搜档网
当前位置:搜档网 › 压型钢板和檩条计算例题

压型钢板和檩条计算例题

压型钢板和檩条计算例题
压型钢板和檩条计算例题

九、屋面压型钢板设计与计算

屋面材料采用压型钢板,檩条间距1.5m ,选用YX 型压型钢板,板厚t=㎜,截面形状及尺寸如图 (1)、内力计算 设计荷载: ×+×=㎡

压型钢板单波线荷载:

q x =×=m

中最大弯矩:

2

max 81l q M x =

25.1294.08

1

??= m KN ?=083.0

(2)、截面几何特性 采用“线性法”计算

D=130㎜ b 1=55㎜ b 2=70㎜ h=㎜

mm h b b L 5.4387.156********=?++=++= mm L b h D y 2.674

.438)

707.156(130)(21=+?=+=

mm y D y 8.622.6713012=-=-=

)3

2

(2212h hL b b L tD I x -+=

mm 773863)7.1564.4387.15632

7055(4.4381308.022=-??+???=

31115162.67773863mm y I W x cx ===

32123238

.62773863mm y I W x tx ===

(3)、有效截面计算

① 上翼缘:为一均匀受压两边支承板,其应力为:

26max /2.711516

10083.0mm N W M cx cx

=?==σ

上翼缘的宽厚比

75.688

.055==t b ,查《钢结构设计与计算》板件的有效宽厚比表1-62得:mm b 498.0611=?=

② 腹板:系非均匀受压的两边支承板,其腹板上、下两端分别受压应力与拉应力作用

2max

max /2.7mm N W M cx

==

σ (压) 2max

min /7.6mm N W M tx

-==

σ (拉) 93.12

.7)

7.6(2.7max min max =--=-=

σσσα

腹板宽厚比 1968

.07.156==t h 查《钢结构设计与计算》表1-63知板件截面全部有效。 ③ 下翼缘:下翼缘板件为均匀受拉,故下翼缘截面全部有效。

④ 有效截面特性计算:由以下计算分析,上翼缘的计算宽度应按有效宽度b e 考虑,因此整个截面的几何特性需要重新计算 D=130㎜ mm b b e 49'1== b 2=70㎜ h=㎜

mm h b b L 4.4327.1562704922'1'=?++=++=

mm L

b h D y 16.684.432)

707.156(130)('

2'1=+?=+=

mm y D y 84.6116.68130'1'

2

=-=-= )32

(2'2'1'2'

h hL b b L

tD I x

-+=

mm 751870)7.1564.4327.1563

2

7049(4.4321308.022=-??+???=

3'1''

1103116.68751870mm y I W x cx

===

3'2''

1215884.61773863mm y I W x tx

===

(4)、强度验算

① 正应力验算:

2

26'

max max /205/5.71103110083.0mm N mm N W M cx <=?==σ 2

26'

max min

/205/8.61215810083.0mm N mm N W M tx

<=?==σ ② 剪应力验算 :

KN l q V x 22.05.1294.02

1

21max =??==

腹板最大剪应力 223max max

/120/32.18

.07.156221022.0323mm N f mm N ht V v =<=?????=∑=τ 腹板平均剪应力

23

/9.08

.07.15621022.0mm N ht V =???=∑=

τ 因为

1009.1958

.07

.156>==t h 所以28.229.195855000)/(85500022==<

t h τ 故该压型钢板强度满足设计要求。

(5)、刚度验算

按单跨简支板计算跨中最大挠度

mm l mm EI l q x k 6.9250][12.0751870

1006.2384)105.1(225.0538455

43'4max

==<=??????==ωω 故压型钢板刚度满足设计要求。

十、墙面压型钢板设计与计算

墙面材料采用压型钢板,墙檩条间距1.6m ,选用YX35-125-750型压型钢板,板厚

t=㎜,截面形状及尺寸如图 (1)、内力计算 设计荷载:

按简支梁计算压型钢板跨中最大弯矩:

2max 81l q M x =20.2074.08

1

??=m KN ?=037.0

(2)、截面几何特性 采用“线性法”计算

D=35㎜ b 1=29㎜ b 2=29㎜ h=㎜ mm h b b L 9.15445.4822929221=?++=++= mm L b h D y 5.179

.154)

2945.48(35)(21=+?=+=

mm y D y 5.175.173512=-=-=

)3

2

(2212h hL b b L tD I x -+=

mm 6.16592)45.489.15445.4832

2929(9.154356.022=-??+???=

311.9485.176.16592mm y I W x cx ===

321.9485

.176.16592mm y I W x tx ===

(3)、有效截面计算

⑤ 上翼缘:为一均匀受压两边支承板,其应力为:

26max /0.391

.94810037.0mm N W M cx cx

=?==σ 上翼缘的宽厚比

3.486

.029

==t b ,查《钢结构设计与计算》均匀受压板件的有效宽厚比表1-62知:上翼缘截面全部有效。

⑥ 腹板:系非均匀受压的两边支承板,其腹板上、下两端分别受压应力与拉应力作用

2max

max /39mm N W M cx

==

σ (压) 2max

min /0.39mm N W M tx

-==

σ (拉) 腹板宽厚比

8.806

.045

.48==

t h

20

.39)

0.39(0.39max min max =--=-=

σσσα

查《钢结构设计与计算》非均匀受压板件的有效宽厚比表1-63知:知板件截面

全部有效。

⑦ 下翼缘:下翼缘板件为均匀受拉,故下翼缘截面全部有效。

(4)、强度验算 ③ 正应力验算: 226'

max min

max /205/0.391.94810037.0mm N mm N W M cx

<=?===σσ ④ 剪应力验算 :

KN l q V x 037.00.2037.02

1

21max =??==

腹板最大剪应力 223max max

/120/95.06

.045.482210037.0323mm N f mm N ht V v =<=?????=∑=τ 腹板平均剪应力

23

/64.06

.045.48210037.0mm N ht V =???=∑=

τ 因为

1008.806

.045

.48<==t h 所以2/8.1058.808550)/(8550mm N t h ==<

τ 故该压型钢板强度满足设计要求。

(5)、刚度验算

按单跨简支板计算跨中最大挠度

200

1

120916.165921006.2384)106.1(053.0538455333max

<

=??????==x k EI l q l

ω 故压型钢板刚度满足设计要求。

十一、檩条验算

屋面板为YX 型压型钢板加50mm 厚带铝铂玻璃纤维棉保温层,屋面排水坡度在1/15-1/10之间,采用卷边C 形槽钢檩条,长度l=6,檩距为1.5m ,檩条中间设置拉条一道,檩条及拉条钢材均为Q235。

(1)、按檩条高度l h )50

1

~351(=,从而初选C 形檩条140×60×20×3

(2)、荷载计算:

① 屋面荷载:

恒载:YX130×300×600压型钢板及保温层 ㎡ 檩条自重 ㎡ 合计 ㎡ 活载:屋面均布荷载 ㎡

检修、施工集中荷载 ㎡ ② 荷载组合

A 、恒载+屋面均布荷载

线荷载标准值 m KN q k

/2.15.1)4.04.0()

