搜档网
当前位置:搜档网 › Adaboost算法的MATLAB实现

Adaboost算法的MATLAB实现

Adaboost算法的MATLAB实现
Adaboost算法的MATLAB实现

Adaboost算法的MATLAB实现:

clear all

clc

tr_n=200; %the population of the train set

te_n=200; %the population of the test set

weak_learner_n=20; %the population of the weak_learner

tr_set=[1,5;2,3;3,2;4,6;4,7;5,9;6,5;6,7;8,5;8,8];

te_se=[1,5;2,3;3,2;4,6;4,7;5,9;6,5;6,7;8,5;8,8];

tr_labels=[2,2,1,1,2,2,1,2,1,1];

te_labels=[2,2,1,1,2,2,1,2,1,1];

figure;

subplot(2,2,1);

hold on;axis square;

indices=tr_labels==1;

plot(tr_set(indices,1),tr_set(indices,2),'b*');

indices=~indices;

plot(tr_set(indices,1),tr_set(indices,2),'r*');

title('Training set');

subplot(2,2,2);

hold on;

axis square;

indices=te_labels==1;

plot(te_set(indices,1),te_set(indices,2),'b*')3 ;

indices=~indices;

plot(te_set(indices,1),te_set(indices,2),'r*');

title('Training set');

% Training and testing error rates

tr_error=zeros(1,weak_learner_n);

te_error=zeros(1,weak_learner_n);

for i=1:weak_learner_n

adaboost_model=adaboost_tr(@threshold_tr,@threshold_te,tr_set,tr_labels,i); [L_tr,hits_tr]=adaboost_te(adaboost_model,@threshold_te,te_set,te_labels);

tr_error(i)=(tr_n-hits_tr)/tr_n;

[L_te,hits_te]=adaboost_te(adaboost_model,@threshold_te,te_set,te_labels); te_error(i)=(te_n-hits_te)/te_n;

end

subplot(2,2,3);

plot(1:weak_learner_n,tr_error);

axis([1,weak_learner_n,0,1]);

title('Training Error');

xlabel('weak classifier number');

ylabel('error rate');

grid on;

subplot(2,2,4);

axis square;

plot(1:weak_learner_n,te_error);

axis([1,weak_learner_n,0,1]);

title('Testing Error');

xlabel('weak classifier number');

ylabel('error rate');

grid on;

这里需要另外分别撰写两个函数,其中一个为生成adaboost模型的训练函数,另外为测试测试样本的测试函数。代码如下:

function

adaboost_model=adaboost_tr(tr_func_handle,te_func_handle,train_set,labels,no_of_ hypothesi s) % 训练函数

adaboost_model = struct('weights',zeros(1,no_of_hypothesis),... 'parameters',[]);

%cell(1,no_of_hypothesis));

sample_n = size(train_set,1);

samples_weight = ones(sample_n,1)/sample_n;

for turn=1:no_of_hypothesis

adaboost_model.parameters{turn} =

tr_func_handle(train_set,samples_weight,labels);

[L,hits,error_rate] =

te_func_handle(adaboost_model.parameters{turn},... train_set,samples_weight,labels);

if(error_rate==1)

error_rate=1-eps;

elseif(error_rate==0) error_rate=eps;

end

% The weight of the turn-th weak classifier

adaboost_model.weights(turn) = log10((1-error_rate)/error_rate);

C=likelihood2class(L);

t_labeled=(C==labels);

% true labeled samples

% Importance of the true classified samples is decreased for the next weak

classifier

samples_weight(t_labeled) = samples_weight(t_labeled)*... ((error_rate)/(1-error_rate));

% Normalization

samples_weight = samples_weight/sum(samples_weight);

end

% Normalization

adaboost_model.weights=adaboost_model.weights/sum(adaboost_model.weights);

-------------

function

[L,hits]=adaboost_te(adaboost_model,te_func_handle,test_set,... true_labels)

%测试函数

hypothesis_n=length(adaboost_model.weights);

sample_n=size(test_set,1);

class_n=length(unique(true_labels));

temp_L=zeros(sample_n,class_n,hypothesis_n);

for i=1:hypothesis_n

[temp_L(:,:,i),hits,error_rate]=te_func_handle(adaboost_model.parameters{i},...

test_set,ones(sample_n,1),true_labels);

temp_L(:,:,i)=temp_L(:,:,i)*adaboost_model.weights(i);

end

L=sum(temp_L,3);

hits=sum(likelihood2class(L)==true_labels);

-------

其中上面函数由于体积太大,另外还需要分别撰写两个阈值函数和一个隶属分配函数。function model=threshold_tr(train_set,sample_weights,labels)

