搜档网
当前位置:搜档网 › 认知无线电定义

认知无线电定义

认知无线电定义
认知无线电定义

2003年,美国联邦通信委员会(FCC)给出了认知无线电的狭义定义,

即认知无线电是指能够通过与工作环境交互,改变发射机参数的无线

电设备,其主体可能是软件无线电,但既没有软件也没有现场可编程

的要求。

就广义而言,认知无线电以灵活、智能、可重配置为显著特征,通过

感知外界环境,并使用人工智能技术从环境中学习,有目的地实时改

变某些操作参数(比如传输功率、载波频率和调制技术等),使其内部

状态适应接收到的无线信号的统计变化,从而实现任何时间、任何地

点的高可靠通信,以及对异构网络环境下有限的无线频谱资源进行高

效地利用。

随着无线通信需求的不断增长,对无线通信技术支持的数据传输速率

的要求越来越高,对无线频谱资源的需求也相应增长,从而导致适用

于无线通信的频谱资源变得日益紧张,成为制约无线通信发展的瓶颈;另一方面,已经分配给现有很多无线系统的频谱资源却在时间和空间

上存在不同程度的闲置a因此,人们提出采用认知无线电(cR)技术,

通过从时间和空间上充分利用这些空闲的频谱资源,从而有效解决上

述难题。认知无线电的主要出发点就是使无线用户之间实现频谱资源

共享。

认知无线电应该具备以下主要特征:

(1)认知能力。认知能力使认知无线电能够从其工作的无线环境中捕获或者感知信息,从而可以标识特定时间和空间的未使用频谱资源(也称为频谱空洞),并选择最适当的频谱和工作参数.

(2)重构能力。重构能力使得认知无线电设备可以根据无线环境动态编程,从而允许认知无线电设备采用不同的无线传输技术收发数据。可

以重构的参数包括:工作频率、调制方式、发射功率和通信协议等。

重构的核心思想是在不对频谱授权用户产生有害干扰的前提下,利用

授权系统的空闲频谱提供可靠的通信服务。一旦该频段被频谱授权用

户使用,认知无线电有两种应对方式:一是切换到其他空闲频段通信;二是继续使用该频段,但改变发射频率或者调制方案避免对频谱授权

用户的有害干扰。

基于射频捷变频收发器AD9361的软件定义无线电解决方案

基于射频捷变频收发器AD9361的软件定义无线电解决方案 AD9361是一款用于SDR架构的高性能、高度集成的RF收发器IC,适合无线通信基础设施、防务电子系统、RF测试设备和仪器,以及通用软件定义无线电平台等应用。该器件的高度可编程性和宽带能力使其成为多种收发器应用的理想选择。该器件集RF前端与灵活的混合信号基带部分为一体,集成频率合成器,为处理器或FPGA提供可配置数字接口,从而简化设计导入。AD9361芯片工作频率范围为70 MHz至6 GHz,涵盖大部分特许执照和免执照频段,通过对AD9361 IC编程可改变采样速率、数字滤波器和抽取参数,使该芯片支持的通道带宽范围为低于200 kHz至56 MHz。 IC特性 ? 单芯片上的完整双通道集成式宽带收发器 ? 可调谐频段:70 MHz至6.0 GHz;200 kHz至56 MHz(通道带宽) ? 出色的接收器灵敏度,噪声系数小于2.5 dB ? 高线性度宽带发射机: ? Tx EVM: ≤?40 dB ? Tx噪声:≤?157 dBm/Hz(噪底) ? Tx监控器动态范围:≥66 dB(1 dB精度) ? 集成小数N分频频率合成器,本振(LO)步长最大值为2.5 Hz ? 提供完整的集成式电源解决方案:ADP5040 应用 ? 通用设计,适合任意软件定义无线电应用 ? MIMO无线电 ?点对点通信系统 ? 毫微微蜂窝/微微蜂窝/微蜂窝基站 ? Wi-Fi ? ISM ? 军用/航空航天

? 公共安全 ? 智能电网 AD9361是ADI的可编程2 × 2集成式收发器解决方案,频率范围为70 MHz至6.0 GHz 这款灵活的高性能IC采用AD-FMCOMMS2-EBZ板,可无缝连接Xilinx FPGA开发平台,方便进行快速SDR原型制作和系统开发。 AD-FMCOMMS2-EBZ RF快速开发板采用AD9361宽带收发器IC AD-FMCOMMS2-EBZ快速开发和原型制作板是一款高速模拟模块产品,内置AD9361,可无缝连接Xilinx FPGA开发平台生态系统并在系统中工作。该板采用2 × 2 I/Q收发器配置,可通过软件完全自定义。它提供可供下载的Linux驱动程序和裸机软件驱动程序、原理图、电路板布局文件和有助于设计的参考材料,可前往ADI的Wiki知识库获取。 产品特性 ? FMC格式SDR开发平台 ? 包括原理图、布局、BOM、HDL、Linux驱动程序和应用软件 ? 通过单FMC连接器供电 ? 支持特定频谱设计(PA、LNA 等)的附加卡 ? 适用于所有器件寄存器的通用I 2 C访问