1(=?+= 线荷载设计值 m KN q /56.15.1)4.14.02.14.0()1(=??+?= ABC 跨屋面坡度ο76.4=α , CDE 跨为ο76.4。 B 、恒载+检修及施工集中荷载

作用在每条檩条单位长度上的线荷载为:

线荷载标准值 m KN q k

/60.05.14.0)

2(=?= 线荷载设计值 m KN q /72.05.14.02.1)2(=??= 作用在一根檩条上的集中荷载:KN F k 0.1=;F=

(3)、内力分析

经分析可知,由第一种荷载组合引起的内力起控制作用。 对X 轴,跨中拉条支点最大弯矩:

m KN l q l q M x

x ?=???=?==0.7676.4cos 56.18

1cos 8181202

)1(2)1()1(max α 对Y 轴,跨中拉条支点最大负弯矩:

m KN l q l q M y

y ?=???=?==146.0676.4sin 56.132

1sin 32132120)1(2)1()

1(max α檩条支座、拉条支点间最大弯矩:

m KN l q M x y ?=??==878.0656.164

164122)1()

1(

(4)、截面验算:

① 有效截面特性 查表知C 形檩条160×60×20×3的各项截面特性为:

40.248cm I x = 343.35cm W x = A=㎝2 413.40cm I y = 3138.20)(cm W y = 3296.9)(cm W y = ② 有效截面的计算

A 、上翼缘:假定由y M 引起的应力影响不考虑,近似地可将上翼缘视作一均匀受压的一边支承、一边卷边构件:

MPa W M x x 6.1971043.35100.73

6

max 21=??===σσ

上翼缘板件的宽厚比

203

60==t b 。查《钢结构设计与计算》均匀受压板件的有效宽厚比表1-62知:知板件截面全部有效。

B 、下翼缘:下翼缘为受拉板件,板件截面全部有效。

C 、腹板:腹板的二边支承的非均匀受压板,0.2=α,67.463

140

==t b

查《钢结构设计与计算》非均匀受压板件的有效宽厚比表1-63知:腹板件截面全部有效。

D 、由于截面全部有效,有效截面特性即为毛截面特性。

由行强度验算(檩条跨中最大弯矩max x M 、m ax y M 引起的截面正应力符号如上图所示)

MPa W M W M y y x x 3.2051038.2010146.01034.35100.7)()(3

63611max 11max 1=??+??=+=σ MPa W M W M y y x x 5.1831096.910146.01034.35100.7)()(36

3622max 21max 2=??-??=-=σ

MPa W M W M y y x x 9.1901038.2010146.01034.35100.7)()(3

6

3632max 31max 3-=??+??-=+-=σ MPa W M W M y y x x 8.21210

96.910146.01034.35100.7)()(3

3

3642max 41max 4-=??-??-=--=σ MPa f MPa 2058.2124max =>==σσ 超4%<5%,可以满足要求 ④ 刚度验算 mm mm EI l q x ky 30200

6000][8.19102481006.2384600076.4cos 60.0538*******

max

==<=???????==ωω 满足要求

⑤ 拉条计算

拉条所受力即为橹条距中侧向支点的支座反力,则

l q l q N x ?==αsin 625.0625.0)1()

1(

KN 224.0676.4sin 72.0625.0=???=ο 拉条所需面积 2min 09.1205

224

mm f N A ===

按构造取10φ拉条(28.50mm A =)

设计一两端简支直卷边Z形冷弯薄壁型檩条

设计一两端简支直卷边Z 形冷弯薄壁型檩条 (1) 设计资料 封闭式建筑、屋面材料为压型钢板,屋面坡度1/8(7.13α=?),檩条跨度6m ,于1/2跨度处设一道拉条,水平檩距1.5m ,钢材Q235钢 (2) 荷载标准值(水平投影) 1) 永久荷载: 压型钢板(两层含保温层) 0.30KN/m 2 檩条(包括拉条) 0.05KN/m 2 2)可变荷载标准值: 屋 面 均 布 活 荷 载 0.30KN/m 2 雪 荷 载 0.35KN/m 2 试设计该檩条。 解:(1) 选择檩条形式 选用直卷边Z 形钢檩条1606020 2.5Z ??? 查附表1-1得知:1606020 2.5Z ???截面的毛截面几何特性为: 2 44331124331219.98,7.13,7.48288.12,323.13,44.00,34.9523.14,9.00,8.71sin()sin(19.987.13)0.2224cos()cos(19.987.13)0.9750 x x x x y y y A cm I cm I cm W cm W cm I cm W cm W cm θαθαθα=?=?========-=?-?=-=?-?= (2)荷载效应组合 y q q x θ q y θα- y α X X 1 X 1 X

荷载组合为:1.2 1.4max{}?+?永久荷载屋面均布活荷载,雪荷载 2 2222 1.20.300.05 1.40.350.91/cos() 1.50.910.9750 1.5 1.33/sin() 1.50.910.2224 1.50.304/1.336 5.98588 0.30460.3423232 x y x x y y q kN m q q kN m q q kN m q l M kNm q l M kNm θαθα=?++?==?-?=??==?-?=??=?===?===() (3) 有效截面计算 160602.67 3.0,243160 2.5a 2087.0,2.5 h b b t t ==<==<===>且故檩条全截面有效。 (4) 强度验算: 根据公式,验算檩条在荷载组合作用下①、②、③、④点的强度 222 1122 2 22448 1.3 3.5(/2)4 41.96 /2 8 34.958 1.3 3.5(/2)432.92 /28 x enx x enx W h Ay W h W h Ay W h π π ?- ???-= = =?- ???-= == 6622 1333 116622 2433 22 5.985100.34210180.6/205/41.96109.00105.985100.34210221.1/205/32.92109.0010y x enx eny y x enx eny M M N mm f N mm W W M M N mm f N mm W W σσσσ??=-=+=+=<=????=-=+=+=>=?? (5)整体稳定验算: 受弯构件的整体稳定系数按GB50018规范计算 由表1-5 121.35,0.14,0.50b ξξμ=== 60160 s i n c o s s i n 19.98c o s 19.98 222 2 300.34280 0.94085.58.55 a b h e mm cm θθ=+= ?+?=?+?== 由式(1-70) 22/20.148.55/160.15a e h ηξ==??= 由式(1-71) 2 240.156t b y y I I l h I I h ωμζ?? =+ ???

