搜档网
当前位置:搜档网 › (完整版)双闭环直流调速系统

(完整版)双闭环直流调速系统

(完整版)双闭环直流调速系统
(完整版)双闭环直流调速系统

第一章 调速系统的方案选择

直流电动机具有良好的起动、制动性能,宜于在宽范围内平滑调速,在许多调速和快速正反向的电力拖动领域中得到了广泛的的应用。近年来,虽然高性能的交流调速技术发展很快,交流调速系统已逐步取代直流调速系统。然而直流拖动控制系统不仅在理论上和实践上都比较成熟,目前还在应用;而且从控制规律的角度来看,直流拖动控制系统又是交流拖动控制系统的基础。

直流电动机的稳态转速可以表示为

n =

U?IR K e ?

(1-1)

式中:n ——转速(r/min ); U ——电枢电压(V ); I ——电枢电流(A ); R ——电枢回路总电阻(Ω); ?——励磁磁通(Wb );

K e ——由电机结构决定的电动势常数。

由上式可以看出,有三种调速电动机的方法:

1. 调节电枢供电电压U ;

2. 减弱励磁磁通?;

3. 改变电枢回路电阻R 。

对于要求在一定范围内无级平滑调速系统来说,以调节电枢供电电压的方式为最好。改变电阻只能有级调速;减弱磁通虽然能够调速,但调速范围不大,往往只是配合调压方案,在额定转速以上作小范围的弱磁升速。因此,采用变压调速来控制直流电动机。

1.1 直流电动机的选择

直流电动机的额定参数为:

额定功率KW P N 67=,额定电压V U N 230=,额定电流A I N 291=,额定转速min

1450r n N =,

电动机的过载系数2=λ,电枢电阻Ω=2.0a R

1.2 电动机供电方案的选择

电动机采用三相桥式全控整流电路供电,三相桥式全控整流电路输出的电压脉动较小,带负载容量较大,其原理图如图1所示。三相桥式全控整流电路的特点:

一般变压器一次侧接成三角形,二次侧接成星型,晶闸管分为共阴极和共阳极。

1)有两个晶闸管同时导通形成供电回路,其中共阴极组和共阳极组各有一个晶闸管,且不能为同一

相的晶闸管。

2)对触发脉冲的要求:按VT1—VT2—VT3—VT4—VT5—VT6的顺序,相位依次差60。;共阴极组VT1、

VT3、VT5的脉冲依次差120。,共阳极组VT4、VT6、VT2也依次差120。;同一相的上下两个桥臂,即VT1与VT4,VT3与VT6,VT5与VT2,脉冲相差180。。

3)整流输出电压U d一周期脉动六次,每次脉动的波形都一样,故该电路为六脉波整流电路。

4)需保证同时导通的两个晶闸管都有脉冲,可采用两种方法:一种是宽脉冲触发,另一种是双脉冲

触发。

图1 三相桥式全控整流电路

1.3 系统的结构选择

方案一,采用转速反馈控制直流调速系统,即单闭环调速系统,用PI调节器实现转速稳态无静差,消除负载转矩扰动对稳态转速的影响,并用电流截止负反馈限制电枢电流的冲击,避免出现过流现象。

方案二,采用转速、电流反馈的控制直流调速系统,即双闭环调速系统。

由于转速单闭环系统并不能充分按照理想要求控制电流(或电磁转矩)的动态过程,对于经常正、反转运行的调速系统,缩短起、制动过程的时间是提高生产效率的重要因素。为此,在起动(制动)的过渡过程中,希望始终保持电流为允许的最大值,使调速系统以最大的加(减)速度运行。当到达稳态转速时,最好使电流立即降下来,使电磁转矩与负载转矩相平衡,从而迅速转入稳态运行。实际上,由于主电路电感的作用,电流不可能突变,为了实现在允许条件下的最快起动,关键是要获得一段使电流保持为最大值I dm的恒流过程,而且双闭环直流调速系统具有比较满意的动态性能和良好的抗扰动性能。

因此,选择方案二。为了使转速和电流两种负反馈分别起作用,在系统中设置两个调节器,分别引入转速负反馈和电流负反馈以调节转速和电流,二者之间实行串级连接,电流环做内环,转速环做外环,这就形成了转速、电流反馈控制直流调速系统,即双闭环系统。为了获得良好的静、动态性能,转速和电流两个调节器都采用PI 调节器。

1.4 确定直流调速系统的总体结构框图

注:ASR —转速调节器 ACR —电流调节器

TG —测速发电机

TA —电流互感器

UPE —电力电子变换器 U n ?—转速给定电压

U n —转速反馈电压

U i ?—电流给定电压

U i —电流反馈电压

如图2所示,双闭环直流调速系统的结构图,电动机的起动过程分为三个阶段:

第一阶段是电流上升阶段,突加给定电压U n ?

后,经过两个调节器的跟随作用,U c 、U d0、I d 都上升,

但是在I d 没有达到负载电流I dL 以前电动机还不能转动。当I d ≥I dL 后,电动机开始起动,由于电机惯性的

作用,转速不会很快增长,因而转速调节器ASR 的输入偏差电压(?U =U n ??U n )的数值仍较大,其输出电压保持限幅值U im ?,强迫电枢电流I d 迅速上升。直到I d ≈I dm ,U i ≈U im ?,电流调节器很快就压制了I d 的

增长,标志着这一阶段的结束。在这一阶段中,ASR 很快进入并保持饱和状态,而ACR 一般不饱和。

第二阶段是恒流升速阶段,在这个阶段中,ASR 始终是饱和的,转速环相当于开环,系统成为在恒流

给定U im ?下的电流调节系统,基本上保持电流I d 恒定,因而系统的加速度恒定,转速呈线性增长,是起动过

程的主要阶段。

第三阶段是转速调节阶段,在这阶段中,当转速上升到给定值n ?时,转速调节器ASR 的输入偏差为零,

但其输出却由于积分作用还维持在限幅值U im ?,所以电动机仍在加速,使转速超调。转速超调后,ASR 的

输入偏差电压变为负,使它开始退出饱和状态,U i ?和I d 很快下降。但是,只要I d >I dL

,转速就继续上升。

图2 双闭环直流调速系统的结构图

直到I d =I dL 时,转矩T e =T L ,则dn

dt =0,转速n 达到峰值。此后I d

第二章 主电路的计算

2.1 整流变压器参数的计算

在很多情况下晶闸管整流装置所要求的交流供电电压与电网往往不能一致,同时又为了减少电网与整流装置的相互干扰,使整流主电路与电网隔离,为此需要配置整流变压器。整流变压器根据主电路的型式、负载额定电压和额定电流,算出整流变压器二次相电压U 2、一次与二次额定电流以及容量。由于整流变压器二次与一次电流都不是正弦波,因而存在着一定的谐波电,引起漏抗增大,外特性变软以及损耗增大,所以在设计或选用整流变压器时,应考虑这些因素。

二次侧相电压U 2为:U 2=

U dn +n?U t

Aβ(cosα?CU dl I 2/I 2n )

(2-1)

式中:U dn —负载的额定电压;

?U t —整流元件的正向导通压降,取1V ;

n —电流回路所经过的整流元件VT 的个数,桥式n=2; A —理想情况下α=0。时,U d0与U 2的比值,查表可知A=2.34; β—电网电压波动系数,取0.9;

α—最小移相角,对于不可逆调速系统取10。~15。; C —线路接线方式系数,查表三相桥式C 取0.5V ;

U dl —变压器阻抗电压比,100kVA 以下取0.05,100kVA 及以上取0.05~0.01; I 2/I 2n —二次侧允许的最大电流与额定电流之比,即I 2/I 2n =λ=2。

故,U 2=

U dn +n?U t

Aβ(cosα?CU dl I 2/I 2n )=

230+2?1

2.34?0.9?(cos10。?0.5?0.05?2)

=117.8V

由于整流变压器流过的电流通常都是非正弦波,所以其电流、容量的计算与线路形式有关。三相桥式可控整流电路计算为:

变压器二次侧电流的有效值I 2=√2

3I d =0.816?291A =237.5A (2-2) 变压器的变比K=

N 1N 2

=

U 1U 2

=

380117.8

=3 (2-3)

根据变压器磁动势平衡原理知一次侧和二次侧电流关系为:I 1N 1=I 2N 2 (2-4) 所以变压器一次侧电流 I 1=

I 2K

=

237.53

A =79.2A (2-5)

变压器容量为:S =3U 2I 2=3?117.8?237.5?10?3kVA =83.9kVA (2-6)

2.2 晶闸管元件的选择

晶闸管的额定电压为U N=(2~3)U Tm(2-7)晶闸管所承受的峰值电压U Tm=√6U2(2-8)故,U N=(2~3)?√6?117.8V=264.4~396.6V

