搜档网
当前位置:搜档网 › 无线电台常用高频发射管参数

无线电台常用高频发射管参数

无线电台常用高频发射管参数
无线电台常用高频发射管参数

无线电台常用高频发射管参数

作者:摘录发布:2006-4-7 人气:97

型号电流功率频率

C1945 6A 20W 30MHz

C1969 6A 20W 30MHz

C2078 3A 10W 30MHz

C2904 22A 200W 37MHz

C1162 2.5A 10W 37MHz

C2538 0.4A 0.7W 175MHz

C2539 4A 35W 175MHz

C2628 4A 40W 175MHz

C2630 14A 100W 175MHz

C2694 20A 140W 175MHz

C1946 7A 50W 175MHz

C2905 15A 120W 520MHz

C1947 1A 10W 175MHz

C3101 1A 10W 520MHz

C1970 0.6A 5W 175MHz

C3102 18A 170W 520MHz

C1971 2A 13W 175MHz

C3022 7A 50W 520MHz

C1972 4A 25W 175MHz

C1947 1A 10W 175MHz

C2053 0.3A 0.6W 175MHz C1959 0.5A 0.5W 300MHz

C2131 0.6A 4W 520MHz C2068 0.5A 1.5W 95MHz

C2407 0.2A 0.6W 500MHz C2229 0.5A 0.8W 120MHz

C2482 0.7A 0.9W 50MHz

LTE网络无线参数及KPI指标优化(详)

一、LTE小区选择及相关参数 1.1 小区选择S准则 UE进行小区选择时,需要判断小区是否满足小区选择规则。小区选择规则的基础是EUTRAN小区参考信号的接收功率测量值,即:RSRP。 驻留小区的条件要求符合小区选择S准则:Srxlev>0。 Srxlev= Qrxlevmeas-(Qrxlevmin+Qrxlevminoffset)-Pcompensation; Pcompensation=max(PMax-UE Maximum Outpower,0) 各参数含义如下: 1、Srxlev:小区选择S值,单位dB; 2、Qrxlevmeas:测量小区的RSRP值,单位dBm; 3、Qrxlevmin:小区最小接收电平,单位dBm,目前集团规定为:-128;(该参数可影响用户接入) 4、Qrxlevminoffset:减少PLMN之间的乒乓选择,此参数只在UE驻留在访问PLMN (Visited PLMN)时, 周期性地搜寻更高级别的PLMN时使用.; 5、PMax:UE在小区中允许的最大上行发送功率; 6、UE Maximum Outpower:UE能力决定的最大上行发送功率 1.2 小区选择相关参数 小区选择相关参数如下: 二、LTE小区重选及相关参数 2.1 小区重选相关知识 2.1.1 小区重选知识

小区重选指(cell reselection)指UE在空闲模式下通过监测邻区和当前小区的信号质量以选择一个最好的小区提供服务信号的过程。当邻区的信号质量及电平满足S准则且满足一定重选判决准则时,终端将介入该小区驻留。UE驻留到合适的小区停留1S后,就可以进行小区重选的过程。小区重选过程包括测量和重选两部分过程,终端根据网络配置的相关参数,在满足条件时发起相应的流程。 2.1.2 重选的分类 1)系统内小区测量及重选; ●同频小区测量、重选 ●异频小区测量、重选 2)系统间小区测量及重选; 2.1.3 重选优先级概念 1)与2/3G网络不同,LTE系统中引入了重选优先级的概念 ●在LTE系统,网络可配置不同频点或频率组的优先级,通过广播在系统消息中告诉UE,对应参数为cellreselectionPriority,取值为(0….7);(注:0优先级为最低,现网同频设置为5;异频设置宏站加室分底层&高层设置为6,室分高层加宏站为4,室分底层加宏站为5.) ●优先级配置单位是频点,因此在相同载频的不同小区具有相同的优先级; ●通过配置各频点的优先级,网络便能方便地引导终端重选到高优先级的小区驻留达到均衡网络负荷、提升资源利用率,保障UE信号质量等作用; 2)重选优先级也可以通过RRCConnectionRelease消息告诉UE,此时UE忽略广播消息中的优先级信息,以该信息为准; 网络主动引导UE进行系统间小区重选,完成CS域语音呼叫等; 2.1.4 重选系统消息 LTE中,SIB3-SIB8全部为重选相关信息,具体如下:

无线网络优化参数调整

无线网络优化的BSC和小区参数调整1.1 一致性检查 ?小区参数是网络最佳性能的基础。优化过程中,不断地进行一致性检查以发现不一致设置的存在。总体上进行了以下检查: 1.1.1 小区定义单向 ?在别的BSC 中发现有相邻关系定义,在反向却没有,这意味着切换只能单向进行,除了特殊情况外反向相邻关系都应添加。 1.1.2 NCCPERM设置 ?如果NCCPERM的设置与NCC不同,则没有切换能进入这些小区。 NCCPERM是以8位BIT MAP的形式编码,0为不允许,1为允许。 例如: 允许NCC=1,编码为二进制00000010,NCCPERM=2(十进制) 允许NCC=0和1,编码为二进制00000011,NCCPERM=3(十进制) 1.1.3 MBCCHNO设置 ?相邻小区的MBCCHNO没有定义,会使得这些小区的切换也无法进行;而MBCCHNO定义过多,又会影响小区的切换准确性和及时性。 1.1.4 BCCH, BSIC, CGI定义有误 ?外部小区的参数定义正确性对外部切出切换成功率至关重要。如果BCCH, BSIC 和CGI其中一个定义有误, 对这些小区的切换同样无法进行。 1.1.5 邻小区同BCCH同BSIC ?这将严重影响切换成功率和随机接入性能(在同一BSC内最好不要存在相同BCCHNO和BSIC的小区)。 1.1.6 本小区与邻小区同BCCH ?产生BCCH干扰,会造成掉话高,并影响切换指标。 1.1.7 BCCH与TCH或TCH与TCH间的同邻频干扰 ?会造成掉话高,并影响切换指标(内切换频繁),影响网络的总体性能。 2 无线功能参数 和小区数据调整 2.1 空闲模式行为的参数调整 ?空闲模式是指手机开机但没有分配专用信道 ?空闲模式行为主要是小区重选 2.1.1 ACCMIN ?ACCMIN定义手机接入网络的最低下行接受电平。ACCMIN设置为–110 即-110dBm或低于,许多手机可以接入网络确不能建立有效链接,以致浪费SDCCH资源并增加SDCCH及TCH掉话。如果