% 训练阈值函数

model=struct('min_error',[],'min_error_thr',[],'pos_neg',[],'dim',[]);

sample_n=size(train_set,1);

min_error=sum(sample_weights);

min_error_thr=0; pos_neg='pos';

% for each dimension

for dim=1:size(train_set,2)

sorted=sort(train_set(:,dim),1,'ascend');

% for each interval in the specified dimension

for i=1:(sample_n+1)

if(i==1)

thr=sorted(1)-0.5;

elseif(i==sample_n+1)

thr=sorted(sample_n)+0.5;

else

thr=(sorted(i-1)+sorted(i))/2;

end

ind1=train_set(:,dim)

ind2=~ind1;

tmp_err=sum(sample_weights((labels.*ind1)==2))+sum(sample_weights((labels.*ind2) ==1)); if(tmp_err

min_error=tmp_err;

min_error_thr=thr;

pos_neg='pos';

model.dim=dim;

end

ind1=train_set(:,dim)

ind2=~ind1;

tmp_err=sum(sample_weights((labels.*ind1)==1))+sum(sample_weights((labels.*ind2) ==2)); if(tmp_err

min_error=tmp_err;

min_error_thr=thr;

pos_neg='neg';

model.dim=dim;

end

end

end

model.min_error=min_error;

model.min_error_thr=min_error_thr;

model.pos_neg=pos_neg;

function [L,hits,error_rate]=threshold_te(model,test_set,sample_weights,true_labels)

% 测试阈值函数

feat=test_set(:,model.dim);

if(strcmp(model.pos_neg,'pos'))

ind=(feat>model.min_error_thr)+1;

else

ind=(feat

end

hits=sum(ind==true_labels);

error_rate=sum(sample_weights(ind~=true_labels));

L=zeros(length(feat),2);

L(ind==1,1)=1;

L(ind==2,2)=1;

function classes=likelihood2class(likelihoods)

% 隶属分配函数

[sample_n,class_n] = size(likelihoods);

maxs = (likelihoods==repmat(max(likelihoods,[],2),[1,class_n]));

classes=zeros(sample_n,1);

for i=1:sample_n

classes(i) = find(maxs(i,:),1);

end

王能超 计算方法——算法设计及MATLAB实现课后代码

第一章插值方法 1.1Lagrange插值 1.2逐步插值 1.3分段三次Hermite插值 1.4分段三次样条插值 第二章数值积分 2.1 Simpson公式 2.2 变步长梯形法 2.3 Romberg加速算法 2.4 三点Gauss公式 第三章常微分方程德差分方法 3.1 改进的Euler方法 3.2 四阶Runge-Kutta方法 3.3 二阶Adams预报校正系统 3.4 改进的四阶Adams预报校正系统 第四章方程求根 4.1 二分法 4.2 开方法 4.3 Newton下山法 4.4 快速弦截法 第五章线性方程组的迭代法 5.1 Jacobi迭代 5.2 Gauss-Seidel迭代 5.3 超松弛迭代 5.4 对称超松弛迭代 第六章线性方程组的直接法 6.1 追赶法 6.2 Cholesky方法 6.3 矩阵分解方法 6.4 Gauss列主元消去法

第一章插值方法 1.1Lagrange插值 计算Lagrange插值多项式在x=x0处的值. MATLAB文件:(文件名:Lagrange_eval.m)function [y0,N]= Lagrange_eval(X,Y,x0) %X,Y是已知插值点坐标 %x0是插值点 %y0是Lagrange插值多项式在x0处的值 %N是Lagrange插值函数的权系数 m=length(X); N=zeros(m,1); y0=0; for i=1:m N(i)=1; for j=1:m if j~=i; N(i)=N(i)*(x0-X(j))/(X(i)-X(j)); end end y0=y0+Y(i)*N(i); end 用法》X=[…];Y=[…]; 》x0= ; 》[y0,N]= Lagrange_eval(X,Y,x0) 1.2逐步插值 计算逐步插值多项式在x=x0处的值. MATLAB文件:(文件名:Neville_eval.m)function y0=Neville_eval(X,Y,x0) %X,Y是已知插值点坐标 %x0是插值点 %y0是Neville逐步插值多项式在x0处的值 m=length(X); P=zeros(m,1); P1=zeros(m,1); P=Y; for i=1:m P1=P; k=1; for j=i+1:m k=k+1;

