搜档网
当前位置:搜档网 › 集合及表示意义及例题讲解附答案

集合及表示意义及例题讲解附答案

集合及表示意义及例题讲解附答案
集合及表示意义及例题讲解附答案

集合的含义及表示

如自然数的集合,有理数的集合,不等式的解的集合。

到一个定点的距离等于定长的点的集合,到一条线段的两个端点距离相等的点的集合等等

集合的含义是什么呢?

观察下列实例:

(1)1~20以内的所有质数;2,3,5,7,9,11,13,17,19

(2)绝对值小于3的整数;-2,-1,0,1,2

(3)满足x-3>2 的实数;X>5

(4)我国古代四大发明; 造纸术、活字印刷术、指南针,火药

(5)英山一中高一(10)班的所有同学;

(6)平面上到定点O的距离等于定长的所有的点.

1、集合的概念

(1)集合:某些指定的对象集在一起就形成一个集合(简称集).

(2)元素:集合中每个对象叫做这个集合的元素.

集合的含义:一般地,我们把研究的对象统称为元素,把一些元素组成的总体叫做集合(简称集)

表示方法:集合通常用{}或大写的拉丁字母A,B,C…表示,而元素用小写的拉丁字母a,b,c…表示

元素与集合的关系:如果a是集合A的元素,就说a属于集合A,记作a∈A;

如果a不是集合A的元素,就说a不属于集合A,记作.

集合的三个特征

确定性:它的元素必须是确定的。即,给定一个集合,那么元素与集合的关系只有“属于”及“不属于”两种。

互异性:同一集合中不应重复出现同一元素.

一个给定集合中的元素是指属于这个集合的互不相同的对象。

无序性:集合中的元素无顺序,可以任意排列,调换.

只要构成两个集合的元素是一样的,我们就称这两个集合是相等的。

判断下列对象是否能构成一个集合?

①身材高大的人

②所有的一元二次方程

③直角坐标平面上纵横坐标相等的点

④细长的矩形的全体

⑥的近似值的全体

⑦我国的小河流

⑧所有的数学难题

三常用数集及记

(1)非负整数集(自然数集):全体非负整数的集合.记作N,.

(2)正整数集:非负整数集内排除0的集.记作N*或N+,.

(3)整数集:全体整数的集合.记作Z,.

(4)有理数集:全体有理数的集合.记作Q,.

(5)实数集:全体实数的集合.记作R,.

注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0.(2)非负整数集内排除0的集.记作N*或N+.Q、Z、R等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z*.

集合的表示方法

例,请表示下列集合:,

①方程x2-9=0的解的集合;{3,-3}

②大于0且小于10的奇数的集合;{1,3,5,7,9}

③不等式x-7<3的解集;

④抛物线y=x2上的点集;

1.列举法:把集合的元素一一列出来写在大括号的方法。

2.描述法:用集合所含元素的共同特征(或者说元素的公共属性)表示集合的方法。

表示形式:A={x∣p},其中竖线前x叫做此集合的代表元素;p叫做元素x所具有的公共属性;A={x∣p}表示集合A是由所有具有性质P的那些元素x组成的,即若x具有性质p,则x ?A;若x ?A,则x具有性质p。

说明: (1)有些集合的代表元素需用两个或两个以上字母表示;

(2)应防止集合表示中的一些错误。

3.文氏图法(Venn图)

我们常常画一条封闭的曲线,用它的内部表示一个集合.

例如,图1-1表示任意一个集合A;图1-2表示集合{1,2,3,4,5} .

4、元素与集合的隶属关系

(1)属于:如果a是集合A的元素,就说a属于A,记作a∈A.

(2)不属于:如果a不是集合A的元素,就说a不属于A,记作.

6、点集与数集

点集:平面直角坐标系中的点组成的集合是点集;

数集:数轴上的点组成的集合是数集.

7、集合的分类:

(1)有限集:含有有限个元素的集合.

(2)无限集:含有无限个元素的集合.

(3)空集:不含任何元素的集合.记作Φ,如:.

二、例题讲解

例1、设集合G中的元素是所有形如a+b(a∈Z,b∈Z)的数,求证:

(1)当x∈N时,x∈G;

(2)若x∈G,y∈G,则x+y∈G,而不一定属于集合G.

证明:

(1)在a+b(a∈Z,b∈Z)中,令a=x∈N,b=0,

则x= x+0·= a+b∈G,即x∈G.

(2)∵x∈G,y∈G,

∴x= a+b(a∈Z,b∈Z),y= c+d(c∈Z,d∈Z)

∴x+y=( a+b)+( c+d)=(a+c)+(b+d)

∵a∈Z,b∈Z,c∈Z,d∈Z.

∴(a+c)∈Z,(b+d)∈Z

∴x+y =(a+c)+(b+d)∈G,

又∵=且不一定都是整数,

∴=不一定属于集合G.

例2、用列举法表示下列集合

(1)A={x|x=|x|,x∈Z,且x<5};

(2)B={(x,y)|x+y=6,x∈N*,y∈N*};

(3)a,b为非零实数};

分析:

(1)根据x的范围解方程;(2)求不定方程x+y=6的正整数解;(3)根据绝对值的意义化简;(4)所求的x要满足两个条件:①x是正整数,②x使是整数.解:(1)∵x=|x|,∴x≥0,又∵x∈Z且x<5,

∴x=0,1,2,3,4,∴{x|x=|x|,x∈Z且x<5}用列举法表示为:{0,1,2,3,4};(2)B={(1,5),(2,4),(3,3),(4,2),(5,1)};

(3)当a>0,b>0时,x=2;当a<0,b<0时,x=-2;

当a,b异号时,x=0,∴C={-2,0,2};

说明:

使用列举法时,应注意以下四点:①元素间用分隔号“,”;②元素不重复;③不考虑元素顺序;④对于含较多元素的集合,如果构成该集合的元素有明显规律,可用列举法,但是必须把元素间的规律显示清楚后方能用省略号.

例3、已知集合A={x|ax2-3x+2=0,a∈R}.

(1)若A是空集,求a的取值范围;

(2)若A中只有一个元素,求a的值,并把这个元素写出来.

分析:

(1)首先要明确,集合A是关于x的方程ax2-3x+2=0(a∈R)在实数集内的解的集合.

方程无解;(2)方程有且只有一解.

解:

(1)∵A是空集,∴关于x的方程ax2-3x+2=0(a∈R)无实数解.

∴解得;

(2)∵集合A中只有一个元素,∴关于x的方程ax2-3x+2=0(a∈R)有且只有一解,若a=0,则原方程变为-3x+2=0,只有一解;若a≠0,则方程有两相等实根,Δ=(-3)2-8a=0,解得.∴a=0或时,A中只有一个元素.

例4、数集A满足条件:若a∈A,a≠1,则,

证明:(1)若2∈A,则集合A中还有另外两个元素;

(2)若a∈R,则集合A不可能是单元素集.

