搜档网
当前位置:搜档网 › 轴流式送风机失速的原因分析及预防

轴流式送风机失速的原因分析及预防

轴流式送风机失速的原因分析及预防
轴流式送风机失速的原因分析及预防

轴流式送风机失速的原因分析及预防措施

【摘要】根据乌拉山发电厂锅炉送、引风机在进行脉冲吹灰时经常发生失速的情况, 在分析轴流风机失速机理基础上,我们通过实验分析得出结论:由于脉冲吹灰时产生的冲击波使炉膛负压波动较大,造成总风量测量值随之波动,致使两台风机在风压、风量发生了变化而造成了风机失速。

【关键词】轴流式送风机;失速;动叶可调;预防措施

北方联合电力公司乌拉山发电厂#4、5锅炉是采用美国燃烧工程公司(CE)的引进技术设计和制造的。锅炉为亚临界参数、一次中间再热、自然循环汽包炉,采用平衡通风、直流式燃烧器、四角切圆燃烧方式,设计燃料为烟煤。每台锅炉装有2台半模式、双密封、三分仓容克式空气预热器,装有2台由成都电力机械厂制造的AP动叶可调轴流送风机。动叶调节范围为-36°~+20°(对应动叶开度0%~100%),设计风量为49.86万m3/h,设计静压为3800Pa,风机转速为985 r/min。#4、5炉分别在2006年6月份、9月底投产发电,投产后在进行脉冲吹灰时经常造成炉膛负压反正过大导致送、引风机发生失速。经过分析认为,风量变化大使2台风机风压、风量上发生了变化,2台风机抢风而造成了风机失速。

1、失速产生的机理

1.1 失速的过程及现象

轴流风机叶片通常是流线型的,设计工况下运行时,气流冲角α很小,气流绕过机翼型叶片而保持流线状态,如图1(a)所示。当气流与叶片进口形成正冲角,即α>0,且此正冲角超过某一临界值时,叶片背面流动工况开始恶化,边界层受到破坏,在叶片背面尾端出现涡流区,即所谓“失速”现象,如图1(b)所示。冲角大于临界值越多,失速现象越严重,流体的流动阻力越大,使叶道阻塞,同时风机风压也随之迅速降低。

图1 风机失速原理示意图

由于风机各叶片存在加工误差、安装角不完全一致、气流流场不均匀相等,

因此,失速现象并不是所有叶片同时发生,而是首先在1个或几个叶片出现。当运行工况变化而使流动方向发生偏离时,在各个叶片进口的冲角就不可能完全相同。如果某1叶片进口处的冲角达到临界值时,就首先在该叶片上发生失速,而不会所有叶片都同时发生失速。如图2中,u是对应叶片上某点的周向速度,w 是气流对叶片的相对速度,α为冲角。假设叶片2和3间的叶道2、3首先由于失速出现气流阻塞现象,叶道受堵塞后,通过的流量减少,在该叶道前形成低速停滞区,于是气流分流进入两侧通道1、2和3、4,从而改变了原来的气流方向,使流入叶道1、2的气流冲角减小,而流入叶道3、4的冲角增大。可见,分流结果使叶道1、2绕流情况有所改善,失速的可能性减小,甚至消失;而叶道3、4内部却因冲角增大而促使发生失速,从而又形成堵塞,使相邻叶道发生失速。这种现象继续进行下去,使失速所造成的堵塞区沿着与叶轮旋转相反的方向推进,即产生所谓的“旋转失速”现象。发生旋转失速时风机可以继续运行,但它引起叶片振动和叶轮前压力的大幅度脉动,往往是造成叶片疲劳破坏的重要原因。

(a)(b)

图 2 轴流式风机叶片气流方向变化导致失速原理示意图

1.2 影响冲角大小的因素

大型火电机组的送风机一般是定转速运行的,即u是一定值,这样影响α的因素就是气流速度与叶片开度角。如图2(b)所示:当叶片开度角β一定时,如果气流速度c越小时,α就越大,产生失速的可能性也就越大。当流速C一定时,如果叶片角度β减小,则冲角α也减小;当流速C很小时,只要叶片角度β很小,则冲角α也很小。因此,当风机刚启动或低负荷运行时,风机失速的可能

性大大减小甚至消失。

2、轴流风机失速的特性

轴流风机的失速特性是由风机的叶型等特性决定的,同时也受到风道阻力等系统特性的影响,动叶调节轴流式送风机的特性曲线如图3所示,其中,鞍形曲线M为送风机不同安装角的失速点连线,工况点落在马鞍形曲线的左上方,均为不稳定工况区,这条线也称为失速线。由图3看出:(1)在同一叶片角度下,管路阻力越大,风机出口风压越高,风机运行越接近于不稳定工况区;(2)在管路阻力特性不变的情况下,风机动叶开度越大,风机运行点越接近不稳定工况

区。

图 3 轴流风机特性曲线

根据的运行经验,当并联运行的轴流风机出现下列现象时,说明风机发生了失速:(1)失速风机的压头、流量、电流大幅降低;(2)失速风机噪声明显增加,严重时机壳、风道、烟道发生振动;(3)在投入“自动”的情况下,与失速风机并联运行的另一台风机电流、容积比能大幅升高;(4)与风机“喘振”不同,风机失速后,风压、流量降低后不发生脉动。

3、风机失速的原因分析

气流速度与流量成正比,因此正常运行中导致风机流量异常降低的因素都可

能导致风机失速:

(1)由于我厂脉冲吹灰器布置在高温再热器后尾部烟道内,离炉膛负压取样点较近,由于脉冲吹灰产生的冲击波使炉膛负压波动较大,造成总风量测量值随之波动,从而使风机产生失速。

(2)乙炔压力有时调的过高,使脉冲吹灰时产生的冲击波过大,造成炉膛负压波动较大,使风机风压测量值随之变化,从而使风机产生失速。

(3)未严格执行吹灰的定期工作,使尾部积灰较为严重。

4、预防送风机失速的措施

(1)脉冲吹灰时加强对炉膛负压,风机电流的监视,发现负压波动较大时及时的将风机动叶解“自动”进行手动调整。

(2)尽量调节2台风机风量相平衡,脉冲吹灰时将引、送风机联络挡板关闭。(3)脉冲吹灰尽量在高负荷时进行,吹灰时保持较大的炉膛负压。

(4)严格执行脉冲吹灰的定期工作,做到每班必须进行,严格按照规定将乙炔压力调至0.11MPa左右。

(5)利用每次停机的机会对空预器和暖风器进行检查,发现积灰或杂物堵塞都要及时清理。

(6)每次机组检修时应该对送风机失速探测器和相关压力变送器、差压开关进行检查,确保保护动作可靠。

5 结束语

在正常运行中,锅炉尾部空预器受热面积灰严重或风门、挡板操作不当误关,造成风道阻力增大,促使风机在不稳定工况区域是轴流风机失速的主要原因之一。根据电厂的运行经验,轴流风机风压、风量、电流大幅度降低后未发生脉动,风机振动、动叶开度突增是判断送风机发生失速的重要依据。一旦发生送风机失速,应迅速关小失速风机的动叶,相应开大未失速风机的动叶,使并联运行的2台风机动叶开度、电流相接近,是使风机快速脱离工况的解决办法。