0计算方法及MATLAB实现简明讲义课件PPS8-1欧拉龙格法

第8章 常微分方程初值问题数值解法 8.1 引言 8.2 欧拉方法 8.3 龙格-库塔方法 8.4 单步法的收敛性与稳定性 8.5 线性多步法

8.1 引 言 考虑一阶常微分方程的初值问题 00(,),[,],(). y f x y x a b y x y '=∈=(1.1) (1.2) 如果存在实数 ,使得 121212(,)(,).,R f x y f x y L y y y y -≤-?∈(1.3) 则称 关于 满足李普希茨(Lipschitz )条件, 称为 的李普希茨常数(简称Lips.常数). 0>L f y L f (参阅教材386页)

计算方法及MATLAB 实现 所谓数值解法,就是寻求解 在一系列离散节点 )(x y <<<<<+121n n x x x x 上的近似值 . ,,,,,121+n n y y y y 相邻两个节点的间距 称为步长. n n n x x h -=+1 如不特别说明,总是假定 为定数, ),2,1( ==i h h i 这时节点为 . ) ,2,1,0(0 =+=i nh x x n 初值问题(1.1),(1.2)的数值解法的基本特点是采取 “步进式”. 即求解过程顺着节点排列的次序一步一步地向前推进. 00(,),[,], (). y f x y x a b y x y '=∈=

描述这类算法,只要给出用已知信息 ,,,21--n n n y y y 计算 的递推公式. 1+n y 一类是计算 时只用到前一点的值 ,称为单步法. 1+n y n y 另一类是用到 前面 点的值 , 1+n y k 11,,,+--k n n n y y y 称为 步法. k 其次,要研究公式的局部截断误差和阶,数值解 与 精确解 的误差估计及收敛性,还有递推公式的计算 稳定性等问题. n y )(n x y 首先对方程 离散化,建立求数值解的递推 公式. ),(y x f y ='

用MATLAB实现结构可靠度计算.

用MATLAB实现结构可靠度计算 口徐华…朝泽刚‘u刘勇‘21 。 (【l】中国地质大学(武汉工程学院湖北?武汉430074; 12】河海大学土木工程学院江苏?南京210098 摘要:Matlab提供了各种矩阵的运算和操作,其中包含结构可靠度计算中常用的各种数值计算方法工具箱,本文从基本原理和相关算例分析两方面,阐述利用Matlab,编制了计算结构可靠度Matlab程.序,使得Matlab-语言在可靠度计算中得到应用。 关键词:结构可靠度Matlab软件最优化法 中图分类号:TP39文献标识码:A文章编号:1007-3973(200902-095-Ol 1结构可靠度的计算方法 当川概率描述结构的可靠性时,计算结构可靠度就是计算结构在规定时问内、规定条件F结构能够完成预定功能的概率。 从简单到复杂或精确稃度的不同,先后提出的可靠度计算方法有一次二阶矩方法、二次二阶矩方法、蒙特卡洛方法以及其他方法。一次■阶矩方法又分为。I-心点法和验算点法,其中验算点法足H前可靠度分析最常川的方法。 2最优化方法计算可靠度指标数学模型 由结构111n个任意分布的独立随机变量一,x:…以表示的结构极限状态方程为:Z=g(■.托…t=0,采用R-F将非正念变量当罱正态化,得到等效正态分布的均值o:和标准差虹及可靠度指标B,由可靠度指标B的几何意义知。o;辟

开始时验算点未知,把6看成极限状态曲面上点P(■,爿:---37,的函数,通过优化求解,找到B最小值。求解可靠皮指标aJ以归结为以下约束优化模型: rain睁喜t华,2 s.,.Z=g(工i,x2’,…,工:=0 如极限状态方栉巾某个变最(X。可用其他变量表示,则上述模型jfIJ‘转化为无约束优化模型: 。。B!:手f生丛r+阻:坚:坠:盐尘}二剐 t∞oY?’【叫,J 3用MATLAB实现结构可靠度计算 3.1Matlab简介 Matlab是++种功能强、效率高、便.丁.进行科学和工程计算的交互式软件包,汇集了人量数学、统计、科学和工程所需的函数,MATI.AB具有编程简甲直观、用户界mf友善、开放性强等特点。将MATLAB用于蒙特卡罗法的一个显著优点是它拥有功能强大的随机数发生器指令。 3.2算例 3.2.I例:已知非线形极限状态方程z=g(t r'H=567f r-0.5H2=0’f、r服从正态分布。IIf=0.6,o r=0.0786;la|_ 2.18,o r_0.0654;H服从对数正态分布。u H= 3218,O。 =0.984。f、r、H相互独立,求可靠度指标B及验算点(,,r’,H‘。 解:先将H当量正念化:h=ln H服从正态分布,且 ,‘-““了:等专虿’=,。49?口二-、『五ir面_。。3