分析:

反复利用题设:若a∈A,a≠1,则,注意角色转换,单元素集指集合中只有一个元素.证明:

(1)∵2∈A ,∴,于是,而, ∴A 中还有-1,两个元素.

(2)假设A 是单元素集,则必有,即a2-a +1=0. △=(-1)2-4×1×1=-3<0,方程没有实数解,故假设不成立,A 不可能是单元素集.

例5、已知集合,其中a ∈R .

(1)若5是集合A 中的一个元素,求a 的值.

(2)是否存在实数a ,使得A 中的最大元素是12?若存在,求出对应的a 的值;若不存在,试说明理由. 解析:

(1)若,解得,此时都有, 若,解得,此时符合题意, ∴a 的值为-6或4.

(2)若存在这样的实数,则,且,解得a 的值为3或-5.

1、1、1集合的含义与表示 练习一

一、选择题

1、下列给出的对象中,能表示集合的是( )

A 、一切很大的数

B 、无限接近零的数

C 、聪明的人

D 、方程22-=x 的实数根 2、给出下列命题: i)N 中最小的元素是1; ii)若N a ∈,则N a ?-; iii)

N

a ∈,N

b ∈,则a+b 的最小值是2。

( )、其中所有正确命题的个数为( ) A 、0 B 、1 C 、2 D 、3

3、由4,2,2a a -组成一个集合A ,A 中含有3个元素,则实数a 的取值可以是( ) A 、1 B 、-2 C 、6 D 、2

4、下列集合表示法正确的是( )

A.{1,2,2}

B.{全体实数}

C.{有理数}

D.不等式052>-x 的解集为{052>-x }

5、设A={a},则下列各式正确的是( )

A 、A ∈0

B 、A a ?

C 、A a ∈

D 、a=A 6、集合{5|<∈+x N x }的另一种表示法是( )

A 、{0,1,2,3,4}

B 、{1,2,3,4}

C 、{0,1,2,3,4,5}

D 、{1,2,3,4,5} 7、由大于-3且小于11的偶数所组成的集合是( )

A 、{x|-3

B 、{x|-3

C 、{x|-3

D 、{x|-3

A.某个村子里的年青人组成一个集合 B.所有小正数组成的集合

C.集合{1,2,3,4,5}和{5,4,3,2,1}表示同一个集合

D.1361

1,0.5,,,,2244

这些数组成的集合有五个元素

9、下面有四个命题:

(1)集合N中最小的数是否;

(2)0是自然数; (3){1,2,3}是不大于3的自然数组成的集合; (4),a N B N a b ∈∈+则不小于2 其中正确的命题的个数是

A.1个

B.2个

C.3个

D.4个

二、填空题

10、已知集合A={2,4,x x -2},若A ∈6,则x=________________

11、在平面直角坐标系内第二象限的点组成的集合为_______________

12、方程0652=+-x x 的解集可表示为_____________________

13、方程0)3)(2()1(2=-+-x x x 的解集中含有_________个元素。

14、集合{41|<<-∈x N x }用列举法表示为_________________ 三、解答题

15、设集合A={(x,y)|x+y=6,N y N x ∈∈,} ,使用列举法表示集合A 。

16、关于x 的方程)0(02≠=++a c bx ax ,当a,b,c 分别满足什么条件时解集为空集、含一个集合、含两个集合?

17、已知集合A={01682=+-x kx }只有一个元素,试求实数k 的值,并用列举法表示集合A 。

1.1.1 集合的含义与表示

一、选择题

1.下列各组对象

①接近于0的数的全体; ②比较小的正整数全体; ③平面上到点O 的距离等于1的点的全体;④正三角形的全体;

⑤2的近似值的全体.

其中能构成集合的组数有( ) A .2组 B .3组 C .4组 D .5组

2.设集合M ={大于0小于1的有理数}, N ={小于1050的正整数}, P ={定圆C 的内接三角形}, Q ={所有能被7整除的数}, 其中无限集是( ) A .M 、N 、P B .M 、P 、Q C .N 、P 、Q D .M 、N 、Q 3.下列命题中正确的是( )

A .{x |x 2+2=0}在实数范围内无意义

B .{(1,2)}与{(2,1)}表示同一个集合

C .{4,5}与{5,4}表示相同的集合

D .{4,5}与{5,4}表示不同的集合

4.直角坐标平面内,集合M ={(x ,y )|xy ≥0,x ∈R ,y ∈R }的元素所对应的点是( ) A .第一象限内的点 B .第三象限内的点 C .第一或第三象限内的点 D .非第二、第四象限内的点

5.已知M ={m |m =2k ,k ∈Z },X ={x |x =2k +1,k ∈Z },Y ={y |y =4k +1,k ∈Z },则( ) A .x +y ∈M B .x +y ∈X C .x +y ∈Y D .x +y ?M 6.下列各选项中的M 与P 表示同一个集合的是( ) A .M ={x ∈R |x 2+0.01=0},P ={x |x 2=0}

B .M ={(x ,y )|y =x 2+1,x ∈R },P ={(x ,y )|x =y 2+1,x ∈R }

C .M ={y |y =t 2+1,t ∈R },P ={t |t =(y -1)2+1,y ∈R }

D .M ={x |x =2k ,k ∈Z },P ={x |x =4k +2,k ∈Z } 二、填空题

7.由实数x ,-x ,|x |所组成的集合,其元素最多有______个. 8.集合{3,x ,x 2-2x }中,x 应满足的条件是______.

9.对于集合A ={2,4,6},若a ∈A ,则6-a ∈A ,那么a 的值是______. 10.用符号∈或?填空:

①1______N ,0______N .-3______Q ,0.5______Z ,2______R . ②

2

1

______R ,5______Q ,|-3|______N +,|-3|______Z . 11.若方程x 2+mx +n =0(m ,n ∈R )的解集为{-2,-1},则m =______,n =______. 12.若集合A ={x |x 2+(a -1)x +b =0}中,仅有一个元素a ,则a =______,b =______.

13.方程组??

?

??=+=+=+321x z z y y x 的解集为______.

14.已知集合P ={0,1,2,3,4},Q ={x |x =ab ,a ,b ∈P ,a ≠b },用列举法表示集合Q =______. 15.用描述法表示下列各集合:

①{2,4,6,8,10,12}________________________________________________. ②{2,3,4}___________________________________________________________. ③}7

5,64,53,42,31{______________________________________________________. 16.已知集合A ={-2,-1,0,1},集合B ={x |x =|y |,y ∈A },则B =______.

三、解答题

17.集合A ={有长度为1的边及40°的内角的等腰三角形}中有多少个元素?试画出这些元素来.

18.设A 表示集合{2,3,a 2+2a -3},B 表示集合{a +3,2},若已知5∈A ,且5?B ,求实数a

的值.

19.实数集A 满足条件:1?A ,若a ∈A ,则

A a

∈-11

. (1)若2∈A ,求A ;

(2)集合A 能否为单元素集?若能,求出A ;若不能,说明理由; (3)求证:A a

∈-1

1.