屋面檩条工程施工设计方案

第一章总则 1.1 为了保证钢结构厂房工程安装的顺利进行,保证施工的质量、进度、安全目标,圆满完成本项工程的檩条安装工作,特编制该工程安装施工方案。 1.2 施工方案编制主要依据为:《钢结构工程施工质量验收规》(GB50205—2001)、《钢结构工程质量检验评定标准》(GB50221—95)、 1.3 钢结构屋面安装必须按施工图进行,当对施工图及在实际施工中发生疑问时,应通过技术主管或有关技术人员处理。 1.4 本施工方案中的有关要求如与国家或行业标准、规、规程有抵触时,应以前者为准。 1.5 安装负责人和项目经理应按照公司制定的各自的岗位职责各进其责,并协调好相互间的交接工作,保证工程安装顺利进行。 第二章施工准备 第1节材料、半成品 2.1.1钢构件:钢构件型号、制作质量应符合设计要求和施工规的规定,应有出厂合格证并应符合有关技术条件。 2.1.2连接材料:焊条、螺栓等材料应有质量证明书,并符合设计要求及有关国家标准的规定。 2.1.3涂料:防锈涂料技术性能应符合设计要求和有关标准规定,应有产品质量证明书。 2.1.4其它材料:各种规格连接件等满足施工要求。 第2节作业条件 2.2.1按构件明细表,核对进场构件的数量,查验出厂合格证及有关技术条件。 2.2.2检查构件在装卸、运输及堆放中有无损坏或变形。损坏和变形的构件应予矫正或重新加工。被损坏处的防锈涂料应补涂,并再次检查办理验收手续。 2.2.3 对构件的外形尺寸、制孔、焊接等进行检查,做出记录。 2.2.4 钢结构构件应按安装程序成套供应,现场堆放场地能满足现场顺序安装及起重设备进退场地的需要。 2.2.5钢构件分类堆放,刚度较大的构件可以铺设垫木水平堆放。多层叠放时垫木应在一条垂线上。

钢结构设计计算公式及计算用表

钢结构设计计算公式及计算用表 为保证承重结构的承载能力和防止在一定条件下出现脆性破坏,应根据结构的重要性、荷载特征、结构形式、应力状态、连接方法、钢材厚度和工作环境等因素综合考虑,选用合适的钢材牌号和材性。 承重结构的钢材宜采用Q235钢、Q345钢、Q390钢和Q420钢,其质量应分别符合现行国家标准《碳素结构钢》GB/T700和《低合金高强度结构钢》GB/T 1591的规定。当采用其他牌号的钢材时,尚应符合相应有关标准的规定和要求。对Q235钢宜选用镇静钢或半镇静钢。 承重结构的钢材应具有抗拉强度、伸长率、屈服强度和硫、磷含量的合格保证,对焊接结构尚应具有碳含量的合格保证。 焊接承重结构以及重要的非焊接承重结构的钢材还应具有冷弯试验的合格保证。 对于需要验算疲劳的焊接结构的钢材,应具有常温冲击韧性的合格保证。当结构工作温度等于或低于0℃但高于-20℃时,Q235钢和Q345钢应具有0℃C冲击韧性的合格保证;对Q390钢和Q420钢应具有-20℃冲击韧性的合格保证。当结构工作温度等于或低于-20℃时,对Q235钢和Q345钢应具有-20℃冲击韧性的合格保证;对Q390钢和Q420钢应具有-40℃冲击韧性的合格保证。 对于需要验算疲劳的非焊接结构的钢材亦应具有常温冲击韧性的合格保证,当结构工作温度等于或低于-20℃时,对Q235钢和Q345钢应具有0℃冲击韧性的合格保证;对Q390钢和Q420钢应具有-20℃冲击韧性的合格保证。 当焊接承重结构为防止钢材的层状撕裂而采用Z向钢时,其材质应符合现行国家标准《厚度方向性能钢板》GB/T 5313的规定。 钢材的强度设计值(材料强度的标准值除以抗力分项系数),应根据钢材厚度或直径按表1采用。钢铸件的强度设计值应按表2采用。连接的强度设计值应按表3~5采用。

檩条深化设计说明

大连体育场钢结构檩条深化设计说明 一. 设计依据 1.1哈尔滨工业大学建筑设计院提供的大连体育场钢结构设计图纸; 1.2国家现行的建筑结构设计规范 《建筑结构荷载规范》GB50009-2001 《钢结构设计规范》 GB50017-2003 《建筑钢结构焊接规程》JGJ81-2002 《低合金高强度结构钢》GB/T1591- 《熔化焊用钢丝》GB/T14958-94 《低合金钢焊条》GB/T5118-95 《钢焊缝手工超声波探伤方法和探伤结果分级》GB11345-89《钢结构施工质量验收规范》GB50205-2001 二. 设计荷载取值 恒荷载标准值: ETFE屋面: 0.30kN/m*m 马道(1.8米宽):2kN/m 活荷载标准值: 0.5kN/m*m 基本风压: 0.75 kN/m*m(50年一遇),地面粗糙度类别为B类,风荷载大小计算依据甲方提供的风洞试验报告。 基本雪压: 0.45kN/m*m(100年一遇) 温度荷载:正温+30度,负温-30度(合拢温度15度~20度) 地震作用:抗震设防烈度7度。 三. 檩条和焊接材料 3. 1.钢檩条采用250*250*6,250*300*6和250*400*8矩形钢管,连接板采用板材制作。材质均采用Q345B.。 3.2.所用钢材其抗拉强度、屈服强度、伸长率、冲击性能应符合《低合金高强度结构钢》GB1591-标准。并保证碳、硫、磷化学成分合格。 3.3.所用焊条、焊丝应与所焊主体金属相适应,焊条采用E50**型,焊

丝采用ER50-*型。焊条应符合《低合金钢焊条》GB/T5118-95,焊丝应符合《气体保护焊用钢丝》GB/T14958-94的规定。 4、制作要求 4.1钢结构制作时应严格按照《钢结构施工质量验收规范》GB50205-2001制作。 4.2檩条制作前应1:1放实样,并留有适当的焊接收缩和变形矫正余量。弧形主檩条采用火曲时应严格控制加热温度,冷却时严禁用水急冷。 4.3檩条拼接时尽可能避免将焊缝设置在跨中三分之一内。檩条每根接长不宜多于两段。 五. 焊接 5.1钢结构焊接应符合《建筑钢结构焊接技术规程》(JGJ81-2002)的规定。 5.2焊工应按《焊工技术考试规程》(GB/T56822-96)的规定,通过考试并取得合格证后方可持上岗从事焊接作业。焊工资质应与施焊条件及焊缝质量等级相适应,严禁低资质焊工施焊高质量等级的焊缝。 5.3焊接顺序的选择应考虑焊接变形的因素,尽量采用对称施焊,对收缩量大的部位应先焊,焊接过程中要平衡加热量,减小焊接变形和收缩量。 5.4焊后应对焊疤补焊磨平,处理焊渣和飞溅物。 5.5矩形钢管等空心构件的端口应采用钢板作为封头板,采用连续焊缝密闭,使内外空气隔绝并确保组装、安装过程中构件内不得积水。 5.6矩形钢管对接焊缝质量等级为二级,角焊缝质量等级为三级。当钢管壁厚t≤6mm时,对接焊缝宜采用背面加焊接垫板间隙熔透焊;当 t>6mm时,宜坡口加焊接垫板熔透焊。熔透焊缝内部质量检测采用超声检测,检测应执行《钢焊缝手工超声波探伤方法和探伤结果分级法》GB11345-89标准。 主檩条与次檩条节点连接板焊缝采用坡口熔透焊,三级合格。 未注角焊缝焊脚等于连接处较薄板材的1.2倍。