无线系统技术参数中文版

大江大河中的超声波放电测量 由两岸独立而同步工作的发射器和接收器来替代原来的电缆。主副两套系统无线互动。

使用无线系统中最有价值的应用之一就是: 消除了电缆在河流的唯一使用。这使得无线 系统在广阔的水域进行测量的理想解决方 案。多年来,现在这一技术被应用在地中海 和德国北部的沿海地区,并被证明运行可 靠,是电缆系统的替代品。 应用领域 Transit-time method Quantum流量计按流动方向把对角地安装的换能器连接到一对。斜对面行驶中的流动的下游方向的声音的脉冲比在上游方向行驶的脉冲更快。两者之间的行程时间的差异得出平均流速,并因此得出横截面的水流量。 时差法理论 Wireless system, img: 1- level single path system 无线系统中的操作模式是基于时差法。系统的任一边都可自主运行,并使得两点视线与水的流向成对角线。这两个系统相互用定向无线电(ISM868)的装置通信。此外,系统配备了GPS接收器。从这些接收器收到的卫星数据提供了一种高精度的标准频率和必要的精确定时脉冲,以确保两个系统运行绝对同步。 一个主机,可控制多个辅机,多层次、交叉通道和应答系统的安装成为可能。如果其他电源不可用,还可以运行一个无线系统使用太阳能电池板,或使用混合燃料电池加太阳能电池板。 操作模式 Wireless system img: 2-level responder system 左侧的例子中展示了无线系统的响应系统的配置与安装。在这里,还可以看到一个无线系统的另一个优势。该系统还替代陆地上长电缆上运用。

产品规格、参数 Wireless system 测量方法:时差法、流量测量、长距离测量 系统配置:但一路径、交叉路径、多层次系统 测量范围:-10米/秒... 10米/秒 精度V:<0.1%的偏差 精度Q:<3的偏差,如果现场标定,优于+ / - 1%。 处理器:加工主板EURO STPC嵌入式控制器、 512 MB闪存(数据记录器)、 SVGA图形控制器,内建关机后自动重新启动的看门狗定时器LCD显示:VGA显示器6,4“640×480 操作控制:RS-232,笔记本电脑,调制解调器 模拟/数字转换器:12位 可选的输入电流:4×0/4 - 20毫安,4×0 - 1/2,5 V 可选的输出电流:3×0/4 - 20毫安,2×RS-232 可变接口:RS232 / RS 422/485或Active X 电源电压:12 - 36 VDC 消耗功率:<11 VA(在连续运行状态下) <1 VA(在待机模式下运作) 远程数据传输:可选的模拟信号,ISDN,GSM,GPRS 通信(主辅机之间):数字状态和数据传输 超声换能器: 测量路径长度:10至200米;200至2000米 频率200千赫;28千赫 组件 集成的机柜 GPS接收器和无线通信装置数据调制解调器安装在防伸缩装置内的换能器接头传感器安装在C-型材不锈钢 2级系统

大唐LTE无线参数说明手册

TD-LTE无线参数说明

目录 1前言 (3) 2小区选择与重选相关参数 (3) 2.1 场景描述 (3) 2.2 参数分析 (3) 2.2.1小区选择参数表 (3) 2.2.2小区重选参数表 (3) 3切换相关参数 (4) 3.1 测量相关参数分析 (5) 3.1.1UE测量配置基本信道参数表 (5) 3.1.2A3事件上报参数表 (5) 3.1.3切换算法参数表 (7) 3.1.4UE定时器及常量分析 (7) 3.1.5ENB协议定时器分析 (9) 3.1.6ENB实现定时器分析 (11) 4覆盖相关参数 (11) 4.1 参数分析 (11) 4.1.1小区配置参数表 (11) 4.1.2信道过程参数表 (14)

1前言 本文档对TD-LTE无线组网中常用的一些参数进行汇总,并对各参数的含义和取值作分析,为LTE实际组网提供指导和参考作用。 本文档个各参数的取值只作为参考,由于实际组网时场景和应用不同,参数实际取值也会做相应调整。 2小区选择与重选相关参数 2.1 场景描述 小区选择一般发生在PLMN选择之后,目的是使UE在开机后可以尽快选择一个信道质量满足条件的小区进行驻留;当UE选择小区驻留以后,会继续进行小区重选,以便驻留在信道条件更好的小区。网络通过设置不同频点的优先级,可以带到控制UE驻留的目的。同时UE在这个频点上选择信道质量最好的小区为其提供服务,小区重选也分为同频小区重选和异频小区重选。 2.2 参数分析 下面对小区选择和重选过程中关键参数进行说明。 2.2.1小区选择参数表 2.2.1.1 cellSelectQRxlevMin QrxlevMin :小区选择最小信道要求。此参数表明当小区的RSRP大于等于设定值以后,UE才可能驻留在此小区。QrxlevMin如果设置过大,则UE可能会不停的读取MIB、SIB 消息而无法驻留;根据经验QrxlevMin取-106dBm。 网优时可以适当调整。 2.2.2小区重选参数表