计算方法及其MATLAB实现第二章作业

作者:夏云木子 1、 >> syms re(x) re(y) re(z) >> input('计算相对误差:'),re(x)=10/1991,re(y)=0.0001/1.991,re(y)=0.0000001/0.0001991 所以可知re(y)最小,即y精度最高 2、 >> format short,A=sqrt(2) >> format short e,B=sqrt(2) >> format short g,C=sqrt(2)

>> format long,D=sqrt(2) >> format long e,E=sqrt(2) >> format long g,F=sqrt(2) >> format bank,H=sqrt(2) >> format hex,I=sqrt(2) >> format +,J=sqrt(2) >> format,K=sqrt(2)

3、 >> syms A >> A=[sqrt(3) exp(7);sin(5) log(4)];vpa(pi*A,6) 4、1/6251-1/6252=1/6251*6252 5、(1)1/(1+3x)-(1-x)/(1+x)=x*(3*x-1)/[(1+3*x)*(1+x)] (2) sqrt(x+1/x)-sqrt(x-1/x)=2/x/[sqrt(x-1/x)+sqrt(x+1/x)] (3) log10(x1)-log(x2)=log10(x1/x2) (4) [1-cos(2*x)]/x =x^2/factorial(2)-x^4/factorial(4)+x^6/factorial(6)-…

matlab用于计算方法的源程序

1、Newdon迭代法求解非线性方程 function [x k t]=NewdonToEquation(f,df,x0,eps) %牛顿迭代法解线性方程 %[x k t]=NewdonToEquation(f,df,x0,eps) %x:近似解 %k:迭代次数 %t:运算时间 %f:原函数,定义为内联函数 ?:函数的倒数,定义为内联函数 %x0:初始值 %eps:误差限 % %应用举例: %f=inline('x^3+4*x^2-10'); ?=inline('3*x^2+8*x'); %x=NewdonToEquation(f,df,1,0.5e-6) %[x k]=NewdonToEquation(f,df,1,0.5e-6) %[x k t]=NewdonToEquation(f,df,1,0.5e-6) %函数的最后一个参数也可以不写。默认情况下,eps=0.5e-6 %[x k t]=NewdonToEquation(f,df,1) if nargin==3 eps="0".5e-6; end tic; k=0; while 1 x="x0-f"(x0)./df(x0); k="k"+1; if abs(x-x0) < eps || k >30 break; end x0=x; end t=toc; if k >= 30 disp('迭代次数太多。'); x="0"; t="0"; end

2、Newdon迭代法求解非线性方程组 function y="NewdonF"(x) %牛顿迭代法解非线性方程组的测试函数 %定义是必须定义为列向量 y(1,1)=x(1).^2-10*x(1)+x(2).^2+8; y(2,1)=x(1).*x(2).^2+x(1)-10*x(2)+8; return; function y="NewdonDF"(x) %牛顿迭代法解非线性方程组的测试函数的导数 y(1,1)=2*x(1)-10; y(1,2)=2*x(2); y(2,1)=x(2).^+1; y(2,2)=2*x(1).*x(2)-10; return; 以上两个函数仅供下面程序的测试 function [x k t]=NewdonToEquations(f,df,x0,eps) %牛顿迭代法解非线性方程组 %[x k t]=NewdonToEquations(f,df,x0,eps) %x:近似解 %k:迭代次数 %t:运算时间 %f:方程组(事先定义) ?:方程组的导数(事先定义) %x0:初始值 %eps:误差限 % %说明:由于虚参f和df的类型都是函数,使用前需要事先在当前目录下采用函数M文件定义% 另外在使用此函数求解非线性方程组时,需要在函数名前加符号“@”,如下所示 % %应用举例: %x0=[0,0];eps=0.5e-6; %x=NewdonToEquations(@NewdonF,@NewdonDF,x0,eps) %[x k]=NewdonToEquations(@NewdonF,@NewdonDF,x0,eps) %[x k t]=NewdonToEquations(@NewdonF,@NewdonDF,x0,eps) %函数的最后一个参数也可以不写。默认情况下,eps=0.5e-6 %[x k t]=NewdonToEquations(@NewdonF,@NewdonDF,x0,eps)