我厂经过对脉冲吹灰制定严格的管理制度以及采取了其他防止风机失速的措施,如定期执行吹灰工作、将执行脉冲压力调整在规定范围内等,在未发生风机失速现象。

【参考文献】

[1]黄新元.电站锅炉运行与燃烧调整.北京.中国电力出版社,2003 [2]杨卫娟.锅炉各受热面吹灰作用的对比研究.动力工程,2006,(6)[3]郑国福,陈玉龙.轴流式送风机失速原因分析及预防措施.电力设备,2006,(1)

运行部锅炉专业

王卫东

化学反应速率,影响化学反应速率的因素

化学反应速率 1.化学反应速率的定义:_________________________________________________。 2.化学反应速率的计算公式:v= ,单位:。 注意: (1)在同一个化学反应中,用不同物质所表示的化学反应速率,数值上可能是的(填“相等”或“不等”),但各反应速率所表示的意义是相同的,所以计算化学反应速率时,要注明具体物质; (2)在同一个化学反应中,用不同物质所表示的化学反应速率,其比值等于之比;(3)固体、纯液体在反应中可视为浓度,一般不用固体或纯液体来表示反应速率; 3.化学反应速率的相关计算,常用“三段式”方法。 4.影响化学反应速率的内因:反应物自身的性质,如Na、Mg、Al与水反应的速率由大到小的顺序为:Na>Mg>Al。 5.影响化学反应速率的外因,可从分子碰撞理论解释(充分接触和有效碰撞): (1)浓度:其它条件相同时,增大反应物的浓度,化学反应速率加快;减少反应物的浓度,化学反应速率降低。 注意:纯固体、纯液体的浓度看作常数,故其反应速率与其用量无关。 (2)温度:其它条件相同时,升高温度,化学反应速率加快;降低温度,化学反应速率降低。一般,温度每升高10℃,反应速率增大2—4倍。 (3)压强:其它条件相同时,增大气体反应物的压强,化学反应速率加快;减小气体反应物的压强,化学反应速率降低。 注意:①压强只影响气体反应的速率;②恒温、恒容充入“惰性气体”化学反应速率不变;恒温、恒压充入“惰性气体”,化学反应速率减小。 (4)固体反应物的表面积:其它条件相同时,固体反应物表面积越大,反应速率越大。 (5)催化剂:其它条件相同时,催化剂可以改变化学反应速率,大部分加快反应速率。 (6)其他外因:光波、电磁波、放射线、超声波和溶剂等。 6.硫代硫酸钠溶液和盐酸的化学反应方程式为:Na2S2O3 + 2HCl →2NaCl + S↓+SO2↑+H2O, Na2S2O3,还原剂是Na2S2O3,氧化产物是SO2,还原产物是S。 例1.(化学反应速率的基本计算与大小的比较) 1.对于反应A2(g)+3B2(g)2AB3(g)来说,下列反应速率中表示该反应进行得最快的是(A) A.v(A2)=0.6 mol/(L·s) B.v(B2)=2.7 mol/(L·min) C.v(AB3)=12 mol/(L·min) D.v(A2)=6 mol/(L·min) 例2.(“三段式”法计算反应速率、转化率等) 2.将2 mol X和2 mol Y充入2 L密闭容器中发生如下反应:X(g)+3Y(g)2Z(g)+a Q(g),2 min 后达到平衡时生成0.8 mol Z,测得Q的浓度为0.4 mol·L-1,下列叙述错误的是(B) A.a的值为2 B.平衡时X的浓度为0.2 mol·L-1 C.Y的转化率为60% D.反应速率v(Y)=0.3 mol·(L·min)-1 1

一次风机失速现象原因分析及处理措施

一次风机失速现象原因分析及处理措施 [摘要]本文对轴流式风机失速的机理进行了较为详细的探讨,阐述了实际运行中产生失速的原因,介绍了河北大唐王滩发电厂#1、#2机组锅炉一次风机的失速特性、失速原因,并从运行管理的角度提出了失速的相关预防措施和紧急处理方案。 [关键词]冲角;失速特性;现象;处理措施 风机的失速现象主要发生于轴流式风机。而一般情况下,大型火电机组锅炉的三大风机均为轴流式风机,失速时常常会引起振动,严重时威胁到机组的安全运行。河北大唐王滩发电厂#1、#2机组锅炉的吸风机为静叶可调轴流风机,送风机及一次风机为动叶可调式轴流风机,下面对风机在运行过程中的失速问题作简要分析。 1 失速产生的机理 1.1 失速的过程及现象 轴流风机的叶片均为机翼型叶片。风机处于正常工况时,叶片的冲角很小(气流方向与叶片叶弦的夹角即为冲角),气流绕过机翼型叶片而保持流线状态,如图1(a)所示。当气流与叶片进口形成正冲角,即α>0,且此正冲角超过某一临界值时,叶片背面流动工况开始恶化,边界层受到破坏,在叶片背面尾端出现涡流区,即所谓“失速”现象,如图1(b)所示。冲角大于临界值越多,失速现象越严重,流体的流动阻力越大,使叶道阻塞,同时风机风压也随之迅速降低。 风机的叶片在加工及安装过程中由于各种原因使叶片不可能有完全相同的形状和安装角,因此当运行工况变化而使流动方向发生偏离时,在各个叶片进口的冲角就不可能完全相同。如果某一叶片进口处的冲角达到临界值时,就首先在该叶片上发生失速,而不会所有叶片都同时发生失速。如图2中,u是对应叶片上某点的周向速度,w是气流对叶片的相对速度,α为冲角。假设叶片2和3间的叶道23首先由于失速出现气流阻塞现象,叶道受堵塞后,通过的流量减少,在该叶道前形成低速停滞区,于是气流分流进入两侧通道12和34,从而改变了原来的气流方向,使流入叶道12的气流冲角减小,而流入叶道34的冲角增大。可见,分流结果使叶道12绕流情况有所改善,失速的可能性减小,甚至消失;而叶道34内部却因冲角增大而促使发生失速,从而又形成堵塞,使相邻叶道发生失速。这种现象继续进行下去,使失速所造成的堵塞区沿着与叶轮旋转相反的方向推进,即产生所谓的“旋转失速”现象。风机进入到不稳定工况区运行,叶轮内将产生一个到数个旋转失速区。叶片每经过一次失速区就会受到一次激振力的作用,从而可使叶片产生共振。此时,叶片的动应力增加,致使叶片断裂,造成重大设备损坏事故。 1.2 影响冲角大小的因素 王滩电厂的一次、送、吸风机都是定转速运行的,即叶片周向速度u是一定