场效应管对照表

场效应管对照表(分2页介绍了世界上场效应管的生产厂家和相关参数) 本手册由"场效应管对照表"和"外形与管脚排列图"两部分组成。 在场效应管对照表中,收编了美国、日本及欧洲等近百家半导体厂家生产的结型场效应晶体管(JFET)、金属氧化物半导体场次晶体管(MOSFET)、肖特基势垒控制栅场效应晶体管(SB)、金属半导体场效应晶体管(MES)、高电子迁移率晶体管(HEMT)、静电感应晶体管(SIT)、绝缘栅双极晶体管(IGBT)等属于场效应晶体管系列的单管、对管及组件等,型号达数万种之多。每种型号的场效应晶体管都示出其主要生产厂家、材料与极性、外型与管脚排列、用途与主要特性参数。同时还在备注栏列出世界各国可供代换的场效应晶体管型号,其中含国产场效应晶体管型号。 1."型号"栏 表中所列各种场效应晶体管型号按英文字母和阿拉伯数字顺序排列。同一类型的场效应晶体型号编为一组,处于同一格子内,不用细线分开。2."厂家"栏 为了节省篇幅,仅列入主要厂家,且厂家名称采用缩写的形式表示。) 所到厂家的英文缩写与中文全称对照如下: ADV 美国先进半导体公司 AEG 美国AEG公司 AEI 英国联合电子工业公司 AEL 英、德半导体器件股份公司 ALE 美国ALEGROMICRO 公司ALP 美国ALPHA INDNSTRLES 公司AME 挪威微电子技术公司 AMP 美国安派克斯电子公司 AMS 美国微系统公司 APT 美国先进功率技术公司 ATE 意大利米兰ATES公司 ATT 美国电话电报公司 AVA 美、德先进技术公司 BEN 美国本迪克斯有限公司 BHA 印度BHARAT电子有限公司CAL 美国CALOGIC公司 CDI 印度大陆器件公司 CEN 美国中央半导体公司 CLV 美国CLEVITE晶体管公司 COL 美国COLLMER公司 CRI 美国克里姆森半导体公司 CTR 美国通信晶体管公司 CSA 美国CSA工业公司 DIC 美国狄克逊电子公司 DIO 美国二极管公司 DIR 美国DIRECTED ENERGR公司LUC 英、德LUCCAS电气股份公司MAC 美国M/A康姆半导体产品公司MAR 英国马可尼电子器件公司 MAL 美国MALLORY国际公司DIT 德国DITRATHERM公司ETC 美国电子晶体管公司 FCH 美国范恰得公司 FER 英、德费兰蒂有限公司 FJD 日本富士电机公司 FRE 美国FEDERICK公司 FUI 日本富士通公司 FUM 美国富士通微电子公司 GEC 美国詹特朗公司 GEN 美国通用电气公司 GEU 加拿大GENNUM公司 GPD 美国锗功率器件公司 HAR 美国哈里斯半导体公司 HFO 德国VHB联合企业 HIT 日本日立公司 HSC 美国HELLOS半导体公司 IDI 美国国际器件公司 INJ 日本国际器件公司 INR 美、德国际整流器件公司 INT 美国INTER FET 公司 IPR 罗、德I P R S BANEASA公司ISI 英国英特锡尔公司 ITT 德国楞茨标准电气公司 IXY 美国电报公司半导体体部KOR 韩国电子公司 KYO 日本东光股份公司 LTT 法国电话公司 SEM 美国半导体公司 SES 法国巴黎斯公司 SGS 法、意电子元件股份公司

WiFi硬件参数及测试

W i F i硬件参数及测试文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

无线产品指标 一般的无线产品,接口物理层都应该是符合GB标准的,工作频率范围2400MHz~。频段信道方案有13个,但互相不干扰的信道只有3个,比如常用的1、6、11信道。本文主要是针对频段。 由于此文参考标准WIFI测试及性能规范,某些数据标准已经比较久远,市面上一般已经普及了11n/150M的产品,但是其射频指标的意义及衡量的标准大多数不会改变,此文主要是描述了指标与性能之间的关系,标准及测量只做为参考。 发射功率 定义 此值表征的是设备发送无线信号强度的大小,在满足频谱版、EVM性能的前提下,功率越大,性能越好。 无线发射功率指用于衡量发射信号系性能的高低,发射功率越大,无线信号传输的距离就越远,覆盖的范围就越广,穿透力越强。发射功率理论上可以无限大,但是技术规范和成本影响,发射功率是有限的,并且,功率越大能耗就越大。 标准 我国的无线产品行业标准规定等效全向辐射功率应满足: 1:天线增益小于10dBi时,不大于100mW或20dBm。(一般都是这个功率范围内) 2:天线增益不小于10dBi时,不大于500mW或27dBm。 测量 可使用功率计,矢量信号分析仪,IQview/nxn测试。 发射频谱模板 定义

