搜档网
当前位置:搜档网 › 高数——一元函数积分学

高数——一元函数积分学

高数——一元函数积分学
高数——一元函数积分学

一元函数积分学

【知识要点】

1、理解原函数与不定积分的概念及其关系,掌握不定积分的性质。

2、熟练掌握不定积分的基本公式。

3、熟练掌握不定积分第一换元法,掌握第二换元法(仅限三角代换与简单的根式代换)。

4、熟练掌握不定积分的分部积分法。

5、掌握简单有理函数不定积分的计算。

6、理解定积分的概念及其几何意义,了解函数可积的条件

7、掌握定积分的基本性质

8、理解变上限积分是变上限的函数,掌握对变上限积分求导数的方法。 9、熟练掌握牛顿—莱布尼茨公式。

10、掌握定积分的换元积分法与分部积分法。

11、.理解无穷区间的广义积分的概念,掌握其计算方法。 12、掌握直角坐标系下用定积分计算平面图形的面积以及平面图形绕坐标轴旋转所生成的旋转体的体积。

1不定积分

定义 函数)(x f 的全体原函数称为函数)(x f 的不定积分,记作

?dx x f )(,并称?

微积分

号,函数)(x f 为被积函数,dx x f )(为被积表达式,x 为积分变量。因此

?+=C x F dx x f )()(,

其中)(x F 是)(x f 的一个原函数,C 为任意常数(积分常数)。 基本积分公式(要求熟练记忆) (1)?

=C dx 0 (2))1(1

11

-≠++=+?

a C x a dx x a a

. (3)

C x dx x +=?ln 1

.

(4)C a a

dx a x x

+=

?ln 1 )1,0(≠>a a (5)C e dx e x

x +=?

(6)?

+-=C x xdx cos sin (7)?

+=C x xdx sin cos

(8)C x dx x +=?tan cos 1

2.

(9)C x dx x

+-=?cot sin 1

2. (10)

C x dx x

+=-?

arcsin 112

.

(11)

C x dx x +=+?arctan 11

2.

正确理解上述的积分公式是能否掌握不定积分计算的关键之一,所有积分公式中的x 均应理解为x 的连续函数,例如C x a dx x a a

++=?

+1

1

1理解为下面的结构式:

式中的方块可以为自变量x ,也可以是x 的函数,如:

正确理解公式并能熟练掌握它,对于学习后续知识会有极大的好处。

2直接积分法

直接积分法是指用代数或三角恒等变形,并用积分的性质和基本积分公式进行积分的积分方法。

3换元积分法

换元积分法就是对不定积分

?dx x f )(作适当的变量代换:

令)(u x ?=,或令)(x u ?=,把被积表达式变换成对新变量u 的函数,而对u 积分时是可利用基本积分公式的类型。这就

是换元积分法。

换元积分法的依据就是基本积分公式中的x 可以换成任意连续可导函数时,公式依然成立。例如:如:

C x u x du x u +=+?)(arctan )()(11

2.

当用任意连续可导函数来替换)(x u 时,公式仍然成立,如)sin(x u =,x u ln =,

x u sin =,)ln(sin x u =,等等,公式均成立:

()111.

1

d c αααα+=+≠-+?

341sin sin sin .

4x d x x c =+?

C x x d x +=+?)]sin arctan[ln(

)][ln(sin )][ln(sin 11

2. 换元积分法分第一类换元积分法和第二类换元积分法两种。

1、 第一类换元积分法

第一类换元积分法又称凑微分法,这种积分方法是:求积分

dx x x f )(])(['

???时,若

)(x ?是x 的可导函数,用一个新的变量u 来代换)(x ?,并用du 代换dx x )('?,此时积分

dx x x f )()](['???变成了du u f ?)(,而它用可以直接用公式积分得到C u F +)(,最后将u

换成)(x ?即可。 2、第二类换元积分法

第二类换元积分法与第一类换元积分法正好相反,所给的积分

?dx x f )(不能直接套公

式计算,而是要将积分变量x 用一个函数)(t ?代替(要求)(t x ?=严格单调、可导),且

0)('≠t ?,并将dx 用dt t )('?代替,使积分变成dt t t f )()](['???,这个积分可以套公式积

出为C t F +)(,最后将t 用)(1x -?作反还原。

4分部积分法

分部积分法也是一种重要的方法,它是由函数之积的微分公式推导出来的。 分部积分公式

设)(),(x v x u 均可导,则udv vdu uv d +=)(, 两边对x 积分得 ??

