 A.A =3,T= 4π π 4π 3π 3 ,φ =- 4 C.A =1,T= 2π 3π 4π π 3 ,φ =- 6 8、如左下图是函数 y =A sin (ω x +φ )的图象的一段,它的 解析式为 ( ) A. y = 2 π 2 x 3 ) B. y = 3 sin( 2 + π 2 π 4 ) C. y = 3 sin(x - 3 ) D. y = 2 2π 3 ) 3、不画简图,直接 写出下列函数的振幅、周期和初相,并说明这些 函数的图象可由正弦曲 线经过怎样的变化得出(注意定义域): x π 4 8 3 cos(3x + π 4 )是由 y =sin x 向 平移 个单位得到的. 4 )是由 y =sin x 向 平移 个单位得到的. π 平移 个单位得到的. 2 以后所得到的图象的函数式是 y =sin(x + 表达式为( ) 4 ) 2 ) π 4 )- 4 4 ) π 4 ),则原来的函数

高一三角函数图象的平移和伸缩

1 三角函数图象的平移和伸缩 函数sin()y A x k ω?=++的图象与函数sin y x =的图象之间可以通过变化A k ω?,,,来相互转化.A ω,影响图象的形状,k ?,影响图象与x 轴交点的位置.由A 引起的变换称振幅变换,由ω引起的变换称周期变换,它们都是伸缩变换;由?引起的变换称相位变换,由k 引起的变换称上下平移变换,它们都是平移变换. 既可以将三角函数的图象先平移后伸缩也可以将其先伸缩后平移. 变换方法如下:先平移后伸缩 sin y x =的图象???0)或向右(0) 平移个单位长度 得sin()y x ?=+的图象() ωωω ?????????→横坐标伸长(0<<1)或缩短(>1) 1 到原来的 纵坐标不变 得sin()y x ω?=+的图象()A A A >?????????→纵坐标伸长(1)或缩短(0<<1) 为原来的倍横坐标不变 得sin()y A x ω?=+的图象(0)(0) k k k ><?????????→横坐标伸长或缩短到原来的纵坐标不变 得sin()y A x ω= 的图象(0)(0) ???ω >

三角函数平移变换方法(重要)张

三角函数平移变换问题的简易判定 三角函数中的正弦、余弦在水平方向上的平移变换、涉及伸缩的平移变换问题是高考命题的热点之一,它主要以选择题的形式出现,为此本文将价绍能迅速、准确做出断定的简易方法. 先来看问题:sin()y A x ω?=+的图象可由sin()y A x ωθ=+(0,0A ω>>)的图象作怎样的变换得到? 易知sin()y A x ωθ=+的图象上所有的点都向左( 0?θω->)或向右(0?θ ω -<) 平移θ?ωω-个长度单位得到sin(())y A x ?θ ωθω -=+ +,即sin()y A x ω?=+的图象.而()?θωω---中的 θω- 、? ω -可分别看作令sin()y A x ωθ=+和sin()y A x ω?=+中“角”的位置的代数式值为0所求得的x 的值.显然点(,0)?ω-是所得图象上与原来图象上的点(,0)θω-对应,(,0)θ ω -是被移动的点 (本文约定被告移动的点为“起”),而(,0)? ω -是所得的点(本文约定移动得到的点为“终”),要从 点(,0)θω- 到点(,0)? ω -,得沿x 轴平移()?θωω---个长度单位,其余各对对应点也如此. 由此,我们得到三角函数平移变换问题的第一种类型及其简易判定方法: 类型一、两个都是“弦”,且振幅相同、变量系数相同的同名函数间的平移变换问题. 简易判定方法:在判断sin()y A x ω?=+是由sin()y A x ωθ=+(0,0A ω>>)经过怎样的变换得到时(余弦的亦然),令0x x θωθω+=?=- (起),且令0x x ? ω?ω +=?=-(终).为直观起见,可在x 轴上标出这两个点(注:要明确“起”和“终”),平移方向是由“起”指向“终”,平移的长度单位个数是()?θ ωω - --. 例1. 函数sin(2)6y x π =- 的图象可由函数sin(2)3 y x π =+的图象作怎样的变换得到? 解:令203 x π + =得6 x π =- (起),令206 x π - =,得12 x π =- (终)显然sin(2)6 y x π =- 的 图象可由sin(2)3 y x π =+ 的图象向右平移()1264 πππ - --=个单位得到. 我们再来看可转化为类型一的以下两种类型: 类型二、两个都是“弦”,且振幅相同、变量系数相同的异名函数间的平移变换问题.(此时只要用公式sin cos()2 π αα=-化为同名的,即转化为类型一的问题.)