无线频谱模板可以衡量发送信号的质量和对相邻信道的干扰抑制能力,测试出来的频谱模板越小,离给定的模板越远,其性能越好。 这个一般是测试时用上,在一般的产品手册上不会呈现此项指标,我们的产品手册上也没有。标准 根据标准的频谱模板观察。11b/g/a发射功率频谱模板要求 b模 a/g模 20M n模 测量 将待测设备处于发射状态,用矢量信号分析仪观察其波形。在给定模板线以下为及格。 发射功率动态范围 定义 在限定误码率的情况下,发射的最大功率和最小功率的比值。在动态范围之内,能保持稳定输出。 标准 室内放装型(100mW,b/g/n) 接收灵敏度 定义 在保证通信质量(限定误码率)的情况下,接收机所需的最小平均接收功率。

常用全系列场效应管MOS管型号参数封装资料

场效应管分类DISCRETE MOS FET DISCRETE MOS FET DISCRETE MOS FET DISCRETE MOS FET DISCRETE MOS FET DISCRETE MOS FET DISCRETE MOS FET DISCRETE MOS FET DISCRETE MOS FET DISCRETE MOS FET DISCRETE MOS FET DISCRETE MOS FET DISCRETE MOS FET DISCRETE MOS FET DISCRETE MOS FET 型号简介封装2N7000 2N7002 IRF510A IRF520A IRF530A IRF540A IRF610A IRF620A IRF630A IRF634A IRF640A IRF644A IRF650A IRF654A IRF720A 60V,0.115A 60V,0.2A 100V,5.6A 100V,9.2A 100V,14A 100V,28A 200V,3.3A 200V,5A 200V,9A 250V,8.1A 200V,18A 250V,14A 200V,28A 250V,21A 400V,3.3A TO-92 SOT-23 TO-220 TO-220 TO-220 TO-220 TO-220 TO-220 TO-220 TO-220 TO-220 TO-220 TO-220 TO-220 TO-220

DISCRETE MOS FET IRF730A 400V,5.5A TO-220 DISCRETE MOS FET IRF740A 400V,10A TO-220 DISCRETE MOS FET IRF750A 400V,15A TO-220 DISCRETE MOS FET IRF820A 500V,2.5A TO-220 DISCRETE MOS FET IRF830A 500V,4.5A TO-220 DISCRETE MOS FET IRF840A 500V,8A TO-220 DISCRETE MOS FET IRF9520 DISCRETE MOS FET IRF9540 DISCRETE MOS FET IRF9610 DISCRETE MOS FET IRF9620 DISCRETE MOS FET IRFP150A 100V,43A TO-3P DISCRETE MOS FET IRFP250A 200V,32A TO-3P DISCRETE MOS FET IRFP450A 500V,14A TO-3P DISCRETE MOS FET IRFR024A 60V,15A D-PAK DISCRETE MOS FET IRFR120A 100V,8.4A D-PAK TO-220 TO-220 TO-220 TO-220

无线网络优化的bsc和小区参数调整

无线网络优化的bsc和小区参数调整 1.1一致性检查 小区参数是网络最佳性能的基础。优化过程中,不断地进行一致性检查以发现不一致设置的存在。总体上进行了以下检查: 1.1.1小区定义单向 在别的BSC 中发现有相邻关系定义,在反向却没有,这意味着切换只能单向进行,除了特殊情况外反向相邻关系都应添加。 1.1.2NCCPERM设置 如果NCCPERM的设置与NCC不同,则没有切换能进入这些小区。? ?NCCPERM是以8位BIT MAP的形式编码,0为不允许,1为允许。 ?例如:?允许NCC=1,编码为二进制00000010,NCCPERM=2(十进制)?允许NCC=0和1,编码为二进制00000011,NCCPERM=3(十进制) 1.1.3MBCCHNO设置 相邻小区的MBCCHNO没有定义,会使得这些小区的切换也无法进行;而MBCCHNO定义过多,又会影响小区的切换准确性和及时性。 1.1.4BCCH, BSIC, CGI定义有误 外部小区的参数定义正确性对外部切出切换成功率至关重要。如果BCCH, BSIC和CGI其中一个定义有误, 对这些小区的切换同样无法进行。 1.1.5邻小区同BCCH同BSIC 这将严重影响切换成功率和随机接入性能(在同一BSC内最好不要存在相同BCCHNO和BSIC的小区)。 1.1.6本小区与邻小区同BCCH 产生BCCH干扰,会造成掉话高,并影响切换指标。 1.1.7BCCH与TCH或TCH与TCH间的同邻频干扰 会造成掉话高,并影响切换指标(内切换频繁),影响网络的总体性能。 2 无线功能参数和小区数据调整 2.1 空闲模式行为的参数调整 空闲模式是指手机开机但没有分配专用信道 空闲模式行为主要是小区重选 C1 标准

常用全系列场效应管MOS管型号参数封装资料

场效应管分类型号简介封装DISCRETE MOS FET 2N7000 60V,0.115A TO-92 DISCRETE MOS FET 2N7002 60V,0.2A SOT-23 DISCRETE MOS FET IRF510A 100V,5.6A TO-220 DISCRETE MOS FET IRF520A 100V,9.2A TO-220 DISCRETE MOS FET IRF530A 100V,14A TO-220 DISCRETE MOS FET IRF540A 100V,28A TO-220 DISCRETE MOS FET IRF610A 200V,3.3A TO-220 DISCRETE MOS FET IRF620A 200V,5A TO-220 DISCRETE MOS FET IRF630A 200V,9A TO-220 DISCRETE MOS FET IRF634A 250V,8.1A TO-220 DISCRETE MOS FET IRF640A 200V,18A TO-220 DISCRETE MOS FET IRF644A 250V,14A TO-220 DISCRETE MOS FET IRF650A 200V,28A TO-220 DISCRETE MOS FET IRF654A 250V,21A TO-220 DISCRETE MOS FET IRF720A 400V,3.3A TO-220 DISCRETE MOS FET IRF730A 400V,5.5A TO-220 DISCRETE MOS FET IRF740A 400V,10A TO-220 DISCRETE MOS FET IRF750A 400V,15A TO-220 DISCRETE MOS FET IRF820A 500V,2.5A TO-220 DISCRETE MOS FET IRF830A 500V,4.5A TO-220 DISCRETE MOS FET IRF840A 500V,8A TO-220 DISCRETE

