搜档网
当前位置:搜档网 › 压轴题放缩法技巧全总结

压轴题放缩法技巧全总结

压轴题放缩法技巧全总结
压轴题放缩法技巧全总结

压轴题放缩法技巧全总结

本资料为woRD文档,请点击下载地址下载全文下载地址高考数学备考之

放缩技巧

证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种:

一、裂项放缩

例1.求的值;

求证:.

解析:因为,所以

因为,所以

技巧积累:

例2.求证:

求证:

求证:

求证:

解析:因为,所以

先运用分式放缩法证明出,再结合进行裂项,最后就可以得到答案

首先,所以容易经过裂项得到

再证而由均值不等式知道这是显然成立的,

所以

例3.求证:

解析:

一方面:因为,所以

另一方面:

当时,,当时,,

当时,,

所以综上有

例4.设函数.数列满足..

设,整数.证明:.

解析:

由数学归纳法可以证明是递增数列,

若存在正整数,使,则,

若,则由知,,

因为,于是

例5.已知,求证:

.

解析:首先可以证明:

所以要证

只要证:

故只要证,

即等价于,

即等价于

而正是成立的,所以原命题成立. 例6.已知,,求证:.

解析:

所以

从而

例7.已知,,求证:

证明:

,

因为

,所以

所以

二、函数放缩

例8.求证:.

解析:先构造函数有,从而

cause

所以

例9.求证:

解析:构造函数,得到,再进行裂项,求和后可以得到答案

函数构造形式:

,

例10.求证:

解析:提示:

函数构造形式:

当然本题的证明还可以运用积分放缩

如图,取函数,

首先:,从而,

取有,,

所以有,,…,,,相加后可以得到:

另一方面,从而有

取有,,

所以有,所以综上有

例11.求证:和.解析:构造函数后即可证明

例12.求证:

解析:,叠加之后就可以得到答案

函数构造形式:

例13.证明:

解析:构造函数,求导,可以得到:

,令有,令有,

所以,所以,令有,

所以,所以

例14.已知证明.

解析:

,

然后两边取自然对数,可以得到

然后运用和裂项可以得到答案)

放缩思路:

。于是,

注:题目所给条件()为一有用结论,可以起到提醒思路与探索放缩方向的作用;当然,本题还可用结论来放缩:,

例16.已知函数若

解析:设函数

∴函数)上单调递增,在上单调递减.∴的最小值为,即总有

令则

例15.已知函数是在上处处可导的函数,若在上恒成立. 求证:函数上是增函数;

当;

已知不等式时恒成立,

求证:

解析:,所以函数上是增函数

因为上是增函数,所以

两式相加后可以得到

……

相加后可以得到:

所以

令,有

所以

所以

又,所以

三、分式放缩

姐妹不等式:和

记忆口诀”小者小,大者大”

解释:看b,若b小,则不等号是小于号,反之.

例19.姐妹不等式:和

也可以表示成为

解析:利用假分数的一个性质可得

例20.证明:

解析:运用两次次分式放缩:

相乘,可以得到:

所以有

四、分类放缩

例21.求证:

解析:

例22.在平面直角坐标系中,

轴正半轴上的点列与曲线(≥0)上的点列满足,直线在x轴上的截距为.点的横坐标为,.

证明>>4,;证明有,使得对都有<.

解析:依题设有:,由得:

,又直线在轴上的截距为满足

显然,对于,有

证明:设,则

设,则当时,

所以,取,对都有:

故有<成立。

例23.已知函数,若的定义域为[-1,0],值域也为[-1,0].若数列满足,记数列的前项和为,问是否存在正常数A,使得对于任意正整数都有?并证明你的结论。

解析:首先求出,∵

∴,∵,,…

,故当时,,

因此,对任何常数A,设是不小于A的最小正整数,

则当时,必有.

故不存在常数A使对所有的正整数恒成立.

例24.设不等式组表示的平面区域为,

设内整数坐标点的个数为.设,

当时,求证:.