晶闸管的额定电流为I VT(AV)=I T

1.57

(2-9)

晶闸管的通态平均电流I T=√1

3

I d(2-10)

故,I VT(AV)=√1

3

?291

1.57

A=223.5A,考虑到余量,晶闸管的额定电流取

I VT(AV)=(1.5~2)?223.5A=335.25~447A

2.3 晶闸管保护环节的计算

晶闸管元件有很多优点,但由于击穿电压比较接近工作电压,热容量又小,因此承受过电压、过电流能力差,短时间的过电压、过电流都会造成元件的损坏。为了使晶闸管元件能正常工作而不损坏,除合理选择元件外,还必须针对过电压、过电流发生的原因采取适当的保护措施。

凡超过晶闸管正常工作时所承受的最大峰值电压均为过电压。过电压根据产生的原因可以分为两大类。

①操作过电压:由交流装置拉、合闸和器件关断等经常性操作中电磁变化过程引起的过电压;②浪涌过电压:由雷击等偶然原因引起的,从电网进入变流装置的过电压,其幅度可能比操作过电压还高。

2.3.1 交流侧过电压保护

对于交流侧的过电压,通常可采取以下保护措施:①雷击过电压可在变压器原边加接避雷器保护;②原边电压很高或变化很大的变压器,对此采取变压器附加屏蔽绕组接地或变压器星形中点通过电容接地的方法;③整流变压器空载且电源电压过零时原边拉闸,此时采用阻容保护或整流式阻容保护;④对于雷击或更高的浪涌电压,如阻容保护还不能吸收或抑制时,采用压敏电阻等非线性电阻进行保护。

2.3.2 阻容保护计算

交流侧保护时,在变压器原、副边并联电阻R、电容C,如图3所示。利用电容两端的电压不能突变的特性,可以有效的抑制变压器绕组中的过电压,串联电阻能消耗部分过电压的能量,同时抑制LC回路的震荡。

阻容保护计算公式:

C≥6i0%S

U22

(2-11)

R≥2.3U22

S √u K%

i0%

(2-12)

式中:S为变压器每相平均容量;U2为变压器副边相电压有效值;i0%为变压器激磁电流百分值,(10~1000)kVA的变压器的激磁电流百分值为4~10;u K%为变压器的短路电压百分值,(10~1000)kVA

的变压器的短路电压百分值为5~10。

则,C11=C12=C13≥6?7?380?79.2

3802=8.8uF

,取10uF。

R11=R12=R13≥2.3?3802

380?79.2

?√7

7

=11Ω,取11Ω。

C21=C22=C23≥6?4?117.8?237.5

117.82

=48.4uF,取50uF。

R21=R22=R23≥2.3?117.82

117.8?237.5

?√6

4

=1.4Ω,取2Ω。

2.3.3直流侧过压保护

直流侧过压保护,在直流测并联电容C、电阻R,如图4所示。利用电容两端的电压不能突变的特性,可以有效的抑制变压器绕组中的过电压,串联电阻能消耗部分过电压的能量,同时抑制LC回路的震荡。

由公式(2-10)和(2-11)可得

图3 交流侧阻容保护电路

图4 直流侧过压保护电路图

C1≥6?4?230?291

2302

=30.4uF ,取31uF。

R1≥2.3?2302

230?291

?√6

4

=2.2Ω,取3Ω。

2.3.4 晶闸管两端的电压保护

晶闸管的过压保护,在晶闸管两端并联电容C、电阻R,

如图5所示。利用电容两端的电压不能突变的特性,可以有

效的抑制变压器绕组中的过电压,串联电阻能消耗部分过电

压的能量,同时抑制LC回路的震荡。

由公式(2-11)和(2-12)可得

C1≥6?4?396.6?447

396.62

=27.0uF,取27uF。

R1≥2.3?396.62

396.6?447

?√6

4

=2.5Ω,取3Ω。

2.3.5 过流保护

电力电子运行不正常或者发生故障时,可能会发生过电流,过电流分为过载和短路两种情况。采用快速熔断器是电力电子装置中最有效、应用最广的一种过流保护措施,在选择快熔时应考虑:

1)电压等级应根据熔断后快熔实际承受的电压来确定。

2)电流容量应按其在主电路中的接入方式和主电路连接形式确定。

3)快熔的I2t值应小于被保护器件的允许I2t值。

4)为保证熔体在正常过载情况下不熔化,应考虑时间和电流特性。

根据以上原则,过流保护的电路图如图6所示。

图5 晶闸管的过压保护

图6 过电流保护电路图

快熔熔体的额定电流1.57I

T(AV)

≥I KR≥I T(2-13)

1.57I

T(AV)

为被保护元件的额定电流的有效值;I T被保护元件的实际电流的有效值。

因此,快熔F1、F2、F3的额定电流取79A,F4、F5、F6的额定电流取330A。

2.4 平波电抗器的计算

在V-M系统中,脉动电流会增加电动机的发热,同时也产生脉动转矩,对生产机械不利。此外,电波波形的断续给用平均值描述的系统带来一种非线性的因素,也引起机械特性的非线性,影响系统的运行性能。因此,实际应用中希望尽量避免发生电流断续。

为了避免或减轻电流脉动的影响,需采用抑制电流脉动的措施,主要有:

1)增加整流电路相数,或采用多重化的技术;

2)设置电感量足够大的平波电抗器。

平波电抗器的电感量一般按低速轻载时保证电流连续的条件来选择,通常首先给定最小电流I dmin(以A为单位),再利用它计算所需的总电感(以mH为单位),减去电枢电感,即得平波电抗器的电感值。对于三相桥式整流电路,总电感量的计算公式为

L=0.693?U2

I dmin

(2-14)

一般取I dmin为电动机额定电流的5%~10%。

电动机的电感量为

L D=K d U D

2pnI D

×103(2-15)

式中,U D、I D、n-直流电动机电压、电流和转速,常用额定值代入;p-电动机的磁极对数;K d-计算系数。一般无补偿电动机取8~12,快速无补偿电动机取6~8,有补偿电动机取5~6。

所以,平波电抗器的电感量为

L=0.693×117.8

6%×291?8×230

2×1×1450×291

×103=2.5mH

第三章触发电路的设计

3.1 电源的选择

直流稳压电源一般由电源变压器,整流滤波电路及稳压电路所组成。变压器把市电交流电压变为所需的低压交流电,整流器把交流电变为直流电,经过滤波电路滤波后,经稳压器把不稳定的直流电压稳定到所需的稳定直流电压。

本次设计把220V、50Hz的交流电经过变压器降压后,通过整流桥整流成直流电压,在经过滤波电路平滑直流电,最后通过三端集成稳压芯片7815、7915稳出+15V和-15V,电源原理图如图7所示。其中变

压器采用220/24的,功率为20W ,整流桥由4个IN4007接成。

3.2 触发电路的选择

晶闸管最重要的特性是可控的正向导通特性,当晶闸管的阳极加上正向电压后,还必须在门极与阴极之间加上一个具有一定功率的正向触发电压才能打通,这一正向触发电压的导通是由触发电路提供的,根据具体情况这个电压可以是交流、直流或脉冲电压。由于晶闸管被触发导通以后,门极的触发电压即失去控制作用,所以为了减少门极的触发功率,常常用脉冲触发。触发脉冲的宽度要能维持到晶闸管彻底导通后才能撤掉,晶闸管对触发脉冲的幅值要求是:在门极上施加的触发电压或触发电流应大于产品提出的数据,但也不能太大,以防止损坏其控制极,在有晶闸管串并联的场合,触发脉冲的前沿越陡越有利于晶闸管的同时触发导通。为了保证晶闸管电路能正常,可靠的工作,触发电路必须满足以下要求:触发脉冲应有足够的功率,触发脉冲的电压和电流应大于晶闸管要求的数值,并留有一定的裕量。

触发信号为脉冲时,在触发功率不超过规定值的情况下,触发电压、电流的幅值在短时间内可以大大超过额定值。触发脉冲应一定的宽度且脉冲前沿应尽可能陡。由于晶闸管的触发是有一个过程的,也就是晶闸管的导通需要一定的时间。只有当晶闸管的阳极电流即主回路电流上升到晶闸管的掣住电流以上时,晶闸管才能导通,所以触发信号应有足够的宽度才能保证被触发的晶闸管可靠的导通,对于电感性负载,脉冲的宽度要宽些,一般为0.5~1ms ,相当于50Hz 、18度电度角。为了可靠地、快速地触发大功率晶闸管,常常在触发脉冲的前沿叠加上一个触发脉冲。

触发脉冲的相位应能在规定范围内移动。例如单相全控桥式整流电路带电阻性负载时,要求触发脉冲的移项范围是0。~180。,带大电感负载时,要求移项范围是0。~90。;

三相半波可控整流电路电阻性负载

图7 电源原理图

时,要求移项范围是0。~90。;三相桥式全控整流电路带电阻负载时,移相范围是0。~120。;三相桥式全控整流电路带阻感负载时,移相范围是0。~90。。

触发脉冲与主电路电源必须同步。为了使晶闸管在每一个周期都以相同的控制角被触发导通,触发脉冲必须与电源同步,两者的频率应该相同,而且要有固定的相位关系,以使每一周期都能在同样的相位上触发。触发电路同时受控于电压Uc 与同步电压Us 。

本设计采用集成触发电路,集成电路可靠性高,技术性能好,体积小,功耗低,调试方便,触发电路图如图8所示。

第四章 控制电路的设计

4.1 给定电源和给定环节的设计计算

提供的电源是15V ,而最大给定电压U nm ?