认知无线电的发展历程与现状

认知无线电的发展历程与现状 认知无线电的发展历程与现状 摘要:认知无线电是一种通过与其运行环境交互而改变其发射参数从而提高频谱利用率的新的智能技术,其核心思想是CR具有学习能力,能与周围环境交互 信息,以感知和利用在该空间的可用频谱,并限制和降低冲突的发生,认知无线电就是通过频谱感知(Spectrum Sensing )和系统的智能学习能力,实现动态频谱分配(DSA dynamic spectrum allocation )和频谱共享(Spectrum Shari ng )。本文主要分析认知无线电的起源,认知无线电的关键技术概要,认知无线电的相关标准化进程以及认知无线电的应用场景等多个方面,对认知无线电进行一个概述,从而加深对无线电的认知与了解。关键字:认知无线电、起源、关键技术、标准化、应用 随着无线通信需求的不断增长,对无线通信技术支持的数据传输速率的要求越来越高。根据香农信息理论,这些通信系统对无线频谱资源的需求也相应增长,从而导致适用于无线通信的频谱资源变得日益紧张,成为制约无线通信发展的新瓶颈。另一方面,已经分配给现有很多无线系统的频谱资源却在时间和空间上存在不同程度的闲置。为解决无线频谱资源紧张的问题,出现了许多先进的无线通信理论与技术,如链路自适应技术、多天线技术等。这些技术虽然能提高频谱效率,但仍受限于Sha nnon理论。 美国联邦通信委员会的大量研究表明:ISM频段以及适用于陆地移动通信的2GHz 左右授权频段过于拥挤,而有些授权频段却经常空闲。因而提出了认知无线电。认知无线电是一种智能频谱共享技术。它通过感知频谱环境、智能学习并实时调整其传输参数,实现频谱的再利用,进而显著地提高频谱的利用率,通过从时间和空间上充分利用那些空闲的频谱资源,从而有效解决上述难题。 1. 认知无线电的发展历程

软件定义的无线电的架构特点与应用

软件定义的无线电的架构特点与应用 随着世界逐渐走向无处不在的无线连接,甚至固定功能设备,如手机采用几个不同的频段和协议共存于一个小空间,无线设计师的工作也变得不那么容易了。现代智能手机和平板电脑可以同时收发3G/4G,(很快将是5G)语音和数据,蓝牙,Wi-Fi和可能的GPS数据。支持“可穿戴”计算机和外围设备的新兴个人区域网络将为已经重大通信的设计增加更多的RF责任。即使在相同的频段内,不同的,有时是非互操作的协议和服务也在争取认可,接受,时间段和市场份额。例如,考虑2.4 GHz ISM频段。我们有蓝牙,Wi-Fi,ZigBee,无绳电话,遥测和其他几种服务都存在于这个领域。 它并不止于此。需要连接到不断变化的无线世界的设计人员必须了解芯片组开发,协议栈,知识产权以及众多开发环境,认证,工具和测试设备。 如果有其他方法怎么办?如果一个RF部分可以完成所有工作怎么办? 本文将介绍新兴的软件定义无线电(SDR)架构及其支持部分。SDR拥有单一,超灵活的RF处理系统的承诺,可以对其进行编程,以同时运行多个频率和多个协议。此外,软件定义无线电的完全可编程和信号处理特性使其成为出现的新协议和服务的理想对冲,但可能不会很快占据。 您正在被替换 无线电具有相互分离的功能,可以协同工作。例如,接收器将使用天线来接入低电平信号,放大它,对其进行滤波,进行混频,解调恢复的信号(使用几种调制/解调方案中的一种或多种)并将输出数据呈现为模拟或数字波形。发送器调制而不是解调,但反向执行相同的过程。 高度优化的硬件模块已经发展到稳定性,清晰度,低漂移,良好的温度稳定性,小尺寸,低功耗,良好的灵敏度和简单的系统集成。从某种意义上说,SDR的目标是用可编程和自动化技术取代这些训练有素的工人。 理想情况下,天线将连接到A/D转换器,将宽带波形馈送到信号处理阶段。然后,信号处理块将在期望的时隙(如果适用的话)从期望的信道和期望的频带中提取期望的信号。然

认知无线电技术

现代通信系统 论文 题目:认知无线电技术 姓名:朱雪峰 学院:潇湘学院 专业:通信工程 班级: 001 学号: 1254040121 指导教师:钟斌 2015年11月1日

目录 一、引言 (2) 二、认知无线电的基本概念 (2) 三、认知无线电的功能与实现 (4) 1.认知无线电的主要功能 (4) 2.认知无线电的实现关键 (5) 四、认知无线电的标准化 (7) 五、认知无线电的管制与应用情况 (8) 六、未来发展与展望 (9)

认知无线电技术的研究及发展 【摘要】认知无线电技术作为软件无线电技术的一个特殊扩展,受到日益广泛的关注。由于该技术能够自动检测无线电环境,调整传输参数,从空间、时间、频率、调制方式等多维度共享无线频谱,可以大幅度提高频谱利用效率。本文首先从认知无线电技术的定义入手,分别讨论了认知无线电的基本概念、功能与实现、标准化的进程。然后介绍了当前应用状况,最后分析了未来的发展及面临的挑战。 一、引言 随着无线通信技术的发展,人们可以获得的带宽不断地增加,移动通信的数据速率从10 kbit/s增长到2 Mbit/s,在不久的将来还可能提高到上百兆比特每秒。但即使如此,也无法满足人们日益增长的无线接入需求。为了缓解这一矛盾,一方面,人们不断开发新的无线接入技术,利用新的频段来提供各种业务;另一方面,不断改进各种编码调制方式,提高频谱效率。但由于移动终端天线尺寸和功率的限制,可以用于无线接入的频段很有限。在提高频谱效率方面,目前较为先进的CDMA空中接口技术,如HSDPA可以达到1 bit/(s·Hz)的频谱效率,将来OFDM和MIMO技术的应用也只能达到3-4 bit/(s·Hz)的频谱效率。3-4倍的频谱效率的提高对于人们成百上千倍的带宽需求增长是微不足道的。认知无线电技术的出现,为解决频谱资源不足、实现频谱动态管理及提高频谱利用率开创了崭新的局面。 二、认知无线电的基本概念 认知无线电(cognitive radio,CR)的概念是由Joseph Mitola博士提出的,他在1999年发表的一篇学术论文[1]中描述了认知无线电如何通过一种“无线电知识表示语言(RKRL)”的新语言提高个人无线业务的灵活性。随后在2000年瑞典皇家科学院举行的博士论文答辩中详细探讨了这一理论[2]。 认知无线电也被称为智能无线电。从广义上来说是指无线终端具备足够的智能或者认知能力,通过对周围无线环境的历史和当前状况进行检测、分析、学习、推理和规划,利用相应结果调整自己的传输参数,使用最适合的无线资源(包括频率、调制方式、发射功率等)完成无线传输。认知无线电能够帮助用户自动选择最好的、最廉价的服务进行无线传输。甚至能够根据现有的或者即将获得的无线资源延迟或主动发起传送。 由定义可以看出。认知无线电的一个最大优势就是无线用户可以通过该技术实现“频谱共享”。目前大多数频谱已经被划分给不同的许可持有者(又称为首要用户),包括移动通信、应急通信、广播电视等。但是随着用户需求的增长,简单地通过开发新的无线接入技术和使用新的频点已经无法充分满足市场需求。 近年来,很多学者通过监测分析当前无线频谱使用状况发现,虽然大部分频谱已经被分配给不同的用户,但是在相同时间、相同地点频谱的使用却非常有限。常常是大部分频点未被使用,而某些热点频率又处于超负荷运行。美国联邦通信管理委员会(FCC)充分注意到了这一点,于2002年11月出版了频谱政策任务组撰写的一份报告[3],该报告指出,当前分配的绝大多数频谱的利用率为15%-85%。因此FCC认为当前存在的最主要问题并不是没有频谱可用,而是现有的频谱分配方式导致资源没有被充分利用。只有彻底改变当前固定频谱分配政策,部分甚至全部采用动态频谱分配政策,使多种技术可以实现“频谱共享”,才能