解析:容易得到,所以,要证只要证,因为

,所以原命题得证

五、迭代放缩

例25.已知,求证:当时,

解析:通过迭代的方法得到,然后相加就可以得到结论

例26.设,求证:对任意的正整数k,若k≥n恒有:|Sn+k -Sn|<1n

解析:

所以

六、借助数列递推关系

例27.求证:

解析:设则

,从而

,相加后就可以得到

所以

例28.求证:

解析:设则

,从而

,相加后就可以得到

例29.若,求证:

解析:

所以就有

七、分类讨论

例30.已知数列的前项和满足证明:对任意的整数,有解析:容易得到,

由于通项中含有,很难直接放缩,考虑分项讨论:

当且为奇数时

(减项放缩),于是

①当且为偶数时

②当且为奇数时

(添项放缩)由①知由①②得证。

八、线性规划型放缩

例31.设函数.若对一切,,求的最大值。

解析:由知

由此再由的单调性可以知道的最小值为,最大值为

因此对一切,的充要条件是,

即,满足约束条件,

由线性规划得,的最大值为5.

九、均值不等式放缩

例32.设求证

解析:此数列的通项为

,,

注:①应注意把握放缩的“度”:上述不等式右边放缩用的是均值不等式,若放成则得,就放过“度”了!

②根据所证不等式的结构特征来选取所需要的重要不等式,这里

其中,等的各式及其变式公式均可供选用。

例33.已知函数,若,且在[0,1]上的最小值为,求证:解析:

例34.已知为正数,且,试证:对每一个,.

解析:由得,又,故,而,

令,则=,因为,倒序相加得=,

而,

则=

,所以

,即对每一个,.

例35.求证

解析:不等式左

=,

原结论成立.

例36.已知,求证:

解析:

经过倒序相乘,就可以得到

例37.已知,求证:

解析:

其中:,因为

所以

从而,所以.

例38.若,求证:.

解析:

因为当时,,所以,所以,当且仅当时取到等号. 所以

所以所以

例39.已知,求证:.

解析:.

例40.已知函数f=x2-k•2lnx.k是奇数,n∈N*时,

求证:[f’]n-2n-1•f’≥2n.

解析:由已知得,

当n=1时,左式=右式=0.∴不等式成立.

,左式=

由倒序相加法得:

所以

所以综上,当k是奇数,时,命题成立

例41.(XX年东北三校)已知函数

(1)求函数的最小值,并求最小值小于0时的取值范围;

(2)令求证:

★例42.已知函数,.对任意正数,证明:.

解析:对任意给定的,,由,

若令

,则

①,而

(一)、先证;因为,,,

又由

,得

所以

(二)、再证;由①、②式中关于的对称性,不妨设.则(ⅰ)、当,则,所以,因为

,此时.

(ⅱ)、当③,由①得,,,

因为

所以

同理得⑤,于是

今证明

⑦,因为

只要证

,即

,也即

,据③,此为显然.

因此⑦得证.故由⑥得

综上所述,对任何正数,皆有.

例43.求证:

解析:一方面:

另一方面:

十、二项放缩

,,

例44.已知证明

解析:

45.设,求证:数列单调递增且

解析:引入一个结论:若则(证略)整理上式得()

以代入()式得

即单调递增。

以代入()式得

此式对一切正整数都成立,即对一切偶数有,又因为数列单调递增,所以对一切正整数有。

注:①上述不等式可加强为简证如下:

利用二项展开式进行部分放缩:

只取前两项有对通项作如下放缩:

故有

②上述数列的极限存在,为无理数;同时是下述试题的背景:已知是正整数,且(1)证明;(2)证明(01年全国卷理科第20题)

简析对第(2)问:用代替得数列是递减数列;借鉴此结论可有如下简捷证法:数列递减,且故即。

当然,本题每小题的证明方法都有10多种,如使用上述例5所提供的假分数性质、贝努力不等式、甚至构造“分房问题”概率模型、构造函数等都可以给出非常漂亮的解决!详见文[1]。

例46.已知a+b=1,a>0,b>0,求证:

解析:因为a+b=1,a>0,b>0,可认为成等差数列,设,

从而

例47.设,求证.