檩条设计应注意的几个问题

檩条设计应注意的几个问题 今天我们简单谈一下STS工具箱中檩条计算应注意的几个问题.想必绝大部分设计师都使用STS工具箱进行过檩条计算,这里有几个计算参数的选择是大家要特别注意的,一旦选择不正确,很有可能会造成檩条的失稳破坏. 图一 图二 图二中几个参数,我们给出以下几点建议,供大家参考:

1、图一参数“屋面板能阻止檩条上翼缘侧向失稳”为默认勾选项,但大家要注意实际施工中屋面板与檩条连接是否满足要求.依据《冷弯薄壁型钢结构技术规范》(GB50018-2002)第8.1.1条及条文说明,只有屋面板材与檩条有牢固的连接,即用自攻螺钉、螺栓、拉铆钉和射钉等与檩条牢固连接,且屋面板材有足够的刚度(例如压型钢板),才可认为能阻止檩条侧向失稳和扭转,可不验算其稳定性,此时可勾选此选项.对于通过连接件(如采用压型钢板图集中的固定支架与檩条连接等)是不可以勾选此选项的. 2、图一参数“构造保证下翼缘风吸力作用稳定性”选项勾选要慎重,很多设计师在采取双层拉条设计后,便勾选此项,这是错误的.此选项勾选后,程序认为已采取了有效措施,保证了下翼缘稳定,自动不再进行下翼缘稳定性验算,而《门式刚架轻型房屋钢结构技术规范》(GB51022-2015)第9.1.5.3条及条文说明已明确“当受压下翼缘有内衬板约束且能防止檩条截面扭转时,整体稳定性可不做计算”.故设置双层拉条时,不可以勾选此选项,仅在满足下翼缘有内衬板,且板材与檩条牢固连接时才能勾选. 3、图一参数“拉条作用”应根据拉条与檩条的实际相对位置来选择.《门式刚架轻型房屋钢结构技术规范》 (GB51022-2015)第9.3.2条规定拉条可设在距檩条翼缘1/3腹板高度范围内.通常,在恒活荷载的作用下,檩条上翼缘受压,拉条一般设置在靠近上翼缘1/3腹板高度,对上翼缘进行约束;当檩条在风吸力组合作用下,下翼缘受压时,可设双层拉

悬挑板模板(扣件式)计算书

板模板(扣件式)计算书计算依据: 1、《建筑施工模板安全技术规范》JGJ162-2008 2、《建筑施工扣件式钢管脚手架安全技术规范》JGJ 130-2011 3、《混凝土结构设计规范》GB50010-2010 4、《建筑结构荷载规范》GB 50009-2012 5、《钢结构设计规范》GB 50017-2003 一、工程属性 新浇混凝土楼板名称XTB 新浇混凝土楼板板厚(mm) 100 新浇混凝土楼板边长L(m) 4.5 新浇混凝土楼板边宽B(m) 4.5 二、荷载设计 施工人员及设备荷载标准值Q1k 当计算面板和小梁时的均布活荷载(kN/m 2 ) 2.5 当计算面板和小梁时的集中荷载(kN) 2.5 当计算主梁时的均布活荷载(kN/m 2 ) 1.5 当计算支架立柱及其他支承结构构件时的均布活荷载(kN/ m2) 1 模板及其支架自重标准值G1k(kN/m2) 面板自重标准值0.1 面板及小梁自重标准值0.3 楼板模板自重标准值0.5 模板及其支架自重标准值0.75 新浇筑混凝土自重标准值G2k(kN/m3) 24 钢筋自重标准值G3k(kN/m3) 1.1 风荷载标准值ωk(kN/m2) 基本风压ω0(kN/m2 ) 0.2 0.21 风压高度变化系数 μz 1.29

风荷载体型系数μs0.8 三、模板体系设计 模板支架高度(m) 12 立柱纵向间距l a(mm) 600 立柱横向间距l b(mm) 1200 水平拉杆步距h(mm) 1500 立柱布置在混凝土板域中的位置中心对称 立柱距混凝土板短边的距离(mm) 150 立柱距混凝土板长边的距离(mm) 450 主梁布置方向平行楼板长边 小梁间距(mm) 400 小梁两端各悬挑长度(mm) 250,250 主梁两端各悬挑长度(mm) 150,150 结构表面的要求结构表面隐蔽 模板及支架计算依据《建筑施工扣件式钢管脚手架安全技术规范》JGJ130-2011 设计简图如下:

压型钢板混凝土组合楼承板计算实例

压型钢板混凝土楼承组合板计算书 工程资料: 该工程楼层平台采用压型钢板组合楼板,计算跨度m l 4=,剖面构造如图1所示。压型钢板的型号为YX76-305-915,钢号Q345,板厚度mm t 5.1=,每米宽度的截面面积m mm A S /20492=(重量0.152/m kN ),截面惯性矩m mm I S /1045.20044?=。顺肋两跨连续板,压型钢板上浇筑mm 89厚C35混凝土。 图1 组合楼板剖面

1 施工阶段压型钢板混凝土组合板计算 1.1 荷载计算 取m b 0.1=作为计算单元 (1)施工荷载 施工荷载标准值m kN p k /0.10.10.1=?= 施工荷载设计值m kN p /4.10.14.1=?= (2)混凝土和压型钢板自重 混凝土取平均厚度为mm 127 混凝土和压型钢板自重标准值 m kN m m kN m kN m k /325.30.1)/15.0/25127.0(g 23=?+?= 混凝土和压型钢板自重设计值 m kN m kN g /0.4/325.32.1=?= (3)施工阶段总荷载 m kN m kN m kN g p q k k k /325.4/325.3/0.1=+=+= 1.2 内力计算 跨中最大正弯矩为 m kN m kN l g p M ?=??+?=+=+05.60.4)0.44.1(07.0)(07.022max 支座处最大负弯矩为 m kN m kN l g p M ?=??+?=+=-8.100.4)0.44.1(125.0)(125.022max 故m kN M M ?==- 8.10max max 支座处最大剪力 kN kN l g p V 5.130.4)0.44.1(625.0)(625.0max =?+?=+= 1.3 压型钢板承载力计算 压型钢板受压翼缘的计算宽度et b