动叶可调式轴流风机动叶调节基本知识图

改变动叶安装角是通过动叶调节机构来执行的,它包括液压调节装置和传动机 构。液压缸内的活塞由轴套及活塞轴的凸肩被轴向定位的,液压缸可以在活塞 上左右移动,但活塞不能产生轴向移动。为了防止液压缸在左、右移动时通过 活塞与液压缸间隙的泄漏,活塞上还装置有两列带槽密封圈。当叶轮旋转时, 液压 缸与叶轮同步旋转,而活塞由于护罩与活塞轴的旋转亦作旋转运动。所以 风机稳定在某工况下工作时,活塞与液压缸无相对运动。活塞轴的另一端装有 控制轴,叶轮旋转时控制轴静止不动,但当液压缸左右移动时会带动控制轴一 起移动。控制头等零件是静止并不作旋转运动的。叶片装在叶柄的外端,每个 叶片用6个螺栓固定在叶柄上,叶柄由叶柄轴承支撑,平衡块与叶片成一规定 的角度装设,二者位移量不同,平衡块用于平衡离心力,使叶片在运转中成为 可调。动叶调节机构被叶轮及护罩所包围,这样工作安全,避免脏物落入调节 动叶可调式轴流风机动叶调节原理图 W 片 13.21 | 18.14 | U. SI j ? * 1 / %J3L At -— 23. IQ 18.? 1 \ 23.S0 i \ ----

机构,使之动作灵活或不卡涩。当轴流送风机在某工况下稳定工作时,动叶片也在相应某一安装角下运转,那么伺服阀将油道①与②的油孔堵住,活塞左右两侧的工作油压不变,动叶安装角自然固定不变。当锅炉工况变化需要减小调节风量时,电信号传至伺服马达使控制轴发生旋转,控制轴的旋转带动拉杆向右移动。此时由于液压缸只随叶轮作旋转运动,而调节杆(定位轴)及与之相连的齿条是静止不动的。于是齿套是以 B 点为支点,带动与伺服阀相连的齿条往右移动,使压力油口与油道②接通,回油口与油道①接通。压力油从油道②不断进入活塞右侧的液压缸容积内,使液压缸不断向右移动。与此同时活塞左侧的液压缸容积内的工作油从油道①通过回油孔返回油箱。由于液压缸与叶轮上每个动叶片的调节杆相连,当液压缸向右移动时,动叶的安装角减小,轴流送风机输送风量和压头也随之降低。当液压缸向右移动时,调节杆(定位轴)亦一起往右移动,但由于控制轴拉杆不动,所以齿套以 A 为支点,使伺服阀上齿条往左移动,从而使伺服阀将油道①与②的油孔堵住,则液压缸处在新工作位置下(即调节后动叶角度)不再移动,动叶片处在关小的新状态下工作。这就是反馈过程。在反馈过程中,定位轴带动指示轴旋转,使它将动叶关小的角度显示出来。若锅炉的负荷增大,需要增大动叶角度,伺服马达使控制轴发生旋转,于是控制轴上拉杆以定位轴上齿条为支点,将齿套向左移动,与之啮合齿条(伺服阀上齿条)也向左移动,使压力油口与油道①接通,回油口与油道②接通。压力油从油道①进入活塞的左侧的液压缸容积内,使液压缸不断向左移动,而与此同时活塞右侧的液压缸容积内的工作油从油道②通过回油孔返回油箱。此时动叶片安装角增大、锅炉通风量和压头也随之增大。当液压缸向左移动时,定位轴也一起往左移动。以齿套中A 为支点,使伺服阀的齿条往右移动,直至伺服阀将油道①与②的油孔堵住为止,动叶在新的安装角下稳定工作。

风机的喘振保护构成原理及具体措施

风机的喘振保护构成原理 轴流风机性能曲线的左半部具有一个马鞍形的区域,在此区段运行有时会出现风机的流量、压头和功率的大幅度脉动,风机及管道会产生强烈的振动,噪声显著增高等不正常工况,一般称为“喘振”,这一不稳定工况区称为喘振区。实际上,喘振仅仅是不稳定工况区内可能遇到的现象,而在该区域内必然要出现的则是旋转脱流或称旋转失速现象。这两种工况是不同的,但是它们又有一定的关系。象17如下图图所示:轴流风机Q-H性能曲线,若用节流调节方法减少风机的流量,如风机工作点在K点右侧,则风机工作是稳定的。当风机的流量Q < QK时,这时风机所产生的最大压头将随之下降,并小于管路中的压力,因为风道系统容量较大,在这一瞬间风道中的压力仍为HK,因此风道中的压力大于风机所产生的压头使气流开始反方向倒流,由风道倒入风机中,工作点由K点迅速移至C点。但是气流倒流使风道系统中的风量减小,因而风道中压力迅速下降,工作点沿着CD线迅速下降至流量Q=0时的D点,此时风机供给的风量为零。由于风机在继续运转,所以当风道中的压力降低倒相应的D点时,风机又开始输出流量,为了与风道中压力相平衡,工况点又从D跳至相应工况点F。只要外界所需的流量保持小于QK,上述过程又重复出现。如果风机的工作状态按F-K-C-D-F周而复始地进行,这种循环的频率如与风机系统的振荡频率合拍时,就会引起共振,风机发生了喘振。风机在喘振区工作时,流量急剧波动,产生气流的撞击,使风机发生强烈的振动,噪声增大,而且风压不断晃动,风机的容量与压头越大,则喘振的危害性越大。故风机产生喘振应具备下述条件: a)风机的工作点落在具有驼峰形Q-H性能曲线的不稳定区域内; b)风道系统具有足够大的容积,它与风机组成一个弹性的空气动力系统; c)整个循环的频率与系统的气流振荡频率合拍时,产生共振。

最新影响化学反应速率的因素(教案)

6.1 化学反应为什么有快有慢 第2课时《影响化学反应速率的因素》 一、设计思想 本节内容在高一第二学期第六章《揭示化学反应速率和平衡之谜》的第一节——化学反应为什么有快有慢(第二课时)。其知识属于化学反应原理范畴,是深入认识和理解化学反应特点与进程的入门性知识。由于本课题的知识在生活生产和科学研究中有着广泛应用,学生能够通过生活经验在学科内的延伸,定性地理解和掌握化学反应速率影响因素的知识要点。因而,从学生认知和知识构建的角度来说,这个课题的内容不容易引发强烈的探究欲望和认知冲突。所以本课时的设计尝试着想引导学生从已有的生活经验出发,一步一步地自主设计探究实验的过程,近距离地做一次科学探究方法上的学习。 二、教学目标 1.知识与技能 (1)知道化学反应的快慢是由内因和外因共同作用的结果。 (2)能用控制变量的思想设计实验方案,通过实验探究浓度、温度、压强、催化剂、固体表面积对化学反应速率的影响,认识其一般规律。 (3)初步知道怎样控制化学反应速率。 2.过程与方法 (1)在实验探究的过程中,体会定性观察、对比试验、控制变量等科学方法。 (2)通过分组实验,增强合作学习的意识。 (3)亲历探究实验的实施过程,初步认识实验方案设计、实验条件控制、数据处理等方法在化学学习和科学研究中的应用。 (4)增强实验现象观察和描述的能力,通过对实验现象的分析和推理,能得出正确结论。3.情感态度与价值观 (1)体验科学探究的过程,学习科学探究的方法,提升科学探究的素养。 (2)关注社会生产生活中有关化学反应速率的实例,了解控制反应条件在生产和科学研究中的作用。 (3)养成尊重事实、按化学规律办事的求实态度,树立严谨的科学实验精神。 三、重点与难点 教学重点:控制变量法在影响化学反应速率的因素的研究中的作用。 教学难点:1、化学反应速率影响因素的探究; 2、实验方案设计(如何体现控制变量法)。