解析:观察的结构,注意到,展开得

,即,得证.

例48.求证:.

解析:参见上面的方法,希望读者自己尝试!)

例42.已知函数,满足:

①对任意,都有;

②对任意都有.

(I)试证明:为上的单调增函数;

(II)求;

(III)令,试证明:.

解析:本题的亮点很多,是一道考查能力的好题.

运用抽象函数的性质判断单调性:

因为,所以可以得到,

也就是,不妨设,所以,可以得到,也就是说为上的单调增函数.

此问的难度较大,要完全解决出来需要一定的能力!

首先我们发现条件不是很足,,尝试探索看看按中的不等式可以不可以得到什么结论,一发现就有思路了!

由可知,令,则可以得到

,又,所以由不等式可以得到,又

,所以可以得到

接下来要运用迭代的思想:

因为,所以,,

,,,

在此比较有技巧的方法就是:

,所以可以判断

当然,在这里可能不容易一下子发现这个结论,所以还可以列项的方法,把所有项数尽可能地列出来,然后就可以得到结论.

所以,综合①②③有=

在解决的通项公式时也会遇到困难.

,所以数列的方程为,从而,

一方面,另一方面

所以,所以,综上有

.

例49.已知函数fx的定义域为[0,1],且满足下列条件:

①对于任意[0,1],总有,且;②若则有

(Ⅰ)求f0的值;(Ⅱ)求证:fx≤4;

(Ⅲ)当时,试证明:.

解析:(Ⅰ)解:令,由①对于任意[0,1],总有,∴又由②得即

(Ⅱ)解:任取且设

因为,所以,即

∴.

∴当[0,1]时,.

(Ⅲ)证明:先用数学归纳法证明:

(1)

当n=1时,,不等式成立;

(2)

假设当n=k时,

即当n=k+1时,不等式成立

由(1)、(2)可知,不等式对一切正整数都成立. 于是,当时,,

而[0,1],单调递增

所以,

例50.已知:

求证:

解析:构造对偶式:令

则=

十一、积分放缩

利用定积分的保号性比大小

保号性是指,定义在上的可积函数,则.

例51.求证:.

解析:

,∵

时,,,

∴,.

利用定积分估计和式的上下界

定积分产生和应用的一个主要背景是计算曲边梯形的面积,现在用它来估计小矩形的面积和.

例52.求证:,.

解析:考虑函数在区间

上的定积分.

如图,显然-①

对求和,

例53.已知.求证:.

解析:考虑函数在区间

上的定积分.

-②

.

例54.(XX年全国高考江苏卷)设,如图,已知直线及曲线:,上的点的横坐标为().从上的点作直线平行于轴,交直线于点,再从点作直线平行于轴,交曲线于点.的横坐标构成数列.

(Ⅰ)试求与的关系,并求的通项公式;

(Ⅱ)当时,证明;

(Ⅲ)当时,证明.

解析:(过程略).

证明(II):由知,∵,∴.

∵当时,,

∴.

证明(Ⅲ):由知.

∴恰表示阴影部分面积,

显然

高中数列放缩法技巧大全

高中数列放缩法技巧大全 证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求∑ =-n k k 121 42的值; (2)求证:2 1153n k k =<∑ . 解析:(1)因为 1 21 121)12)(12(21422+- -=+-= -n n n n n ,所以1 2212111 42 1 2 += +- =-∑=n n n k n k (2)因为22211411214121214 n n n n n ??<==- ?--+??- , 所以35321121121513121112 =+