=10V ,所以需要电阻分压。选用1/2W 的电阻,则电阻的

图8 触发电路原理图

阻值R 25=

U 2P

=

(15?10)

2

0.5

=50Ω,给定环节的电路图如图9所示。

4.2转速检测环节和电流检测环节的设计

一、转速检测环节的设计

转速检测电路的主要作用是将转速信号变换为与转速称正比的电压信号,滤除交流分量,为系统提供满足要求的转速反馈信号。转速检测电路主要由测速发电机组成,将测速发电机与直流电动机同轴连接,测速发电机输出端即可获得与转速成正比的电压信号,经过滤波整流之后即可作为转速反馈信号反馈回系统。其原理图如图10所示。

二、电流检测环节的设计

电流检测电路的主要作用是获得与主电路电流成正比的电流信号,经过滤波整流后,用于控制系统中。该电路主要由电流互感器构成,将电流互感器接于主电路中,在输出端即可获得与主电路电流成正比的电流信号,起到电气隔离的作用。其

电路原理图如图11所示。

4.3调速系统的静态参数计算

双闭环直流调速系统的稳态结构图如图12所示,两个调节器均采用带有限幅作用的PI 调节器,转速

调节器ASR 的输出限幅值U im ?

决定了电流给定的最大值,电流调节器ACR 的输出限幅值U cm 限制了电力电子

变换装置的最大输出电压U dm ,图12中用带限幅的输出特性表示PI 调节器的作用。当调节器饱和时,输

U n ?

图9 给定电路图

U n

U i

图10 转速检测电路原理图

图11 电流检测电路原理图

出达到限幅值,输入量的变化不再影响输出,除非有反向的输入信号使调节器退出饱和状态。换句话说,饱和的调节器暂时隔断了输入与输出之间的联系,相当于使调节器开环。当调节器不饱和时,PI 调节器工作在线性调节状态,其作用是使输入偏差电压?U 在稳态时为零。

为了实现电流的实时控制和快速跟随,希望电流调节器不要进入饱和状态,因此,对于静特性来说,只有转速调节器饱和与不饱和两种状态。

(一)转速调节器不饱和,系统稳态时,它们的输入偏差电压都是零。因此

U n ?

=U n =αn =αn 0 (4-1)

U i ?=U i =βI d (4-2)

式中 α—转速反馈系数;β—电流反馈系数。 由(3-1)式得 n =

U n ?α

=n 0 (4-3)

从而得到图13所示静特性的AB 段。与此同时,由于ASR 不饱和,U i ?

,从(3-2)式知:I d

这就是说,AB 段静特性从理想空载状态的I d =0一直延续到I d =I dm ,而I dm 一般都是大于额定电流I dN 的。这就是静特性的运行段,它是水平的特性。

(二)转速调节器饱和

ASR 输出达到限幅值U im ?

时,转速环

呈开环状态,转速的变化不再产生影响,双闭环系统变成一个电流无静差的单电流闭环调速系统,系统稳态时

图12 双闭环直流调速系统的稳态结构图

图13 双闭环直流调速系统的静特性

I d =

U im ?β

=I dm (4-4)

式(3-4)所描述的静特性是图13中的BC 段,它是垂直特性。这样的垂直特性适合于n

因为n >n 0,则U n >U n ?

,ASR 将退出饱和状态。

双闭环调速系统的稳态参数计算与单闭环无静差系统的稳态计算相似,即 转速反馈系数 α=U nm ?n max =

U nm ?n N

=

101450=0.007V ·min/r (4-5)

电流反馈系数 β=

U im ?I dm

=

U im ?λI N

=

8

2×291

=0.014Ω (4-6)

电动势系数 C e =U N ?I N R a

n N =

230?291×0.2

1450

=0.118V ·min/r (4-7)

UPE 的放大系数 K s =

?U d ?U c

=

2308

=28.75

(4-8)

第五章 双闭环直流调速系统的动态设计

在控制系统中设置调节器是为了改善系统的静、动态特性能。有关系统的静态性能指标在上章已经讨论了,本章就讨论系统的动态性能指标。控制系统的动态性能指标包括对给定输入信号的跟随性能指标和对扰动输入信号的抗扰性能指标。

1. 跟随性能指标

在给定信号或参考输入信号R (t )的作用下,系统输出量C (t )的变化情况可以用跟随性能指标来描述。当给定信号变化方式不同时,输出响应也不同。通常以输出量的初始值为零,给定信号阶跃变化下的过渡过程作为典型的跟随过程,这时的输出量动态响应称作为阶跃响应。常用的阶跃响应跟随指标有上升时间、超调量和调节时间。上升时间t r 表示动态响应的快速性,超调量σ反应系统的相对稳定性,超调量越小,系统相对稳定性越好,调节时间又称过渡过程时间,用它衡量整个输出量调节过程的快慢,它既反映了系统的快速性,又包含着系统的稳定性。

2. 抗扰性能指标

在控制系统中,扰动量的作用点通常不同于给定量的作用点,因此系统的抗扰动性能也不同于系统的跟随性能。当调速系统在稳定运行时,突然加一个使输出量降低或上升的扰动量之后,输出量由降低或上升恢复到稳态值得过渡过程就是一个抗扰动的过程。常用抗扰动性能指标为动态降落和恢复时间。动态降落是指在系统稳定运行时,突加一个约定的标准负扰动量,所引起的输出量最大降落值?C max ;恢复时间t v 是指从阶跃扰动开始,到输出量基本上恢复稳态,据新稳态值之差进入某基准量的±5%(或取±2%)范围内所需要的时间。

5.1 电流调节器的设计

(1)确定时间常数

1) 整流装置滞后时间常数T s 。查表可知,三相桥式电路的平均失控时间T s =0.00167s 。 2) 电流滤波时间常数T oi 。三相桥式电路每个波头的时间是3.3ms ,为了基本滤平波头,应有 (1~2)T oi =3.3ms ,因此取T oi =2ms =0.002s 。

3) 电流环小时间常数之和T ∑i 。按小时间常数近似处理,取T ∑i =T s +T oi =0.00367s (5-1) 4) 电枢回路电磁时间常数T l 。T l =

L R

=

4.7×10?3

0.4

=0.0185s (5-2) 5) 电力拖动系统机电时间常数T m 。T m =GD 2R

375C e C m

=

GD 2R

375C e 30

π

C e

=

68.3×0.4375×0.118×0.118×

30π

=0.548s (5-3)

(2)选择电流调节器的结构

根据设计要求%5≤i σ,并且稳态电流无静差,按典型Ⅰ型系统设计电流调节器。电流环

控制对象是双惯性型的,因此用PI 型电流调节器,其含给定滤波和反馈滤波的模拟式PI 型电流调节器原理图如图14所示,其传递函数为

W ACR (s )=

K i (τi s+1)

τi s

(5-4)

检查对电源电压的抗扰性能:T

l T ∑i

=0.0185

0.00367≈5.04 (5-5)

查典型Ⅰ型系统抗扰性能指标与参数表知,

?C max C b

×100%=27.8%,

t m T

=2.8,t

v

T =14.7,

各项指标均可以接受。

图14 含给定滤波和反馈滤波的电流调节器

(3)计算电流调节器参数

电流调节器超前的时间常数:τi =T l =0.0185s 。

电流开环增益:设计要求%5≤i σ时,查表应取K I T ∑i =0.5,因此 K I =0.5T ∑i =0.5

0.00367=136.2s ?1 (5-6)

于是,ACR 的比例系数为

K i =K I τi

R K s β

=

136.2×0.0185×0.428.75×0.014

=2.504 (5-7)