层次分析法计算权重在matlab中的实现

信息系统分析与设计作业 层次分析法确定绩效评价权重在matlab中的实现 小组成员:孙高茹、王靖、李春梅、郭荣1 程序简要概述 编写程序一步实现评价指标特征值lam、特征向量w以及一致性比率CR的求解。 具体的操作步骤是:首先构造评价指标,用专家评定法对指标两两打分,构建比较矩阵,继而运用编写程序实现层次分析法在MATLAB中的应用。 通过编写MATLAB程序一步实现问题求解,可以简化权重计算方法与步骤,减少工作量,从而提高人力资源管理中绩效考核的科学化电算化。 2 程序在matlab中实现的具体步骤 function [w,lam,CR] = ccfx(A) %A为成对比较矩阵,返回值w为近似特征向量 % lam为近似最大特征值λmax,CR为一致性比率 n=length(A(:,1)); a=sum(A); B=A %用B代替A做计算 for j=1:n %将A的列向量归一化 B(:,j)=B(:,j)./a(j); end s=B(:,1); for j=2:n s=s+B(:,j); end c=sum(s);%计算近似最大特征值λmax w=s./c; d=A*w lam=1/n*sum((d./w)); CI=(lam-n)/(n-1);%一致性指标 RI=[0,0,0.58,0.90,1.12,1.24,1.32,1.41,1.45,1.49,1.51];%RI为随机一致

性指标 CR=CI/RI(n);%求一致性比率 if CR>0.1 disp('没有通过一致性检验'); else disp('通过一致性检验'); end end 3 案例应用 我们拟构建公司员工绩效评价分析权重,完整操作步骤如下: 3.1构建的评价指标体系 我们将影响员工绩效评定的指标因素分为:打卡、业绩、创新、态度与品德。 3.2专家打分,构建两两比较矩阵 A = 1.0000 0.5000 3.0000 4.0000 2.0000 1.0000 5.0000 3.0000 0.3333 0.2000 1.0000 2.0000 0.2500 0.3333 0.5000 1.0000 3.3在MATLAB中运用编写好的程序实现 直接在MATLAB命令窗口中输入 [w,lam,CR]=ccfx(A) 继而直接得出 d = 1.3035 2.0000 0.5145 0.3926 w = 0.3102 0.4691 0.1242 0.0966 lam =4.1687

计算方法及其MATLAB实现第一章作业

计算方法作业(作者:夏云木子) 1、help linspace type linspace 2、a1=[5 12 47;13 41 2;9 6 71];a2=[12 9;6 15;7 21];B=a1*a2, C=a1(:,1:2).*a2, D=a1.^2,

E=a1(:).^2 3、a1=[5 12 47;13 41 2;9 6 71];a2=[12 9;6 15;7 21];a1(4:5,1:3)=a2.';a1([4 5],:)=a1([5 4],:);b1=a1

c1=b1(4,1),c2=b1(5,3),D=b1(3:4,:)*a2 4、a1=[5 12 47;13 41 2;9 6 71]; E=eye(3,3); S = a1 + 5*a1' - E, S1=a1^3-rot90(a1)^2+6*E 5、a1=[5 12 47;13 41 2;9 6 71];s=5;A=s-a1,B=s*a1,C=s.*a1,D=s./a1,E=a1./s

6、c=[1 2 3 4;5 6 7 8;9 10 11 12;13 14 15 16];A=c^-4,B=(c^3)^-1,C=(3*c+5*c^-1)/5

7、a=[1 i 3;9i 2-i 8;7 4 8+i];A=a.' 8、abc=[-2.57 8.87;-0.57 3.2-5.5i];m1=sign(abc),m2=round(abc),m3=floor(abc) Sign为符号函数,round表示四舍五入取整,floor表示舍去小数部分取整

9、x=[1 4 3 2 0 8 10 5]';y=[8 0 0 4 2 1 9 11]';A=dot(x,y) 10、a=[3.82 5.71 9.62];b=[7.31 6.42 2.48];A=dot(a,b),B=cross(a,b) 11、P=[5 7 8 0 1];Pf=poly(P);Px=poly2str(Pf,'x') 12、P=[3 0 9 60 0 -90];K1=polyval(P,45),K2=polyval(P,-123),K3=polyval(P,579) 13、P1=[13 55 0 -17 9];P2=[63 0 26 -85 0 105];PP=conv(P1,P2);P1P2=poly2str(PP,'x'),[Q,r]=deconv(P2,P1)

数值计算方法matlab程序

function [x0,k]=bisect1(fun1,a,b,ep) if nargin<4 ep=1e-5; end fa=feval(fun1,a); fb=feval(fun1,b); if fa*fb>0 x0=[fa,fb]; k=0; return; end k=1; while abs(b-a)/2>ep x=(a+b)/2; fx=feval(fun1,x); if fx*fa<0 b=x; fb=fx; else a=x; fa=fx; k=k+1; end end x0=(a+b)/2; >> fun1=inline('x^3-x-1'); >> [x0,k]=bisect1(fun1,1.3,1.4,1e-4) x0 = 1.3247 k = 7 >> 简单迭代法 function [x0,k]=iterate1(fun1,x0,ep,N) if nargin<4 N=500; end if nargin<3 ep=1e-5; end x=x0; x0=x+2*ep;

while abs(x-x0)>ep & k> fun1=inline('(x+1)^(1/3)'); >> [x0,k]=iterate1(fun1,1.5) x0 = 1.3247 k = 7 >> fun1=inline('x^3-1'); >> [x0,k]=iterate1(fun1,1.5) x0 = Inf k = 9 >> Steffesen加速迭代(简单迭代法的加速)function [x0,k]=steffesen1(fun1,x0,ep,N) if nargin<4 N=500; end if nargin<3 ep=1e-5; end x=x0; x0=x+2*ep; k=0; while abs(x-x0)>ep & k