常用放缩方法技巧

常用放缩方法技巧 证明数列型不等式,因其思维跨度大、构造性强,需要有较高得放缩技巧而充满思考性与挑战性,能全面而综合地考查学生得潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题得极好素材。这类问题得求解策略往往就是:通过多角度观察所给数列通项得结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: ⑴添加或舍去一些项,如:; ⑵将分子或分母放大(或缩小) ⑶利用基本不等式,如:; ⑷二项式放缩:,, (5)利用常用结论: Ⅰ、得放缩 : Ⅱ、得放缩(1) : (程度大) Ⅲ、得放缩(2):(程度小) Ⅳ、得放缩(3):(程度更小) Ⅴ、分式放缩还可利用真(假)分数得性质:与 记忆口诀“小者小,大者大”。解释:瞧b,若b小,则不等号就是小于号,反之亦然、 Ⅵ、构造函数法构造单调函数实现放缩。例:,从而实现利用函数单调性质得放缩:。 一.先求与再放缩 例1、,前n项与为S n ,求证: 例2、 , 前n项与为S n ,求证: 二.先放缩再求与 (一)放缩后裂项相消 例3.数列,,其前项与为 ,求证: (二)放缩后转化为等比数列。 例4、满足: (1)用数学归纳法证明: (2),求证: 三、裂项放缩 例5、(1)求得值; (2)求证:、 例6、(1)求证: (2)求证: (3)求证: 例7、求证: 例8、已知,,求证:、 四、分式放缩 姐妹不等式:与 记忆口诀”小者小,大者大” 解释:瞧b,若b小,则不等号就是小于号,反之亦然、 例9、姐妹不等式:与 也可以表示成为 与 例10、证明: 五、均值不等式放缩 例11、设求证 例12、已知函数,a>0,b>0,若,且在[0,1]上得最大值为, 求证: 六、二项式放缩 ,, 例13、设,求证、 例14、 , 试证明:、

高中数学放缩法技巧全总结材料

2010高考数学备考之放缩技巧 证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求 ∑=-n k k 1 2 142 的值; (2)求证: 3 51 1 2 < ∑=n k k . 解析:(1)因为121121)12)(12(21 422+--=+-= -n n n n n ,所以12212111 4212 +=+-=-∑=n n n k n k (2)因为??? ??+--=-=- <1211212144 4 11 1 222n n n n n ,所以35321121121513121112=+-?>-?>?-=?=+ (14) ! )2(1!)1(1)!2()!1(!2+- +=+++++k k k k k k (15) )2(1)1(1 ≥--<+n n n n n (15) 11 1) 11)((1122222 222<++++= ++ +--= -+-+j i j i j i j i j i j i j i 例2.(1)求证:)2()12(2167) 12(1513112 22≥-->-++++n n n (2)求证:n n 412141361161412 -<++++ (3)求证:1122642)12(531642531423121-+< ????-????++????+??+n n n (4) 求证:)112(213 12 11)11(2-+<++++<-+n n n

常用放缩方法技巧

常用放缩方法技巧 证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: ⑴添加或舍去一些项,如: a a >+12;n n n >+)1( ⑵将分子或分母放大(或缩小) ⑶利用基本不等式,如:4lg 16lg 15lg )2 5lg 3lg (5lg 3lg 2=<=+n n n n (5)利用常用结论: Ⅰ. 的放缩 Ⅱ. 21k 的放缩(1) : 2111(1)(1) k k k k k <<+-(程度大) Ⅲ. 21k 的放缩(2):22111111()1(1)(1)211k k k k k k <==+-+--+(程度小) Ⅳ. 2 1k 的放缩(3):221 4112()412121k k k k <=+--+(程度更小) Ⅴ. 分式放缩还可利用真(假)分数的性质:)0,0(>>>++>m a b m a m b a b 和)0,0(>>>++

高考数学数列不等式证明题放缩法十种方法技巧总结(供参考)