20.已知集合A ={x |ax 2-3x +2=0},其中a 为常数,且a ∈R ①若A 是空集,求a 的范围;

②若A 中只有一个元素,求a 的值;

③若A 中至多只有一个元素,求a 的范围.

21.已知集合A ={p |x 2+2(p -1)x +1=0,x ∈R },求集合B ={y |y =2x -1,x ∈A }.

集合与集合的表示方法参考答案

一、选择题

1.A 2.B 3.C 4.D 5.A

6.C 解析:在选项A 中,M =φ,P ={0},是不同的集合;

在选项B 中,有M ={(x ,y )|y =x 2+1≥1,x ∈R },P ={(x ,y )|x =y 2+1≥1,y ∈R },是不同的集合,在选项C 中,y =t 2+1≥1,t =(y -1)2+1≥1,则M ={y |y ≥1},P ={t |t ≥1},它们都是由不小于1的全体实数组成的数集,只是用不同的字母代表元素,因此,M 和P 是同一个集合,在选项D 中,M 是由…,0,2,4,6,8,10,…组成的集合,P 是由…,2,6,10,14,…组成的集合,因此,M 和P 是两个不同的集合.答案:C .

二、填空题

7.2 8.x ≠3且x ≠0且x ≠-1

根据构成集合的元素的互异性,x 满足??

???=/-=/-=/.

2,32,322

x x x x x x

解之得x ≠3且x ≠0且x ≠-1.

9.2或4 10.①∈,∈,∈,?,∈.②∈,?,∈,?. 11.m =3,n =2.

12.31=

a ,9

1

=b .解析:由题意知,方程x 2+(a -1)x +b =0只有等根x =a ,则?=(a -1)2-4b =0①,将x =a 代入原方程得a 2+(a -1)a +b =0②,由①、②解得9

1

,31==b a .

13.{(1,0,2)} 14.Q ={0,2,3,4,6,8,12}

15.①{x |x =2n ,n ∈N *

且n ≤6},

②{x |2≤x ≤4,x ∈N },或{x |(x -2)(x -3)(x -4)=0} ③}6,2

|{*<∈+=

n n n n

x x 且N 16.B ={0,1,2}解析:∵y ∈A ,∴y =-2,-1,0,1,∵x =|y |,∴x =2,1,0,∴B ={0,1,2}

三、解答题

17.解:有4个元素,它们分别是:

(1)底边为1,顶角为40°的等腰三角形;(2)底边为1,底角为40°的等腰三角形; (3)腰长为1,顶角为40°的等腰三角形;(4)腰长为1,底角为40°的等腰三角形.

18.解:∵5 ∈A ,且5?B .

∴???=

/+=-+,53,5322a a a 即???=/=-=.2,24a a a 或

∴a =-4

19.证明:(1)若2∈A ,由于2≠1,则A ∈-211

,即-1∈A . ∵-1∈A ,-1≠1∴A ∈--)

1(11

,即A ∈21.

∵,12

1,21=/∈A ∴

A ∈-2

111,即2∈A . 由以上可知,若2∈A ,则A 中还有另外两个数-1和21

∴}2,2

1,1{-=A .

(2)不妨设A 是单元素的实数集.则有,11

a

a -=

即a 2-a +1=0. ∵?=(-1)2-4×1×1=-3<0, ∴方程a 2-a +1=0没有实数根. ∴A 不是单元素的实数集. (3)∵若a ∈A ,则

A a

∈-11

A a

∈--1111,即

A a

∈-11

. 20.解:①∵A 是空集∴方程ax 2-3x +2=0无实数根 ∴??

?<-=?=/,

089,0a a 解得?>89

a

②∵A 中只有一个元素,

∴方程ax 2-3x +2=0只有一个实数根.

当a =0时,方程化为-3x +2=0,只有一个实数根3

2

=x ; 当a ≠0时,令?=9-8a =0,得8

9

=a ,这时一元二次方程ax 2-3x +2=0有两个相等的实数根,即A 中只有一个元素.

由以上可知a =0,或8

9

=

a 时,A 中只有一个元素. ③若A 中至多只有一个元素,则包括两种情形,A 中有且仅有一个元素,A 是空集,由①、②的结果可得a =0,或8

9≥

a . 21.解:①由9-x >0可知,取x =0,1,2,3,4,5,6,7,8验证,则x =0,6,8时199

=-x

,3,9也是自然数,∴A ={0,6,8}

②由①知,B ={1,3,9}.

③∵y =-x 2+6≤6,而x ∈N ,y ∈N , ∴x =0,1,2时,y =6,5,2符合题意. ∴C ={2,5,6}.

④点(x ,y )满足条件y =-x 2+6,x ∈N ,y ∈N ,则有

??

?==??

?==??

?==.

2,

2,

5,1,6,0y x y x y x ∴D ={(0,6),(1,5),(2,2)}. ⑤由p +q =5,p ∈N ,q ∈N *

得?

?

?==???==???==???==???==.1,4,2,3,3,2,4,1,5,0q p q p q p q p q p 又∵q

p

x =,∴}4,23,32,41,0{=E

22.解:由已知,?=4(p -1)2-4≥0,得P ≥2,或P ≤0,

∴A ={p |p ≥2,或p ≤0},∵x ∈A ,∴x ≥2,或x ≤0.

∴2x -1≥3,或2x -1 ≤-1,∴B ={y |y ≤-1,或y ≥3}.

答案:

1、D

2、A

3、C

4、C

5、C

6、B

7、D

8、C

9、A 10、3或-2

11、}00|),{(〉且y x y x < 12、{2,3} 13、3 14、{0,1,2,3}

15、解:集合A 中的元素是点,点的横坐标, 纵坐标都是自然数, 且满足条件x+y=6。

所以用列举法表示为:A={(0,6),(1,5),(2,4),(3,3),(4,2),(5,1),(6,0)}。 16、解:当时,方程的解集为空集042<-ac b ,

当042=-ac b 时,方程的解集含一个元素; 当元素时,方程的解集含两个〉042ac b -

17、解:当k=0 时,原方程变为-8x+16=0,x=2,此时集合A={2} ;

当0≠k 时要使一元二次方程01682=+-x kx 有一个实根,需06464=-=?k ,即k=1。此时方程的解为421==x x 。集合A={4},满足题意。

综上所述,使数k 的值为0或1当k=0时,集合A={2};当k=1时,集合A={4}.