软件无线电发展现状

<<移动通信>.>>2002年第 4期 软件无线电发展现状 罗序梅信息产业部电子七所 1 前言 — 软件无线电是实现无线通信新体系结构的一种技术,在经过近几年的发展之后,其重要性和可 行性正逐步被越来越多的人所认识和接受。软件无线电技术的重要价值体现在:硬件只是作为 无线通信的基本平台,而许多的通信功能则是通过软件来实现的,这就打破了长期以来设备的 通信功能实现仅仅依赖于硬件的发展格局。所以有人称,软件无线电技术的出现是通信领域继 固定到移动,模拟到数字之后的第三次革命。本文主要介绍全球软件无线电技术研究动态、对 实现软件无线电台至关重要的器件技术的发展以及软件无线电台商用前景。 2 全球软件无线电技术研究动态 软件无线电技术具有结构的开放性、软件的可编程性、硬件的可重构性以及功能和频段的… 多样性等特点,无论在军事还是在商用通信中都有着巨大的应用潜力。也正是因为这些独特的 优势,引发了全球对软件无线电技术的关注和研发热潮。除美国在 90年代初开始实施易通话计 划并成功地研制出多功能多频段电台外,欧洲、日本、中国等全球其它地区也纷纷开展了各自 的软件无线电技术项目。 欧洲委员会已将软件无线电技术列为重要的研发项目,大量与软件无线电技术相关的研究项目正在其 ACTS计划中进行。受潜在的商业利益所驱动,其研究重点集中在第三代标准上, 这包括 FIRST(灵活的综合无线电系统和技术)、FRAMES(未来无线电宽频段多址系统)和 · SORT等项目。前两个项目利用软件无线电台样机研究开发下一代无线接口。其中

FIRST项目 主要是评估实现软件重构空中接口的问题。目前最公开的工作集中在 RF结构最佳划分方法及 数字处理的实现上。 SORT主要是开展有关第三代系统( UMTS)在地面和卫星接入方面的硬件 重构问题的研究,演示灵活而有效的软件可编程电台,实施该项目的目标是:

认知无线电之频谱共享技术

软件无线电课程论文 论文题目:认知无线电之频谱共享技术 姓名: 学号: 班级: 目录 目录 2 摘要 3 1 引言 3 2 研究现状 3 3 基本原理和算法 3 4 分布式动态频谱共享系统系统模型 3 5 个人理解和体会 3 6 参考文献 3 摘要 当前,无线频谱资源的紧缺是限制无线通信与服务应用持续发展的瓶颈。认知无线电(Cognitive Radio,CR)作为一种新兴的技术,它改变了传统的由政府授权使用无线电频谱的方式,它以频谱利用的高效性为目标,允许非授权用户机会式利用授权用户的频谱空洞传输,被认为是解决无线频谱资源紧缺问题的一种新方法。基于认知无线电技术进行频谱共享,能大大降低频谱和带宽限制对无线通信技术发展的束缚,极大地改变目前无线频谱资源日益紧缺的状况.本文将从研究现状、原理等简单介绍认知无线电中的频谱共享技术。 关键字:认知无线电频谱共享技术频谱利用频谱分配 1 引言 基于认知无线电技术进行动态频谱共享,能大大降低频谱和带宽限制对无线通信技术发展的束缚,极大地改变目前无线频谱资源日益紧缺的状况.动态频谱共享本质上是一种多目标优化问题,由于所有参与者(包括主用户和认知用户) 具有不同的目标和利益,彼此之间的决