1. 均值不等式法 例1 设.)1(3221+++?+?=n n S n 求证.2 )1(2)1(2 +<<+n S n n n 例2 已知函数bx a x f 211 )(?+=,若54)1(=f ,且)(x f 在[0,1]上的最小值为21,求证:.2121 )()2()1(1-+ >++++n n n f f f 例3 求证),1(2 21321 N n n n C C C C n n n n n n ∈>?>++++- . 例4 已知222121n a a a +++=,222121n x x x +++=,求证:n n x a x a x a +++ 2211≤1. 2.利用有用结论 例5 求证.12)1 211()511)(311)(11(+>-++++n n 例6 已知函数 .2,,10,)1(321lg )(≥∈≤x x f x f 对任意*∈N n 且2≥n 恒成立。 例7 已知1 12111,(1).2n n n a a a n n +==+++ )(I 用数学归纳法证明2(2)n a n ≥≥; )(II 对ln(1)x x +<对0x >都成立,证明2n a e <(无理数 2.71828 e ≈) 例8 已知不等式21111[log ],,2232 n n N n n *+++>∈>。2[log ]n 表示不超过n 2log 的最大整数。设正数数列}{n a 满足:.2,),0(111≥+≤ >=--n a n na a b b a n n n 求证.3,][log 222≥+

第一轮复习 放缩法技巧全总结

放缩法在数列不等式中的应用 数列不等式是高考大纲在知识点交汇处命题精神的重要体现,在高考试题中占有重要地位,在近几年的高考试题中,多个省份都有所考查,甚至作为压轴题。而数列不等式的求解常常用到放缩法,笔者在教学过程中发现学生在用放缩法处理此类问题时,普遍感到困难,找不到解题思路。现就放缩法在数列不等式求解过程中常见的几种应用类型总结如下。 1. 直接放缩,消项求解 例1在数列{}{},n n a b 中,112,4a b ==,且1,,n n n a b a +成等差数列,11,,n n n b a b ++成等比数列. *N n ∈, (Ⅰ)求234,,a a a 及234,,b b b ,由此猜测{}{},n n a b 的通项公式,并证明你的结论; (Ⅱ)证明:1122111512 n n a b a b a b +++<+++L . 分析:(Ⅰ)数学归纳法。 (Ⅱ)本小题的分母可化为不相同的两因式的乘积,可将其放缩为等差型两项之积,通过裂项求和。 (Ⅰ)略解2(1)(1)n n a n n b n =+=+,. (Ⅱ)11115612 a b =<+.n ≥2时,由(Ⅰ)知(1)(21)2(1)n n a b n n n n +=++>+. 故112211111111622334(1)n n a b a b a b n n ??+++<++++ ?+++??+?? …… 111111116223341n n ??=+-+-++- ?+?? … 111111562216412n ??= +-<+= ?+??,综上,原不等式成立. 点评: 数列和式不等式中,若数列的通项为分式型,可考虑对其分母进行放缩,构造等差型因式之积。再用裂项的方法求解。 另外,熟悉一些常用的放缩方法, 如: ),,2,1(1 1121n k n k n n Λ=+≤+≤,n n n n n n n n n 111)1(11)1(11112--=-≤<+=+- 例2设数列{}n a 满足*,1,1311N c c ca a a n n ∈-+==+其中c 为实数

最新高考数学数列放缩法技巧全总结

高考数学备考之 放缩技巧 证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求∑=-n k k 1 2 142 的值; (2)求证: 351 1 2 < ∑=n k k . 解析:(1)因为121121)12)(12(21 42 2 +--=+-= -n n n n n ,所以122121114212 +=+-=-∑=n n n k n k (2)因为? ? ? ??+--=-= - <121121 2144 4 111 2 22 n n n n n ,所以 353211211215 1 31211 1 2 = +-?>-?>?-=?=+ (14) ! )2(1 !)1(1)!2()!1(!2+- +=+++++k k k k k k (15) ) 2(1) 1(1 ≥--<+n n n n n

高考数学_压轴题_放缩法技巧全总结(最强大)

放缩技巧 (高考数学备考资料) 证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求∑ =-n k k 1 2142的值; (2)求证:3 511 2 <∑=n k k . 解析:(1)因为 121121)12)(12(21 422+--=+-= -n n n n n ,所以12212111 4212 +=+-=-∑=n n n k n k (2)因为 ??? ??+--=-=- <1211212144 4 11 1222 n n n n n ,所以35321121121513121112=+-?>-?>?-=?=+ (14) ! )2(1!)1(1)!2()!1(!2+- +=+++++k k k k k k (15) )2(1) 1(1 ≥--<+n n n n n (15) 112 22 2+-+-+j i j i j i