(4)校验近似条件

电流环截止频率:ωci =K I =136.2s ?1 (5-8) 1) 检验晶闸管整流装置传递函数的近似条件

13T s

=1

3×0.00167=199.6s ?1>ωci (5-9) 满足近似条件

2) 检验忽略反电动势变化对电流环的动态影响的条件

3√1

T

m T l

=3×√1

0.548×0.0185=29.80s ?1<ωci (5-10) 满足近似条件

3) 校验电流环小时间常数近似处理条件

1

3√1

T

s T oi

=13

×√

1

0.00167×0.002

=182.4s ?1>ωci (5-11) 满足近似条件

(5)计算调节器的电阻和电容 按所用运算放大器取R 0=40k Ω,则

R i =K i R 0=2.504×40k Ω=100.16k Ω (5-12) 取100 k Ω C i =

τi R i

=

0.0185100×103

F =0.185×10?6F =0.185uF (5-13) 取0.2uF C oi =

4T oi R 0

=

4×0.00240×103

F =0.2×10?6F =0.2uF (5-14) 取0.2uF

按照上述参数,电流环可以达到动态跟随性能指标,其传递还书为

W ACR (s )=

2.504(0.0185s +1)

0.0185s

5.2 转速调节器的设计

(1)确定时间常数

1) 电流环等效时间常数1K I

。由(5-6)式知,1K I

=1

136.2s =0.0073s (5-15)

2) 转速滤波时间常数T on 。根据所用测速发电机纹波情况,取T on =0.01s 。 3) 转速环小时间常数之和T ∑n 。按小时间常数近似处理,取T ∑n =

1K I

+T on =0.0173s (5-16)

(2)选择转速调节器的结构

按照设计要求,为了实现转速无静差,在负载扰动作用点前必须有一个积分环节,它应该包含在转速调节器ASR中,由于扰动作用点后面已经有一个积分环节,因此转速环开环传递函数应共有两个积分环节,所以应该设计成典型Ⅱ型系统,这样的系统同时也能满足动态抗扰性能好的要求。因此转速调节器选用PI 调节器,其含给定滤波和反馈滤波的模拟式PI型电流调节器原理图如图15所示,其传递函数为

W ASR(s)=K n(

τn s+1)

τn s

(5-17)

(3)计算转速调节器参数

按跟随和抗扰性能都好的原则,取h=5,则ASR的超前时间常数为

τn=h T∑n=5×0.0173s=0.0865s(5-18)转速开环增益K N为

K N=h+1

2h2T∑n2=5+1

2×52×0.01732

s?2=400.9s?2(5-19)

ASR的比例系数K n为

K n=(h+1)βC e T m

2hαRT∑n =(5+1)×0.014×0.118×0.548

2×5×0.007×0.4×0.0173

=11.2(5-20)

(4)校验近似条件

转速环截止频率ωcn=K Nτn=400.9×0.0865s?1=34.68s?1(5-21)

图15含给定滤波和反馈滤波的转速调节器

1)校验电流环传递函数简化条件

1 3√K I T

∑i

=1

3

×√136.2

0.00367

s?1=64.2s?1>ωcn(5-22)满足简化条件

2)校验转速环小时间常数近似处理条件

1 3√K I

T on

=1

3

×√136.2

0.01

s?1=38.9s?1>ωcn(5-23)满足近似条件

(5)计算转速调节器的电阻和电容

按所用运算放大器取R0=40kΩ,则

R n=K n R0=11.2×40kΩ=448kΩ(5-24)取 448kΩ

C n=τn

R n =0.0865

448×103

F=0.193×10?6F=0.193uF(5-25)取0.2uF

C on=4T on

R0=4×0.01

40×103

F=1×10?6F=1uF(5-26)取1uF

(6)校核转速超调量

σn=(?C max

C b )?n b

n?

=2(?C max

C b

)(λ?z)?n N

n?

T∑n

T m

=2×81.2%×(2?0)×

291×0.4

0.118

1450

×0.0173

0.548

=6.98%<10%

(5-27)

满足设计要求

注:公式(1-1)、(2-14)、(4-1)~(4-8)、(5-1)~(5-27)出至阮毅、陈伯时的《电力拖动自动控制系统——运动控制系统》

公式(2-1)、(2-3)~(2-6)、(2-15)出至杨文焕的《电机拖动基础》

公式(2-2)、(2-7)~(2-10)出至王兆安、刘进军的《电力电子技术》

公式(2-11)~(2-13)出至贺益康、潘再平的《电力电子技术》

结论

本设计——不可逆V-M双闭环直流调速系统设计,应用经典控制理论的工程设计方法设计转速和电流双闭环直流调速系统,转速调节器和电流调节器均采用PI型调节器,其中转速调节器使转速n跟随给定电压U n?变化,稳态无静差,对负载变化起抗扰作用,其输出限幅值决定允许的最大电流。电流调节器,在电机起动时,保证获得最大电流,起动时间短,使系统具有良好的动态性能,在转速调节过程中,使电流跟随其给定电压U i?变化,并且当电动机过载甚至堵转时,限制电枢电流的最大值,起到安全保护作用,在故障消除后,系统能够自动恢复正常运行,同时对电网电压波动起快速抑制作用。

双闭环直流调速系统突加给定电压由静止状态启动过程中,转速调节器ASR经历了不饱和、饱和、退饱和三个阶段,即电流上升阶段、恒流升速阶段和转速调节阶段。从启动时间上看,第二阶段恒流升速是主要的阶段,因此双闭环系统基本上实现了电流受限制下的快速启动,利用了饱和非线性控制方法,达到“准时间最优控制”。启动时,让转速外环饱和不起作用,电流内环起主要作用,调节启动电流保持最大,使转速线性变化,迅速达到给定值;稳态运行时,转速负反馈外环起主要作用,使转速随转速给定电压的变化而变化,电流内环跟随电流外环调节电机的电枢电流以平衡负载电流。

参考文献

●阮毅、陈伯时编《电力拖动自动控制系统——运动控制系统》机械工业出版社●杨文焕编《电机与拖动基础》西安电子科技大学出版社

●王兆安、刘进军编《电力电子技术》机械工业出版社

●贺益康、潘再平编《电力电子技术》科学出版社

●史国生编《交直流调速系统》化学工业出版社

双闭环直流调速系统

题目:双闭环直流调速系统的设计与仿真 已知:直流电动机:P N=60KW,U N=220V,I N=305A,n N=1000r/min,λ=2,R a=0.08, R rec=0.1, T m=0.097s, T l=0.012s, T s=0.0017s, 电枢回路总电阻R=0.2Ω。设计要求:稳态无静差,σ ≤5%,带额定负载起动到额定转速的转速超调σn≤10%。(要求完 i 成系统各环节的原理图设计和参数计算)。 系统各环节的原理图设计和参数计算,包括主电路、调节器、电流转速反馈电路和必要的保护等,并进行必要的计算。按课程设计的格式要求撰写课程设计说明书。 设计内容与要求:1、分析双闭环系统的工作原理 2、改变调节器参数,分析对系统动态性能的影响 3、建立仿真模型

1.双闭环直流调速系统的原理及组成 对于正反转运行的调速系统,缩短起,制动过程的时间是提高生产率的重要因素。为此,在起动(或制动)过渡过程中,希望始终保持电流(电磁转矩)为允许的最大值,是调速系统以最大的加(减)速度运行。当到达稳态转速时,最好使电流立即降下来,使电磁转矩与负载转矩相平衡,从而迅速转入稳态运行。实际上,由于主电路电感的作用,电流不可能突变,为了实现在允许条件下的最快起动,关键是要获得一段使 电流保持为最大值dmI的恒流过程。按照反馈控制规律,采用某个物理量的负反馈就可以保持该量基本不变,采用电流负反馈应该能够得到近似的恒流过程。 为了使转速和电流两种负反馈分别起作用,可在系统中设置两个调节器,分别引入转速负反馈和电流负反馈以调节转速和电流,二者之间实行嵌套连接,如图1所示。把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变换器。从闭环结构上看,电流环在里面,称做内环;转速环在外面,称做外环。这就形成了转速电流负反馈直流调速系统。为了获得良好的静动态性能,转速和电流两个调节器一般采用PI调节器。 2.双闭环控制系统起动过程分析 前面已经指出,设置双闭环控制的一个重要目的就是要获得接近于理想的起动过程,因此在分析双闭环调速系统的动态性能时,有必要先探讨它的起动过程。双闭环调速系统突加给定电压*nU由静止状态起动时,转速和电流的过渡过程如图4所示。由于在起动过程中转速调节器ASR经历了不饱和、饱和、退饱和三