策行为相互影响,并存在竞争和协作关系. 如何设计频谱的使用规则和相关接入机制,协调所有参与者的行为实现有效的频谱共享,满足各自不同的利益需求就成为关键问题. 目前,利用博弈论的方法分析动态频谱分配策略研究逐渐被研究者关注. 目前普遍采用的非合作博弈模型中,理性的博弈者总是追求自身利益最大化,从而导致博弈的纳什均衡偏离全局最优状态. 解决这一问题的一种有效方法用户效用函数的设计中,除了包括用户自身的收益之外,还将自身行为对其他用户造成的影响考虑在内. 每个用户在追求自身效用最大化的同时兼顾了其他人的利益,其结果使得非合作博弈的均衡状态收敛于系统的最优状态. 2 研究现状 认知无线电的频谱共享技术在提高频谱利用率方面的价值引起了各国电信管制机构的兴趣,不过由于认知无线电的技术和概念都非常超前,多数国家仍在研究讨论当中,只有美国的FCC已经正式批准具备认知无线电性能的设备进入市场。 近年来美国希望大力发展宽带无线接入业务,但由于频谱资源匮乏,亟需寻找新的频段给新的接入技术。美国是最早推动和批准使用认知无线电设备的国家。FCC从2003年就开始尝试引入认知无线电提高频谱的利用。2003年12月,FCC公布了《使用认知无线电技术促进频谱利用的通知》,就《FCC规则第15章(FCC rule part 15)》(用于数字式设备和低功发射机的法规)进行了修订,并于2005年10月,正式批准了关于引入认知无线电技术、使用认知无线电设备的法规。 FCC认为目前最适合应用认知无线电技术的是UHF中分配给电视广播业务的6 MHz频段,因为目前该频段在美国利用率很低,通过允许其它免许可设备使用这个频段,不仅可以提高频率利用率,而且还可以推广宽带无线接入业务,因为这个波段传播距离远,适合为偏远地区提供服务,可以促进美国社会的宽带普及。FCC认为认知无线电技术还可以在高频率频段发挥作用,如100 GHz以上的频段在美国的使用率只有5%-10%。 认知无线电的频谱共享技术听起来是个十分新颖的概念,但事实上无线局域网(WLAN)领域已经开始利用认知无线电技术的频谱共享技术。 WLAN是最早利用认知无线电频谱共享技术的无线通信系统。FCC等法规机构要求802.11a无线电能检测雷达信号并避免与它们形成干扰,这种躲避雷达的能力要求系统具有强大的CR类自适应能力,而这只是WLAN-CR功能的开始。 无论在军用还是民用领域,认知无线电的研究与应用都处于起步阶段。在军用领域,美国国防部高等研究计划署(DARPA)于2003年成立了下一代通信计划(XG),着眼于开发认知无线电的实际标准和动态频谱管理标准。2003年开始,Raytheon公司与DARPA签订了下一代无线通信计划的合同。从事认知无线电相关的技术研究与开发。在民用领域,Motorola、Intel等公司也已经成立认知无线电研究组并开始开展相关的研究。 3 基本原理和算法 3.1频谱共享技术概述 采用高效频谱利用技术,首先需要重新认识频谱,频谱不是具体和有限的资源,它是抽象和无限的资源,对其利用率高低取决于所采用的技术。其次,需要详细探讨能充分利用频谱的高效频谱利用技术。近年来随着智能天线、高性能数字处理器,新型扩频码、多址接入技术,软件无线电、智能无线电、感知无线电,动态频谱分配和共享等新技术的迅猛发展,为频谱高效利用提供了可能。 在这些改善频谱利用的新技术中,多无线电系统动态频谱分配与共享技术能显著提高整体频谱利用率,从长远看是提高频谱利用率的根本方法。但动态频谱分配需要改变现有频谱分配总体结构,对频谱管理、网络结构、通信终端等方面改变较大,近期看,实现难度较大。而频谱共享技术在不改变现有频谱分配总体结构下,通过不同无线电系统频谱共享来提高频

认知无线电技术

认知无线电技术 相信童鞋们都对大名鼎鼎的认知无线电技术有所耳闻,那到底是个什么东东呢?下面射频君就来给大家普及一下认知无线电的基本知识。随着无线通信需求的不断增长,对无线通信技术支持的数据传输速率的要求越来越高。根据伟大的香农同志所提出的信息理论,这些通信系统对无线频谱资源的需求也相应增长,从而导致适用于无线通信的频谱资源变得日益紧张,成为制约无线通信发展的新瓶颈。另一方面,已经分配给现有很多无线系统的频谱资源却在时间和空间上存在不同程度的闲置。问题出现了,解决发法捏?因此,伟大的科学家筒子们提出了采用认知无线电(CR,全称Cognitive Radio)技术,通过从时间和空间上充分利用那些空闲的频谱资源,从而有效解决上述难题。认知无线电是一种智能频谱共享技术,通过智能学习以及对频谱环境的感知对传输参数进行实时的调整,能够对频谱的利用率进行显著的提升。 “无线电之父”Mitola的概念模型包括硬件和软件。其软件部分由基础软件和智能软件构成。硬件部分重点使用软件无线电的基本体系结构,由安全模块、调制解调器、天线、射频、基带信号处理和用户接口部分构成。调制解调器可以解决收发信号的调制解调以及均衡信号的问题;天线是为了接收并发射无线电信号;射频前端由无线电信号的放大以及其必要变换构成;基带处理模块能够解决网络中的各种协议与控制问题,兼容不同的网络;用户接口部分可以根据RKRL语言满足不同的接口服务,同时使用关于用户需要的支持自动推理的方

法,实现个人通信服务。 1. 频率侦听 认知无线电技术在应用中,能够对频谱进行连续的侦听,以此对没有占用的频谱进行及时的发现,在不对主用户造成干扰的情况下对用户的再次出现进行快速的检测,以此便于为用户腾出相应的带宽。要想对该功能进行实现,就需要对一种新的功能-频谱侦听技术进行运用,能够获得非常高的检测率。而受到检测能力的限制以及阴影衰落以及多径情况的影响,为了能够更为准确的对用户不同的接收功率进行检测,该技术在带宽频率捷变以及前端灵敏度方面具有更高的要求。在早期,其对周期平稳过程以及导频信号技术进行应用,并不能够对频谱检测的可靠性进行满足。而就目前来说,则可以通过DF、AF以及CF协议的应用对其频谱侦听能力进行提升。 2. 动态频谱分析 在现今的频谱研究中,欧洲地区的很多项目已经对不同网络的动态频谱分配算法进行了研究,而对于认知无线电网络来说,用户在可用信道、位置以及数量方面的需求具有着变化的特征,并因此使这部分技术存在着不完全适用的情况。考虑到目前动态频谱分配在标准、政策以及接入协议等方面的限制,基于频谱统筹策略是现今应用较多的频谱共享技术,在该技术中,其思想即首先将不同业务的频谱合并成一个公共的频谱池,之后再将其划分为不同的信道。没有得到授权的用户,则可以对这部分空闲的信道进行临时的占用。对于该策略来说,对信道应用的公平性以及利用率进行了充分的考虑,可以说是一个受