檩条设计计算书

----------------------------------------------------------------------------- | 冷弯薄壁型钢檩条设计输出文件| | 输入数据文件: LT | | 输出结果文件: LT.OUT | | 设计时间: 4/ 4/2019 | ----------------------------------------------------------------------------- ===== 设计依据====== 建筑结构荷载规范(GB 50009--2012) 冷弯薄壁型钢结构技术规范(GB 50018-2002) 门式刚架轻型房屋钢结构技术规范(GB51022-2015) ===== 设计数据====== 屋面坡度(度): 5.711 檩条跨度(m): 5.000 檩条间距(m): 1.050 设计规范: 门式刚架规范GB51022-2015 风吸力下翼缘受压稳定验算:按式(9.1.5-3)验算: 檩条形式: 卷边槽形冷弯型钢C180X70X20X2.2 钢材钢号:Q235钢 拉条设置: 设置一道拉条 拉条作用: 约束檩条上翼缘 净截面系数: 1.000 檩条仅支承压型钢板屋面(承受活荷载或雪荷载),挠度限值为1/150 屋面板能阻止檩条侧向失稳 构造不能保证风吸力作用下翼缘受压的稳定性 建筑类型: 封闭式建筑 分区: 中间区 基本风压: 0.450 风压调整系数: 1.500 风荷载高度变化系数: 1.000 风荷载系数(风吸力): -1.280 风荷载系数(风压力): 0.410 风荷载标准值(风吸力)(kN/m2): -0.864 风荷载标准值(风压力)(kN/m2): 0.277 屋面自重标准值(kN/m2): 0.250 活荷载标准值(kN/m2): 0.500 雪荷载标准值(kN/m2): 0.300 积灰荷载标准值(kN/m2): 0.000 检修荷载标准值(kN): 1.000 ===== 截面及材料特性====== 檩条形式: 卷边槽形冷弯型钢C180X70X20X2.2 b = 70.000 h = 180.000 c = 20.000 t = 2.200 A = 0.7520E-03 Ix = 0.3749E-05 Iy = 0.4897E-06 It = 0.1213E-08 Iw = 0.3166E-08 Wx1 = 0.4166E-04 Wx2 = 0.4166E-04 Wy1 = 0.2319E-04 Wy2 = 0.1002E-04 卷边的宽厚比C/T = 9.091 <= 13.000 卷边宽度与翼缘宽度之比C/T = 0.286 >= 0.250 钢材钢号:Q235钢 屈服强度fy= 235.000 强度设计值f= 215.000 ----------------------------------------------------------------------------- ===== 截面验算====== ----------------------------------------------- | 1.2恒载+1.4(活载+0.6风载(压力)+0.9积灰)组合| ----------------------------------------------- 主轴: 弯矩设计值(kN.m): Mx = 4.248 弯矩设计值(kN.m): My = 0.087 平行轴: 弯矩设计值(kN.m): Mx' = 4.248 剪力设计值(kN.m): Vy' = 3.954

施工设计说明

施工设计说明 第一章编制说明 第二章 1( 编制目的 为保证“南京爱立信熊猫通信有限公司仓库扩建工程”工程有组织、有计划、有目的的进行施工,合理安排工程进度,实现“高标准、高质量、高效益、高品质”的目标,合理配置施工资源,兑现投标承诺,特编制此施工组织设计。 2( 编制依据 2.1 工程合同书 2.2 施工图纸 2.3 《门式刚架轻型房屋钢结构技术规程》 CECS102-2002 2.4 《建筑结构荷载规范》 GB50009-2001 2.5 《钢结构设计规范》 GB50017-2003 2.6 《钢结构工程施工质量验收规范》 GB50205-2001 2.7 《冷弯薄壁型钢结构技术规范》 GB50018-2002 2.8 《建筑工程质量验收统一标准》 GB50300-2001 2.9 《建筑钢结构焊接规程》JBJ81-2002 2.10 《碳素结构钢》 GB700-99 2.11 《碳钢焊条》 GB/T5117-95 GB/T8110-95 2.12 《气体保护电流焊用碳钢低合金钢焊丝》 2.13 《钢焊缝手工超声波探伤方法和探伤结果分级》GB11345-89 2.14 《涂装前钢结构表面锈蚀等级和防锈等级》 GB8923-88 2.15 《紧固体机械性能、螺栓和螺钉》 GB3098.1-82 2.16 《热扎钢板和钢带的尺寸、外形、重量及允许偏差》GB709-88 2.17 《钢结构高强度螺栓连接设计、施工验收规程》 JGJ82-91 2.18 《彩钢板工程施工验收规范》 YBJ216-88 2.19 《施工现场临时用电安全技术规程》 JGJ46-88 2.20 《建筑施工高处作业安全技术规程》 JGJ80-91 2.21 《建筑机械使用安全技术规程》 JGJ33-86 2.22 《质量手册》 2.23 《程序文件》 2.24 《作业指导书》

压型钢板专项施工方案

压型钢板专项施工方案 目录 一、编制依据 (1) 二、工程概况 (1) 三、楼板压型钢板计算 (1) 四、支撑架搭设 (5) 五、楼板混凝土浇筑 (5) 六、质量保证措施 (7) 七、成品保护 (7) 八、安全环保措施 (8)

一、编制依据 1.《建筑工程施工质量验收统一标准》(GB50300-2001); 2.《钢结构工程施工质量及验收规范》(GB50205-2001); 3.《混凝土工程施工质量及验收规范》(GB50204-2002); 4.北京杰西卡制衣有限公司综合楼施工图纸; 5.北京杰西卡制衣有限公司综合楼工程施工组织设计。 二、工程概况 本工程位于北京市大兴亦庄开发区,北京杰西卡制衣厂院内。东临规划道路,南侧为现有厂房,西侧为拟建工程,北侧为规划市政主干道。本工程主体结构地下一层,地上五层,局部七层。建筑物檐高29.700米,首层面积3371.6 m2,总建筑面积20130m2。地下部分基础为筏板基础,主体结构为钢结构。 本工程楼板为压型钢板与现浇钢筋混凝土叠合层组合而成,压型钢板采用YX75-200-600型(7520),板厚0.8mm,混凝土强度等级为C25,内掺10%HEA膨胀剂。膨胀带内掺15%HEA膨胀剂,首层楼板厚180mm,二层及二层以上楼板厚为125mm。 三、楼板压型钢板计算 1、压型钢板底部支撑布置 因结构梁是由钢梁通过剪力栓与混凝土楼面结合而成的组合梁,在浇

捣混凝土并达到一定强度前抗剪强度和刚度较差,为解决钢梁和永久模板的抗剪强度不足,以支撑施工期间楼面混凝土的自重,通常需设置简单排架支撑(见附图) 2、计算依据: (1)《混凝土结构工程施工及验收规范》〈GB50204-92〉 (2)在进行压型钢板计算时,考虑以下几项荷载: ①压型钢板自重; ②新浇混凝土自重; ③钢筋自重; ④施工人员及施工设备荷载; ⑤压型钢板的荷载设计值采用标准值乘以相应的荷载分项系数,荷载 分项系数按下表取用: 3、楼板压型钢板计算: 楼板混凝土浇筑过程中,由压型钢板与碗扣式脚手架共同组成支撑体系。在压型钢板跨中设一道支撑,支架采用碗扣式脚手架,立杆间距为1.2m,上设可调顶托,顶托上设龙骨,龙骨用100mm×100mm方木。 (1)荷载计算