转速电流双闭环直流调速系统实训设计说明

摘要 电机自动控制系统广泛应用于机械,钢铁,矿山,冶金,化工,石油,纺织,军工等行业。这些行业中绝大部分生产机械都采用电动机作原动机。有效地控制电机,提高其运行性能,对国民经济具有十分重要的现实意义。 20世纪90年代前的大约50年的时间里,直流电动机几乎是唯一的一种能实现高性能拖动控制的电动机,直流电动机的定子磁场和转子磁场相互独立并且正交,为控制提供了便捷的方式,使得电动机具有优良的起动,制动和调速性能。尽管近年来直流电动机不断受到交流电动机及其它电动机的挑战,但至今直流电动机仍然是大多数变速运动控制和闭环位置伺服控制首选。因为它具有良好的线性特性,优异的控制性能,高效率等优点。直流调速仍然是目前最可靠,精度最高的调速方法。 本次设计的主要任务就是应用自动控制理论和工程设计的方法对直流调速系统进行设计和控制,设计出能够达到性能指标要求的电力拖动系统的调节器,通过在DJDK-1型电力电子技术及电机控制试验装置上的调试,并应用MATLAB软件对设计的系统进行仿真和校正以达到满足控制指标的目的。

在转速闭环直流调速系统中,只有电流截止负反馈环节对电枢电流加以保护,缺少对电枢电流的精确控制,也就无法充分发挥直流伺服电动机的过载能力,因而也就达不到调速系统的快速起动和制动的效果。通过在转速闭环直流调速系统的基础上增加电流闭环,即按照快速起动和制动的要求,实现对电枢电流的精确控制,实质上是在起动或制动过程的主要阶段,实现一种以电动机最大电磁力矩输出能力进行启动或制动的过程。 一、设计要求 设一个转速、电流双闭环直流调速系统,采用双极式H桥PWM方式驱动,已知电动机参数为:

转速单闭环直流调速系统设计

郑州航空工业管理学院 电力拖动自动控制系统课程设计 07 级电气工程及其自动化专业 0706073 班级 题目转速单闭环的直流拖动系统 姓名 学号 指导教师孙标 二ОО十年月日

电力拖动自动控制系统课程设计 一、设计目的 加深对电力拖动自动控制系统理论知识的理解和对这些理论的实际应用能力,提高对实际问题的分析和解决能力,以达到理论学习的目的,并培养学生应用计算机辅助设计的能力。 二、设计任务 设计一个转速单闭环的直流拖动系统

题目:单闭环不可逆直流调速系统设计 1 技术指标 电动机参数:PN=3KW, n N=1500rpm, UN=220V,IN=17.5A,Ra=1.25 。主回路总电阻R=2.5,电磁时间常数Tl=0.017s,机电时间常数Tm=0.075s。三相桥式整流电路,Ks=40。测速反馈系数=0.07。调速指标:D=30,S=10%。 2 设计要求 (1)闭环系统稳定 (2)在给定和扰动信号作用下,稳态误差为零。 3 设计任务(1)绘制原系统的动态结构图; (2)调节器设计; (3)绘制校正后系统的动态结构图; (4)撰写、打印设计说明书。 4 设计说明书 设计说明书严格按**大学毕业设计格式书写,全部打印.另外,设计说明书应包括以下内容: (1)中文摘要 (2)英文摘要

目录 第一章中文摘要 ································································································ - 1 -第二章英文摘要 ············································································错误!未定义书签。第三章课程设计的目的和意义·············································································· - 1 -1.电力拖动简介 ··························································································· - 1 - 2.课程设计的目的和意义·················································································· - 2 -第四章课程设计内容·························································································· - 2 -第五章方案确定 ································································································ - 3 - 5.1方案比较的论证 ······················································································ - 3 - 5.1.1总体方案的论证比较········································································ - 3 - 5.1.2主电路方案的论证比较····································································· - 4 - 5.1.3控制电路方案的论证比较·································································· - 6 -第六章主电路设计····························································································· - 7 - 6.1主电路工作设备选择 ················································································ - 7 -第七章控制电路设计·························································································· - 8 -第八章结论 ·····································································································- 11 -第九章参考文献 ·······························································································- 11 -

双闭环直流调速系统

转速、电流双闭环调速系统 班级:铁道自动化091 姓名:陈涛 指导老师:严俊 完成日期:2011-10-31 湖南铁道职业技术学院

目录 摘要 (3) 一、直流调速介绍 (4) 1、调速定义 (4) 2、调速方法 (4) 3、调速指标 (4) 二、双闭环直流调速系统介绍 (5) 1、转速、电流双闭环调速系统概述 (5) 2、转速、电流双闭环调速系统的组成 (6) 3、PI调节器的稳态特征 (7) 4、起动过程分析 (8) 5、动态性能 (11) 6、两个调节器的作用 (11) 三、总结 (12)

摘要 随着近代电力电子技术和计算机的发展以及现代控制理论的应用,自动化电力拖动正向着计算机控制的生产过程自动化的方向迈进,以达到高速、优质、高效率地生产。在大多数综合自动化系统中,自动化的电力拖动系统仍然是不可缺少的组成部分。 本文讲述的是转速、电流双闭环直流调速系统,通过学习使我对转速、电流双闭环直流调速系统的组成、调速器的稳态特性和作用以及系统的动态特性有了一定的了解。该系统是在单闭环系统的基础上加以改进后完成的,通过对电力拖动自动控制系统的学习,我们里了解到转速、电流双闭环直流调速系统相对于单闭环调速系统的一些优势,它是通过转速反馈和电流反馈两个环节分别起作用的。 通过这次的学习,我懂得了很多,具有了通过运用理论上所掌握的知识来独立发现问题、思考问题、解决问题的能力,在这次的论文中,我有一次重新学习了转速、电流双闭环直流调速系统,使我这一系统有了更进一步的了解。

转速、电流双闭环调速系统 一、直流调速介绍 1、调速定义 调速是指在某一具体负载情况下,通过改变电动据或电源参数的方法,使机械特性曲线得以改变,从而使电动机转速发生变化或保持不变。 2、调速方法 1.调节电枢供电电压U。改变电枢电压主要是从额定电压往下降低电枢电压,从电动机额定转速向下变速,属恒转矩调速方法。对于要求在一定范围内无 级平滑调速的系统来说,这种方法最好。变化遇到的时间常数较小,能快速响应,但是需要大容量可调直流电源。 2.改变电动机主磁通。改变磁通可以实现无级平滑调速,但只能减弱磁通进行调速(简称弱磁调速),从电机额定转速向上调速,属恒功率调速方 法。变化时间遇到的时间常数同变化遇到的相比要大得多,响应速度较慢,但所需电源容量小。 3.改变电枢回路电阻 <。在电动机电枢回路外串电阻进行调速的方法,设备简单,操作方便。但是只能进行有级调速,调速平滑性差,机械特性较软;空载时几乎没什么调速作用;还会在调速电阻上消耗大量电能。 3、调速指标 1.调速范围(包括:恒转矩调速范围/恒功率调速范围),

实验二转速、电流双闭环直流调速系统

实验二 转速、电流双闭环直流调速系统 一、实验目的 1.了解转速、电流双闭环直流调速系统的组成。 2.掌握双闭环直流调速系统的调试步骤,方法及参数的整定。 3.测定双闭环直流调速系统的静态和动态性能及其指标。 4.了解调节器参数对系统动态性能的影响。 二、实验系统组成及工作原理 双闭环调速系统的特征是系统的电流和转速分别由两个调节器控制,由于调速系统调节的主要参量是转速,故转速环作为主环放在外面,而电流环作为副环放在里面,可以及时抑制电网电压扰动对转速的影响。实际系统的组成如实验图2-1所示。 实验图2-1 转速、电流双闭环直流调速系统 主电路采用三相桥式全控整流电路供电。系统工作时,首先给电动机加上额定励磁,改 变转速给定电压* n U 可方便地调节电动机的转速。速度调节器ASR 、电流调节器ACR 均设有 限幅电路,ASR 的输出*i U 作为ACR 的给定,利用ASR 的输出限幅*im U 起限制起动电流的作 用;ACR 的输出c U 作为触发器TG 的移相控制电压,利用ACR 的输出限幅cm U 起限制αmin 的作用。 当突加给定电压*n U 时,ASR 立即达到饱和输出* im U ,使电动机以限定的最大电流I dm 加速起动,直到电动机转速达到给定转速(即* n n U U )并出现超调,使ASR 退出饱和,最后稳 定运行在给定转速(或略低于给定转速)上。 三、实验设备及仪器 1.主控制屏NMCL-32 2.直流电动机-负载直流发电机-测速发电机组 3. NMCL -18挂箱、NMCL-333挂箱及电阻箱 4.双踪示波器 5.万用表 四、实验内容