认知无线电中频谱感知技术研究 Matlab仿真 免费分解

毕业设计(论文)题目:认知无线电中频谱感知技术研究专业: 学生姓名: 班级学号: 指导教师: 指导单位: 20分太坑爹了。老子放个免费的 日期:年月日至年月日

摘要 无线业务的持续增长带来频谱需求的不断增加,无线通信的发展面临着前所未有的挑战。无线电频谱资源一般是由政府统一授权分配使用,这种固定分配频谱的管理方式常常会出现频谱资源分配不均,甚至浪费的情形,这与日益严重的频谱短缺问题相互矛盾。认知无线电技术作为一种智能频谱共享技术有效的缓解了这一矛盾。它通过感知时域、频域和空域等频谱环境,自动搜寻已授权频段的空闲频谱并合理利用,达到提高现有频谱利用率的目的。频谱感知技术是决定认知无线电能否实现的关键技术之一。 本文首先介绍了认知无线电的基本概念,对认知无线电在 WRAN 系统、UWB 系统及 WLAN 系统等领域的应用分别进行了讨论。在此基础上,针对实现认知无线电的关键技术从理论上进行了探索,分析了影响认知网络正常工作的相关因素及认知网络对授权用户正常工作所形成的干扰。从理论上推导了在实现认知无线电系统所必须面对的弱信号低噪声比恶劣环境下,信号检测的相关方法和技术,并进行了数字滤波器的算法分析,指出了窗函数的选择原则。接着详细讨论了频谱检测技术中基于发射机检测的三种方法:匹配滤波器检测法、能量检测法和循环平稳特性检测法。为了检验其正确性,借助 Matlab 工具,在Matlab 平台下对能量检测和循环特性检测法进行了建模仿真,比较分析了这两种方法的检测性能。研究结果表明:在低信噪比的情况下,能量检测法检测正确率较低,检测性能远不如循环特征检测。 其次还详细的分析认知无线电的国内外研究现状及关键技术。详细阐述了频谱感知技术的研究现状和概念,并指出了目前频谱感知研究工作中受到关注的一些主要问题,围绕这些问题进行了深入研究。 关键词:感知无线电;频谱感知;匹配滤波器感知;能量感知;合作式感知;

认知无线电关键技术及应用的研究现状

https://www.sodocs.net/doc/7812431084.html, 认知无线电关键技术及应用的研究现状1 郭彩丽,张天魁,曾志民,冯春燕 北京邮电大学通信网络综合技术研究所(100876) Email:caili_guo7@https://www.sodocs.net/doc/7812431084.html, 摘 要:归纳了认知无线电功能的演进,讨论了其相关频谱政策和标准化工作的进展,并重点对频谱侦听和主用户检测、动态频谱分配、功率控制等关键技术及认知无线电在无线区域网WRAN、Ad Hoc网络、UWB系统中应用的研究现状做了分析。在此基础上探讨了认知无线电技术未来发展值得关注的热点问题。 关键词:认知无线电; 频谱侦听;主用户检测;动态频谱分配;功率控制 1引言 目前随着无线通信业务需求的快速增长,可用频谱资源变得越来越稀缺。人们通过采用先进的无线通信理论和技术,如链路自适应技术、多天线技术等努力提高频谱效率的同时,却发现全球授权频段,尤其是信号传播特性比较好的低频段的频谱利用率极低。以美国为例,美国联邦通信委员会(FCC, Federal Communications Commission)的大量研究报告说明频谱的利用情况极不平衡,一些非授权频段占用拥挤,而有些授权频段则经常空闲[1]。来自美国国家无线电网络研究实验床(NRNRT, National Radio Network Research Testbed)项目的一份测量报告表明3GHz以下频段的平均频谱利用率仅有 5.2%[2]。因此近几年来,能够对不可再生的频谱资源实现再利用的频谱共享技术受到了人们的广泛关注。 现有的频谱共享技术,如工业、科学和医用(ISM,Industrial, Scientific, and Medical)频段开放接入、工作于3GHz~10GHz频段的超宽带(UWB, Ultra-Wide Band)系统与传统窄带系统共存等技术通常应用于固定频段的共享,或受限于发送功率的短距离通信。这些技术在提高频谱利用率的同时却增加了干扰,限制了通信系统的容量和灵活性。认知无线电(CR, Cognitive Radio) [3,4,5]作为一种更智能的频谱共享技术,能够依靠人工智能的支持,感知无线通信环境,根据一定的学习和决策算法,实时自适应地改变系统工作参数,动态的检测和有效地利用空闲频谱,理论上允许在时间、频率以及空间上进行多维的频谱复用。这将大大降低频谱和带宽的限制对无线技术发展的束缚。因此这一技术被预言为未来最热门的无线技术。 2CR功能的演进 CR的概念虽新,但其思想已在无线通信的许多领域得到了应用。典型的例子有:工作于45MHz左右的无绳电话系统采用一种信道自动选择机制避免使用已占用的信道;免授权1本课题得到高等学校博士学科点专项科研基金(项目编号:2003001312)资助 - 1 -