单层钢结构厂房--檩条的设计

单层钢结构厂房--檩条的设计 (一)隅撑的设计 隅撑按轴心受压构件设计。轴心力N按下式计算: 连接螺栓采用普通C级螺栓M12。 隅撑的计算长度取两端连接螺栓中心的距离:l0=633mm。

选用L50×4,截面特性: A=97.5px2,Iu=367.25px4,Wu=104px3,iu=48.5px,iv=24.75px λu=l0/ iu=633/19.4=32.6<[λ]=200, b类截面,查表得ψu=0.927 单面连接的角钢强度设计值乘以折减系数αy:λ=633/9.9=63.94, αy=0.6+0.0015λ=0.696 ,满足要求。(二)檩条的设计1.基本资料 檩条选用冷弯薄壁卷槽形钢,按单跨简支构件设计。屋面坡度1/10,檩条跨度6m,于跨中设一道拉条,水平檩距1.5m。材质为钢材Q235。 2.荷载及内力 考虑永久荷载与屋面活荷载的组合为控制效应。 檩条线荷载标准值:Pk=(0.27+0.5)×1.5=1.155KN/m 檩条线荷载设计值:Pk=(1.2×0.27+1.4×0.5)×1.5=1.536KN/m Px=Psinα=0.153KN/m,Py=Pcosα=1.528KN/m; 弯距设计值: Mx=Pyl2/8=1.528×62/8=6.88KN·m My=Pxl2/8=0.153×62/32=0.17KN·m

3.截面选择及截面特性 (1) 选用C180×70×20×2.2 Ix=9372.5px4,Wx=1041.5px3,ix=176.5px; Iy=1224.25px4,Wymax=579.75px3,Wymin=250.5px3,iy=63.74999999999999px,χ0=52.75px; 先按毛截面计算的截面应力为: (2)受压板件的稳定系数 A.腹板 腹板为加劲板件,ψ=σmin/σmax=-157.82/172.48=-0.915>-1, k=7.8-6.29ψ+9.78ψ2=21.743 B.上翼缘板 上翼缘板为最大压力作用于部分加劲板件的支承边, ψ=σmin/σmax=148.18/172.48=0.859>-1, kc=5.89-11.59ψ+6.68ψ2=0.863 (3)受压板件的有效宽度 A.腹板 k=21.743,kc=0.863,b=180mm,c=70mm,t=2.2mm,σ1=172.48N/mm2 由于ψ=σmin/σmax<0,取α=1.5, bc=b/(1-ψ)=180/(1+0.915)=93.99mm

压型钢板屋面板计算

屋面板的验算 屋面材料采用压型钢板,檩条间距为0.9M, 设计活荷载0.75KN/M2, 恒载0.2KN/M2, 基本风压2.59 KN/M2, 选用830型PU发泡板,板厚0.426mm, 截面形状及尺寸见: W x=4.02Cm3=4020mm3 I x=7.98Cm4=79800mm4 分析: (1)内力计算: 压型钢板采用单波线荷载 q x1=0.75KN/m2 x1mx1.5=1.125KN/m q x2=2.59KN/m2 x1mx1.5=3.885KN/m q x=0.2KN/m2x1m x1.35=0.27KN/m q=1.125KN/m+3.885KN/m+0.27KN/m=5.28KN/m 按简支梁计算压型钢板跨中最大弯距 M max=1/8qL2 =1/8 x 5.28KN/M x( 0.9m)2=0.594KN.M (2)截面几何特性 由830型PU发泡板,板厚0.426mm得知: W x=4.02Cm3=4020mm3 δ=M max/W x =0.594kN.M/4020mm3 =0.594x103x1x103mm/4020 mm3

=147.76N/mm2<[w]=215N/mm2 满足要求 (3)强度验算 (a)正应力验算 δ= M max/W x =0.594KN.M/79800mm3=74.436N/mm2<[w]=215N/mm2 满足要求 (b)剪应力验算 V max=1/2qL =1/2 x 5.28KN/m x 0.9m=2.376KN (c)腹板最大剪应力: δ=V/∑ht = 2.376KN x 103/( 2 x25mm x 0.5mm) =2.376 x 103 / (2 x 25 x 0.5) =95.04N/mm2 < [ f ]=120N/mm2 满足要求 (4)钢度验算 按单跨简支板计算跨中最大挠度 W max=5q x L4 / 384EI x =5 x 0.27KN/N /1.4 x 0.9M x 1012 / (384 x 2.06 x 105 x79800 mm4) =0.13mm < [w] = L/300 = 3.4mm 满足要求 通过以上计算,可知满足设计要求.

檩条施工规划方案.doc

第一章前言 . 。。。。。。。。。。。。。。。。工程作为我公司的一个 xx 施工重点工程。该工程在安全 xx 施工、环境保护、现场防护安全、满足当地市政部门对施工管理的要求等方面,提出了很高的要求和树立了高起点。良好的管理、有效的措施和科学合理的施工组织将成为本工程重点管理和控制的内容。 为了更好地贯彻落实“安全第一,预防为主”的安全生产方针,提高建筑工程施工现场安全生产和 xx 施工水平,根据《中华人民共和国 建筑法》、《建设工程安全生产管理条例》、《建筑安全检查标准》 ( JGJ59-99)相关规定,特编制本工程《安全 xx 施工标准化》施工专 项方案。

第二章编制说明 一、编制依据 1、。。。。。。。。。。。xx 2、。。。。。。。。。。。。。施工合同书 3、国家现行标准、规范、规章: xx建筑工程施工安全操作规程 建设工程安全生产管理条例 建设部文件(建质〖 2009〗87 号) 钢结构工程施工质量验收规范( GB50205-2001) 建筑施工安全检查标准( JGJ59-2011) 《建筑工程施工质量验收统一标准》GB 50300-2013 《建筑结构用冷弯矩形钢管》JG/T 178-2005 《建筑结构可靠度设计统一标准》GB 50068-2001 二、工程概况 1、项目名称:

2、建设地点: 3、建设单位: 5、监理单位: 6、造价单位: 7、设计单位: 8、咨询单位: 9、总承包单位: 10、施工单位: 11、施工规模: 12、施工内容:主体结构为钢结构网架,二次结构的主檩条以大部 分完工,本次工作主要是防水次檩条的制安工作 三、工期及质量目标 针对本工程特点,发挥我司优势和成熟工艺,科学地组织承建范围内的各项檩条施工工序的交叉流水作业。精心施工,严格履行合同,以一流的项目管理、一流的工程质量、一流的 xx 施工、一流的安全措施、一流的效率、一流的服务,确保实现如下目标: 1、工期目标:本工程计划从下达开工令120 日历天内竣工。