1.调整触发单元并确定其起始移相控制角,检查和调整ASR 、ACR ,整定其输出正负限幅值。 2.测定电流反馈系数β和转速反馈系数α,整定过电流保护动作值。 3.研究电流环和转速环的动态特性,将系统调整到可能的最佳状态,画出)(t f I d =和)(t f n =的波形,并估算系统的动态性能指标(包括跟随性能和抗扰性能) 。 4.测定高低速时系统完整的静特性)(d I f n =(包括下垂段特性),并计算在一定调速范围内系统能满足的静态精度。 五、实验步骤及方法 1.多环调速系统调试的基本原则 (1)先部件,后系统。即先将各环节的特性调好,然后才能组成系统。 (2)先开环,后闭环。即先使系统能正常开环运行,然后在确定电流和转速均为负反馈后组成闭环系统。 (3)先内环,后外环。即闭环调试时,先调电流内环,然后再调转速外环。 2.单元部件参数整定和调试 (1)主控制屏开关按实验内容需要设置 (2)触发器整定 将面板上的U blf 端接地,调整锯齿波触发器的方法同实验1。 (3)调节器调零 断开主回路电源开关SW ,给定电压U g 接到零速封锁器DZS 输入端,并将DZS 的输出接到ASR 和ACR 的封锁端。控制系统按开环接线,ASR 、ACR 的反馈回路电容短接,形成低放大系数的比例调节器。 a)ASR 调零 将调节器ASR 的给定及反馈输入端接地,调节ASR 的调零电位器,使ASR 的输出为零。 b)ACR 调零 将调节器ACR 的给定及反馈输入端接地,调节ACR 的调零电位器,使ACR 的输出为零。 (4)调节器输出限幅值整定 a)ASR 输出限幅值整定 ASR 按比例积分调节器接线,将U g 接到ASR 的输入端,当输入U g 为正而且增加时,调节 ASR 负限幅电位器,使ASR 输出为限幅值* im U ,其值一般取为8~6--V 。 b)ACR 输出限幅值整定 整定ACR 限幅值需要考虑负载的情况,留有一定整流电压的余量。ACR 按比例积分调节器接线,将g U 接到ACR 的输入端,用ACR 的输出c U 去控制触发移相,当输入g U 为负且增加时,通过示波器观察到触发移相角α移至οο30~15min =α时的电压即为ACR 限幅值U cm ,可通过ACR 正限幅电位器锁定。 3.电流环调试(电动机不加励磁) (1)电流反馈极性的测定及过电流保护环节整定。 整定时ASR 、ACR 均不接入系统,系统处于开环状态。直接用给定电压g U 作为c U 接到移相触发器GT 以调节控制角α,此时应将电动机主回路中串联的变阻器M R 放在最大值处,

单闭环直流调速系统

第十七单元 晶闸管直流调速系统 第二节 单闭环直流调速系统 一、转速负反馈直流调速系统 转速负反馈直流调速系统的原理如图l7-40所示。 转速负反馈直流调速系统由转速给定、转速调节器ASR 、触发器CF 、晶闸管变流器U 、测速发电机TG 等组成。 直流测速发电机输出电压与电动机转速成正比。经分压器分压取出与转速n 成正比的转速反馈电压Ufn 。 转速给定电压Ugn 与Ufn 比较,其偏差电压ΔU=Ugn-Ufn 送转速调节器ASR 输入端。 ASR 输出电压作为触发器移相控制电压Uc ,从而控制晶闸管变流器输出电压Ud 。 本闭环调速系统只有一个转速反馈环,故称为单闭环调速系统。 1.转速负反馈调速系统工作原理及其静特性 设系统在负载T L 时,电动机以给定转速n1稳定运行,此时电枢电流为Id1,对应转速反馈电压为Ufn1,晶闸管变流器输出电压为Udl 。 n n I C R R C U C R R I U n d e d e d e d d d ?+=+-=+-=0)(φ φφ 当电动机负载T L 增加时,电枢电流Id 也增加,电枢回路压降增加,电动机转速下降,则Ufn 也相应下降, 而转速给定电压Ugn 不变,ΔU=Ugn-Ufn 增加。 转速调节器ASR 输出电压Uc 增加,使控制角α减小,晶闸管整流装置输出电压Ud 增加,于是电动机转速便相应自动回升,其调节过程可简述为: T L ↑→Id ↑→Id(R ∑+Rd)↑→n ↓→Ufn ↓→△U ↑→Uc ↑→α↓→Ud ↑→n ↑。 图17-41所示为闭环系统静特性和开环机械特性的关系。

图中①②③④曲线是不同Ud之下的开环机械特性。 假设当负载电流为Id1时,电动机运行在曲线①机械特性的A点上。 当负载电流增加为Id2时,在开环系统中由于Ugn不变,晶闸管变流器输出电压Ud 也不会变,但由于电枢电流Id增加,电枢回路压降增加,电动机转速将由A点沿着曲线①机械特性下降至B’点,转速只能相应下降。 但在闭环系统中有转速反馈装置,转速稍有降落,转速反馈电压Ufn就相应减小,使偏差电压△U增加,通过转速调节器ASR自动调节,提高晶闸管变流器的输出电压Ud0由Ud01变为Ud02,使系统工作在随线②机械特性上,使电动机转速有所回升,最后稳定在曲线②机械特性的B点上。 同理随着负载电流增加为Id3,Id4,经过转速负反馈闭环系统自动调节作用,相应工作在曲线③④机械特性上,稳定在曲线③④机械特性的C,D点上。 将A,B,C,D点连接起来的ABCD直线就是闭环系统的静特性。 由图可见,静特性的硬度比开环机械特性硬,转速降Δn要小。闭环系统静特性和开环机械特性虽然都表示电动机的转速-电流(或转矩)关系,但两者是不同的,闭环静特性是表示闭环系统电动机转速与电流(或转矩)的静态关系,它只是闭环系统调节作用的结果,是在每条机械特性上取一个相应的工作点,只能表示静态关系,不能反映动态过程。 当负载突然增加时,如图所示由Idl突增到Id2时,转速n先从A点沿着①曲线开环机械特性下降,然后随着Ud01升高为Ud02,转速n再回升到B点稳定运行,整个动态过程不是沿着静特性AB直线变化的。 2.转速负反馈有静差调速系统及其静特性分析 对调速系统来说,转速给定电压不变时,除了上面分析负载变化所引起的电动机转速变化外,还有其他许多扰动会引起电动机转速的变化,例如交流电源电压的变化、电动机励磁电流的变化等,所有这些扰动和负载变化一样都会影响到转速变化。对于转速负反馈调速系统来说,可以被转速检测装置检测出来,再通过闭环反馈控制减小它们对转速的影响。也就是说在闭环系统中,对包围在系统前向通道中的各种扰动(如负载变化、交流电压波动、电动机励磁电流的变化等)对被调量(如转速)的影响都有强烈的抑制作用。但是对于转速负反馈调速系统来说,转速给定电压Ugn的波动和测速发电机的励磁变化引起的转速反馈电压Ufn变化,闭环系统对这种给定量和检测装置的扰动将无能为力。为了使系统有较高的调速精度,必须提高转速给定电源和转速检测装置的精度。

直流电机双闭环调速系统设计.

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊ 目录 1 绪论 (1) 1.1课题研究背景 (1) 1.2研究双闭环直流调速系统的目的和意义 (1) 2 直流电机双闭环调速系统 (3) 2.1直流电动机的起动与调速 (3) 2.2直流调速系统的性能指标 (3) 2.2.1静态性能指标 (3) 2.2.2动态的性能指标 (4) 2.3双闭环直流调速系统的组成 (6) 3 双闭环直流调速系统的设计 (8) 3.1电流调节器的设计 (8) 3.2转速调节器的设计 (10) 3.3闭环动态结构框图设计 (12) 3.4设计实例 (12) 3.4.1设计电流调节器 (13) 3.4.2设计转速调节器 (15) 4.Matlab仿真 (17) 4.1仿真结果分析 (19) 5 结论 (20) 参考文献 (21)