中国移动无线网参数管理规定(2015版)

中国移动无线网参数管理办法 (2015版) 中国移动通信有限公司 二零一五年三月

目录 第一章总则 (4) 第二章无线网参数管理目的 (4) 第三章无线网参数管理范围 (4) 第四章无线网参数的分级管理要求 (5) 第五章无线网参数制作修改要求 (6) 第六章无线网参数数据库的更新和备份要求 (7)

第一章总则 第一条为进一步规范无线网参数的日常管理工作,提升参数管理的规范性、安全性和准确性,保障网络健康稳定运行,特制定本管理办法。 第二条本管理办法明确了无线网参数的管理范围、职责分工界面以及无线网参数制作、修改、备份的工作流程和实施要求等内容。 第三条各省公司参照本办法制定本省无线网参数管理办法,指导本省日常管理工作。 第四条本规程的解释和修改权属于中国移动通信有限公司网络部, 其他未尽事宜按照中国移动维护规程执行。 第二章无线网参数管理目的 第五条规范完善无线网参数管理流程,严格管理无线网参数的修改和制作,提高无线参数的准确性和一致性。 第六条实现无线网参数制作和修改的申请、审批、执行、核查等管理流程集中化、规范化和电子化。确保全网无线网参数制作的统一、规范、准 确、及时。 第七条规范全网无线网参数,有效清除垃圾数据,提高无线网设备运行和管理效率。 第八条建立、健全省内无线网参数数据库,为无线网络优化提供依据和支撑。 第三章无线网参数管理范围 第九条无线网参数是指与无线控制及无线资源有关的参数。包括与信令接续、话路接续、路由选择、位置更新、切换控制、话音业务控制、数据业 务控制、小区参数等相关的用以保证业务正常进行的无线控制数据。 这些参数对网络中小区的覆盖、信令流量的分布、网络的业务性能等

用场效应管参数大全.pdf2

用场效应管参数大全 宏瑞电子|家电维修|电子技术|家电维修技术2009-12-0620:30:24作者:zhangzi来源:文字大小:[大][中][小] 型号材料管脚用途参数 3DJ6NJ低频放大20V0.35MA0.1W 4405/R9524 2E3C NMOS GDS开关600V11A150W0.36 2SJ117PMOS GDS音频功放开关400V2A40W 2SJ118PMOS GDS高速功放开关140V8A100W50/70nS0.5 2SJ122PMOS GDS高速功放开关60V10A50W60/100nS0.15 2SJ136PMOS GDS高速功放开关60V12A40W70/165nS0.3 2SJ143PMOS GDS功放开关60V16A35W90/180nS0.035 2SJ172PMOS GDS激励60V10A40W73/275nS0.18 2SJ175PMOS GDS激励60V10A25W73/275nS0.18 2SJ177PMOS GDS激励60V20A35W140/580nS0.085 2SJ201PMOS n 2SJ306PMOS GDS激励60V14A40W30/120nS0.12 2SJ312PMOS GDS激励60V14A40W30/120nS0.12 2SK30NJ SDG低放音频50V0.5mA0.1W0.5dB 2SK30A NJ SDG低放低噪音频50V0.3-6.5mA0.1W0.5dB 2SK108NJ SGD音频激励开关50V1-12mA0.3W701DB 2SK118NJ SGD音频话筒放大50V0.01A0.1W0.5dB 2SK168NJ GSD高频放大30V0.01A0.2W100MHz1.7dB 2SK192NJ DSG高频低噪放大18V12-24mA0.2W100MHz1.8dB 2SK193NJ GSD高频低噪放大20V0.5-8mA0.25W100MHz3dB 2SK214NMOS GSD高频高速开关160V0.5A30W 2SK241NMOS DSG高频放大20V0.03A0.2W100MHz1.7dB 2SK304NJ GSD音频功放30V0.6-12mA0.15W 2SK385NMOS GDS高速开关400V10A120W100/140nS0.6 2SK386NMOS GDS高速开关450V10A120W100/140nS0.7 2SK413NMOS GDS高速功放开关140V8A100W0.5(2SJ118) 2SK423NMOS SDG高速开关100V0.5A0.9W4.5 2SK428NMOS GDS高速开关60V10A50W45/65NS0.15