1000MW机组引风机失速原因分析及防范措施

1000MW机组引风机失速原因分析及防范措施 发表时间:2019-04-11T16:40:11.970Z 来源:《电力设备》2018年第30期作者:吴鹏刘敏 [导读] 摘要:电厂1000MW机组引风机发生失速现象、事故处理过程及原因,查找风机重要参数曲线,提出事故预想防范措施,提出保障机组风机安全运行的合理建议。 (国电浙能宁东发电有限公司宁夏银川市 753000) 摘要:电厂1000MW机组引风机发生失速现象、事故处理过程及原因,查找风机重要参数曲线,提出事故预想防范措施,提出保障机组风机安全运行的合理建议。 关键词:引风机;失速;事故处理;防范措施 某电厂3号机组2台引风机为成都电力机械厂的AP系列动叶可调轴流式通风机(HU27448-222G),针对该厂3号机组引风机A失速异常现象,通过查找引风机重要参数曲线,对事故处理过程及原因进行分析,对保障机组风机安全运行提出了防范措施,对国内同类型 1000MW机组引风机异常处理具有良好的借鉴意义。 1事故经过 2018年1月7日0∶18∶38,3号机升负荷至998MW,之后3号机组处于满负荷稳定过程,引风机动叶处于自动调节,炉膛负压约为-92Pa,此时A动叶开至最大为93%,电流为761.52A,B动叶开至90%,电流为796.6A,相差最大约为35A,且A动叶执行机构开至最大为93%。 1∶32∶18,引风机A动叶开至最大93%,电流为755.88A,B动叶开至93%,电流为839.56A,电流相差最大约为75A,且还有电流偏差增大的趋势。 1∶38∶23,引风机A失速报警发出。运行监盘人员发现引风机A电流由757.24A突降至541.39A,最大幅度达到210A。引风机B电流由846.12A突降至823.25A,电流仅降25A。送风机A从166.74A升至167.85A(最大升幅为1.1A),送风机B从161.49A升至162.37A(最大升幅为1.1A),送风机电流几乎无异常波动。 2引风机失速原因 2.1轴流风机失速 轴流风机性能曲线的左半部有一个马鞍形的区域,在此区段运行有时会出现风机的流量、压头和功率的大幅度脉动等不正常工况,一般称为“喘振”,这一不稳定工况区称为喘振区。实际上,喘振仅仅是不稳定工况区内可能遇到的现象,而在该区域内必然要出现不正常的空气动力工况则是旋转脱流或称旋转失速。这两种不正常工况是不同的,但是它们又有一定的关系。在其它因素都不变的情况下,轴流风机叶片前后的压差大小决定于动叶冲角的大小,在临界冲角值以内,上述压差大致与叶片的冲角成正比,不同的叶片叶型有不同的临界冲角值。翼型的冲角超过临界值时,气流会离开叶片凸面发生边界层分离现象,产生大面积的涡流,此时风机的全压下降,这种情况称为“失速现象”。 2.2风机失速的危害 对风机本身而言,若在失速区域长时间运行,将导致叶片断裂,且叶轮的机械部件也可能损坏。英国HOWDEN公司有明确规定:风机在失速区内累积运行时间不能超过15h,否则要更换叶片。对机组而言,若风机发生失速,造成风机跳闸,将直接联锁单侧通风组停止,机组减负荷;间接地引起炉膛正压或负压超限,锅炉发生MFT,联锁机组跳闸。因此,轴流风机运行中必须防止其发生失速。 2.3引风机失速现象 (1)负荷低于450MW运行时,在相同静叶开度情况下,两台引风机电流基本一致,风烟系统抗干扰能力较强,引风机自动调节可以正常投运。 (2)负荷高于450MW运行时,在相同静叶开度情况下,A引风机电流略高于B引风机,负荷越高偏差越大。 (3)450MW以上高负荷工况下,当B引风机电流高于A引风机运行时,A引风机易出现失速,同时B引风机出现明显抢风现象。600MW 工况失速时,A引风机电流由约240A陡降至约170A,而B引风机电流也由约240A陡升至约275A,炉膛负压剧烈波动,引风机自动调节退出。 3引风机失速后的处理方法 (1)当风机失速时,首先解列炉膛负压自动,控制另一台风机电流、振动和炉膛负压在规定范围内。 (2)为防止炉膛压力过高或风机电流过大,必要时可适当降低机组负荷和送风量,以防止风机掉闸和锅炉灭火。 (3)根据当前烟气流量和风机出入口差压,采取降低未失速风机出力、适当抬高炉膛压力和降低引风机出口压力等措施,判断能否将风机比压能降至水平失速线下。因为水平失速线全压升约2.08kPa,因此,未失速风机入口压力在3.0kPa以下,方便直接进行2台引风机的出力调整,否则,必须通过采取加强布袋除尘器清灰、投入检修布袋通道等方法来消除烟道异常阻力以及降低烟气量。 (4)在风机失速情况下的紧急清灰过程中,应尽量维持较低的炉膛压力、较高的引风机出口压力和较低的烟气流量,以提高清灰效果,同时加强清灰设备的检查消缺工作。 (5)在进行引风机调整时,在满足炉膛压力不超过1000Pa的条件下,可将2台风机转速调整一致,然后逐步关小失速风机静叶,同时关小另一台风机静叶,保持2台风机静叶开度基本一致,以防交替失速抢风。在失速现象消除时,风机调节装置开度与相同负荷下的烟气量基本匹配,以防止炉膛负压剧烈波动。将未失速风机工作点拉至失速线以下才能使失速风机并列出风,此时炉膛压力必然显示冒正,使布袋清灰效果下降,因此,必须尽量缩短风机并列过程。 (6)风机并列后,先观察布袋差压变化情况和失速裕量是否满足提升风机出力要求。然后根据情况逐步调整炉膛负压至正常范围,若并列过程时间较长且布袋差压明显增加时,必须在增加引风机出力的同时适当增加送风量,以保证足够的失速裕量,从而防止再次发生失速抢风。 4防范措施 为解决机组运行中引风机出现的失速现象,必须使风机的实际运行工作点远离理论失速界限,为此提出相应的解决措施如下。

动叶可调式轴流风机动叶调节基本知识图

动叶可调式轴流风机动叶调节原理图 改变动叶安装角是通过动叶调节机构来执行的,它包括液压调节装置和传动机构。液压缸内的活塞由轴套及活塞轴的凸肩被轴向定位的,液压缸可以在活塞上左右移动,但活塞不能产生轴向移动。为了防止液压缸在左、右移动时通过活塞与液压缸间隙的泄漏,活塞上还装置有两列带槽密封圈。当叶轮旋转时,液压缸与叶轮同步旋转,而活塞由于护罩与活塞轴的旋转亦作旋转运动。所以风机稳定在某工况下工作时,活塞与液压缸无相对运动。活塞轴的另一端装有控制轴,叶轮旋转时控制轴静止不动,但当液压缸左右移动时会带动控制轴一起移动。控制头等零件是静止并不作旋转运动的。叶片装在叶柄的外端,每个叶片用6个螺栓固定在叶柄上,叶柄由叶柄轴承支撑,平衡块与叶片成一规定的角度装设,二者位移量不同,平衡块用于平衡离心力,使叶片在运转中成为