排列组合问题经典题型解析含答案

排列组合问题经典题型与通用方法 1. 相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列 例1. A,B,C,D,E 五人并排站成一排,如果 A,B 必须相邻且B 在A 的右边,则不同的排法有( ) A 、60 种 B 、48 种 C 、36 种 D 、24 种 2. 相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几 个元素全排列,再把规定的相离的 几个元素插入上述几个元素的空位和两端 ? 例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是( ) A 、1440 种 B 、3600 种 C 、4820 种 D 、4800 种 3. 定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法 例3.A,B,C,D,E 五人并排站成一排,如果 B 必须站在A 的右边(A, B 可以不相邻)那么不同的排法有 ( ) 4. 标号排位问题分步法:把元素排到指定位置上, 可 先把某个元素按规定排入, 第二步再排另一个元素, 如 此继续下去,依次即可完成 ? 例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所 填数字均不相同的填法有( ) A 、6 种 B 、9 种 C 、11 种 D 、23 种 5. 有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法 例5.( 1 )有甲乙丙三项任务,甲需 2人承担,乙丙各需一人承担,从 10人中选出4人承担这三项任务, 不同的选法种数是( ) A 、1260 种 B 、2025 种 C 、2520 种 D 、5040 种 (2)12名同学分别到三个不同的路口进行流量的调查,若每个路口 6. 全员分配问题分组法: 例6.( 1)4名优秀学生全部保送到 3所学校去,每所学校至少去一名,则不同的保送方案有多少种? A 、24 种 B 、60 种 C 、90 种 D 、 120 种 4人,则不同的分配方案有( 4 4 4 C 12C 8C 4 种 4 4 3C 12C 8C C 、 C 12C 8 A 3 种

集合与命题专题-历年上海高考真题

2015年普通高等学校招生全国统一考试 上海 数学试卷(理工农医类) 1.设全集U R =.若集合{}1,2,3,4A =,{} 23x x B =≤≤,则U A B= e . 15.设1z ,2C z ∈,则“1z 、2z 中至少有一个数是虚数”是“12z z -是虚数”的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既非充分又非必要条件 2014年普通高等学校招生全国统一考试 上海 数学试卷(理工农医类) 11.已知互异的复数a,b 满足ab ≠0,集合{a,b}={2a ,2 b },则a+b= 。 15.设R b a ∈,,则“4>+b a ”是“2,2>>b a 且”的( ) (A )充分非必要条件 (B )必要非充分条件 (C )充要条件 (D )既非充分也非必要条件 2013年普通高等学校招生全国统一考试 上海 数学试卷(理工农医类) 16.钱大姐常说“便宜没好货”,她这句话的意思是:“不便宜”是“好货”的() (A)充分条件 (B)必要条件 (C)充分必要条件 (D)既非充分也非必要条件 2012年全国普通高等学校招生统一考试 上海数学试卷(理) 2.若集合}012|{>+=x x A ,}2|1||{<-=x x B ,则=B A 。

2011年全国普通高等学校招生统一考试 上海数学试卷(理) 2. 若全集U R =,集合{1}{|0}A x x x x =≥≤ ,则U C A = . 2010年普通高等学校招生全国统一考试(上海卷) 数学(理科) 14.以集合U={}a b c d ,,,的子集中选出4个不同的子集,需同时满足以下两个条件: (1)a 、b 都要选出;(2)对选出的任意两个子集A 和B ,必有A B B A ??或,那么共有 种不同的选法。 15.“()24x k k Z π π=+∈”是“tan 1x =”成立的 [答]( ) (A )充分不必要条件. (B )必要不充分条件. (C )充分条件. (D )既不充分也不必要条件. 2009年普通高等学校招生全国统一考试(上海卷) 数学(理科) 1. 已知集合{}|1A x x =≤,{}|B x x a =≥,且A B R ?=, 则实数a 的取值范围是______________________ . 15.”“22≤≤-a 是“实系数一元二次方程012 =++ax x 有虚根”的 (A )必要不充分条件 (B )充分不必要条件 (C )充要条件 (D )既不充分也不必要条件

高中数学集合典型例题

-- -- 集 合 1.集合概念 元素:互异性、无序性、确定性 2.集合运算 全集U:如U =R 交集:}{B x A x x B A ∈∈=且 并集:}{B x A x x B A ∈∈=?或 补集:}{A x U x x A C U ?∈=且 3.集合关系 空集A ?φ 子集B A ?:任意B x A x ∈?∈ B A B B A B A A B A ??=??= 注:数形结合---文氏图(即韦恩图、Ve nn 图)、数轴 典型例题 1. 集合(){}0,=+=y x y x A ,(){}2,=-=y x y x B ,则=B A 2. 已知集合{}R x x y y P ∈+-==,22,{}R x x y x Q ∈+-==,2,那么Q P 等于 3. 设(){}R b b x b x x A ∈=++++=,0122,求A 中所有元素之和. 4. 已知集合{}24,3,22++=a a A ,{}a a a B --+=2,24,7,02,且{}7,3=B A ,求a 的值. 5. 已知(){}011=+-=x m x A ,{}0322=--=x x x B ,若B A ?,则m 的值为 6. 已知{}121-≤≤+=m x m x A ,{}52≤≤-=x x B ,若B A ?,求实数m 的取值范围. 7. 设全集{}32,3,22-+=a a S ,{}2,12-=a A ,{}5=A C S ,求a 的值. 8. 若{}Z n n x x A ∈==,2,{}Z n n x x B ∈-==,22,试问B A ,是否相等. 9. 已知(){}a x y y x M +==,,(){}2,22=+=y x y x N ,求使得φ=N M 成立的实数a 的取值范围. 10. 设集合{}R x x x x A ∈=+=,042,(){}R x R a a x a x x B ∈∈=-+++=,,011222,若A B ?,求实数a 的取值范围. 11. 设R U =,集合{}R x a ax x x A ∈=+-+=,03442,(){}R x a x a x x B ∈=+--=,0122,{}R x a ax x x C ∈=-+=,0222,若C B A ,,中至少一个不是空集,求实数a 的取值范围. 12. 设集合(){}01,2=--=x y y x A ,(){} 05224,2=+-+=y x x y x B ,(){==y y x C ,}b kx +,是否存在N b k ∈,,使得()φ=C B A ?若存在,请求出b k ,的值;若不存在,请说明理由.

排列组合问题经典题型解析含答案

排列组合问题经典题型解析含答案

排列组合问题经典题型与通用方法 1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列. 例1.,,,, A B C D E五人并排站成一排,如果,A B必须相邻且B在A 的右边,则不同的排法有() A、60种 B、48种 C、36种 D、24种 2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端. 例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是() A、1440种 B、3600种 C、4820种 D、4800种 3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法. 例3.A,B,C,D,E五人并排站成一排,如果B必须站在A的右边(,A B可以不相邻)那么不同的排法有()A、24种 B、60种 C、90种D、120种

4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成. 例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有( ) A 、6种 B 、9种 C 、11种 D 、23种 5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法. 例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是( ) A 、1260种 B 、2025种 C 、2520种 D 、5040种 (2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有( ) A 、44412 8 4 C C C 种 B 、44412 8 4 3C C C 种 C 、44312 8 3 C C A 种 D 、 4441284 33 C C C A 种