压型钢板计算手册

本软件针对压型钢板、铝合金板进行截面承载力、挠度、施工荷载及排水能力进行验算。在计算过程中,压型板按受弯构件考虑,主要遵循GB50018-2002《冷弯薄壁型钢结构技术规范》中关于压型钢板计算的条文规定、GB 50429-2007 《铝合金结构设计规范》中关于铝合金压型板相关的计算条文规定及《冷弯薄壁型钢结构设计手册》中关于屋面排水计算的相关条文。压型板截面计算过程中,考虑到其实际的受力情况,所以选择了在一个波距范围内进行验算。因为无论是屋面板、墙面板或者是楼承板其实际作用过程中,均是多块板横向搭接成为整体,所以选择其中一个波距来进行计算更贴近于压型板实际工作状态下的受力情况。压型板根据《建筑结构静力计算手册》计算各验算点的弯矩及剪力情况。 压型板的计算过程主要包含以下几个方面:毛截面惯性矩的计算、加劲肋是否有效的判别、腹板剪应力承载能力计算、支座处腹板局部受压承载力验算、跨中位置最大正负弯矩和剪力作用下截面承载力验算、支座位置最大负正弯矩和支座反力下截面承载力验算、最大正负挠度验算、屋面板排水能力验算。上述承载力验算过程中均包含该种情况下该位置的有效截面宽度的验算。 计算采用的组合情况如下: 1.2恒+1.4活; 1.0恒-1.4负风吸; 1.2恒+1.4正风压; 1.2恒+1.4活+0.84正风压; 1.0恒+1.4活-0.84负风吸; 1.2恒+0.98活+1.4正风压; 1.0恒+0.98活-1.4负风吸; 1.2恒+1.0施工(屋面板); 1.2恒+1.4活载(楼面均布施工荷载)(楼承板); 1.2恒+1.4施工(楼面集中施工荷载)(楼承板)。 一:压型钢板 一)板材力学参数的确定 对于规范中已给出抗拉、抗剪强度设计值的材料牌号,我们按规范中数值采用,如Q235、Q345等。对现今压型板常用的冷轧板牌号如G300、G550等,规范没有给出明确的抗拉、抗剪强度设计值,厂家在供货的时候仅提供材料的屈服强度为300 N/mm2、550 N/mm2,所以我们根据《冷弯薄壁型钢结构技 术规范》4.1.4条规定,取抗力分项系数,计算其抗拉强度设计值,抗剪强度设计值按抗拉强度设计值除以计。 二)截面惯性矩的计算 软件根据截面几何形状,通过线积分的方法求得截面的惯性矩。在计算过程中忽略了腹板上的一些加劲措施,但上下翼缘的加劲肋是考虑在其中的,其计算结果经过测试满足实际计算要求。用户也可以通过AutoCAD对需计算的板型直接查询面域特性得到截面惯性矩,并可与软件计算所得相比较。 三)上下翼缘加劲肋是否有效的判别 《冷弯薄壁型钢结构技术规范》7.1.4条,受压翼缘纵向加劲肋的规定: 因我们计算过程中取中间一个有效波距进行计算,所以无需考虑边加劲肋的作用效果,仅考虑中间加劲肋的判别。 针对中间加劲肋:

100板模板(盘扣式)计算书

100板模板(盘扣式)计算书计算依据: 1、《建筑施工模板安全技术规范》JGJ162-2008 2、《建筑施工承插盘扣式钢管支架安全技术规范》JGJ 231-2010 3、《混凝土结构设计规范》GB 50010-2010 4、《建筑结构荷载规范》GB 50009-2012 5、《钢结构设计规范》GB 50017-2003 一、工程属性 二、荷载设计

三、模板体系设计 设计简图如下:

模板设计平面图

纵向剖面图

横向剖面图 四、面板验算 按简支梁,取1m单位宽度计算。 W=bh2/6=1000×15×15/6=37500mm3,I=bh3/12=1000×15×15×15/12=281250mm4 承载能力极限状态 q1=[1.2×(G1k

+(G2k+G3k)×h)+1.4×Q1k]×b=[1.2×(0.1+(24+1.1)×0.1)+1.4×3]×1=7.332kN/m 正常使用极限状态 q=(γG(G1k +(G2k+G3k)×h)+γQ×Q1k)×b =(1×(0.1+(24+1.1)×0.1)+1×3)×1=5.61kN/m 计算简图如下: 1、强度验算 M max=q1l2/8=7.332×0.22/8=0.037kN·m σ=M max/W=0.037×106/37500=0.978N/mm2≤[f]=15N/mm2 满足要求! 2、挠度验算 νmax=5ql4/(384EI)=5×5.61×2004/(384×10000×281250)=0.042mm νmax=0.042mm≤min{200/150,10}=1.333mm 满足要求! 五、小梁验算 q1=[1.2×(G1k +(G2k+G3k)×h)+1.4×Q1k]×b=[1.2×(0.3+(24+1.1)×0.1)+1.4×3]×0.2=1.514kN/m 因此,q1静=1.2×(G1k +(G2k+G3k)×h)×b=1.2×(0.3+(24+1.1)×0.1)×0.2=0.674kN/m q1活=1.4×Q1k×b=1.4×3×0.2=0.84kN/m 计算简图如下:

檩条设计

檩条计算书 一. 设计资料 檩条采用中卷边C160x60x20x2.0截面,材料为Q235B; 檩条跨度为5,檩条间距为1.5; 跨度中央布置一道拉条; 屋面的坡度角为5度; 檩条按简支构件模型计算; 屋面板与檩条连接的自攻螺丝直径为8mm; 屋面板能阻止檩条的侧向失稳; 二. 截面参数 A(cm2)=6.07 e0(cm)=4.52 I x(cm4)=236.59 i x(cm)=6.24 W x(cm3)=29.57 I y(cm4)=29.99 i y(cm)=2.22 W y1(cm3)=16.19 W y2(cm3)=7.23 I t(cm4)=0.0809 I w(cm6)=1596.28 三. 荷载标准值 恒载:面板自重: 0.3kN/m2 檩条自重: 0.0892kN/m 活载:屋面活载: 0.5kN/m2 风载:基本风压: 0.35kN/m2 体型系数-1.15,风压高度变化系数1 风振系数为1;风压综合调整系数1.05; 风载标准值:-1.15×1×1×1.05×0.35=-0.4226kN/m2; 四. 强度校核 恒载:q d=0.3×1.5+0.0892=0.5392kN/m M dx=0.125×0.5392×cos(0.08727)×5×5=1.679kN·m M dy=-0.125×0.5392×sin(0.08727)×(5/(1+1))2=-0.03671kN·m 活载:q l=0.5×1.5=0.75kN/m M lx=0.125×0.75×cos(0.08727)×5×5=2.335kN·m M ly=-0.125×0.75×sin(0.08727)×(5/(1+1))2=-0.05107kN·m 风载:q w=-0.4226×1.5=-0.6339kN/m M w=0.125×-0.6339×5×5=-1.981kN·m M x=1.2×1.679+1.4×2.335=5.283kN·m