+=u d v v d u uv 。 移项得分部积分公式如下:

??-=vdu uv udv 或 ??-=udv uv vdu 。

说明:在用分部积分法进行积分时,应努力使积分中右端的积分比左端的积分容易,因此应用分部积分法时,恰当选择u 和dv (或v 和du )是解题的关键。如果选取不当,得到的积分会比原积分更不易求出。对u 和dv 的选择,应当考虑两点: (1)v 要容易求得。

(2)要使?vdu 较所给积分?

udv 容易计算。

5 定积分

定积分

?

b

a

dx x f )(的几何意义是:它是介于x 轴、曲线)(x f y =、直线b x a x ==、之间

各部分面积的代数和;在x 上方的面积取正号,在x 下方的面积取负号。 对于定积分的定义,我们还应明确以下几点:

(1)定积分的值是一个常数,它知与被积函数)(x f 及积分区间],[b a 有关,而与积分变量的字母无关,则应有

??

=b

a

b

a

dt t f dx x f )()(。

(2)在定积分的定义中,我们假定b a <;如果a b <,我们规定??

-=b

a

a

b

dx x f dx x f )()(

如果b a =则规定

0)( =?

a

a

dx x f

6定积分的计算

1、变上限积分

定义 积分上限x 为变量时的定积分dt t f x a

)(?

称为变上限积分。变上限积分一般是上限x 的

函数,记为)(x Φ,于是有?

=

Φx a

dt t f x )()(,且有下列定理。

定理(对积分上限的导数) 如果函数)(x f 在区间],[b a 上连续,则函数

?=Φx

a

dt t f x )()()(b x a ≤≤

对积分上限x 的导数等于)(x f ,即[]

)()()('

x f dt t f x x

a

==Φ'?

设)(),(x b x a 是x 的可导函数,记?

=dt t f x x b x a )()()()

(φ,

则此定理可以推广为

)()]([)()]([])([)('

'')()('x a x a f x b x b f dt t f x x b x a -==?φ。

2、牛顿—莱布尼茨公式

定理(牛顿—莱布尼茨公式) 如果)(x F 是连续函数)(x f 在区间],[b a 上的任意一个原函数,则有

)()()( a F b F dx x f b

a

-=?

7 定积分的应用

定积分的应用主要有:平面图形面积的计算以及旋转体体积的计算。

计算平面图形的面积

如果某平面图形是由两条连续曲线

)(),(21x f y x g y ==及两条直线a x =1和b x =2所

围成的(其中1y 是下面的曲线,2y 是上面的曲线),则其面积可由下式求出:

.)]()([dx x g x f S b

a

?-=

如果平面图形是由两条连续曲线

)(),(21y x y x ψ?==及两条直线c y =1和d y =2所围

成的(其中1x 是左边的曲线,2x 是右边的曲线),则其面积可由下式求出:

.)]()([dy y y S d

c

?-=?ψ

计算旋转体的体积

设某立体是由连续曲线)0)()((≥=x f x f y 和直线

)(,b a b x a x <==及x 轴所围平面图形绕x 轴旋转一周所形

成的旋转体,如图所示。则该旋转体的体积V 可由下式求出:

.)()(22

dx x f dx x f V b

a

b

a

x ??==ππ

同理,若立体是由连续曲线)(y x ?= )0)((≥y ?和直线

)(,d c d y c y <==及y 轴所围平面图形绕y 轴旋转一周

所成的旋转体,如图所示,则该旋转体的体积y V 可由下式求出:

??==d

c

d c

y dy y dy y V )()(22?ππ?.

【历年试题选编】

选择题

x

) 图5.16

1、(0806)=+?

dx x )1(cos ( )

C x x A ++sin . C x x B ++-sin . C x x C ++c o s . C x xx

D ++-cos . 答案:A 。

分析: 利用不定积分性质和公式即得。 2、(0907)若

C e dx e x f x x +=?

2

2)(,则=)(x f ( )

x A 2. 2.x B 2

.x e C 1.D

答案:A . 利用不定积分性质即得。

3、(1005)=?dx 41

( )

4、(0807)

=?-dx x 1

15

( )

2.-A 1.-B 0.C D .1 答案:C .