机构,使之动作灵活或不卡涩。当轴流送风机在某工况下稳定工作时,动叶片也在相应某一安装角下运转,那么伺服阀将油道①与②的油孔堵住,活塞左右两侧的工作油压不变,动叶安装角自然固定不变。当锅炉工况变化需要减小调节风量时,电信号传至伺服马达使控制轴发生旋转,控制轴的旋转带动拉杆向右移动。此时由于液压缸只随叶轮作旋转运动,而调节杆(定位轴)及与之相连的齿条是静止不动的。于是齿套是以B点为支点,带动与伺服阀相连的齿条往右移动,使压力油口与油道②接通,回油口与油道①接通。压力油从油道②不断进入活塞右侧的液压缸容积内,使液压缸不断向右移动。与此同时活塞左侧的液压缸容积内的工作油从油道①通过回油孔返回油箱。由于液压缸与叶轮上每个动叶片的调节杆相连,当液压缸向右移动时,动叶的安装角减小,轴流送风机输送风量和压头也随之降低。当液压缸向右移动时,调节杆(定位轴)亦一起往右移动,但由于控制轴拉杆不动,所以齿套以A为支点,使伺服阀上齿条往左移动,从而使伺服阀将油道①与②的油孔堵住,则液压缸处在新工作位置下(即调节后动叶角度)不再移动,动叶片处在关小的新状态下工作。这就是反馈过程。在反馈过程中,定位轴带动指示轴旋转,使它将动叶关小的角度显示出来。若锅炉的负荷增大,需要增大动叶角度,伺服马达使控制轴发生旋转,于是控制轴上拉杆以定位轴上齿条为支点,将齿套向左移动,与之啮合齿条(伺服阀上齿条)也向左移动,使压力油口与油道①接通,回油口与油道②接通。压力油从油道①进入活塞的左侧的液压缸容积内,使液压缸不断向左移动,而与此同时活塞右侧的液压缸容积内的工作油从油道②通过回油孔返回油箱。此时动叶片安装角增大、锅炉通风量和压头也随之增大。当液压缸向左移动时,定位轴也一起往左移动。以齿套中A为支点,使伺服阀的齿条往右移动,直至伺服阀将油道①与②的油孔堵住为止,动叶在新的安装角下稳定工作。

失速与喘振

摘要:阐述了轴流通风机失速与喘振的形成机理,结合2×600MW机组一次风机的喘振问题,分析了失速与喘振的原因,同时还制定了检查及整改措施。 关键词:轴流式通风机失速喘振 中图分类号:TH432.1 文献标识码:B 文章编号:1006-8155(2007)03-0000-00 Analysis on Stall and Surge of Variax Blade Adjustable Axial Fl ow Fan and Improvement Measure Abstract: The formation principle of stall and surge for axial fl ow fan was elucidated, analyze the reason of stall and surge bonding the surge problem of 2*600MW primary fan, at one time, draw the measure of check and improvement. Key Words: Axial fl ow fan Stall Surge 0 引言 由于动叶可调轴流通风机具有体积小、质量轻、低负荷区域效率较高、调节范围宽广、反应速度快等优点,近十年来,国内大型火力发电厂已普遍采用动叶可调轴流通风机。因为轴流通风机具有驼峰形性能曲线这一特点,理论上决定了风机存在不稳定区。风机并不是在任何工作点都能稳定运行,当风机工作点移至不稳定区时就有可能引发风机失速及喘振等现象的发生。 笔者针对扬州第二发电有限责任公司二期扩建工程2×600MW 机组一次风机在安装、调试期间发生的失速问题,对失速与喘振的原理进行了分析,并提出了相应检查和整改措施,以及风机在正常运行过程中如何避免失速与喘振的发生。 1 轴流通风机失速与喘振的关系