高考数学数列放缩法技巧全汇总

高考数学数列放缩法技巧全汇总

————————————————————————————————作者:————————————————————————————————日期:

高考数学备考之 放缩技巧 证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求∑=-n k k 1 2 142 的值; (2)求证: 351 1 2 < ∑=n k k . 解析:(1)因为121121)12)(12(21 42 2 +--=+-= -n n n n n ,所以122121114212 +=+-=-∑=n n n k n k (2)因为? ? ? ??+--=-= - <121121 2144 4 111 2 22 n n n n n ,所以 353211211215 1 31211 1 2 = + -?>-?>?-=?=+ (14) ! )2(1 !)1(1)!2()!1(!2+- +=+++++k k k k k k (15) ) 2(1) 1(1 ≥--<+n n n n n

高考数学专题复习放缩法技巧全总结

高考数学备考之放缩技巧 证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求 ∑=-n k k 1 2 1 42 的值; (2)求证: 3 51 1 2 < ∑=n k k . 解析:(1)因为121121)12)(12(21 422+--=+-= -n n n n n ,所以12212111 4212 +=+-=-∑=n n n k n k 技巧积累:(1)??? ??+--=-< =1211212144 4412 2 2n n n n n (2)) 1(1) 1(1)1()1(212 11+--=-+=+n n n n n n n C C n n (5) n n n n 2 1121)12(21--=- (8) n n n n n n n 2)32(12)12(12 13211221?+-?+=???? ??+-+- (9) ? ? ? ??++-+=+++??? ??+-+=-+k n n k k n n n k k n k n k 11111)1(1,11111)1(1 (10) !)1(1!1!)1(+- =+n n n n >算数平均数可 证) 122a b +?>≥

(3)2n n ≥=> 易知恒成立,当 2)> ≥恒成立。 例2.(1)求证:)2()12(2167) 12(1513112 22≥-->-++++n n n Λ (2)求证:n n 412141361161412 -<++++Λ (3)求证:1122642)12(531642531423121-+< ????-????++????+??+n n n ΛΛΛ (4) 求证:)112(213 12 11)11(2-+<++++<-+n n n Λ (3)再结合 n n n -+<+22 1进行裂项,最后就可以得到答案 例3.求证: 3 5 191411)12)(1(62<++++≤++n n n n Λ 解析:一方面: 353211211215 1 31211 1 2 = +

放缩法技巧全总结.doc

.. 2011 高考数学备考之 放缩技巧 证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例 1.(1) n 2 的值 ; (2) 求证 : n 1 5 . 求 k 1 4k 2 1 k 1 k 2 3 解析 :(1) 因为 2 2 1 1 , 所以 n 2 1 1 2n 4n 2 1 (2n 1)(2n 1) 2n 1 2n 1 k 1 4k 2 1 2n 1 2 n 1 (2) 因为 1 1 4 1 1 , 所以 1 1 2 1 1 1 1 5 2 n 1 2 2 1 4 n 2 2n 1 2n 1 k 1 k 2 3 5 2n 1 2n 1 3 3 2 1 n n 4 奇巧积累 :(1) 1 4 4 2 1 1 (2) 1 2 1 1 n 2 4n 2 4n 2 2n 1 C n 1 1 C n 2 ( n 1)n( n 1) n( n 1) n(n 1) 1 2n 1 (3) T r 1 r 1 n! 1 1 1 1 1 (r 2) C n r!( n r )! n r r! r ( r 1) r 1 r n r (4) (1 1 ) n 1 1 1 1 1 1 5 n 2 3 2 n(n 1) 2 (5) 1 1 1 (6) 1 n 2 n 2 n (2 n 1) 2n 1 2 n n 2 (7) 2( n 1 n ) 1 2( n n 1) (8) 2 1 1 1 1 n 2 n 1 2n 3 2n (2 n 1) 2 n 1 (2n 3) 2n (9) 1 1 1 1 , 1 1 1 1 k (n 1 k) n 1 k k n 1 1 k ) k 1 n n 1 k n(n (10) n 1 1 (11) 1 2 2 2 (n 1) ! n ! (n 1) ! 2( 2n 1 2n 1) n 2n 1 2n 1 1 1 n n 2 2 (11) 2 n 2n 2 n 2n 1 1 1 (n 2 ) (2n 1)2 (2n 1)( 2n 1) (2 n 1)( 2 n 2) (2 n 1)(2n 1 1) 2n 1 1 2 n 1 (12) 1 1 1 1 1 1 n 3 n n 2 n (n 1)(n 1) n( n 1) n (n 1) n 1 n 1 1 1 n 1 n 1 1 1 n 1 n 1 2 n n 1 n 1 (13) (14) 2 n 1 2 2n (3 1) 2n 3 3(2 n 1) 2n 2n 1 2n 1 2 n 3 2n 1 3 k 2 1 1 (15) 1 n n 1(n 2) k! (k 1)! (k 2)! (k 1) ! (k 2) ! n( n 1) (15) i 2 1 j 2 1 i 2 j 2 i j 1 i j (i j)( i 2 1 j 2 1) i 2 1 j 2 1 . .下载可编辑 . .