高一数学集合典型例题、经典例题

《集合》常考题型 题型一、集合元素的意义+互异性 例.设集合 {0} 例.已知A ={2,4,a 3-2a 2-a +7},B ={1,a +3,a 2-2a +2,a 3+a 2+3a +7},且A ∩B ={2,5},则A ∪B =____________________________ 解:∵A∩B={2,5},∴5∈A. ∴a 3-2a 2-a +7=5解得a =±1或a =2. ①若a =-1,则B ={1,2,5,4},则A∩B={2,4,5},与已知矛盾,舍去. ②若a =1,则B ={1,4,1,12}不成立,舍去. ③若a =2,则B ={1,5,2,25}符合题意.则A ∪B ={1,2,4,5,25}. 题型二、空集的特殊性 例.已知集合{}{}25,121A x x B x m x m =-<≤=-+≤≤-,且BA , 则实数m 的取值范围为_____________ 例.已知集合{}R x x ax x A ∈=++=,012,{} 0≥=x x B ,且φ=B A I , 求实数a 的取值范围。 解:①当0a =时,{|10,}{1}A x x x R =+=∈=-,此时{|0}A x x ≥=ΦI ; ②当0a ≠时,{|0}A x x ≥=ΦQ I ,A ∴=Φ或关于x 的方程2 10ax x ++=的根均为负数. (1)当A =Φ时,关于x 的方程210ax x ++=无实数根, 140a ?=-<,所以14a > . (2)当关于x 的方程210ax x ++=的根均为负数时, 12121401010a x x a x x a ???=-≥??+=-?? 140a a ?≤?????>?104a <≤. 综上所述,实数a 的取值范围为{0}a a ≥. 题型三、集和的运算 例.设集合S ={x |x >5或x <-1},T ={x |a

(完整版)集合练习题及答案-经典

集合期末复习题12.26 姓名 班级________________ 一、选择题(每题4分,共40分) 1、下列四组对象,能构成集合的是 ( ) A 某班所有高个子的学生 B 著名的艺术家 C 一切很大的书 D 倒数等于它自身的实数 2、集合{a ,b ,c }的真子集共有 个 ( ) A 7 B 8 C 9 D 10 3、若{1,2}?A ?{1,2,3,4,5}则满足条件的集合A 的个数是 ( ) A. 6 B. 7 C. 8 D. 9 4、若U={1,2,3,4},M={1,2},N={2,3},则C U (M ∪N )= ( ) A . {1,2,3} B. {2} C. {1,3,4} D. {4} 5、方程组 1 1x y x y +=-=-的解集是 ( ) A .{x=0,y=1} B. {0,1} C. {(0,1)} D. {(x,y)|x=0或y=1} 6、以下六个关系式:{}00∈,{}0??,Q ?3.0, N ∈0, {}{},,a b b a ? , {}2 |20,x x x Z -=∈是空集中,错误的个数是 ( ) A 4 B 3 C 2 D 1 7、点的集合M ={(x,y)|xy≥0}是指 ( ) A.第一象限内的点集 B.第三象限内的点集 C. 第一、第三象限内的点集 D. 不在第二、第四象限内的点集 8、设集合A=}{ 12x x <<,B=}{ x x a <,若A ?B ,则a 的取值范围是 ( ) A }{ 2a a ≥ B }{1a a ≤ C }{1a a ≥ D }{ 2a a ≤ 9、 满足条件M U }{1=}{1,2,3的集合M 的个数是 ( ) A 1 B 2 C 3 D 4 10、集合{}|2,P x x k k Z ==∈,{}|21,Q x x k k Z ==+∈, {}|41,R x x k k Z ==+∈,且,a P b Q ∈∈,则有 ( ) A a b P +∈ B a b Q +∈ C a b R +∈ D a b +不属于P 、Q 、R 中的任意一个 二、填空题 11、若}4,3,2,2{-=A ,},|{2A t t x x B ∈==,用列举法表示B 12、集合A={x| x 2+x-6=0}, B={x| ax+1=0}, 若B ?A ,则a=__________ 13、设全集U={} 22,3,23a a +-,A={}2,b ,C U A={}5,则a = ,b = 。 14、集合{}33|>-<=x x x A 或,{}41|><=x x x B 或,A B ?=____________. 15、已知集合A={x|20x x m ++=}, 若A ∩R=?,则实数m 的取值范围是 16、50名学生做的物理、化学两种实验,已知物理实验做得正确得有40人, 化学实验做得正确得有31人,两种实验都做错得有4人,则这两种实验都做对的有 人.

集合的含义与表示例题练习及讲解

第一章第一节 集合的含义与表示 1.1典型例题 例1:判断下列各组对象能否构成一个集合 (1)班级里学习好的同学 (2)考试成绩超过90分的同学 (3)很接近0的数 (4)绝对值小于0.1的数 答: 否 能 否 能 例2:判断以下对象能否构成一个集合 (1)a ,-a (2)12,0.5 答:否 否 例3:判断下列对象是否为同一个集合 {1,2,3} {3,2,1} 答:是同一个集合 例4:42=x 解的集合 答:{2,-2} 例5:文字描述法的集合 (1)全体整数 (2)考王教育里的所有英语老师 答:{整数} {考王教育的英语老师} 例6:用符号表示法表示下列集合 (1)5的倍数 (2)三角形的全体构成的集合 (3)一次函数12-=x y 图像上所有点的集合 (4)所有绝对值小于6的实数的集合 答: (1)},5z k k x x ∈={ (2){三角形} (3)(){}12,-=x y y x (4){} R x x x ∈<<-,66

例如7:用韦恩图表示集合A={1,2,3,4} 答: 例8:指出以下集合是有限集还是无限集 (1)一百万以内的自然数; (2)0.1和0.2之间的小数 答:有限集;无限集 例9:(1)写出x^2+1=o 的解的集合。 (2)分析并指出其含义:0;{0};?;{};{?} 答:(1)?; (2)分别是数字零,含有一个元素是0的集合;空集;空集;含有一个元素是空集的集合。 1.1 随堂测验 1、{x^2,x }是一个集合,求x 的取值范围 2、集合{} 2,1,2--=x x A ,{}2,12,2---=x x B ,A 、B 中有且仅有一个相同的元素-2,求x. 3、指出下列对象是否构成集合,如果是,指出该集合的元素。 (1)young 中的字母; (2)五中高一(1)班全体学生; (3)门前的大树 (4)漂亮的女孩 4、用列举法表示下列集合 (1)方程()()0422 =--x x 的解集;

排列组合知识点总结+典型例题及答案解析

排列组合知识点总结+典型例题及答案解析 一.基本原理 1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。 2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。 注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。 二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一 .m n m n A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从 1.公式:1.()()()()! ! 121m n n m n n n n A m n -=+---=…… 2. 规定:0!1= (1)!(1)!,(1)!(1)!n n n n n n =?-+?=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ?=+-?=+?-=+-; (3) 111111 (1)!(1)!(1)!(1)!!(1)! n n n n n n n n n +-+==-=- +++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。 1. 公式: ()()()C A A n n n m m n m n m n m n m m m ==--+= -11……!! !! 10 =n C 规定: 组合数性质: .2 n n n n n m n m n m n m n n m n C C C C C C C C 21011 =+++=+=+--…… ,, ①;②;③;④ 111 12111212211 r r r r r r r r r r r r r r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-++++ +=+++ +=++ +=注: 若1 2 m m 1212m =m m +m n n n C C ==则或 四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。