600MW机组引风机失速、喘振异常的分析与探讨

600MW机组引风机失速、喘振异常的分析与探讨 发表时间:2018-01-10T11:10:17.063Z 来源:《电力设备》2017年第27期作者:张立刚 [导读] 摘要:大型锅炉引风机运行的稳定性和可靠性会对电力生产的效率及经济效益产生影响,而失速、喘振作为大型锅炉引风机最为常见的异常故障,对其进行研究就显得尤为重要。 (陕西德源府谷能源有限公司陕西榆林 719400) 摘要:大型锅炉引风机运行的稳定性和可靠性会对电力生产的效率及经济效益产生影响,而失速、喘振作为大型锅炉引风机最为常见的异常故障,对其进行研究就显得尤为重要。笔者结合大型锅炉引风机的工作特点,就失速、喘振等异常情况进行了分析,总结了风机型号选择、运行方式等方面存在的问题,希望可以为大型锅炉引风机相关异常的处理提供借鉴。 关键词:大型锅炉;引风机;失速;喘振 国家环境保护部在2011年颁布《火电厂大气污染物排放标准》,要求燃煤机组燃烧排放的烟气中氮氧化物浓度不能超过100mg/m3,现在全国各电厂陆续进行更为严格的超低排放改造,电力企业纷纷对锅炉低氮燃烧器、分级配风及加设SCR脱硝装置改造,实现对氮氧化物排放的有效控制,这种改造需要在烟道中安装两层催化剂,烟道阻力约增加1000Pa。引风机作为火力发电厂主要辅机设备,其耗电量占机组厂用电率的比重较大,加装SCR系统的机组大量喷氨降低氮氧化物,氨逃逸率过大使硫酸氢铵大量增加,而在160-230℃温度区间,硫酸氢铵是一种高粘性液态物质,粘附烟气中的飞灰颗粒板结在空预器换热元件上,导致空预器阻力增加,进一步增大了引风机出力,而且按原来风烟系统阻力选型的引风机调整范围变窄,易引起风机喘振等现象。 一、锅炉引风机失速、喘振异常概述 1.1引风机失速、喘振异常的发生原理 首先引风机失速即叶片叶弦的夹角和气流方向被称为冲角,会使进入风机叶栅的气流冲角随着开得过大的风机动叶而增大,一旦冲角超过临界值,叶片背面尾端立即会出现涡流区,冲角超过临界值越多则表示失速越严重,同时会加大流体阻力,进而堵塞流道,降低风机风压后引发喘振。 其次轴流风机运行中喘振是最特殊的现象,风机风量与出口压力不对应是造成风机喘振的原因。喘振指风机在运行于不稳定区域内并引起电流、风量和压力的大幅度脉动及管道和风机剧震动的现象。高压头,大容量风机发生喘振的危害很大,会直接损坏设备和轴承,锅炉的安全运行也会受风机事故的直接影响,总而言之,失速是发生喘振的基本因素,然而失速却不一定会是喘振,它只是单纯地失速恶化表现。 1.2引风机失速、喘振危害 失速导致风机损坏,由于旋转失速使风机各叶片受到周期性力作用,若风机在失速区内运行相当长时间,会造成叶片断裂,叶轮的其它部件也会受到损害。失速导致喘振,若管道系统容积与阻力适当,在风机发生失速压力降低时,出口管道内的压力会高于风机产生的压力而使气流发生倒流,管道内压力迅速降低,风机又向管道输送气体,但因流量小风机又失速,气流又倒流。伴随喘振的发生,风机参数也大幅度波动,振动剧烈。可在很短时间内损坏风机,必须立即停止风机运行。风机发生喘振、失速时,造成炉膛压力大幅波动,锅炉燃烧不稳定,在高负荷发生时,可能导致风机跳闸、机组RB降出力、锅炉灭火等事故。风机喘振时,风机的风量和风压、电动机电流急剧波动,产生气流的撞击,振动显著增加,噪声巨大,此时风机叶片、机壳、风道均受大很大的交变力作用,会造成风机严重损坏,风机的容量与压头越大,则喘振的危害性越大。因此,轴流风机应避免在失速、喘振状态下长时间运行。 二、锅炉引风机失速、喘振异常的原因 2.1风机失速原因 如果风机长时间运行于失速区,必然会损坏叶轮的机械部件或造成叶片断裂,因此则有相关风机制造厂规定,如果风机运行于失速区域内超过15h则需立即更换叶片。但对于机组来说,风机失速会造成设备出现跳闸现象,同时会减少机组负荷及迫使单侧通风组停止运行。喘振前机组负荷为600MV,引风机动叶开度在93%左右,引风机喘振时的进口压力、电机电流和进口烟气流量呈大幅度周期性脉动,同时炉膛负压的波动也较大。引风机出现喘振时首先发生喘振的B侧引风机,电机电流也下降到215A,之后A侧引风机也开始出现喘振,还产生抢风现象,导致进口烟气流量、进口压力、电机电流的波动变化较大。恰好引风机附近有运行人员巡检,当场听到周期性和剧烈的噪音与振动。 2.2引风机喘振原因 空预器的烟气侧压差过大增加引风机进口管路阻力,最终出现管路特性曲线中所显示的变陡现象。对此引风机需不断增加出力使炉膛负压维持到相应的范围,引风机电流会随着动叶不断地开大而增加,进而导致引风机进入不稳定工况区域,造成引风机失速,失速恶化则会发生喘振并发展为和另一台引风机抢风情况,最终导致两台引风机进口烟气流量、电机电流、进口压力出现大幅度交替脉动,使机组和设备的安全运行受到严重威胁。 2.3引风机失速与喘振的联系和区别 轴流式风机的基本属性即失速,每个引风机上的叶轮可以都会出现不稳定的失速现象,但这种失速现象是肉眼看不到的,处于隐性之中。肉眼无法看到的,因此只能采用高频测试器和高灵敏度仪器对其探测。但喘振和它不同的一点就在于是显行的。风机的流量、压力、功率等脉动会在发生喘振时伴随着噪声有剧烈明显的晃动,但需指出的一点是,喘振只会出现在一定的条件内,如同等风机安装在不同系统就会出现喘振和不喘振现象。此外,叶片结构特性也是造成风机失速的因素之一,从开始到结束其基本规律都一直存在,其运行不会受系统容积形状的影响。风机与系统耦合的振荡特性是喘振的表现形式,风道容积在一定程度会限制其频率和振幅,在发生失速时尽管叶轮附近的工况会出现波动,然而整台风机的流量、压力和功率基本不会受失速影响,依旧保持稳定运行。但需指出的的是,整台风机的压力、流量和功率在发生喘振时会遭到大幅度脉动,致正常运行无法维持。此外,失速是降低压力的关键因素,它只存在于顶峰以左的区域段,喘振只发生于风机特性曲线的坡度区域段,二者有着紧密联系,因而喘振发生和失速的存在息息相关。 三、锅炉引风机失速、喘振异常解决办法 3.1合理选择引风机型号和型式 风机选型的合理确定是保证其经济安全运行的前提,其设计参数更要严格把握,如果参数过大,会导致风机不能运行在高效区域内,

FAF28-14-1动叶可调轴流送风机产品安装和使用说明书(A本)

FAF28-14-1 动叶可调轴流送风机产品安装和使用说明书 (A本) SBW工程号2008-30 上海鼓风机厂有限公司 二○○八年三月

1 风机技术参数 1.1 一般资料 风机型号FAF28-14-1 工程号2006-30 合同号电06/06-024 建造年份2006年 风机性能参数: 1.2 机械参数 风机内径φ2818 叶轮直径φ1412 叶轮级数 1 叶型DA16 叶片数16 叶片和叶柄的连接高强度螺栓 液压缸径和行程φ336/H100MET 叶片调节范围-40~+10o 风机机壳内径和叶片外径间的间隙应符合JB/T4362-1999 标准要求:为转子直径的0.001~0.002倍(对本风机来讲为2.8~5.66mm)(叶片在关闭位置)

1.3 风机起动力矩 风机转速n =990 r/min 飞轮力矩J = 0.25GD2 =580Kgm2 电机轴端径向力F R = 3200 N 电机轴端轴向力F A = 1850N 电机功率Ne = 2850kw 从电机轴伸端看电机转向为顺时针旋转,风机转向为逆时针。 1.4 风机特性曲线

风机型号FAF28-14-1 用户新密1000MW 工程号2006-30 风机转速990r/min 介质密度 1.1990kg/m3 风机叶片16DA16 (4GD3448) 2 转子图和总图汇总的拧紧力矩

件号拧紧力矩(Nm)名称 11.551170轴承箱螺母M170X3 11.561170轴承箱螺母M175x3 11.80 454.72 轴承箱与机壳支承环连接螺钉M20×110 13.81 105.84 叶片螺钉M12×1.25×40 14.52181.1调节杆拧紧螺母M16×95 19.34 53.9 调节环与推盘连接螺钉M10×65 19.61 94.08 液压缸与调节盘连接螺钉M12×60 19.74 231.28 液压支承体与支承环连接螺钉M16×40 19.71 53.9 液压支承体与液压缸连接螺钉M10×40 26.11.05 454.72 中间轴连接螺钉M20×75 51.39.02 784 机壳中分面连接螺栓M24×120 69.01 750 机壳和整流导叶环地脚螺钉M42 69.02 750 机壳和整流导叶环双地脚螺钉M42-180 69.03 500 进气箱和扩压器地脚螺栓M30×800 69.29 1600电动机地脚螺栓M48×1250