常用场效应管参数大全

常用场效应管参数大全 型号材料管脚用途参数 3DJ6NJ 低频放大20V0.35MA0.1W 4405/R9524 2E3C NMOS GDS 开关600V11A150W0.36 2SJ117 PMOS GDS 音频功放开关400V2A40W 2SJ118 PMOS GDS 高速功放开关140V8A100W50/70nS0.5 2SJ122 PMOS GDS 高速功放开关60V10A50W60/100nS0.15 2SJ136 PMOS GDS 高速功放开关60V12A40W 70/165nS0.3 2SJ143 PMOS GDS 功放开关60V16A35W90/180nS0.035 2SJ172 PMOS GDS 激励60V10A40W73/275nS0.18 2SJ175 PMOS GDS 激励60V10A25W73/275nS0.18 2SJ177 PMOS GDS 激励60V20A35W140/580nS0.085 2SJ201 PMOS n 2SJ306 PMOS GDS 激励60V14A40W30/120nS0.12 2SJ312 PMOS GDS 激励60V14A40W30/120nS0.12 2SK30 NJ SDG 低放音频50V0.5mA0.1W0.5dB 2SK30A NJ SDG 低放低噪音频50V0.3-6.5mA0.1W0.5dB 2SK108 NJ SGD 音频激励开关50V1-12mA0.3W70 1DB 2SK118 NJ SGD 音频话筒放大50V0.01A0.1W0.5dB 2SK168 NJ GSD 高频放大30V0.01A0.2W100MHz1.7dB 2SK192 NJ DSG 高频低噪放大18V12-24mA0.2W100MHz1.8dB 2SK193 NJ GSD 高频低噪放大20V0.5-8mA0.25W100MHz3dB 2SK214 NMOS GSD 高频高速开关160V0.5A30W 2SK241 NMOS DSG 高频放大20V0.03A0.2W100MHz1.7dB 2SK304 NJ GSD 音频功放30V0.6-12mA0.15W 2SK385 NMOS GDS 高速开关400V10A120W100/140nS0.6 2SK386 NMOS GDS 高速开关450V10A120W100/140nS0.7 2SK413 NMOS GDS 高速功放开关140V8A100W0.5 (2SJ118) 2SK423 NMOS SDG 高速开关100V0.5A0.9W4.5 2SK428 NMOS GDS 高速开关60V10A50W45/65NS0.15 2SK447 NMOS SDG 高速低噪开关250V15A150W0.24可驱电机2SK511 NMOS SDG 高速功放开关250V0.3A8W5.0 2SK534 NMOS GDS 高速开关800V5A100W4.0 2SK539 NMOS GDS 开关900V5A150W2.5 2SK560 NMOS GDS 高速开关500V15A100W0.4 2SK623 NMOS GDS 高速开关250V20A120W0.15 2SK727 NMOS GDS 电源开关900V5A125W110/420nS2.5 2SK734 NMOS GDS 电源开关450V15A150W160/250nS0.52 2SK785 NMOS GDS 电源开关500V20A150W105/240nS0.4 2SK787 NMOS GDS 高速开关900V8A150W95/240nS1.6 2SK790 NMOS GDS 高速功放开关500V15A150W0.4 可驱电机

无线AP技术参数

无线控制器 技术指标指标要求体系结构一体化机箱 ★接口提供2个10GE上行接口,24个电口,其中最后4个电口与4个光口组成combo,1个RJ-45维护串口;1个RJ-45维护网口;1个Mini USB 维护串口。 ★最大可管理AP数1024个 ★背板容量达128G QoS WMM模板管理、AP侧流量模板管理、AC侧流量控制 安全WLAN安全模板管理、OPEN-SYS方式认证、WEP认证加密、WPA/WPA2认证加密、WAPI认证加密 业务管理服务集(ESS)管理、基于VAP的业务管理、配置的自动发放管理、组播业务管理、负载均衡、WLAN用户管理、WLAN用户漫游。配置80个以上无线接入点管理控制授权。 射频管理射频模板管理、整网射频参数的统一静态配置、基于域的集中控制式射频参数自动选择和调优 网络管理支持SNMP V1/V2c/V3和WEB管理 无线AP 技术指标指标要求型号室内普通型2x2双频11n 802.11标准兼容IEEE 802.11a/b/g/n标准 工作频段802.11b/g/n 发射功率17dBm 最大功耗9.5W 认证加密支持WEP(Wired Equivalent Privacy)即有线等效认证/加密方式, 支持WPA(WiFi protected access)/WPA2 即Wi-Fi安全访问协议认证/加密方式, 支持WAPI(WLAN authentication and privacy infrastructure,无线局域网鉴别和保密基础结构认证/加密方式,是中国的无线局域网国家标准体系), 支持802.1x认证/加密方式 虚拟AP WEP、WPA/WPA2、WAPI、802.1x 网络特性AP零配置、自适应射频环境、根据SSID划分VLAN、本地转发和集中转发、WMM 管理通过AC和AP远程管理和维护、网管实时监控用户信息和快速故障定位

常用场效应管型号参数管脚识别及检测表

. 常用场效应管型号参数管脚识别及检测表 场效应管管脚识别 场效应管的检测和使用 场效应管的检测和使用一、用指针式万用表对场效应管进 行判别 (1)用测电阻法判别结型场效应管的电极 根据场效应管的PN结正、反向电阻值不一样的现象,可以 判别出结型场效应管的三个电极。具体方法:将万用表拨在R×1k档上,任选两个电极,分别测出其正、反向电阻值。当某两个电极的正、反向电阻值相等,且为几千欧姆时,则该两个电极分别是漏极D和源极S。因为对结型场效应管而言,漏极和源极可互换,剩下的电极肯定是栅极G。也可以将万用表的黑表笔(红表笔也行)任意接触一个电极,另一只表笔依次去接触其余的两个电极,测其电阻值。当出现两次测得的电阻值近似相等时,则黑表笔所接触的电极为栅极,其余两电极分别为漏极和源极。若两次测出的电阻值均很大,说明是PN结的反向,即都是反向电阻,可以判定是N沟道场效应管,且黑表笔接的是栅极;若两次测出的电阻值均很小,说明是正向PN结,即是正向电阻,判定为P沟道场效应管,黑表笔接的也是栅极。若不出现上述情况,可以调换黑、红表笔按上述方法进行测试,直到判别出栅极为止。