高考集合知识点总结与典型例题

集合 一.【课标要求】 1.集合的含义与表示 (1)通过实例,了解集合的含义,体会元素与集合的“属于”关系; (2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用; 2.集合间的基本关系 (1)理解集合之间包含与相等的含义,能识别给定集合的子集; (2)在具体情境中,了解全集与空集的含义; 3.集合的基本运算 (1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集; (2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集; (3)能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用二.【命题走向】 有关集合的高考试题,考查重点是集合与集合之间的关系,近年试题加强了对集合的计算化简的考查,并向无限集发展,考查抽象思维能力,在解决这些问题时,要注意利用几何的直观性,注意运用Venn图解题方法的训练,注意利用特殊值法解题,加强集合表示方法的转换和化简的训练。考试形式多以一道选择题为主。 预测高考将继续体现本章知识的工具作用,多以小题形式出现,也会渗透在解答题的表达之中,相对独立。具体 三.【要点精讲】 1.集合:某些指定的对象集在一起成为集合 a∈;若b不是集合A的元素,(1)集合中的对象称元素,若a是集合A的元素,记作A b?; 记作A (2)集合中的元素必须满足:确定性、互异性与无序性; 确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或 者不是A的元素,两种情况必有一种且只有一种成立;

互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素; 无序性:集合中不同的元素之间没有地位差异,集合不同于元素的排列顺序无关; (3)表示一个集合可用列举法、描述法或图示法; 列举法:把集合中的元素一一列举出来,写在大括号内; 描述法:把集合中的元素的公共属性描述出来,写在大括号{}内。 具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。 注意:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。 (4)常用数集及其记法: 非负整数集(或自然数集),记作N ; 正整数集,记作N *或N +; 整数集,记作Z ; 有理数集,记作Q ; 实数集,记作R 。 2.集合的包含关系: (1)集合A 的任何一个元素都是集合B 的元素,则称A 是B 的子集(或B 包含A ),记作A ?B (或B A ?); 集合相等:构成两个集合的元素完全一样。若A ?B 且B ?A ,则称A 等于B ,记作A =B ;若A ?B 且A ≠B ,则称A 是B 的真子集,记作A B ; (2)简单性质:1)A ?A ;2)Φ?A ;3)若A ?B ,B ?C ,则A ?C ;4)若集合A 是n 个元素的集合,则集合A 有2n 个子集(其中2n -1个真子集); 3.全集与补集: (1)包含了我们所要研究的各个集合的全部元素的集合称为全集,记作U ; (2)若S 是一个集合,A ?S ,则,S C =}|{A x S x x ?∈且称S 中子集A 的补集; (3)简单性质:1)S C (S C )=A ;2)S C S=Φ,ΦS C =S 4.交集与并集:

集合典型例题

集合·典型例题 能力素质 例用符号∈或填空1 ? 1________N , 0________N , -3________N , 0.5N N ,;2 1________Z , 0________Z , -3________Z , 0.5Z Z ,;2 1________Q , 0________Q , -3________Q , 0.5Q Q ,;2 1________R , 0________R , -3________R , 0.5R R ,;2 分析元素在集合内用符号∈,而元素不在集合内时用符号. ? 解∈, ∈,-,,; 1N 0N 3N 0.5N N ???2 1Z 0Z 3Z 0.5Z Z 1Q 0Q 3Q ∈, ∈,-∈,,;∈,∈,-∈,??2 0.5Q Q 1R 0R 3R 0.5R R ∈,; ∈,∈,-∈,∈,; 22?? 说明:要注意符号的规范书写. 例2 (1)用列举法表示不超过10的非负偶数的集合,并用另一种方法表示出来; (2)设集合A ={(x ,y)|x +y =6,x ∈N ,y ∈N},试用列举法表示集合A ; 分析 (1)中集合含的元素为0、2、4、6、8、10;(2)中集合所含的元素是点(0,6),(1,5),(2,4),(3,3),(4,2),(5,1),(6,0). 解 (1){0,2,4,6,8,10};用描述法表示为{不超过10的非负偶数},或|x|x =2n ,n ∈N ,n <6}. (2)A ={(0,6),(1,5),(2,4),(3,3),(4,2),(5,1),(6,0)}. 说明:注意(2)中集合A 的元素是点的坐标.

高中排列组合知识点汇总和典型例题[全]

一.基本原理 1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。 2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。 注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。 二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一 .m n m n A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从 1.公式:1.()()()()! ! 121m n n m n n n n A m n -= +---=…… 2. 规定:0!1= (1)!(1)!,(1)!(1)!n n n n n n =?-+?=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ?=+-?=+?-=+-; (3)111111(1)! (1)! (1)!(1)! !(1)! n n n n n n n n n +-+==-=-+++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。 1. 公式: ()()()C A A n n n m m n m n m n m n m m m ==--+= -11……!! !! 10 =n C 规定: 组合数性质:.2 n n n n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,, ①;②;③;④ 111 12111212211 r r r r r r r r r r r r r r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=++++=+++=注: 若1 2 m m 1212m =m m +m n n n C C ==则或 四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。 2.解排列、组合题的基本策略 (1)两种思路:①直接法; ②间接法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。这是解决 排列组合应用题时一种常用的解题方法。 (2)分类处理:当问题总体不好解决时,常分成若干类,再由分类计数原理得出结论。注意: 分类不重复不遗漏。即:每两类的交集为空集,所有各类的并集为全集。 (3)分步处理:与分类处理类似,某些问题总体不好解决时,常常分成若干步,再由分步计 数原理解决。在处理排列组合问题时,常常既要分类,又要分步。其原则是先分类,后分步。 (4)两种途径:①元素分析法;②位置分析法。 3.排列应用题: (1)穷举法(列举法):将所有满足题设条件的排列与组合逐一列举出来; (2)、特殊元 素优先考虑、特殊位置优先考虑; (3).相邻问题:捆邦法: 对于某些元素要求相邻的排列问题,先将相邻接的元素“捆绑”起来,看作一“大”元素与其余元素排列,然后再对相邻元素内部进行排列。 (4)、全不相邻问题,插空法:某些元素不能相邻或某些元素要在某特殊位置时可采用插空