三角函数图像及其变换

高一数学第十四讲 三角函数图像及其变换 一、知识要点: ππ ππ ?ω2,2 3, ,2 , 0=+x 列表求出对应的x 的值与y 的值,用平滑曲线连结各点,即可得到其在一个周期内的图象。 3.研究函数R x x A y ∈+=),sin(?ω(其中0,0>>ωA )的单调性、对称轴、对称中心仍然是将?ω+x 看着整 体并与基本正弦函数加以对照而得出。它的最小正周期||2ωπ =T 4.图象变换 (1)振幅变换 R x x y ∈=,s i n ??????????????→ ?<<>倍 到原来的或缩短所有点的纵坐标伸长A 1)A (01)(A R x x y ∈=,s i n A

(2)周期变换 R x x y ∈=,s i n ??????????????→ ?<<>倍 到原来的或伸长所有点的横坐标缩短ω ωω1 1)(01)(R x x y ∈=,s i n ω (3)相位变换 R x x y ∈=,s i n ????????????→?<>个单位长度平移或向右所有点向左||0)(0)(???R x x y ∈+=,)(s i n ? (4)复合变换 R x x y ∈=,s i n ????????????→ ?<>个单位长度平移或向右所有点向左||0)(0)(???R x x y ∈+=,)(s i n ? ?? ????????????→?<<>倍 到原来的 或伸长所有点的横坐标缩短ω ωω11)(01)(R x x y ∈+=),sin(?ω ??????????????→ ?<<>倍到原来的或缩短所有点的纵坐标伸长A 1)A (01)(A R x x A y ∈+=),sin(?ω 5.主要题型:求三角函数的定义域、值域、周期,判断奇偶性,求单调区间,利用单调性比较大小,图 象的平移和伸缩,图象的对称轴和对称中心,利用图象解题,根据图象求解析式,已知三角函数值求角。 二.基础练习 1. 函数1π2sin()23 y x =+的最小正周期T = . 2.函数sin 2x y =的最小正周期是 若函数tan(2)3y ax π=-的最小正周期是2π,则a=____. 3.函数]),0[)(26 sin( 2ππ ∈-=x x y 为增函数的区间是 4.函数2 2cos()()363 y x x ππ π=- ≤≤的最小值是 5.将函数cos y x =的图像作怎样的变换可以得到函数2cos(2)4 y x π =-的图像? 6.已知简谐运动ππ()2sin 32f x x ????? ?=+< ??????? 的图象经过点(01), ,则该简谐运动的最小正周期T 和初相?分别为 7.已知a=tan1,b=tan2,c=tan3,则a,b,c 的大小关系为______. 8.给出下列命题: ①存在实数x ,使sin cos 1x x =成立; ②函数5sin 22y x π?? =- ???是偶函数; ③直线8x π=是函数5sin 24y x π? ?=+ ??? 的图象的一条对称轴; ④若α和β都是第一象限角,且αβ>,则tan tan αβ>. ⑤R x x x f ∈+ =),32sin(3)(π 的图象关于点)0,6 (π - 对称; 其中结论是正确的序号是 (把你认为是真命题的序号都填上). 三、例题分析: 题型1:三角函数图像变换 例1、 变为了得到函数)62sin(π-=x y 的图象,可以将函数1 cos 2 y x =的图象怎样变换?