1 / 19 . (2)用测电阻法判别场效应管的好坏 测电阻法是用万用表测量场效应管的源极与漏极、栅极与源极、栅极与漏极、栅极G1与栅极G2之间的电阻值同场效 应管手册标明的电阻值是否相符去判别管的好坏。具体方法:首先将万用表置于R×10或R×100档,测量源极S与漏 极D之间的电阻,通常在几十欧到几千欧范围(在手册中可知,各种不同型号的管,其电阻值是各不相同的),如果测 得阻值大于正常值,可能是由于内部接触不良;如果测得阻值是无穷大,可能是内部断极。然后把万用表置于R×10k档,再测栅极G1与G2之间、栅极与源极、栅极与漏极 之间的电阻值,当测得其各项电阻值均为无穷大,则说明管是正常的;若测得上述各阻值太小或为通路,则说明管是坏的。要注意,若两个栅极在管内断极,可用元件代换法进行检测。 (3)用感应信号输人法估测场效应管的放大能力 具体方法:用万用表电阻的R×100档,红表笔接源极S, 黑表笔接漏极D,给场效应管加上1.5V的电源电压,此时 表针指示出的漏源极间的电阻值。然后用手捏住结型场效应管的栅极G,将人体的感应电压信号加到栅极上。这样,由于管的放大作用,漏源电压VDS和漏极电流Ib都要发生变化,也就是漏源极间电阻发生了变化,由此可以观察到表针

最新无线电常用术语大全

无线电通信名词解释 【音频】又称声频,是人耳所能听见的频率。通常指15~20000赫(Hz)间的频率。 【话频】是指音频范围内的语言频率。在一般电话通路中,通常指300~3400赫(Hz)间的频率。 【射频】无线电发射机通过天线能有效地发射至空间的电磁波的频率,统称为射频。若频率太低,发射的有效性很低,故习惯上所称的射频系指100千赫(KHz)以上的频率。 【视频】电视信号所包含的频率范围自几十赫至几兆赫,视频是这一频率的统称。 【载波】起运载信息作用的正弦波或周期性脉冲,叫做载波(或载频),随着信号波的变化,使载波的幅度、频率或相位作相应的变化。 【信号】用来表达或携带信息的电量。 【信道】按传递信息的特性而划分的通路。包括可能实现而尚未实现的通路在内。 【模拟信号】在时间上是连续的或对某一参量可以取无限个值的信号。 【数字信号】所谓数字信号,是指信号是离散的、不连续的。这是信号只能按有限多个阶梯或增量变化和取值。换言之,对于数字信号,只需计算阶梯的数目而无需考虑阶梯内信号的大小(最常用的是二进制编码)。 【波段】在无线电技术中,波段这个名词具有两种含义。其一是指电磁波频谱的划分,例如长波、短波、超短波等波段。其二是指发射机、接收机等设备的工作频率范围的划分。若把工作频率范围分成几个部分,这些部分也称为波段,例如三波段收音机等。 【波道】通信设备工作时所占用的通频带叫波道。通常一个通信设备在它所具有的频率范围内有许多个波道。 【通频带】一个电路所允许顺利通过的电流的频率范围,称为该电路的通频带。一般规定在电流等于最大电流值的0.707倍范围内上下两个频率之间的宽度为通频带。

常用场效应管参数大全 (2)

型号材料管脚用途参数 IRFP9140 PMOS GDS 开关 100V19A150W100/70nS0.2 IRFP9150 PMOS GDS 开关 100V25A150W160/70nS0.2 IRFP9240 PMOS GDS 开关 200V12A150W68/57nS0.5 IRFPF40 NMOS GDS 开关 900V4.7A150W2.5 IRFPG42 NMOS GDS 开关 1000V3.9A150W4.2 IRFPZ44 NMOS GDS 开关 1000V3.9A150W4.2 ******* IRFU020 NMOS GDS 开关 50V15A42W83/39nS0.1 IXGH20N60ANMOS GDS 600V20A150W IXGFH26N50NMOS GDS 500V26A300W0.3 IXGH30N60ANMOS GDS 600V30A200W IXGH60N60ANMOS GDS 600V60A250W IXTP2P50 PMOS GDS 开关 500V2A75W5.5 代J117 J177 PMOS SDG 开关 M75N06 NMOS GDS 音频开关 60V75A120W MTH8N100 NMOS GDS 开关 1000V8A180W175/180nS1.8 MTH10N80 NMOS GDS 开关 800V10A150W MTM30N50 NMOS 开关 (铁)500V30A250W MTM55N10 NMOS GDS 开关 (铁)100V55A250W350/400nS0.04 MTP27N10 NMOS GDS 开关 100V27A125W0.05 MTP2955 PMOS GDS 开关 60V12A75W75/50nS0.3 MTP3055 NMOS GDS 开关 60V12A75W75/50nS0.3

(常见GSM无线参数的设置)