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊1 绪论 1.1课题研究背景 直流调速是现代电力拖动自动控制系统中发展较早的技术。就目前而言,直流调速系统仍然是自动调速系统的主要形式,电机自动控制系统广泛应用于机械,钢铁,矿山,冶金,化工,石油,纺织,军工等行业。这些行业中绝大部分生产机械都采用电动机作原动机。有效地控制电机,提高其运行性能,对国民经济具有十分重要的现实意义。 以上等等需要高性能调速的场合得到广泛的应用。然而传统双闭环直流电动机调速系统多数采用结构比较简单、性能相对稳定的常规PID控制技术,在实际的拖动控制系统中,由于电机本身及拖动负载的参数(如转动惯量)并不像模型那样保持不变,而是在某些具体场合会随工况发生改变;与此同时,电机作为被控对象是非线性的,很多拖动负载含有间隙或弹性等非线性的因素。因此被控制对象的参数发生改变或非线性特性,使得线性的常参数的PID控制器往往顾此失彼,不能使得系统在各种工况下都保持与设计时一致的性能指标,常常使控制系统的鲁棒性较差,尤其对模型参数变化范围大且具的非线性环节较强的系统,常规PID调节器就很难满足精度高、响应快的控制指标,往往不能有效克服模型参数变化范围大及非线性因素的影响。 1.2研究双闭环直流调速系统的目的和意义 双闭环直流调速系统是性能很好,应用最广的直流调速系统。采用该系统可获得优良的静、动态调速特性。此系统的控制规律,性能特点和设计方法是各种交、直流电力拖动自动控制系统的重要基础。 20世纪90年代前的大约50年的时间里,直流电动机几乎是唯一的一种能实现高性能拖动控制的电动机,直流电动机的定子磁场和转子磁场相互独立并且正交,为控制提供了便捷的方式,使得电动机具有优良的起动,制动和调速性能。尽管近年来直流电动机不断受到交流电动机及其它电动机的挑战,但至今直流电动机仍然是大多数变速运动控制和闭环位置伺服控制首选。因为它具有良好的线性特性,优异的控制性能,高效率等优点。直流调速仍然是目前最可靠,精度最高的调速方法。 通过对转速、电流双闭环直流调速系统的了解,使我们能够更好的掌握调速系统的基本理论及相关内容,在对其各种性能加深了解的同时,能够发现其缺陷之处,通过对该系统不足之处的完善,可提高该系统的性能,使其能够适用于各种工作场合,提高其使用效率。并以此为基础,再对交流调速系统进行研究,最终掌握各种交、直流调速系统的原理,使之能够应用于国民经济各个

案例转速电流双闭环直流调速系统

案例转速、电流双闭环直流调速系统 一、概述 现以ZCC1系列晶闸管—电动机直流调速装置(简称ZCC1系列)为例,来阐述晶闸管—电动机直流调速系统分析、调试的一般方法与步骤。该装置的基本性能如下: (1)装置的负荷性质按连续工作制考核。 (2)装置在长期额定负荷下,允许150%额定负荷持续二分钟,200%额定负荷持续10秒钟,其重复周期不少于1小时。 (3)装置在交流进线端的电压为(0.9~1.05)380伏时,保证装置输出端处输出额定电压和额定电流。电网电压下降超过10%范围时输出额定电压同电源电压成正比例下降。 (4)装置在采用转速反馈情况下,调速范围为20∶1,在电动机负载从10%~100%额定电流变化时,转速偏差为最高转速的0.5%(最高转速包括电动机弱磁的转速)。转速反馈元件采用ZYS型永磁直流测速发电机。 (5)装置在采用电动势反馈(电压负反馈、电流正反馈)时,调速范围为10∶1,电流负载从10%~100%变化时,转速偏差小于最高转速的5%(最高转速包括电动机弱磁的转速)。 (6)装置在采用电压反馈情况下,调压范围为20∶1,电流负载从10%~100%变化时,电压偏差小于额定电压的0.5%。 (7)装置给定电源精度,在电源电压下降小于10%以及温度变化小于±10℃时,其精度为1%。 二、系统的组成 1、主电路 ZCC1系列装置主电路采用三相桥式全控整流电路,交流进线电源通过三相整流变压器或者交流进线电抗器接至380V交流电源。为了使电机电枢电流连续并减小电流脉动以改善电动机的发热和换向,在直流侧接有滤波电抗器L。 2、控制系统 ZCC1系列晶闸管直流调速装置的控制系统采用速度(转速)电流双闭环控制系统,其原理方框图如图3-1所示

直流电动机双闭环调速系统(1)

直流电动机双闭环调速系统 一、系统发展背景 直流电动机双闭环调速系统是一种当前应用广泛,经济的电力传动系统,在现代化工业生产中已经得到广泛应用,具有良好的起、制动性能和调速性能,易于在大范围内平滑调速,且调速后的效率很高。针对直流电机调速的方法也很多,目前国内外也研究了一些调速的控制器。例如已经用于实际生产的直流电机无级电子调速控制器采用国际先进的IGBT大功率模块器件和独特自行设计的PWM 微电子控制技术,以及节能反馈电路和丰富的保护功能控制电路。适用于无轨机车、矿山井下窄轨机车、磨床、木工机械、服装制作、纺织、造纸印刷等场所。 二、系统原理图 三、系统方块图

四、系统的工作原理分析 总述:分析系统原理图,可知这是一个双闭环调速系统,在双闭环系统中,系统的输出量通过检测装置引向系统的输入端,与系统的输入量进行比较,由于扰动作用使被控参数偏离给定值,从而产生偏差,调节器将此偏差信号进行调节,并输出一标准信号,去控制执行机构的动作。 下面,针对此直流电机双闭环调速系统,对其原理进行具体的分析: 1、双环的构成 直流电机双闭环调速系统同时具有速度反馈和电流反馈,实现了转速和电流两种负反馈的调节。二者之间如图所示实行嵌套模式,从闭环的结构上看,电流调节环属内环,速度调节环属外环,这样就形成了速度,电流双闭环调节系统。 2、电流环 速度调节器的输出作为电流调节器的输入,可控制电路的电流输出经电流互感器形成局部反馈,即电流反馈。其中,电流互感器是电流反馈的检测元件,电流调节器对其输入信号给定量和反馈量进行加法,减法,比例,积分等运算,使其按照某种预定规律运行。 3、速度环 可控硅电路的电压输入加在直流电动机的电枢上,使电动机旋转,电动机输

推荐-直流vm双闭环直流不可逆调速系统设计 精品

课程设计任务书 学生姓名: 专业班级: 指导教师: 工作单位: 题 目: 直流V-M 双闭环不可逆调速系统设计 初始条件: 采用双闭环V —M 不可逆调速系统。电动机参数为:V U N 750=,kW P N 550=,A I a 780=,m in /375r n N =,r V Ce min/.92.1=,允许电流过载倍数为1.5,Ω=1.0R , 75=s K ,V U U U ctm im nm 12**===。采用三相桥式整流电路,电磁时间常数s T L 03.0=, s T m 084.0=,s T oi 002.0=,s T on 02.0=。 稳态无静差,电流超调量%5≤i σ,空载起动到额定转速时的转速超调量%10≤n σ。 要求完成的主要任务: (包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 1. 原理说明,原理图、系统动态结构图; 2. 说明系统起动过程,调节器设计; 3. 设计ACR 和ASR 的电路并计算参数。 4. 系统仿真 5. 按规范格式撰写设计报告(不少于5篇)打印 时间安排: 12 月 18日-21日 查阅资料 12月 22 日- 24日 方案设计 12月25 日- 26 日 馔写程设计报告 12月27日 提交报告,答辩 指导教师签名: 20XX 年 12月16日 系主任(或责任教师)签名: 年 月 日

摘要 直流电动机具有良好的起动、制动性能,宜于在大范围内平滑调速,在许多需要调速或快速正反向的电力拖动领域中得到了广泛的应用。直流V-M双闭环不可逆调速系统是性能很好、应用广的直流调速系统。根据晶闸管的特性,通过调节触发延迟角α大小来调节电压。基于设计题目,直流电动机调速控制器选用了转速电流双闭环调速控制电路。在设计中调速系统的主电路采用了三相全控桥整流电路来供电。本文首先确定整个设计的方案和框图,然后确定主电路的结构形式和各元部件的设计,同时对其参数的计算,包括整流变压器、晶闸管、电抗器和保护电路的参数计算。接着驱动电路的设计包括触发电路和脉冲变压器的设计。最后,即本文的重点设计直流电动机调速控制器电路,本文采用转速电流双闭环直流调速系统为对象来设计直流电动机调速控制器。为了实现转速和电流两种负反馈分别起作用,可在系统中设置两个调节器,分别调节转速和电流,即分别引入转速负反馈和电流负反馈,二者之间实行嵌套联接。从闭环结构上看,电流环在里面,称作内环;转速环在外边,称作外环。这就形成了转速电流双闭环调速系统。先确定其结构形式和设计各部件,并对其参数的计算,包括给定电压、转速调节器、电流调节器、检测电路、触发电路和稳压电路的参数计算,然后采用Simulink对整个调速系统进行了仿真分析,最后画出了调速控制电路电气原理图。 关键词:双闭环,晶闸管,转速调节器,电流调节器,Simulink