三角函数图像变换

三角函数图像及其变换 一、 知识梳理 1、sin y x =与cos y x =的图像与性质 2、sin y x =与sin()y A x ωφ=+ (1) 形如sin()y A x ωφ=+的函数图像的画法 (2) sin y x =与sin()y A x ωφ=+图像的关系 二、 典型例题 1、把函数sin y x =(x R ∈)的图象上所有点向左平行移动3 π 个单位长度,再把所得图象上所有点的横坐标缩短到原来的1 2 倍(纵坐标不变),得到的图象所表示的函数是 (A )sin(2)3y x π=-,x R ∈ (B )sin()26x y π =+,x R ∈ (C )sin(2)3y x π=+,x R ∈ (D )sin(2)3 2y x π =+,x R ∈ 2、为得到函数πcos 23y x ? ?=+ ???的图像,只需将函数sin 2y x =的图像( ) A .向左平移 5π 12个长度单位 B .向右平移 5π 12个长度单位 C .向左平移5π 6 个长度单位 D .向右平移5π 6 个长度单位

3、函数πsin 23y x ??=- ?? ?在区间ππ2??-???? ,的简图是( ) 4、下面有五个命题: ①函数y =sin 4x -cos 4x 的最小正周期是π. ②终边在y 轴上的角的集合是{a |a = Z k k ∈π ,2 |. ③在同一坐标系中,函数y =sin x 的图象和函数y =x 的图象有三个公共点. ④把函数.2sin 36 )32sin(3的图象得到的图象向右平移x y x y =π π+= ⑤函数.0)2 sin(〕上是减函数,在〔ππ - =x y 其中真命题的序号是 (写出所言 ) 5、将函数3sin()y x θ=-的图象向右平移3 π 个单位得到图象F ',若F '的一条对称轴是直线4 x π =,则θ的一个可能取值是 A. π125 B. π125- C. π12 11 D. 1112π- 三、高考再现 1、已知函数2 π()sin sin 2 f x x x x ωωω?? =++ ?? ? (0ω>)的最小正周期为π. (Ⅰ)求ω的值;(Ⅱ)求函数()f x 在区间2π03?????? ,上的取值范围.

三角函数图象平移问题的解题策略

三角函数图象平移问题的解题策略 三角函数图象的平移是图象学习中的一个要点,做题时往往容易搞错,究其原因主要是没有对其仔细的理解,没有形成解决问题的套路,下面对解决这类问题,给大家提供一个“四看”的解题策略。 一、看平移要求。 拿到这类问题,首先要看题目要求由哪个函数平移到哪个函数,这是判断移动方向的关键点,一般题目会有下面两种常见的叙述。 例1. (1)要得到函数的图象,只需将函数的图象() A. 向左平移 B. 向右平移 C. 向左平移 D. 向右平移 (2)函数的图象经过下面哪个变化,可以得到函数的图象() A. 向左平移 B. 向右平移 C. 向左平移 D. 向右平移 分析:上面两题是平移问题两种典型的叙述方法,粗看两题好像差不多,其实两 题的要求是不同的。第(1)题是要把函数移到,而第 (2)题是要把函数移到,两题平移的要求不同。第(1)题是我们教学中的基本形式,应该选D,而第(2)题是它的反向形式,故选C。

二、看函数形式 我们在解决这类问题时,一定要依赖的形式,如果题目给定的 函数不是这样的形式,那么我们首先要化为的形式,再考虑平移。所以二看函数形式。 例2. (1)为了得到函数的图象,可以将函数的图象() A. 向右平移个单位长度 B. 向右平移个单位长度 C. 向左平移个单位长度 D. 向左平移个单位长度 (2)函数的图象可由的图象经下面变换得到() A. 向右平移个单位长度 B. 向右平移个单位长度 C. 向左平移个单位长度 D. 向左平移个单位长度 分析:这两题主要是函数形式的变化,我们所研究的两个函数必须都是型如 等形式。当我们实际题目两个函数不都是这样的形式时,我们先利用函数公式进行转化。 第(1)题我们可以改变的形式为:

三角函数图像的平移、变换练习题

三角函数图像的平移、变换练习题 1、为了得到函数sin(2)3y x π=-的图像,只需把函数sin(2)6y x π=+的图像( ) (A )向左平移4π个长度单位 (B )向右平移4 π个长度单位 (C )向左平移2π个长度单位 (D )向右平移2 π个长度单位 2、将函数sin y x =的图像上所有的点向右平行移动10 π个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图像的函数解析式是 (A )sin(2)10y x π=- (B )sin(2)5 y x π =- (C )1sin()210y x π=- (D )1sin()220y x π=- 5y Asin x x R 66ππω???=∈???? 右图是函数(+)()在区间-,上的图象,为了得到这个 函数的图象,只要将y sin x x R =∈()的图象上所有的( ) (A)向左平移 3π个单位长度,再把所得各点的横坐标缩短到原来的12 倍,纵坐标不变 (B) 向左平移3 π个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变 (C) 向左平移 6 π个单位长度,再把所得各点的横坐标缩短到原来的12倍,纵坐标不变 (D) 向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变 4、若将函数()tan 04y x πωω? ?=+> ???的图像向右平移6 π个单位长度后,与函数tan 6y x πω??=+ ?? ?的图像重合,则ω的最小值为( ) A .16 B. 14 C. 13 D. 12 5、已知函数()sin()(,0)4f x x x R π ??=+∈>的最小正周期为π,为了得到函数 ()cos g x x ?=的图象,只要将()y f x =的图象( )

三角函数的图像及平移(教案)

三角函数的图像及平移 适用学科数学适用年级高一年级适用区域全国课时时长(分钟)120 知识点 1 正、余弦和正切的图像 2 辅助角公式 3 三角函数图像平移 学习目标1 熟记三角恒等公式,并能狗利用三角恒等公式熟练的应用在三角函数中。利用三角恒等公式解三角形,建立三角函数的思想。 2 三角恒等公式在其他知识上的应用,来培养学生应用数学分析、解决实际 问题的能力. 3 培养学生学习的积极性和主动性,发现问题,善于解决问题,探究知识,合作交流的意识,体验数学中的美,激发学习兴趣,从而培养学生勤于动脑和动手的良好品质 学习重点三角函数的图像以及平移。 学习难点三角函数的图像,解决实际问题

学习过程 一、复习预习 1终边相同的角:具有共同始边与终边的角:},20,2{Z k k ∈<≤+=πααπββ。 2 任意三角函数:x y x y ===αααtan ,cos ,sin 。 3 同角三角函数关系:α ααααcos sin tan ,1cos sin 2 2==+。 4 诱导公式:奇变偶不变,符号看象限。 5和和差公式 sin()sin cos cos sin αβαβαβ±=±;cos()cos cos sin sin αβαβ αβ±=; tan tan tan()1tan tan αβαβαβ ±±= 。 6 二倍角公式 sin 2sin cos ααα=.2222cos 2cos sin 2cos 112sin ααααα=-=-=-.2 2tan tan 21tan α αα = -. 7降幂公式 22cos 1sin 2x x -= ,2 2cos 1cos 2 x x += 8 辅助角公式 sin cos a b αα+=22sin()a b α?++(tan b a ?= ). 9 三种三角函数的图像与性质 性质 x y sin = x y cos =y =cos x x y tan = 一周期简图 最小正周期 2π 2π π 奇偶性 奇函数 偶函数 奇函数 单调性 增区间 Z ∈+- k k k ],2 π π2,2ππ2[ [2k π+π,2k π+2π],k ∈Z Z ∈+k k k ],2π π,2π-π[ 上是增函数 减区间 Z ∈+ -k k k ),2 3π π2,2ππ2( [2k π,2k π+π],k ∈Z 对称性 对称轴 Z ∈+=k k x ,2 π π x =k π,k ∈Z 对称中心Z ∈k k ),0,2π( 对称 中心 (k π,0),k ∈Z Z ∈+k k ),0,2 ππ(