华为GSM系统无线参数优化参考 作为移动通信系统,GSM网络中与无线设备和接口有关的参数对网络的服务性能的影响最为敏感。GSM网络中的无线参数是指与无线设备和无线资源有关的参数。这些参数对网络中小区的覆盖、信令流量的分布、网络的业务性能等具有至关重要的影响,因此合理调整无线参数是GSM网络优化的重要组成部分。 根据无线参数调整需解决问题的性质可以将其分为两类。第一类是为了解决静态问题。即通过实测网络各个地区的平均话务量和信令流量,对系统设计中采用的话务模型进行修正,解决长期存在的普遍现象,营运者仅需定期地对网络的实际运行情况进行测量和总结,并在此基础上对网络全局或局部的参数和配置进行适当调整。另一类调整用于解决由于一些突发事件或随机事件造成在某个时间段中,网络操作员根据测量人员即时得到的数据,实时地调整部分无线参数,改善网络性能,或局部地区发生的话务量过载、信道拥塞的现象。 网络优化中的无线参数的调整可归纳为第二类,在实际运行过程中,各参数根据实际的情况应有不同,以达到最优效果。一般来说,无线参数的调整依赖于实际网络运行过程中的大量实测数据,另一方面,根据在多次优化项目中积累一定的经验试探性的调整。以下将对在GSM网络系统中需要根据实际运行环境调整调整的无线参数从其意义、调整方式以及根据实际工程经验给予一定的解释。 1、网络色码和基站色码 内容:网络色码即NCC,用于区分不同地区的网络,编号全国统一;基站色码即BCC用于区分周围具有同样BCCH频点的小区;跳频小区中, 跳频数据表中的训练序列号TSC一定要配置成与本小区的BCC一 致。NCC与BCC组成BSIC。NCC与BCC组成BSIC。 取值范围:NCC 0~7 BCC 0~7 经验值:根据实际规划设计调整,避免同频同BSIC小区。 2、功率等级: 内容:“0”的功率等级表示功率最大,每级以2dB递减。 取值范围:华为BTS的功率等级: BTS3X基站支持0~10级的静态功率等级设置;

常用场效应管参数大全(1)

型号材料管脚用途参数 3DJ6NJ 低频放大 20V0.35MA0.1W 4405/R9524 2E3C NMOS GDS 开关 600V11A150W0.36 2SJ117 PMOS GDS 音频功放开关 400V2A40W 2SJ118 PMOS GDS 高速功放开关 140V8A100W50/70nS0.5 2SJ122 PMOS GDS 高速功放开关 60V10A50W60/100nS0.15 2SJ136 PMOS GDS 高速功放开关 60V12A40W 70/165nS0.3 2SJ143 PMOS GDS 功放开关 60V16A35W90/180nS0.035 2SJ172 PMOS GDS 激励 60V10A40W73/275nS0.18 2SJ175 PMOS GDS 激励 60V10A25W73/275nS0.18 2SJ177 PMOS GDS 激励 60V20A35W140/580nS0.085 2SJ201 PMOS n 2SJ306 PMOS GDS 激励 60V14A40W30/120nS0.12 2SJ312 PMOS GDS 激励 60V14A40W30/120nS0.12 2SK30 NJ SDG 低放音频 50V0.5mA0.1W0.5dB 2SK30A NJ SDG 低放低噪音频 50V0.3-6.5mA0.1W0.5dB 2SK108 NJ SGD 音频激励开关 50V1-12mA0.3W70 1DB 2SK118 NJ SGD 音频话筒放大 50V0.01A0.1W0.5dB 2SK168 NJ GSD 高频放大 30V0.01A0.2W100MHz1.7dB 2SK192 NJ DSG 高频低噪放大 18V12-24mA0.2W100MHz1.8dB 2SK193 NJ GSD 高频低噪放大 20V0.5-8mA0.25W100MHz3dB

场效应管参数用途大全解析

型号材料管脚用途参数 3D J6N J低频放大20V0.35M A0.1W 4405/R9524 2E3C N M O S G D S开关600V11A150W0.36 2S J117P M O S G D S音频功放开关400V2A40W 2S J118P M O S G D S高速功放开关140V8A100W50/70n S0.5 2S J122P M O S G D S高速功放开关60V10A50W60/100n S0.15 2S J136P M O S G D S高速功放开关60V12A40W70/165n S0.3 2S J143P M O S G D S功放开关60V16A35W90/180n S0.035 2S J172P M O S G D S激励60V10A40W73/275n S0.18 2S J175P M O S G D S激励60V10A25W73/275n S0.18 2S J177P M O S G D S激励60V20A35W140/580n S0.085 2S J201P M O S n 2S J306P M O S G D S激励60V14A40W30/120n S0.12 2S J312P M O S G D S激励60V14A40W30/120n S0.12 2S K30N J S D G低放音频50V0.5m A0.1W0.5d B 2S K30A N J S D G低放低噪音频50V0.3-6.5m A0.1W0.5d B 2S K108N J S G D音频激励开关50V1-12m A0.3W701D B 2S K118N J S G D音频话筒放大50V0.01A0.1W0.5d B 2S K168N J G S D高频放大30V0.01A0.2W100M H z1.7d B 2S K192N J D S G高频低噪放大18V12-24m A0.2W100M H z1.8d B 2S K193N J G S D高频低噪放大20V0.5-8m A0.25W100M H z3d B 2S K214N M O S G S D高频高速开关160V0.5A30W 2S K241N M O S D S G高频放大20V0.03A0.2W100M H z1.7d B 2S K304N J G S D音频功放30V0.6-12m A0.15W 2S K385N M O S G D S高速开关400V10A120W100/140n S0.6 2S K386N M O S G D S高速开关450V10A120W100/140n S0.7 2S K413N M O S G D S高速功放开关140V8A100W0.5(2S J118) 2S K423N M O S S D G高速开关100V0.5A0.9W4.5 2S K428N M O S G D S高速开关60V10A50W45/65N S0.15 2S K447N M O S S D G高速低噪开关250V15A150W0.24可驱电机2S K511N M O S S D G高速功放开关250V0.3A8W5.0 2S K534N M O S G D S高速开关800V5A100W4.0 2S K539N M O S G D S开关900V5A150W2.5 2S K560N M O S G D S高速开关500V15A100W0.4 2S K623N M O S G D S高速开关250V20A120W0.15 2S K727N M O S G D S电源开关900V5A125W110/420n S2.5

相关主题