认知无线电技术介绍

认知网络课程学习报告题目:认知无线电技术简介

目录 1、认知无线电简介 ………………………………………………………………………………………………………….- 1 - 1.1 技术产生背景.................................................................................................................. - 1 - 1.2 基本理念和平台结构..................................................................................................... - 1 - 1.3 认知无线电的发展及研究现状 .................................................................................... - 3 - 2、认知网络关键技术................................................................................................................... - 4 - 2.1 频谱检测技术.................................................................................................................. - 4 - 2.2 自适应频谱资源分配技术............................................................................................. - 5 - 2.3 认知无线电下的频谱管理............................................................................................. - 5 - 3、认知无线电的标准化............................................................................................................... - 6 - 4、认知无线电的应用场景........................................................................................................... - 7 - 5、结语............................................................................................................................................ - 9 - 参考文献........................................................................................................................................ - 10 -

认知无线电学习笔记一:综述概述类

认知无线电学习笔记一:综述概述类 CNKI 2007.01.01—2008.09.03有关CR的概述类文献选读。 1.{Title}: 无线通信领域的“下一个大事件”——认知无线电{Author}: 韦海珍{Journal}: 通信对抗{Year}: 2007 {Issue}: 03 ★★ 该文认为:CR是对SDR的进一步扩展,SDR只关注信号处理的软件实现,而CR 则强调对无线环境的感知并据此调整系统的工作参数,是更高层的概念,不仅包括信号处理,还包括根据相应的任务、政策、规则和目标进行推理和规划的高层功能。 作者认可的是FCC对CR的经典定义:CR是无线终端利用其与周围无线环境进行交互所获取的无线背景知识,调整传输参数、实现无线传输的能力。则具备了CR 能力(环境感知探测能力和据此调整传输频点及相关传输参数的能力)的设备即为CR设备。认知用户(非授权的二级用户)可在对主用户(授权的一级用户)不造成干扰的情况下伺机接入可用频谱,从而在空间、时间、频率上实现对频谱资源的多维利用,提高频谱资源的利用率。显然CR 的真正运行还需要规则上的支持:FCC通过了《FCC规则第15章》修正案(2003.12);DARPA 拟定XG计划;IEEE成立802.22工作组(2004.10,WRAN);SDRF成立了CR小组。 该文章认为CR功能的实现基于一个认知循环的过程:始于无线电激励的被动感知,以做出反应行为而终止。一个基本的认知循环要经历3种基本过程,即无线传输场景分析、信道状态估计及其容量预测和频谱管理。但是文章对这3个基本过程的描述很不清楚,估计是参考某种特殊的CR实例而又没给出该实例。 作者总结的CR关键技术有三:准确、快速的频谱感知技术,自适应数据传输技术,动态频谱资源管理。 频谱感知分两个阶段:第一阶段检测感兴趣频段是否存在主用户信号,寻找可用的频谱资源;第二阶段在使用频谱资源的过程中要持续地检测外部环境,一旦主用

认知无线电的发展历程与现状

认知无线电的发展历程与现状 摘要:认知无线电是一种通过与其运行环境交互而改变其发射参数从而提高频谱利用率的新的智能技术,其核心思想是CR具有学习能力,能与周围环境交互信息,以感知和利用在该空间的可用频谱,并限制和降低冲突的发生,认知无线电就是通过频谱感知(Spectrum Sensing)和系统的智能学习能力,实现动态频谱分配(DSA:dynamic spectrum allocation)和频谱共享(Spectrum Sharing)。本文主要分析认知无线电的起源,认知无线电的关键技术概要,认知无线电的相关标准化进程以及认知无线电的应用场景等多个方面,对认知无线电进行一个概述,从而加深对无线电的认知与了解。 关键字:认知无线电、起源、关键技术、标准化、应用 随着无线通信需求的不断增长,对无线通信技术支持的数据传输速率的要求越来越高。根据香农信息理论,这些通信系统对无线频谱资源的需求也相应增长,从而导致适用于无线通信的频谱资源变得日益紧,成为制约无线通信发展的新瓶颈。另一方面,已经分配给现有很多无线系统的频谱资源却在时间和空间上存在不同程度的闲置。为解决无线频谱资源紧的问题,出现了许多先进的无线通信理论与技术,如链路自适应技术、多天线技术等。这些技术虽然能提高频谱效率,但仍受限于Shannon理论。 美国联邦通信委员会的大量研究表明:ISM频段以及适用于陆地移动通信的2GHz左右授权频段过于拥挤,而有些授权频段却经常空闲。因而提出了认知无线电。认知无线电是一种智能频谱共享技术。它通过感知频谱环境、智能学习并实时调整其传输参数,实现频谱的再利用,进而显著地提高频谱的利用率,通过从时间和空间上充分利用那些空闲的频谱资源,从而有效解决上述难题。 1.认知无线电的发展历程 认知无线电的概念是由Joseph Mitola博士在1999年提出的,他认为认知无线电可以使SDR从预置程序的盲目执行者转变为无线电领域的智能代理,并在论文中描述了认知无线电如何通过无线电知识表示语言(RKRL)来提高个人无线业务的灵活性。2004年Rieser支出认知无线电不一定必须有SDR的支撑,他提出基于遗传算法的生物启发认知模型更适用于可快速部署的灾难通信系统。该认知模型可对无线电系统的物理层和MAC层烦人演进建模,主要由三部分组成,包括用于监听无线环境,进行信道建模的无线信道遗传算法(WCGA)、演进并自适应无线环境的无线通信遗传算法(WSGA)和根据无线电信道模型和无线电参数,监视并改变系统的状态,以决定如何适应无线电的认知监视系统(CSM)。 2003年5月,FCC召开了无线电研讨会,讨论了利用认知无线电技术实现灵活频谱利用的相关技术问题。并且对从频谱管理的角度出发对认知无线网进行了官方定义,认为认知无线电是指能够通过与工作环境的交互,改变发射参数的无线电设备。针对频谱利用率低的现状,FCC提出采用认知无线电技术实现“开放

软件无线电(software radio)