檩条深化设计说明

大连体育场钢结构檩条深化设计说明 .设计依据 1.1 哈尔滨工业大学建筑设计院提供的大连体育场钢结构设计图纸; 1.2 国家现行的建筑结构设计规范 建筑结构荷载规范》GB50009-2001 钢结构设计规范》GB50017-2003 建筑钢结构焊接规程》JGJ81-2002 低合金高强度结构钢》GB/T1591- 熔化焊用钢丝》GB/T14958-94 低合金钢焊条》GB/T5118-95 钢焊缝手工超声波探伤方法和探伤结果分级》GB11345-89 钢结构施工质量验收规范》GB50205-2001 二.设计荷载取值 xx 荷载标准值: ETFE屋面: 0.30kN/m*m xx( 1.8 米宽): 2kN/m 活荷载标准值: 0.5kN/m*m

基本风压: 0.75 kN/m*m(50年一遇),地面粗糙度类别为B类,风荷载大小计算依据甲方提供的风洞试验报告。 基本雪压: 0.45kN/m*m (100 年一遇) 温度荷载: 正温+30度负温-30度(合拢温度15度?20度)地震作用: 抗震设防烈度7 度。 三.檩条和焊接材料 3.1.钢檩条采用250*250*6,250*300*6 和250*400*8 矩形钢管,连接板采用板材制作。材质均采用Q 345B.。 3.2.所用钢材其抗拉强度、屈服强度、伸长率、冲击性能应符合《低合金高 强度结构钢》GB1591标准。并保证碳、硫、磷化学成分合格。 13.3.所用焊条、焊丝应与所焊主体金属相适应,焊条采用E50**型,焊丝采用ER50-*型。焊条应符合《低合金钢焊条》GB/T5118-95,焊丝应符合《气体保护焊用钢丝》GB/T14958-94的规定。 四、制作要求 4.1 钢结构制作时应严格按照《钢结构施工质量验收规范》GB50205-2001 制作。 4.2 檩条制作前应1:1 放实样,并留有适当的焊接收缩和变形矫正余量。弧形主檩条采用火曲时应严格控制加热温度,冷却时严禁用水急冷。 4.3 檩条拼接时尽可能避免将焊缝设置在跨中三分之一内。檩条每根接长不宜

(整理)压型钢板组合楼板计算与构造.

压型钢板组合楼板 1.定义 组合楼板由压型钢板、混凝土板通过抗剪连接措施共同作用形成。 2.组合楼板的优点 1)压型钢板可作为浇灌混凝土的模板,节省了大量木模板及支撑; 2)压型钢板非常轻便,堆放、运输及安装都非常方便; 3)使用阶段,压型钢板可代替受拉钢筋,减少钢筋的制作与安装工作。 4)刚度较大,省去许多受拉区混凝土,节省混凝土用量,减轻结构自重; 5)有利于各种管线的布置、装修方便; 6)与木模板相比,施工时减小了火灾发生的可能性; 7)压型钢板也可以起到支撑钢梁侧向稳定的作用。 3.组合楼板的发展 二十世纪30-50年代 早在三十年代,人们就认识到压型钢板与混凝土楼板组合结构具有省时、节力、经济效益好的优点,到50年代,第一代压型钢板在市场上出现。 二十世纪60年代-70年代 六十年代前后,欧美、日本等国多层和高层建筑的大量兴起,开始使用压型钢板作为楼板的永久性模板和施工平台,随后人们很自然的想到在压型钢板表面做些凹凸不平的齿槽,使它和混凝土粘结成一个整体共同受力,此时压型钢板可以代替或节省楼板的受力钢筋,其优越性很大。 二十世纪80年代-现在 组合板的试验和理论有了新进展,特别是在高层建筑中,广泛地采用了压型钢板组合楼板。日本、美国、欧洲一些国家相应的制定了相关规程。 我国对组合楼板的研究和应用是在20世纪80年代以后,与国外相比起步较晚,主要是由于当时我国钢材产量较低,薄卷材尤为紧缺,成型的压型钢板和连接件等配套技术未得到开发。近年来由于新技术的引进,组合楼板技术在我国已较为成熟。 4 常用的压型钢板的截面形式 给出了几种实际工程中采用的压型钢板,通过图片使学生对压型钢板有感性的认识,图中所示设置凹槽的压型钢板,设置凹槽后可明显提高钢板和混凝土板的组合作用。

檩条设计计算书

屋面檩条计设计 (1)设计资料 檩条跨度6m ,最大檩条间距1.5m ,跨中设一道拉条。屋面坡度为i=1/9( 6.34α=?)。 檩条采用冷弯薄壁C 型钢檩条,钢材采用Q235B ,2f=205N/mm 。焊条采用E43型。 (2)荷载情况 ◆恒载 夹芯屋面板(100厚) 20.14KN/m 檩条 20.05KN/m 20.19KN/m ◆可变荷载 屋面活载标准值为20.50KN/m ;雪荷载标20 1.00.400.40KN/m k r S S μ==?= 取屋面活载与雪荷载中的较大值 20.50KN/m 。 屋面积灰荷载为 20.30KN/m 。 ◆风荷载 风荷载标准值()2k 0 1.7680.6 1.030.45 1.050.52KN/m z z s ωβμμω==?-???=- (3)内力情况 恒载和活载组合情况下荷载大于恒载与施工检修荷载组合情况下荷载,则仅须验算前者。 ()q=1.20.19+0.9 1.40.50+0.30 1.5 1.85KN/m ???=???? ()k q =0.19+0.90.50+0.30 1.5 1.37KN/m ??=???? x q .sin 1.85sin6.340.204KN/m q α==??=

y q .cos 1.85cos6.34 1.839KN/m q α==??= 对于x 轴 22/8 1.8396/88.276KN.m x y M q l ==?= 对于y 轴,檩条跨中设有一道拉条,考虑为侧向支 承点,则跨中负弯矩为 22y M /320.2046/320.230KN.m x q l ==?=(3) 截面 选择及其截面几何性质 选用截面尺寸为C1807020 2.5???,截面几何特性如下: 2848A mm =,434.66910x W mm =?,43max 2.58210y W mm =?,43min 1.11210y W mm =?,70.4x i mm =,644.20210x I mm =?,25.3y i mm =,545.44210y I mm =?,341.76710t I mm =?,963.49210w I mm =?,051.0e mm =,021.1x mm = (5)有效截面计算 180 2.57 3.070h b ==< ,7028312.5b t ==<=,且2082.5a t ==,故檩条全截面有效。 (6)强度计算 本设计屋面能阻止檩条侧向失稳和扭转作用,验算1点和2点的强度。 66 144,max 8.276100.230104.66910 2.58210 y x enx eny M M W W σ??=+=+?? 22177.28.9186.1/<=205N/mm N mm f =+= 66 244,min 8.276100.230104.66910 1.11210 y x enx eny M M W W σ??=-=-?? 22177.220.71156.5/<=205N/mm N mm f =-=

相关主题