双闭环直流调速系统工作原理

双闭环直流调速系统设计 内容摘要 电机自动控制系统广泛应用于各行业,尤其是工业。这些行业中绝大部分生产机械都采用电动机作原动机。有效地控制电.直流电动机具有良好的起动、制动性能,宜于在大范围内平滑调速,在许多需要调速或快速正反向的电力拖动领域中得到了广泛的应用。有效地控制电机,提高其运行性能,具有很好的现实意义。本文介绍了基于工程设计对直流调速系统的设计,根据直流调速双闭环控制系统的工作原理以及介绍变频调速技术的发展概况,变频调速技术的发展趋势关键词:双闭环控制系统,转速控制环,系统现状,发展趋势 英文翻译:Electrical automatic control system widely used in various industries, especially in industry. Most of the production machinery used in these industries motor as a prime mover. Effectively control electricity. Dc motor has a good start, braking performance, adaptable to smooth speed regulation in large scale, in many need to speed or fast forward and reverse has been widely used in the area of electric drive. Effectively control motor, improve its operation performance, has the very good practical significance. I ntroduced in this paper, based on the engineering design to the design of dc speed regulating system, the working principle of the double closed loop control system of dc speed regulating and also I ntroduce the development general situation and the development trend Key words: double closed loop control system, speed control loop, th e status quo,the development of trend 一:引言 矿井提升机是煤矿、有色金属矿中的重要运输设备,是“四大运转设备”之一。矿井提升系统具有环节多、控制复杂、运行速度快、惯性质量大、运行特性复杂的特点,且工作状况经常交替转换。 近几年,交流调速飞速发展,逐渐有赶超并代替直流调速的趋势。直流调速理论基础是经典控制理论,而交流调速主要依靠现代控制理论。不过最近研制成功的直流调速器,具有和交流变频器同等性能的高精度、高稳定性、高可靠性、

转速电流双闭环直流调速系统设计

电力拖动自控系统课程设 计报告 题目转速电流双闭环直流调速系统设 计 学院:电子与电气工程学院 年级专业:2012级电气工程及其自动化(电力传动方向)姓名: 学号: 指导教师: 成绩:

电力拖动自动控制系统综合课程设计 设计任务书 某晶闸管供电的双闭环直流调速系统,整流装置采用三相桥式电路,基本数据为: 直流电动机:kW 5.7P N =,V 400U N =,A 8.21I N = ,min /r 3000N =n , W 716.0R a =,电枢回路总电阻Ω=75.1R ,电枢电路总电感mH 60L =,电流允许 过载倍数5.1=λ,折算到电动机轴的飞轮惯量22m N 64.2GD ?=。励磁电流为1.77A 。 晶闸管整流装置放大倍数40K s =,滞后时间常数s 0017.0T s = 电流反馈系数)I 5.1/V 15(A /V 4587.0βN ≈= 电压反馈系数)/V 15(r m in/V 005.0αN n ≈?= 滤波时间常数s 002.0T oi =,s 01.0T on = V 15U U U cm *im *nm ===;调节器输入电阻Ω=K 40R o 。

设计要求:稳态指标:无静差; 动态指标:电流超调量00i 5≤σ;采用转速微分负反馈使转速超调量等于0。 目 录 1 概述 (1) 1.1问题的提出 ............................................................................................................ 1 1.2解决的问题 ............................................................................................................ 1 1.3实现目标要求设计 . (1) 2 主电路计算 (2) 2.1整流变压器的计算 .............................................................................................. 2 2.2晶闸管及其元件保护选择 (2) 3 直流双闭环调速系统设计 (8) 3.1转速和电流双闭环调速系统的组成 .............................................................. 8 3.2系统静态结构图及性能分析 ............................................................................ 9 3.3系统动态结构图及性能分析 .. (10)

双闭环直流电机调速系统设计参考案例

《运动控制系统》课程设计指导书 一、课程设计的主要任务 (一)系统各环节选型 1、主回路方案确定。 2、控制回路选择:给定器、调节放大器、触发器、稳压电源、电流截止环节,调节器锁零电路、电流、电压检测环节、同步变压器接线方式(须对以上环节画出线路图,说明其原理)。 (二)主要电气设备的计算和选择 1、整流变压器计算:变压器原副方电压、电流、容量以及联接组别选择。 2、晶闸管整流元件:电压定额、电流定额计算及定额选择。 3、系统各主要保护环节的设计:快速熔断器计算选择、阻容保护计算选择计算。 4、平波电抗器选择计算。 (三)系统参数计算 1、电流调节器ACR 中i i R C 、 计算。

2、转速调节器ASR 中n n R C 、 计算。 3、动态性能指标计算。 (四)画出双闭环调速系统电气原理图。 使用A1或A2图纸,并画出动态框图和波德图(在设计说明书中)。 二、基本要求 1、使学生进一步熟悉和掌握单、双闭环直流调速系统工作原理,了解工程设计的基本方法和步骤。 2、熟练掌握主电路结构选择方法,主电路元器件的选型计算方法。 3、熟练掌握过电压、过电流保护方式的配置及其整定计算。 4、掌握触发电路的选型、设计方法。 5、掌握同步电压相位的选择方法。 6、掌握速度调节器、电流调节器的典型设计方法。 7、掌握电气系统线路图绘制方法。 8、掌握撰写课程设计报告的方法。 三、 课程设计原始数据

有以下四个设计课题可供选用: A 组: 直流他励电动机:功率P e =1.1KW ,额定电流I e =6.7A ,磁极对数P=1, n e =1500r/min,励磁电压220V,电枢绕组电阻R a =2.34Ω,主电路总电阻R =7Ω,L ∑=246.25Mh(电枢电感、平波电感和变压器电感之和),K s =58.4,机电时间常数 T m =116.2ms ,滤波时间常数T on =T oi =0.00235s ,过载倍数λ=1.5,电流给定最大值 10V U im =*,速度给定最大值 10V U n =* B 组: 直流他励电动机:功率P e =22KW ,额定电压U e =220V ,额定电流I e =116A,磁极对 数P=2,n e =1500r/min,励磁电压220V,电枢绕组电阻R a =0.112Ω,主电路总电阻R = 0.32Ω,L ∑=37.22mH(电枢电感、平波电感和变压器电感之和),电磁系数 C e =0.138 Vmin /r ,K s =22,电磁时间常数T L =0.116ms ,机电时间常数T m =0.157ms , 滤波时间常数T on =T oi =0.00235s ,过载倍数λ=1.5,电流给定最大值 10V U im =*,速度给定最大值 10V U n =* C 组: 直流他励电动机:功率Pe =145KW ,额定电压Ue=220V ,额定电流Ie=733A,磁极对数P=2,ne=430r/min,励磁电压220V,电枢绕组电阻Ra=0.0015Ω,主电路总电阻R =0.036Ω,Ks=41.5,电磁时间常数TL=0.0734ms ,机电时间常数

双闭环直流调速系统(精)

直流双闭环调速系统设计 1设计任务说明书 某晶闸管供电的转速电流双闭环直流调速系统,整流装置采用三相桥式电路,基本数据为: 直流电动机:V U N 750=,A I N 780=,min 375r n N =,04.0=a R ,电枢电路 总电阻R=0.1Ω,电枢电路总电感mH L 0.3=,电流允许过载倍数5.1=λ,折算到电动机轴的飞轮惯量2 2 4.11094Nm GD =。 晶闸管整流装置放大倍数75=s K ,滞后时间常数s T s 0017.0= 电流反馈系数?? ? ??≈=N I V A V 5.11201.0β 电压反馈系数?? ? ??=N n V r V 12min 032.0α 滤波时间常数.02.0,002.0s T s T on oi == V U U U cm im nm 12===* *;调节器输入电阻Ω=K R O 40。 设计要求: 稳态指标:无静差 动态指标:电流超调量005≤i σ;空载起动到额定转速时的转速超调量 0010≤n σ。

目录 1设计任务与分析? 2调速系统总体设计...................................................................................................................................... 3直流双闭环调速系统电路设计? 3.1晶闸管-电动机主电路的设计........................................................ 3.1.1主电路设计? 3.1.2主电路参数计算................................................................. 3.2转速、电流调节器的设计? 3.2.1电流调节器.................................................................. 3.2.1.1电流调节器设计? 3.2.1.2电流调节器参数选择........................................................ 3.2.2转速调节器.................................................................... 3.2.2.1转速调节器设计.............................................................. 3.2.2.2转速调节器参数选择.......................................................... 4计算机仿真.................................................................................................................................................. 4.1空载起动? 4.2突加负载........................................................................................................................................ 4.3突减负载 5设计小结与体会? 6参考文献.....................................................................................................................................................