概要 软件无线电的基本思想是以一个通用、标准、模块化的硬件平台为依托,通过软件编程来实现无线电台的各种功能,从基于硬件、面向用途的电台设计方法中解放出来。功能的软件化实现势必要求减少功能单一、灵活性差的硬件电路,尤其是减少模拟环节,把数字化处理(A/D和D/A变换)尽量靠近天线。软件无线电强调体系结构的开放性和全面可编程性,通过软件更新改变硬件配置结构,实现新的功能。软件无线电采用标准的、高性能的开放式总线结构,以利于硬件模块的不断升级和扩展。 软件无线电(software radio)在一个开放的公共硬件平台上利用不同可编程的软件方法实现所需要的无线电系统。简称SWR。理想的软件无线电应当是一种全部可软件编程的无线电,并以无线电平台具有最大的灵活性为特征。全部可编程包括可编程射频(RF)波段、信道接入方式和信道调制。 一般说来,SWR就是宽带模数及数模变换器(A/D及D/A)、大量专用/通用处理器、数字信号处理器(Digital Signal Proicesser,DSP)构成尽可能靠近射频天线的一个硬件平台。在硬件平台上尽量利用软件技术来实现无线电的各种功能模块并将功能模块按需要组合成无线电系统。例如:利用宽带模数变换器(Analog Digital Converter,ADC),通过可编程数字滤波器对信道进行分离;利用数字信号处理技术在数字信号处理器(DSP)上通过软件编程实现频段(如短波、超短波等)的选择,完成信息的抽样、量化、编码/解码、运算处理和变换,实现不同的信道调制方式及选择(如调幅、调频、单边带、跳频和扩频等),实现不同的保密结构、网络协议和控制终端功能等。 在目前的条件下可实现的软件无线电,称做软件定义的无线电(Software Defin ed Radio,SDR)。SDR被认为仅具有中频可编程数字接入能力。 发展历史无线电的技术演化过程是:由模拟电路发展到数字电路;由分立器件发展到集成器件;由小规模集成到超大规模集成器件;由固定集成器件到可编程器件;由单模式、单波段、单功能发展到多模式、多波段、多功能;由各自独立的专用硬件的实现发展到利用通用的硬件平台和个性的编程软件的实现。 20世纪70~80年代,无线电由模拟向数字全面发展,从无编程向可编程发展,由少可编程向中等可编程发展,出现了可编程数字无线电(PDR)。由于无线电系统,特别是移动通信系统的领域的扩大和技术复杂度的不断提高,投入的成本越来越大,硬件系统也越来越庞大。为了克服技术复杂度带来的问题和满足应用多样性的需求,特别是军事通信对宽带技术的需求,提出在通用硬件基础上利用不同软件编程的方法。20世纪80年代初开始的软件无线电的革命,将把无线电的功能和业务从硬件的束缚中解放出来。 1992年5月在美国通信系统会议上,Jeseph Mitola(约瑟夫·米托拉)首次提出了“软件无线电”(Software Radio,SWR)的概念。1995年IEEE通信杂志(Comm unication Magazine)出版了软件无线电专集。当时,涉及软件无线电的计划有军用的SPEAKEASY(易通话),以及为第三代移动通信(3G)开发基于软件的空中接口计划,即灵活可互操作无线电系统与技术(FIRST)。

认知无线电的关键技术和应用研究

2007年第7期,第40卷 通 信 技 术 Vol.40,No.07,2007 总第187期Communications Technology No.187,Totally 认知无线电的关键技术和应用研究 刘 元①,彭 端②,陈 楚① (①广东工业大学信息工程学院,广东 广州 510006;②广东工业大学实验教学部,广东 广州510006) 【摘 要】认知无线电是一种新的智能无线电技术,它通过动态的接入频谱为用户提供高容量的服务,能极大的改善现有的低效的频谱利用率。文章重点分析了认知无线电中频谱检测、频谱管理、功率控制等关键技术,以及认知无线电在超宽带、Mesh网、无线区域网的应用现状,最后探讨了认知无线电发展需要关注的难点问题。 【关键词】认知无线电;频谱检测;频谱管理;功率控制 【中图分类号】TN929【文献标识码】A【文章编号】1002-0802(2007)07-0050-03 Investigation on the Key Techniques and Applications of Cognitive Radio LIU Yuan①, PENG Duan②,CHEN Chu① (① College of Information Engineering, Guangdong University of Technology,Guangzhou Guangdong 510006, China; ② Department of Experiment Education, Guangdong University of Technology, Guangzhou Guangdong 510006, China) 【Abstract】Cognitive radio is a new intelligent radio technique, it can provide large capacity services for users by dynamic spectrum access, improve the ineffective utilization of spectrum in existence. This paper starts with the concept of cognitive radio, focuses on the key techniques, such as spectrum detection, spectrum management and power control, as well as the applications of cognitive radio in ultra-wide-band, Mesh network and wireless area network. Finally it discusses the possible problems of cognitive radio which need to be paid attention to in its future development. 【Key words】cognitive radio; spectrum detection; spectrum management; power control 0 引言 无线通信频谱是一种有限的宝贵资源,目前主要是由国家统一管理、统一授权使用。每一个无线通信系统独立地使用一个频段,以使各个不同的系统互不干扰。这种授权的、静态(固定)的频谱分配方式可以有效地避免系统间的干扰。但是,随着无线通信业务和需求的快速增长,频谱资源的缺乏日益严重,美国联邦通信委员会(FCC)研究报告指出频谱的使用情况极不平衡:一些频带大部分时间没有用户使用,另一些频带只是偶尔使用,而剩余频带的使用则竞争很激烈[1]。因此,在各地区、各时间段里充分利用空闲的频带,提高频带的利用率,成为人们非常关注的问题。 1999年,J.Mitola博士提出了认知无线电(CR)的概念。认知无线电是一种智能的无线通信技术,它能够连续不断地感知周围的通信环境,通过对环境信息的分析、理解和判断,然后通过无线电知识描述语言(RKRL)自适应地调整其内部的通信参数(如发射功率、工作频率、编码方式等)以适应环境的变化。其核心思想是通过检测哪些频谱处于空闲状态,在不影响授权用户的前提下智能地选择和利用这些空闲频谱,从而提高频谱的利用率。 1 CR的关键技术 1.1 频谱检测 频谱空洞是指分配给授权用户但在一定的时间和具体的位置该授权用户没有使用的频谱。如果将待检测的频谱分成三种情况:黑色区域,常被高能量的局部干扰所占用;灰色区域,有部分时间被低能量干扰所占用;白色区域,只有环境噪声而没有射频干扰占用。一般情况下,白色区域和有限度的灰色区域可被等待的用户所使用。频谱检测的任务就是寻找合适的频谱空洞并反馈至发送端进行频谱管理和功率控制。 在CR系统中,频谱检测不仅对频谱空洞的检测起决定作用,同时也对频谱状态进行监测。典型的频谱检测技术有两种:一种是基于发射机的能量检测,另一种是基于接收机 收稿日期:2007-04-26。 基金项目:广州市应用基础研究项目(2006JI-C0331)。 作者简介:刘 元(1984–),男,硕士研究生,研究方向为宽带移动通信系统;彭 端(1963–),男,副教授,博士,硕士生导师,主要从事宽带移动通信系统与网络研究工作;陈 楚,男,硕士研究生,主要研究方向为宽带移动通信系统技术。 50