放缩法技巧全总结

放缩技巧 证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求∑ =-n k k 121 42的值; (2)求证:3511 2 <∑ =n k k . 解析:(1)因为121121)12)(12(2142 2+--=+-=-n n n n n ,所以12212111 4212 +=+-=-∑=n n n k n k (2)因为 ??? ??+--=-=- <1211212144 4 111 222 n n n n n ,所以35321121121513121112=+-?>-?>?-=?=+ (14) ! )2(1!)1(1)!2()!1(!2+- +=+++++k k k k k k (15) )2(1) 1(1 ≥--<+n n n n n

放缩法技巧全总结

放缩法技巧全总结 标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DDQTY-KII

放缩技巧 证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求∑ =-n k k 121 42的值; (2)求证:35112 <∑ =n k k . 解析:(1)因为121121)12)(12(2142 2+--=+-=-n n n n n ,所以12212111 4212 +=+-=-∑=n n n k n k (2)因为 ??? ??+--=-=- <1211212144 4 111222 n n n n n ,所以35321121121513121112=+-?>-?>?-=?=+ (14) !)2(1!)1(1)!2()!1(!2+- +=+++++k k k k k k (15) )2(1)1(1≥--<+n n n n n (15) 11 1) 11)((112 2 2 22 222<++ ++= ++ +--= -+-+j i j i j i j i j i j i j i 例2.(1)求证:)2()12(21 67) 12(1513 112 22≥-->-+ +++n n n

压轴题放缩法技巧全总结

压轴题放缩法技巧全总结 本资料为woRD文档,请点击下载地址下载全文下载地址高考数学备考之 放缩技巧 证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.求的值; 求证:. 解析:因为,所以 因为,所以 技巧积累: 例2.求证: 求证: 求证: 求证: 解析:因为,所以

先运用分式放缩法证明出,再结合进行裂项,最后就可以得到答案 首先,所以容易经过裂项得到 再证而由均值不等式知道这是显然成立的, 所以 例3.求证: 解析: 一方面:因为,所以 另一方面: 当时,,当时,, 当时,, 所以综上有 例4.设函数.数列满足.. 设,整数.证明:. 解析: 由数学归纳法可以证明是递增数列, 故 若存在正整数,使,则, 若,则由知,, 因为,于是 例5.已知,求证: .