(完整word版)自己编写算法的功率谱密度的三种matlab实现方法

功率谱密度的三种matlab 实现方法 一:实验目的: (1)掌握三种算法的概念、应用及特点; (2)了解谱估计在信号分析中的作用; (3) 能够利用burg 法对信号作谱估计,对信号的特点加以分析。 二;实验内容: (1)简单说明三种方法的原理。 (2)用三种方法编写程序,在matlab 中实现。 (3)将计算结果表示成图形的形式,给出三种情况的功率谱图。 (4)比较三种方法的特性。 (5)写出自己的心得体会。 三:实验原理: 1.周期图法: 周期图法又称直接法。它是从随机信号x(n)中截取N 长的一段,把它视为能量有限x(n)真实功率谱)(jw x e S 的估计)(jw x e S 的抽样. 认为随机序列是广义平稳且各态遍历的,可以用其一个样本x(n)中的一段)(n x N 来估计该随机序列的功率谱。这当然必然带来误差。由于对)(n x N 采用DFT ,就默认)(n x N 在时域是周期的,以及)(k x N 在频域是周期的。这种方法把随机序列样本x(n)看成是截得一段)(n x N 的周期延拓,这也就是周期图法这个名字的来历。

2.相关法(间接法): 这种方法以相关函数为媒介来计算功率谱,所以又叫间接法。这种方法的具体步骤是: 第一步:从无限长随机序列x(n)中截取长度N 的有限长序列列 )(n x N 第二步:由N 长序列)(n x N 求(2M-1)点的自相关函数)(m R x ∧ 序列。 )()(1)(1 m n x n x N m R N n N N x += ∑-=∧ (2-1) 这里,m=-(M-1)…,-1,0,1…,M-1,M N ,)(m R x 是双边序列,但是由自相关函数的偶对称性式,只要求出m=0,。。。,M-1的傅里叶变换,另一半也就知道了。 第三步:由相关函数的傅式变换求功率谱。即 jwm M M m X jw x e m R e S ----=∧∧ ∑= )()(1) 1( 以上过程中经历了两次截断,一次是将x(n)截成N 长,称为加数据窗,一次是将x(n)截成(2M-1)长,称为加延迟窗。因此所得的功率谱仅是近似值,也叫谱估计,式中的)(jw x e S 代表估值。一般取M<

实验2追赶法算法设计及MATLAB实现

数值计算方法 实 验 报 告 实验序号:实验二 实验名称:追赶法算法设计及MATLAB实现 实验人: 专业年级: 教学班: 学号: 实验时间:

实验二追赶法算法设计及MATLAB实现 一、实验目的 1.初步掌握算法设计规则; 2.初步掌握MATLAB程序设计规则. 二、实验内容 1.构造利用追赶法求解三对角线性方程组的算法; 2.在MATLAB环境下编写追赶法的程序(函数); 3.自由选择若干个三对角线性方程组求解。 三、实验步骤 1.追赶法算法: 算法名称:thomas 输入参数:向量a,b,c,f 输出参数:输出解信息x 算法的自然语言: Step1:u 1=b 1 ,y 1 =b 1 ; Step2:对于i=2,3,….n; Step2.1:当u 1-i ≠,否则转step5 l i =a i /u 1-i ; u i =b i -l i *c 1-i ; y i =f i -l i *y 1-i ; Step3:当u n ≠时,x n =y n /u n ,否则转step5 Step4:对于:i=n-1,n-2,…..,2,1,转step6 x i =(y i -c i *x 1+i )/u i Step5:无解信息,转step7

Step6:输出x Step7:关机 2.MATLAB程序 function [x,L,U]=thomas(a,b,c,f) n=length(b); % 对A进行分解 u(1)=b(1); for i=2:n if(u(i-1)~=0) l(i-1)=a(i-1)/u(i-1); u(i)=b(i)-l(i-1)*c(i-1); else break; end end L=eye(n)+diag(l,-1); U=diag(u)+diag(c,1); x=zeros(n,1); y=x; % 求解Ly=b y(1)=f(1); for i=2:n y(i)=f(i)-l(i-1)*y(i-1); end % 求解Ux=y if(u(n)~=0) x(n)=y(n)/u(n); end for i=n-1:-1:1 x(i)=(y(i)-c(i)*x(i+1))/u(i);