软件定义仪器

摘要:为了加速新型仪器研发,提出了“软件定义仪器”的方法并讨论了其体系和可行性。关键词:软件定义仪器;微处理器;信号调理;模数转换器;数字信号处理引言仪器,作为人类感官的延伸,在人类的文明和社会发展中起作不可替代的、极其重要的作用。在科学技术成爆炸状发展的当代,仪器所起的作用几乎无所不在,离开了仪器现代人们的生活就一刻也不能继续:医院对患者的抢救、发电厂的运行、交通工具的运行……。实际上,近代科学技术的发展史几乎就是仪器仪表的发展史,即使到科学技术高度发达的今天,仪器仪表也在科学研究中同样起作不可替代的、极其重要的作用。仪器科学与技术本身也在迅速地发展,但这种发展主要体现在专门领域应用的仪器科学技术的研究上,对仪器仪表带共性的问题研究较少。本文借助软件定义无线电(SDR)、虚拟仪器(Virtual Instrument,VI)和组态软件(Con-figuration Software,CS)的思想,提出软件定义仪器(Software Defined Instrumentation,SDI)的概念和系统。软件无线电的由来1992年5月,Joe Mitola在美国电信系统会议上首次提出了软件无线电SR(SoftWareRadio)(又称为软件定义无线电,Software De-fined Radio,SDR)的概念,它的基本思想是将硬件做为其通用的基本平台,而把尽可能多的无线及个人通信功能用软件来实现,从而将无线通信新系统、新产品的开发过程逐步转移到软件上来。它被称之为是继模拟通信到数字通信、定通信到移动通信之后,无线通信领域的第三次革命,即从硬件定义的无线电通信到软件定义的无线电通信。软件无线电可定义为:“软件无线电是一种可用软件进行重配置和重编程的、灵活的、多业务、多标准、多频段无线电系统的新兴技术。”为了更清晰地说明软件无线电与传统无线电的区别,分别给出软件(数字)化程度不同的无线电结构。所谓的软件无线电,从硬件上来看,就是要使ADC和DAC尽可能靠近天线,省却高频模拟的放大、变频、调制与解调等环节。ADC和DAC越靠近天线,说明软件(数字)化程度越高。显然,软件无线电将为所有远程通信市场的参与者、制造商、经营商和用户带来巨大的利益。制造商可以把研究与开发重点集中到简单的硬件平台设备上,这些设备可应用到每一个蜂窝系统和市场,而不仅仅是一个国家或地区范围的蜂窝系统和市场。因此,可进行大批量生产以降低成本。另一个优点是可以不断地改进软件,以及纠正在工作中发现的软件错误和故障。经营商能够快速拓展适合每个用户并区别于其他经营商的新业务;同样的终端能够提供所有服务,即使这些服务用不同的通信标准支持。另外,还可以实现多标准基站。对用户来说,软件无线电的优点是能将他们的通信漫游到其他蜂窝系统,并利用全球移动和覆盖盖范围的优势(即只要有一个蜂窝网络覆盖某地区就可以提供服务)。而且,用户可以根据其偏爱配置他们的终端。 [!--empirenews.page--] 另外,软件无线电技术延长了硬件(基站和用户终端的)的使用寿命,降低了过时落伍的风险。系统可重编程能力使硬件可重复使用,直到可以利用新一代硬件平台。但这并不意味着用户终端的寿命可以无限延长,因为在PC机市场,运行功能越来越强大的程序需要功能更强大的PC机。在不久的将来,移动终端也可能出现同样的现象。虽然软件无线电能够为研发、生产、运营和使用等各方带来巨大的利益,但存在和面临天线、前端电路、高速模数转换器、处理器电路、算法等很大的问题和挑战。对比之下,现代仪器仪表的一般结构。在仪器仪表的研发中,模拟电路部分(传感器接口电路+放大滤波)和数字部分(μP或μC)是最为重要的两个部分,又是各个整机厂“各自”研发、投入最大、重复最多的两个部分。与“无线电”可以有以下对比:传感器、天线;传感器接口电路+放大滤波、高频放大、变频、调制与解调;μP或μC、DSP……因此,我们完全可以借鉴“软件无线电”的概念,构成图5所示的“软件定义仪器”(Software Defined Instrument,SDI)或软件仪器(Software Instrument,SI)(为简便起见,以下均简称软件仪器)。这样使得一方面A/DC尽可能地靠近传感器,减少或避免模拟电路,同时采用具有API(Application Programming In-terface,应用编程接口)、仪器接口协议栈的μP或μC平台;可以把分散、重复而且最耗费人力、财力的“个体”或“小

相关主题