火电厂风机喘振及失速分析

火电厂风机失速及喘振分析 【摘要】风机是电厂锅炉的主要辅助设备之一,是火力发电厂不可缺少的一部分,其所消耗的电量约占电厂总发电量的2~3%。随着用电量的不断增长和能源问题的出现,电厂风机运行的安全性越来越为人们所重视,其运行状况的好坏直接危及到整个机组的安全运行,严重影响火力发电厂的经济效益。本文重点针对电厂风机的喘振失速问题进行机理分析,并提出了运行处理及防范措施。 【关键词】风机失速喘振不稳定工作区运行处理预防 1.风机简述 1.1离心式风机和轴流式风机比较 风机主要有离心式和轴流式两种。离心式风机具有结构简单、运行可靠、效率较高、制造成本较低、噪音小等优点。但离心风机的容量受到叶轮材料强度的限制,不能随锅炉容量的增加而相应增大;而轴流式风机具有容量大,且结构紧凑、体积小、重量轻、耗电低、低负荷时效率高等优点,但轴流风机结构复杂,制造精度要求高。 鉴于轴流式风机的优点,大容量机组均选用轴流式风机。 1.2轴流式风机的运行调节 轴流式风机的运行调节有四种方式:动叶调节、节流调节、变速调节和入口静叶调节。动叶调节是通过改变风机叶片的角度,使风机的曲线发生改变,来实现改变风机的运行工作点和调节风量。这种调节经济性和安全性较好,每一个叶片角度对应一条曲线,且叶片角度的变化几乎和风量成线性关系。 节流调节的经济性很差,所以轴流式风机不采用这种调节方式。 变速调节是最经济的调节方式,但需要配置电机变频装置或液力偶和器。 进口静叶调节时系统阻力不变,风量随风机特性曲线的改变而改变,风机的工作点易进入不稳定工况区域。 2.风机失速与喘振机理 2.1失速机理 轴流式风机其工作原理是基于叶翼型理论(如图a):当气流以某一冲角α进入叶轮时,由于沿气流流动方向的两侧不对称,使得翼型上部区域的流线变密,流速增加,翼型下部区域的流线变稀,流速减小;因此,流体作用在翼型下部表面上的压力将大于流体作用在翼型上部表面的压力,结果在翼背上产生一个升力,同时在翼腹上产生一个大小相等方向相反的作用力,使气体排出叶轮呈螺旋形沿轴向向前运动。与此同时,风机进口处由于压差的作用,使气体不断地被吸入。 a、风机正常工况时的气体流动状况 b、风机脱流工况时的气体流动状况 动叶可调轴流风机,冲角α越大,翼背的周界越大,则升力越大,风机的压差越大,风量越小。当叶片冲角α达到临界值时,气流会在叶背尾端产生涡流区,即所谓的脱流工况(失

影响化学反应速率的因素-专题练习题-带答案

高二年级化学选修四同步小题狂练 第二章第二节影响化学反应速率的因素 一、单选题 1.下列说法中有明显错误的是() A. 对有气体参加的化学反应,增大压强体系体积减小,可使单位体积内活化分子数 增加,因而反应速率增大 B. 升高温度,一般可使活化分子的百分数增大,因而反应速率增大 C. 活化分子之间发生的碰撞一定为有效碰撞 D. 加入适宜的催化剂,可使活化分子的百分数大大增加,从而成千上万倍地增大化 学反应的速率 2.化学反应的速率主要取决下列哪个因素() A. 催化剂 B. 温度 C. 压强 D. 物质的性质 3.通过下列有关实验研究影响化学反应速率的因素得出的相关结论,你认为不正确的 是() A. 在其它条件相同时,将等质量的锌块和锌粉与相同浓度的盐酸反应,锌粉反应快 B. 将质量相同、形状大小一样的铝条分别与稀硫酸和浓硫酸反应,浓硫酸产生氢气 快 C. 两支试管中分别加入双氧水,其中一支试管中再加入少量二氧化锰,同时加热, 产生氧气的快慢不同 D. 在稀硫酸和铁粉反应制取氢气时,加入适量醋酸钠晶体,可减慢反应速率 4.硫代硫酸钠(Na2S2O3)与稀硫酸发生如下反应:Na2S2O3+H2SO4=Na2SO4+SO2+S↓ +H2O下列四种情况中最早出现浑浊的是() A. 10℃时0.1mol/L Na2S2O3和0.1mol/L H2SO4各 5 mL

B. 20℃时0.1mol/L Na2S2O3和0.1mol/L H2SO4各 5 mL C. 10℃时0.1mol/L Na2S2O3和0.1mol/L H2SO4各5 mL,加水10mL D. 20℃时0.2mol/L Na2S2O3和0.1mol/LH2SO4各5 mL,加水10 mL 5.铁粉与足量1mol/L盐酸反应,为了加快反应速率且不影响产生氢气的量可以加入() 6.①2mol/L的硝酸溶液②少量CuSO4(s)③少量铜粉④少量 CH3COONa(s)⑤对溶液加热⑥向反应液中通入HCl气体⑦加入过量铁 粉⑧将铁粉改为铁片. A. ②③④⑤⑥ B. ③⑤⑥ C. ①③⑤⑥⑦ D. ③⑤⑥⑧ 7.在C(s)+CO2(g)?2CO(g)反应中,可使反应速率增大的措施是() 8.①增大压强②增加炭的量③通入CO2④恒压下充入N2⑤恒容下充入N2⑥升 温. A. ①③④ B. ②④⑥ C. ①③⑥ D. ③⑤⑥ 9.氯酸钾和亚硫酸氢钾能发生氧化还原反应:ClO?3?+3HSO?3?= 3SO?42?+Cl?+3H+,已知该反应的速率随溶液酸性的增强而加快. 如图为用ClO?3?在单位时间内的物质的量浓度的变化来表示该反应 速率的速率?时间图象.下列说法不正确的是() A. 反应开始时速率增大可能是c(H+)增大引起的 B. 纵坐标为v(H+)的速率?时间曲线与图中曲线能完全重合 C. 后期反应速率下降的主要原因是反应物浓度减小 D. 图中阴影部分“面积”为t ~t2时间内的ClO?3?的物质的量浓度的减小值 1 10.向绝热恒容密闭容器中通入SO2和NO2,一定条件下使反应: 11.SO2(g)+NO2(g)?SO3(g)+NO(g)达到平衡,正反应速率 随时间变化如图所示.则正确的结论是() 12.A. 逆反应速率:a点小于点c 13.B. 反应物浓度:a点小于点b