利用MATLAB实现信号DFT的计算

07级电信(2)班 刘坤洋 24 实验一 利用MATLAB 实现信号DFT 的计算 一、实验目的: 1、熟悉利用MATLAB 计算信号DFT 的方法 2、掌握利用MATLAB 实现由DFT 计算线性卷积的方法 二、实验设备:电脑、matlab 软件 三、实验内容: 1、练习用matlab 中提供的内部函数用于计算DFT (1) fft(x),fft(x,N),ifft(x),ifft(x,N)的含义及用法 (2) 在进行DFT 时选取合适的时域样本点数N 请举例,并编程实现 题目: 源程序: >> N=30; %数据的长度 >>L=512; %DFT 的点数 >>f1=100; f2=120; >>fs=600; %抽样频率 >>T=1/fs; %抽样间隔 >>ws=2*pi*fs; >>t=(0:N-1)*T; >>f=cos(4*pi*f1*t)+cos(4*pi*f2*t); >>F=fftshift(fft(f,L)); >>w=(-ws/2+(0:L-1)*ws/L)/(2*pi); >>hd=plot(w,abs(F)); >>ylabel('幅度谱') >> xlabel('频率/Hz') 的频谱 分析利用)π4cos()π4cos()(DFT 21t f t f t x +=Hz 600,Hz 120,Hz 10021===s f f f

>> title('my picture') 结果图 : (3) 在对信号进行DFT 时选择hamming 窗增加频率分辨率 请举例,并编程实现 题目: 源程序:>> N=50; %数据的长度 >>L=512; %DFT 的点数 >>f1=100;f2=150; >>fs=600; %抽样频率 >>T=1/fs; %抽样间隔 >>ws=2*pi*fs; >>t=(0:N-1)*T; >>f=cos(4*pi*f1*t)+0、15*cos(4*pi*f2*t); 的频谱分析利用)π4cos(15.0)π4cos()(DFT 21t f t f t x +=Hz 600,Hz 150,Hz 10021===s f f f

matlab实现有限差分法计算电场强度(最新)

实验一:有限差分法研究静电场边值问题 实验报告人:年级和班级:学号: 1. 实验用软件工具: Matlab 2. 实验原理:电磁场课本P36-38 1)差分方程 2)差分方程组的解 简单迭代法 高斯-赛德尔迭代法 逐次超松弛法 3. 实验步骤: 1)简单迭代法 程序: hx=41;hy=21; v1=zeros(hy,hx); v1(hy,:)=zeros(1,hx); v1(1,:)=ones(1,hx)*100; v1(:,1)=zeros(hy,1); v1(:,hx)=zeros(hy,1); v1 v2=v1;maxt=1;t=0; k=0; while(maxt>1e-5) k=k+1; maxt=0; for i=2:hy-1 for j=2:hx-1 v2(i,j)=(v1(i,j+1)+v1(i+1,j)+v1(i-1,j)+v1(i,j-1))/4; t=abs(v2(i,j)-v1(i,j)); if(t>maxt) maxt=t;end end end v1=v2; end v2 k clf subplot(1,2,1),mesh(v2) axis([0,41,0,21,0,100]) subplot(1,2,2),contour(v2,15) hold on

axis([-1,42,-1,25]) plot([1,1,hx,hx,1],[1,hy+1,hy+1,1,1],'r') text(hx/2,0.3,'0V','fontsize',11); text(hx/2-0.5,hy+0.5,'100V','fontsize',11); text(-0.5,hy/2,'0V','fontsize',11); text(hx+0.3,hy/2,'0V','fontsize',11); hold off 当W=1e-5, 迭代次数:1401次 2)高斯-赛德尔迭代法 程序: hx=41;hy=21; v1=ones(hy,hx); v1(hy,:)=zeros(1,hx); v1(1,:)=ones(1,hx)*100; v1(:,1)=zeros(hy,1); v1(:,hx)=zeros(hy,1); v2=v1;maxt=1;t=0; k=0; while(maxt>1e-5) k=k+1; maxt=0; for i=2:hy-1 for j=2:hx-1 v2(i,j)=(v1(i,j+1)+v1(i+1,j)+v2(i-1,j)+v2(i,j-1))/4; t=abs(v2(i,j)-v1(i,j)); if(t>maxt) maxt=t;end end end v1=v2; end v2 k clf subplot(1,2,1),mesh(v2) axis([0,41,0,21,0,100]) subplot(1,2,2),contour(v2,15) hold on axis([-1,42,-1,25]) plot([1,1,hx,hx,1],[1,hy+1,hy+1,1,1],'r') text(hx/2,0.3,'0V','fontsize',11); text(hx/2-0.5,hy+0.5,'100V','fontsize',11); text(-0.5,hy/2,'0V','fontsize',11); text(hx+0.3,hy/2,'0V','fontsize',11); hold off