(完整)三角函数平移习题汇总带解析,推荐文档

1.把函数y=sinx(x∈R)的图象上所有的点向左平行移动π/3 个单位长度,再把所得图象上所有点的横坐标缩短到原来的1/2 倍(纵坐标不变),得到的图象所表示的函数是.( ) A.y=sin(2x?π/3),x∈R B.y=sin(x/2+π/6),x∈R C.y=sin(2x+π/3),x∈R D.y=sin(2x+2π/3),x∈R 解:y=sinx 所有的点向左平行移动π/3个单位长度y=sin(x+π/3)横坐标缩短到原来的1/2 倍(纵坐标不变)y=sin(2x+π/3)故答案为:y=sin(2x+π/3) 点评:本题主要考查三角函数的平移变换. 2.把函数y=sinx(x∈R)的图象上所有点向左平行移动π/12个单位长度,再把所得图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到的图象所表示的函数是.( ) A.y=sin(2x+π/3),x∈R B.y=sin(2x+2π/3),x∈R C.y=sin(x/2+π/6),x∈R D.y=sin(x/2+π/3),x∈R 解:把函数y=sinx(x∈R)的图象上所有点向左平行移动π/12个单位长度,所得图象的解析式是y=sin(x+π/12) 再把所得图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的解析式是 y=sin(1/2x+π/12) 故答案为:y=sin(1/2x+π/12). 点评:本题的考点是利用图象变换得函数解析式,主要考查三角函数图象的平移变换,周期变换.平移的原则是左加右减、上加下减,周期变换中横坐标变为原来的?倍时,与x的系数变为原来的1/ω倍相对应. 3.把函数y=sinx(x∈R)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把所得图象上所有点向左平行移动π/3个单位长度,得到的图象所表示的函数是()A.y=sin(2x+π/3),x∈R B.y=sin(2x+2π/3),x∈R C.y=sin(x/2+π/6),x∈R D.y=sin(x/2+π/3),x∈R 解:∵函数y=sinx(x∈R) 图象上所有点的横坐标伸长到原来的2倍(纵坐标不变), y=sin1/2x,y=sin1/2x(x∈R)图象上所有点向左平行移动π/3个单位长度y=sin1/2(x+π3), x∈R. 4.把函数y=sinx(x∈R)图象上所有点的横坐标缩短到原来的1/2倍(纵坐标不变),再把图象上所有的点向左平行移动π/6个单位长度,得到的图象所表示的函数是() A.y=sin(2x-π/3)(x∈R)B.y=sin(x/2+π/6)(x∈R) C.y=sin(2x+π/3)(x∈R)D.y=sin(2x+2π/3)(x∈R) 解:由y=sinx的所得图象上所有点的横坐标缩短到原来的1/2倍得到y=sin2x, 再把图象向左平行移动π/6个单位得到y=sin2(x+π/6)=sin(2x+π/3), 故选C 点评:本题主要考查函数y=Asin(ωx+φ)的图象变换,平移变换时注意都是对单个的x 或y来运作的. 5.将函数y=sin(x+π/6)的图象上图象上各点的横坐标扩大到原来的2倍(纵坐标不变),再将所得函数图象上所有的点向左平行移动π/4个单位长度,则所得到的图象的解析式为() A.y=sin(2x+5π/12)(x∈R)B.y=sin(x/2+5π/12)(x∈R) C.y=sin(x/2?π/12)(x∈R)D.y=sin(x/2+7π/24)(x∈R)

相关主题