风机在运行中失速的原因分析及应对措施

风机在运行中失速的原因分析及应对措施 摘要:随着我国经济的快速发展,我国的环保工作也进行得如火如荼,成效显著。但我国产业结构仍处于高能耗模式当中,这种产业机构不利于我国环境治理 工作的顺利开展。为了优化我国产业结构,协调环境保护工作,要求在火力发电 机组中通过引进先进的技术或设备,提高供电效率,实现产业结构优化。鉴于此,本文主要介绍了某电厂 300MW 机组引风机的特性及技术参数。在此基础上,分 析引风机失速的原因、失速后的处理,以及采取防止引风机失速措施。 关键词:引风机;风量;转速 引言:本文以某锅炉厂生产的型号为:型号:DG1025/18.2-∏6,型式:亚 临界参数、四角切圆燃烧方式、自然循环汽包炉,单炉膛、一次再热、平衡通风、固态除渣露天∏型布置,全钢架、全悬吊结构的燃煤锅炉。在运转工作中,锅炉 配备一台50% 容量的电动引风机。由于燃用煤种硫份含量偏高及超低排放要求, 造成机组空预器差压逐渐增大,随之而来引风机失速频繁发生。 1引风机在生产中的应用 该厂引风机在低负荷时则采用两路汽源并用来降低小机排气温度,以实现机 组运行的安全性;小机排气可通过背压机对热网供热,进一步降低供电煤耗,提 高上网电量。同时引风机可以实现变转速调节负荷,减少节流损失,避免了引风 机对厂用电系统的电压冲击。从引风机实际运行情况来看,其具备低能耗、高效 率的优点,能为企业带来巨大的经济利益和环保效益,对企业的产业结构优化具 有促进作用,意味着其逐步成为一种趋势,在发电产业中具有良好的发展前景。 2该引风机设备参数 该电厂工程采用引增合一,引风机为成都风机厂生产的静叶可调轴流式风机,引风机由东方有限公司生产。引风机调整方式转速及静叶配合调节。该引风机技 术参数详见表 1。 表 1 该引风机技术参数 3引风机失速分析 3.1机组正常运行一段时间后,随着空预器堵塞的加剧,空预器进出口烟气侧和风量侧差 压持续上升,造成引风机入口风量低于设计值。机组负荷 300MW 时,引风机进口风量(低 温省煤器投运)DCS 数据计算来为 255m3/s,而设计为235m3/s,已严重偏离设计工作点, 造成风机易进入失速区域。 3.2采取低氧燃烧措施后,烟气量偏小。 3.3引风机的轮机性能存在一定差别,造成两台机器工作点不一致。 3.4风机出力偏差未结合风机工作点进行调整,使并列风机流量偏差增加。 3.5烟道阻力有一定偏差,烟气温度低,烟道阻力大的风机所需全压升高、容积流量小, 更容易被抢风而引起失速。 3.6风机在炉膛压力大幅度波动及机组负荷变化时,并列引风机进汽调门性能不一致,造 成风机短时间出现出力偏差增加,工作点偏移抢风。 4引风机失速后的处理方法 4.1发生引风机失速时运行人员应先判断哪台风机失速,一般引风机入口负压小的风机为 失速风机。立即手动解除两台引风机小机转速和静叶自动,手动进行调整。 4.2投入等离子进行稳燃,快速降负荷至 2000MW 左右,减小送风机动叶,维持总风量 在 500-600t/h 左右,防止风机跳闸及炉膛灭火。 4.3立即手动将两台引风机都增加 100rpm 左右的转速,主要目的是为了将两台引风机工 作点远离失速区,有利于失速风机的并列。 4.4手动将失速引风机的静叶关小,手动关小另一台引风机的静叶至两台引风机入口负压

动叶可调轴流引风机的工作原理

第四节引风机 一引风机的结构特点 动叶可调轴流式送风机一般包括:进口消音器、进口膨胀节、进口风箱、机壳、转子、扩压器、联轴器及其保护罩、调节装置及执行机构、液压及润滑供油装置和测量仪表、风机出口膨胀节、进、出口配对法兰。电动机通过中间轴传动风机主轴。 1 进气箱、扩压器 进气箱和进气管道,扩压器和排气管道分别通过挠性进气膨胀节和排气膨胀节连接;进气箱和机壳、机壳与扩压器间用挠性围带连接。这种连接方式可防止振动的传递和补偿安装误差和热胀冷缩引起的偏差。 进气箱中心线以下为成弧形结构,减小进气箱进气损失,并相对减小了气流的脉动,有利于提高风机转子的做功效率。 进气箱、扩压器、机壳保证相对轴向尺寸,形成较长的轴向直管流道,使风机气流流动平稳,减少了流动损失,提高了抗不稳定性能,保证了风机装置效率。 进气箱和扩压器均设有人孔门,便于检修。进气箱有疏水管。 2 机壳 机壳具有的水平中分面以及机壳前后的挠性围带连接,很容易拆卸机壳上半,便于安装和检修转子部。 3 转子 转子由叶轮、轴承箱、中间轴、液压调节装置等组成。 轴承箱为整体结构,借助两个与主轴同心的由圆柱面内置于机壳内筒中的下半法兰上,轴承箱两个法兰的下半部分与机壳内圆筒的相应法兰用螺栓固定。机壳上半内筒的法兰紧压轴承箱相应法兰。 在主轴的两端各装一个滚柱轴承用以承受径向力,为了承受轴向力,在近联轴器端装有一个向心推力球轴承,承担逆气流方向的轴向力。轴承外侧装有氟橡胶制的径向轴密封,防止漏油。 轴承的润滑和冷却借助于轴承箱体内的油池和外置的液压润滑联合油站。为防止烟气温度的影响,对主轴承箱外表面及油管进行附加冷却,在风机一侧装有冷却(密封风机)。 置于整体式轴承箱中的主轴承为油池强制循环润滑。当轴承箱油位超过最高油位时,润滑油将通过回油管流回油站。 润滑油和液压油均由25 l/min的公用油站供油。 叶轮 叶轮轮壳采用低碳合金钢(后盘及承载环为锻件)通过多次焊接后成型,强度、刚度高,叶轮悬臂装在轴承箱的轴端。

化学反应速率及其影响因素

化学反应速率及其影响因素 Z 真题感悟 hen ti gan wu (课前) 1.(2017·江苏·10)H2O2分解速率受多种因素影响。实验测得70 ℃时不同条件下H2O2浓度随时间的变化如图所示。下列说法正确的是(D) A.图甲表明,其他条件相同时,H2O2浓度越小,其分解速率越快 B.图乙表明,其他条件相同时,溶液pH越小,H2O2分解速率越快 C.图丙表明,少量Mn2+存在时,溶液碱性越强,H2O2分解速率越快 D.图丙和图丁表明,碱性溶液中,Mn2+对H2O2分解速率的影响大 [解析]本题考查反应条件对反应速率的影响。由图甲可知,起始时H2O2的浓度越小,曲线下降越平缓,说明反应速率越慢,A项错误;OH-的浓度越大,pH越大,即0.1 mol·L -1NaOH对应的pH最大,曲线下降最快,即H2O2分解最快,B项错误;由图丙可知,相同时间内,0.1 mol·L-1 NaOH条件下H2O2分解最快,0 mol·L-1 NaOH条件下H2O2分解最慢,而1.0 mol·L-1 NaOH条件下H2O2的分解速率处于中间,C项错误;由图丁可知,Mn2+越多,H2O2的分解速率越快,说明Mn2+对H2O2分解速率影响较大,D项正确。 2.(2016·全国Ⅲ)煤燃烧排放的烟气含有SO2和NO x,形成酸雨、污染大气,采用NaClO2溶液作为吸收剂可同时对烟气进行脱硫、脱硝。 在鼓泡反应器中通入含有SO2和NO的烟气,反应温度为323 K,NaClO2溶液浓度为5×10-3mol·L-1。反应一段时间后溶液中离子浓度的分析结果如下表。 _大于__ 是除了SO2和NO在烟气中的初始浓度不同,还可能是_NO溶解度较低或脱硝反应活化能较高__。 [解析]由实验结果可知,c(SO2-4)=8.35×10-4 mol·L-1>c(NO-3)=1.5×10-4 mol·L-1,

相关主题