最优化方法地Matlab实现(公式(完整版))

第九章最优化方法的Matlab实现 在生活和工作中,人们对于同一个问题往往会提出多个解决方案,并通过各方面的论证从中提取最佳方案。最优化方法就是专门研究如何从多个方案中科学合理地提取出最佳方案的科学。由于优化问题无所不在,目前最优化方法的应用和研究已经深入到了生产和科研的各个领域,如土木工程、机械工程、化学工程、运输调度、生产控制、经济规划、经济管理等,并取得了显著的经济效益和社会效益。 用最优化方法解决最优化问题的技术称为最优化技术,它包含两个方面的内容: 1)建立数学模型即用数学语言来描述最优化问题。模型中的数学关系式反映了最优化问题所要达到的目标和各种约束条件。 2)数学求解数学模型建好以后,选择合理的最优化方法进行求解。 最优化方法的发展很快,现在已经包含有多个分支,如线性规划、整数规划、非线性规划、动态规划、多目标规划等。 9.1概述 利用Matlab的优化工具箱,可以求解线性规划、非线性规划和多目标规划问题。具体而言,包括线性、非线性最小化,最大最小化,二次规划,半无限问题,线性、非线性方程(组)的求解,线性、非线性的最小二乘问题。另外,该工具箱还提供了线性、非线性最小化,方程求解,曲线拟合,二次规划等问题中大型课题的求解方法,为优化方法在工程中的实际应用提供了更方便快捷的途径。 9.1.1优化工具箱中的函数 优化工具箱中的函数包括下面几类: 1.最小化函数

表9-1最小化函数表 函数描述 fgoalattain多目标达到问题 fminbnd有边界的标量非线性最小化 fmincon有约束的非线性最小化 fminimax最大最小化 fminsearch,fminunc无约束非线性最小化 fseminf半无限问题 linprog线性课题 quadprog二次课题 2.方程求解函数 表9-2方程求解函数表 函数描述 \线性方程求解 fsolve非线性方程求解 fzero标量非线性方程求解 3.最小二乘(曲线拟合)函数 表9-3最小二乘函数表 函数描述 \线性最小二乘 lsqlin有约束线性最小二乘 lsqcurvefit非线性曲线拟合 lsqnonlin非线性最小二乘 lsqnonneg非负线性最小二乘

《应用计算方法教程》matlab作业二解析

6-1 试验目的 计算特征值,实现算法 试验内容:随机产生一个10阶整数矩阵,各数均在-5和5之间。 (1) 用MATLAB 函数“eig”求矩阵全部特征值。 (2) 用幂法求A 的主特征值及对应的特征向量。 (3) 用基本QR 算法求全部特征值(可用MATLAB 函数“qr ”实现矩阵的QR 分解)。 原理 幂法:设矩阵A 的特征值为12n ||>||||λλλ≥???≥并设A 有完全的特征向量系12,,,n χχχ???(它们线性无关),则对任意一个非零向量0n V R ∈所构造的向量序列1k k V AV -=有11()lim ()k j k k j V V λ→∞ -=, 其中()k j V 表示向量的第j 个分量。 为避免逐次迭代向量k V 不为零的分量变得很大(1||1λ> 时)或很小(1||1λ< 时),将每一步的k V 按其模最大的元素进行归一化。具体过程如下: 选择初始向量0V ,令1max(),,,1k k k k k k k V m V U V AU k m +===≥,当k 充分大时1111,max()max() k k U V χλχ+≈ ≈。 QR 法求全部特征值: 111 11222 111 ,1,2,3,k k k k k A A Q R R Q A Q R k R Q A Q R +++==????==??=???? ??????==?? 由于此题的矩阵是10阶的,上述算法计算时间过长,考虑采用改进算法——移位加速。迭 代格式如下: 1 k k k k k k k k A q I Q R A R Q q I +-=?? =+? 计算k A 右下角的二阶矩阵() () 1,1 1,() (),1 ,k k n n n n k k n n n n a a a a ----?? ? ??? 的特征值()()1,k k n n λλ-,当()()1,k k n n λλ-为实数时,选k q 为()()1,k k n n λλ-中最接近(),k n n a 的。 程序

相关主题