集合典型例题

1。集合得含义及其表示 (一)集合元素得互异性 1、已知,则集合中元素x所应满足得条件为 变式:已知集合,若,则实数得值为_______ 2。中三个元素可以构成一个三角形得三边长,那么此三角形可能就是 ①直角三角形②锐角三角形③钝角三角形④等腰三角形 (二)集合得表示方法 1. 用列举法表示下列集合 (1) __________________________ 变式:已知a,b,c为非零实数,则得值组成得集合为___ (2) ____ 变式1: 变式2: (3)集合用列举法表示集合B (4)已知集合M=,则集合M中得元素为 变式:已知集合M=,则集合M中得元素为 2。用描述法表示下列集合 (1)直角坐标系中坐标轴上得点_______________________________ 变式:直角坐标平面中一、三象限角平分线上得点______________ (2)能被3整除得整数_______________________、 3.已知集合,, (1)用列举法写出集合;(2)研究集合之间得包含或属于关系 4。命题(1) ;(2);(3);(4)表述正确得就是、 5、使用与与数集符号来替代下列自然语言:

(1)“255就是正整数” (2)“2得平方根不就是有理数” (3)“3、1416就是正有理数” (4)“-1就是整数” (5)“不就是实数” 6、用列举法表示下列集合: (1)不超过30得素数(2)五边形得对角线 (3)左右对称得大写英文字母(4)60得正约数 7。用描述法表示:若平面上所有得点组成集合, (1)平面上以为圆心,5为半径得圆上所有点得集合为_________ (2)说明下列集合得几何意义:; 8。当满足什么条件时,集合就是有限集?无限集?空集? 9、元素0、空集、、三者得区别? 10. 请用描述法写出一些集合,使它满足: (i)集合为单元素集,即中只含有一个元素; (ii)集合只含有两个元素; (iii)集合为空集 11.试用集合概念分析命题:先有鸡还就是先有鸡蛋? 解释:表述问题时把有关集合得元素说清楚,大有好处。先有鸡还就是先有鸡蛋?让我们运用集合概念来分析它。设地球上古往今来得鸡组成一个集合,孵出了最早得鸡得蛋算不算鸡蛋呢?这就是关键问题。设所有得鸡蛋组成集合,要确定得元素,就得立个标准,说定什么就是鸡蛋,一种定义方法就是:鸡生得蛋才叫鸡蛋;另一种定义方法就是:孵出了鸡得蛋与鸡生得蛋都叫鸡蛋。如果选择前一种定义,问题得答案只能就是先有鸡;选择后一种定义,答案当然就是先有鸡蛋。至于如何选择,不就是数学得任务,那就是生物学家得事。 (三)空集得性质 1.若?{x|x2≤a,a∈R},则实数a得取值范围就是________ 2、已知a就是实数,若集合{x| ax=1}就是任何集合得子集,则a得值就是_______.0?

集合经典例题总结

集合经典例题讲解 集合元素的“三性”及其应用 集合的特征是学好集合的基础,是解集合题的关键,它主要指集合元素的确定性、互异性和无序性,这些性质为我们提供了解题的依据,特别是元素的互异性,稍有不慎,就易出错. 例1 已知集合A={a ,a +b ,a +2b },B={a ,a q ,a 2q },其中a 0≠,A=B,求q 的值. 例2 设A={x∣2x +(b+2)x+b+1=0,b∈R },求A中所有元素之和. 例3 已知集合=A {2,3,2a +4a +2},B ={0,7,2a +4a -2,2-a },且A I B={3,7},求a 值. 分析: 集合易错题分析 1.进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解. 2.你会用补集的思想解决有关问题吗? 3.求不等式(方程)的解集,或求定义域(值域)时,你按要求写成集合的形式了吗? 1、忽略φ的存在: 例题1、已知A={x|121m x m +≤≤-},B={x|25x -≤≤},若A ?B ,求实数m 的取值范围. 2、分不清四种集合:{}()x y f x =、{}()y y f x =、{},)()x y y f x =(、{}()()x g x f x ≥的区别. 例题2、已知函数()x f y =,[]b a x ,∈,那么集合 ()()[]{}(){}2,,,,=∈=x y x b a x x f y y x I 中元素的个数为…………………………………………………………………………() (A )1(B )0(C )1或0(D )1或2 3、搞不清楚是否能取得边界值: 例题3、A={x|x<-2或x>10},B={x|x<1-m 或x>1+m}且B ?A ,求m 的范围. 例4、已知集合{}R x x y y P ∈+-==,22,{}R x x y x Q ∈+-==,2,那么Q P I 等于() A.(0,2),(1,1)B.{(0,2),(1,1)}C.{1,2}D. {}2≤y y 集合与方程 例1、已知{}φ=∈=+++=+R A R x x p x x A I ,,01)2(2,求实数p 的取值范围。 例2、已知集合(){}(){}20,01,02,2≤≤=+-==+-+=x y x y x B y mx x y x A 和,如果φ≠B A I ,求 实数a 的取值范围。 例3、已知集合()(){} 30)1()1(,,123,2=-+-=??????+=--=y a x a y x B a x y y x A ,若φ=B A I ,求实数a 的值。 集合学习中的错误种种 数学是一门严谨的学科,在集合学习中,由于对概念理解不清或考虑问题不全面等,稍不留心就会不知不觉地产生错误,本文归纳集合学习中的种种错误,认期帮助同学们避免此类错误的再次发生. 一、混淆集合中元素的形成 例 集合{}()|0A x y x y =+=,,{}()|2B x y x y =-=,,则A B =I 忽视空集的特殊性 例 已知{}|(1)10A x m x =-+=,{}2|230B x x x =--=,若A B ?,则m 的值为 没有弄清全集的含义

排列组合专题复习及经典例题详解

排列组合专题复习及经典例题详解 1.学习目标 掌握排列、组合问题的解题策略 2.重点 (1)特殊元素优先安排的策略: (2)合理分类与准确分步的策略; (3)排列、组合混合问题先选后排的策略; (4)正难则反、等价转化的策略; (5)相邻问题捆绑处理的策略; (6)不相邻问题插空处理的策略. 3.难点 综合运用解题策略解决问题. 4.学习过程: (1)知识梳理 m种不完成一件事,有几类办法,在第一类办法中有1.分类计数原理(加法原理):1mm种不同的方法,类型办法中有种不同的方法……在第n同的方法,在第2类办法中有n2N?m?m?...?m 种不同的方法.那么完成这件事共有n12m种不步有个步骤,做第12.分步计数原理(乘法原理):完成一件事,需要分成n1mm种不同的方法;那么完成这步有种不同的方法……,做第同的方法,做第2步有n n2N?m?m?...?m种不同的方法.件事共有n12特别提醒: 分类计数原理与“分类”有关,要注意“类”与“类”之间所具有的独立性和并列性; 分步计数原理与“分步”有关,要注意“步”与“步”之间具有的相依性和连续性,应用这两个原理进行正确地分类、分步,做到不重复、不遗漏. 3.排列:从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n m?nm?n 时叫做全排列. 时叫做选排列,排列个不同元素中取出m个元素的一个,4.排列数:从n个不同元素中,取出m(m≤n)个元素的所有排列的个数,叫做从n个不同m P. 个元素的排列数,用符号表示元素中取出m n n!?m)?Nmn(m?)...()(1n?2n?m1)??,n、?(?Pnn5.排列数公式: n(n?m)!1mmm?mPPP??排列数具有的性质:nn1?n特别提醒: 规定0!=1 1 6.组合:从n个不同的元素中,任取m(m≤n)个不同元素,组成一组,叫做从n个不同元素中取m个不同元素的一个组合. 7.组合数:从n个不同元素中取m(m≤n)个不同元素的所有组合的个数,叫做从n个m C. 个不同元素的组合数,用符号表示不同元素中取出m nm Pn(n?1)(n?2)...(n?m?1)n!mn???C.组合数公式:8 nm)!m!(n?m!mP mmn?mmmm?1C?CC?C?C;②组合数的两个性质:①nnnnn?1特别提醒:排列与组合的联系与区别. 联系:都是从n个不同元素中取出m个元素. 区别:前者是“排成一排”,后者是“并成一组”,前者有顺序关系,后者无顺序关系.