解析:首先可以证明: 所以要证 只要证: 故只要证, 即等价于, 即等价于 而正是成立的,所以原命题成立. 例6.已知,,求证:. 解析: 所以 从而 例7.已知,,求证: 证明: , 因为 ,所以 所以 二、函数放缩 例8.求证:. 解析:先构造函数有,从而 cause 所以

例9.求证: 解析:构造函数,得到,再进行裂项,求和后可以得到答案 函数构造形式: , 例10.求证: 解析:提示: 函数构造形式: 当然本题的证明还可以运用积分放缩 如图,取函数, 首先:,从而, 取有,, 所以有,,…,,,相加后可以得到: 另一方面,从而有 取有,, 所以有,所以综上有 例11.求证:和.解析:构造函数后即可证明 例12.求证: 解析:,叠加之后就可以得到答案 函数构造形式: 例13.证明: 解析:构造函数,求导,可以得到:

“放缩法”技巧说课讲解

“放缩法”技巧

例谈“放缩法”证明不等式的基本策略 近年来在高考解答题中,常渗透不等式证明的内容,而不等式的证明是高中数学中的一个难点,它可以考察学生逻辑思维能力以及分析问题和解决问题的能力。特别值得一提的是,高考中可以用“放缩法”证明不等式的频率很高,它是思考不等关系的朴素思想和基本出发点, 有极大的迁移性, 对它的运用往往能体现出创造性。“放缩法”它可以和很多知识内容结合,对应变能力有较高的要求。因为放缩必须有目标,而且要恰到好处,目标往往要从证明的结论考察,放缩时要注意适度,否则就不能同向传递。下面结合一些高考试题,例谈“放缩”的基本策略,期望对读者能有所帮助。 1、添加或舍弃一些正项(或负项) 例1、已知*21().n n a n N =-∈求证:*12231 1...().23n n a a a n n N a a a +-<+++∈ 证明: 111211111111 .,1,2,...,,2122(21)2 3.222232k k k k k k k k a k n a +++-==-=-≥-=--+-Q 1222311111111 ...(...)(1),2322223223 n n n n a a a n n n a a a +∴ +++≥-+++=-->- *122311...().232 n n a a a n n n N a a a +∴-<+++<∈ 若多项式中加上一些正的值,多项式的值变大,多项式中加上一些负的 值,多项式的值变小。由于证明不等式的需要,有时需要舍去或添加一些项,使不等式一边放大或缩小,利用不等式的传递性,达到证明的目的。本题在放缩时就舍去了22k -,从而是使和式得到化简. 2、先放缩再求和(或先求和再放缩)

放缩法的应用技巧

放缩法的应用技巧 放缩法证明数列不等式是高考数学命题的热点和难点。所谓放缩法就是利用不等式的传递性,对不等式的局部进行合理的放大和缩小从而向结论转化,其难度在于放缩的合理和适度。证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧从而充满思考性和挑战性。为了帮助更多的学生突破这一难点,我们从以下几个方面对放缩法证明数列不等式的基本策略进行分析。 一、常见的放缩方法 证题中经常用到的放缩方法法有: 1.“添舍”放缩:对不等式一边添项或舍项以达到放大和缩小的效果; 2.分式放缩:分别放缩分式的分子、分母或者同时放缩分子分母以达到放缩的效果; 3.利用重要的不等式或结论放缩:把欲证不等式变形构造,然后利用已知的公式或恒不等式进行放缩,例如均值不等式、柯西不等式、绝对值不等式、二项式定理、贝努力公式、真分数性质定理等。 4.单调性放缩:挖掘不等式的结构特征和函数内涵来构造单调数列或单调函数,利用单调性、值域产生的不等关系进行放缩。 二、常见的放缩控制 当我们选择了正确的放缩方法后,却往往会在放缩的过程中不知不觉间失控,导致放缩的过大或过小,达不到欲证的目标。那么如何控制好放缩的尺度呢? 例1.求证: 4 713121112222<++++n 分析1:不等式左边不能直接求和,我们希望通过合适的放缩后可以求和。 若采取“ )1(112-<-=--+n n n 很明显,放得有点大了,导致传递性失败,不等式链中断,放缩失败。那怎么办呢? 【1】 调整放缩的“量”的大小 分析2:分析1中“放”的有点过大,因为,,放大了412 112 12?< ,,放大了18 13213 12 ?<所以可以通过调整放大的“量”来控制放缩的效果。在) 1(1 12-< n n n 分母减少了n ,我们可以把分母只减少1,即 ),(2)1111(211112 2≥+--=-

相关主题