高一数学集合练习题及答案-经典

选择题(每题4分,共40分) 1、下列四组对象,能构成集合的是 ( ) A 某班所有高个子的学生 B 著名的艺术家 C 一切很大的书 D 倒数等于它自身的实数 2、集合{a ,b ,c }的真子集共有 个 ( ) A 7 B 8 C 9 D 10 3、若{1,2}?A ?{1,2,3,4,5}则满足条件的集合A 的个数是 ( ) A. 6 B. 7 C. 8 D. 9 4、若U={1,2,3,4},M={1,2},N={2,3},则C U (M ∪N )= ( ) A . {1,2,3} B. {2} C. {1,3,4} D. {4} 5、方程组 1 1x y x y +=-=- 的解集是 ( ) A .{x=0,y=1} B. {0,1} C. {(0,1)} D. {(x,y)|x=0或y=1} 6、以下六个关系式:{}00∈,{}0??,Q ?3.0, N ∈0, {}{},,a b b a ? , {}2|20,x x x Z -=∈是空集中,错误的个数是 ( ) A 4 B 3 C 2 D 1 7、点的集合M ={(x,y)|xy≥0}是指 ( ) A.第一象限内的点集 B.第三象限内的点集 C. 第一、第三象限内的点集 D. 不在第二、第四象限内的点集 8、设集合A= }{12x x <<,B=}{x x a <,若A ?B ,则a 的取值范围是 ( ) A }{2a a ≥ B }{1a a ≤ C }{1a a ≥ D }{2a a ≤ 9、 满足条件M }{1=}{1,2,3的集合M 的个数是 ( ) A 1 B 2 C 3 D 4 10、集合{}|2,P x x k k Z ==∈,{}|21,Q x x k k Z ==+∈,{}|41,R x x k k Z ==+∈,且,a P b Q ∈∈,则有 ( ) A a b P +∈ B a b Q +∈ C a b R +∈ D a b +不属于P 、Q 、R 中的任意一个 填空题 11、若}4,3,2,2{-=A ,},|{2A t t x x B ∈==,用列举法表示B 12、集合A={x| x 2+x-6=0}, B={x| ax+1=0}, 若B ?A ,则a=__________ 13、设全集U= {}22,3,23a a +-,A={}2,b ,C U A={}5,则a = ,b = 。 14、集合{}33|>-<=x x x A 或,{}41|><=x x x B 或,A B ?=____________.

最新整理高一数学集合习题及答案详解.doc

例用符号∈或填空1 ? 1________N , 0________N , -3________N , 0.5 N N ,;2 1________Z , 0________Z , -3________Z , 0.5 Z Z ,;2 1________Q , 0________Q , -3________Q , 0.5Q Q ,;2 1________R , 0________R , -3________R , 0.5R R ,;2 分析元素在集合内用符号∈,而元素不在集合内时用符号. ? 解∈,∈,-, ,; 1N 0N 3N 0.5N N ???2 1Z 0Z 3Z 0.5Z Z 1Q 0Q 3Q ∈,∈,-∈, ,; ∈,∈,-∈,??2 0.5Q Q 1R 0R 3R 0.5R R ∈,; ∈,∈,-∈,∈,; 22?? 说明:要注意符号的规范书写. 例2 (1)用列举法表示不超过10的非负偶数的集合,并用另一种方法表示出来; (2)设集合A ={(x ,y)|x +y =6,x ∈N ,y ∈N},试用列举法表示集合A ; 分析 (1)中集合含的元素为0、2、4、6、8、10;(2)中集合所含的元素是点(0,6),(1,5),(2,4),(3,3),(4,2),(5,1),(6,0). 解 (1){0,2,4,6,8,10};用描述法表示为{不超过10的非负偶数},或|x|x =2n ,n ∈N ,n <6}. (2)A ={(0,6),(1,5),(2,4),(3,3),(4,2),(5,1),(6,0)}. 说明:注意(2)中集合A 的元素是点的坐标. 例由实数,-,,及-所组成的集合,最多含有3 x x |x|x x 233 [ ] A .2个元素 B .3个 元素 C .4个元素 D .5个元素 分析 当x 等于零时只有一个元素,当x 不等于零时有两个元素. 答 A . 说明:问题转化为对具有相同结果的不同表达式的识别. 例4 试用适当的方式表示:被3整除余1的自然数集合. 分析 被3整除余1的自然数可以表示为3n +1(n 为自然数). 解 集合可以表示为{x|x =3n +1,n ∈N}. 说明:虽然这一集合是无限集,但也可以用列举法来表示:{1,4,7, (3) +1,…}. 例5 下列四个集合中,表示空集的是 [ ]

排列组合问题经典题型(含解析)

排列组合问题经典题型与通用方法 1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列. 例1.,,,, A B C D E五人并排站成一排,如果,A B必须相邻且B在A的右边,则不同的排法有() A、60种 B、48种 C、36种 D、24种 2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端. 例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是() A、1440种 B、3600种 C、4820种 D、4800种 3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法. 例3.A,B,C,D,E五人并排站成一排,如果B必须站在A的右边(,A B可以不相邻)那么不同的排法有()A、24种 B、60种 C、90种 D、120种 4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成. 例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有() A、6种 B、9种 C、11种 D、23种 5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法. 例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是() A、1260种 B、2025种 C、2520种 D、5040种 (2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有() A、 444 1284 C C C 种 B、 444 1284 3C C C 种 C、 443 1283 C C A 种 D、 444 1284 3 3 C C C A种 6.全员分配问题分组法: 例6.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种? (2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为() A、480种 B、240种 C、120种 D、96种 7.名额分配问题隔板法: 例7:10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案? 8.限制条件的分配问题分类法: 例8.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案? 9.多元问题分类法:元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数再相加。 例9(1)由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有()A、210种 B、300种 C、464种 D、600种 (2)从1,2,3…,100这100个数中,任取两个数,使它们的乘积能被7整除,这两个数的取法(不计顺序)共有多少种? (3)从1,2,3,…,100这100个数中任取两个数,使其和能被4整除的取法(不计顺序)有多少种?

相关主题