分析:因为5

x 为奇函数。

5、(0906)=+?dx x dx d 10211

( )

2

1.

x dx A + 2

11.

x B + 4

.

π

C 0.

D 答案:D .

分析:因为定积分的值是一个常数。 6、(1007)已知dt t x F x

?

+=

21)(,则=)('x F ( )

212.x x A + 11.2++x B 21.x C + 11.2-+x D

答案:C .

填空题

7、(0817)

_______)(03

=+?dt t t dx

d x . 答案:x x +3

8、(0918)_________3

=?

dx e x 。

9、(1018)

_________cos 2

sin =?

xdx e x π

10、(1017)__________1

=?dx e x 。

答案:C e

x

+--。

计算题

11、(0823)计算?

xdx 5sin 。

12、(0923)计算?dx .

13、(1023)计算dx xe x ?

2

.

14、(0827)(1)求曲线x

e y =及直线0,0,1===y x x 所围成的图形D 所示的面积S ;

(2)求平面图形D 绕轴转一周所形成旋转体的体积V 。

15、(0927)(1)求在区间],0[π上的曲线x y sin =与x 轴所围成图形的面积S ; (2)求(1)中的平面图形绕轴旋转一周所得旋转体的体积V 。

第三章 一元函数积分学

第三章 一元函数积分学 一.不定积分 例1:设2 ln )1(22 2 -=-x x x f ,且x x f ln )]([=?,求?dx x )(?(答案: C x x +-+1ln 2) 例2:已知 x x sin 是)(x f 的一个原函数,求?dx x f x )('3(答案: C x x x x x +--cos 6sin 4cos 2) 例3:设???>≤=0 ,sin ,)(2x x x x x f ,求?dx x f )( 例4:设)(x F 是)(x f 的一个原函数,π4 2 )1(= F ,若当0>x 时,有) 1(arctan )()(x x x x F x f += ,求)(x f 。(答案:) 1(21)(x x x f += ) 例5:求? dx x x )1,,max(23 例6:求?dx e e x x 2arctan 二.定积分 例1:求极限?? ? ??+++++∞→n n n n 212111lim 例 2:设)(x f 在]1,0[上连续,且 )(1 =?dx x f ,试证明存在 0)1()()1,0(=-+∈ξξξf f 使。 例3:已知)0()1ln()(1 >+= ?x dt t t x f x ,求??? ??+x f x f 1)((答案:x 2ln 21)

例4:设函数)(x f 连续,且,arctan 21)2(2 0x dt t x tf x =-?已知1)1(=f ,求?2 1 )(dx x f 的 值。(答案: 4 3 ) 例5:已知22110,1,ln ,sin )(>≤<≤≤?? ? ??=x x x x x x x f 求?=x dt t f x I 0)()( 例6:求积分?≥-= x x dt t x g t f x I 0 )0()()()(,其中当0≥x 时x x f =)(,而 ?? ?? ? ≥ <≤=220,0,sin )(π πx x x x g 例7:设)(x f 在],[b a 上连续,且0)(>x f ,证明 ? b a dx x f )(2)() (1 a b dx x f b a -≥? 例8:设)('x f 在]1,0[上连续,求证 ? ??? ?? ? ??≤1 1 010)(,)('max )(dx x f dx x f dx x f 例9:设)(x f 在]1,0[上连续,且0)(≥x f ,0)1(=f ,求证: 存在?= ∈ξ ξξ0 )()()1,0(dx x f f 使 例10:设)(x f 是在),(+∞-∞内的周期函数,周期为T ,并满足 )),,(,()()()1(为常数其中L y x y x L y f x f +∞-∞∈?-≤-; 0)()2(0 =?T dx x f 求证:LT x f T x 2 1 )(max ] ,0[≤ ∈ 例11:设函数)(x f 在],[b a 上具有连续的二阶导数,证明在),(b a 内存在一点ξ,使得 )('')(24 12)()(3 ξf a b b a f a b dx x f b a -+??? ??+-=?

专升本-一元函数积分学

第四章 一元函数积分学 不定积分部分 一.原函数的概念 例1.下列等式成立色是( ) ()()().;A f x dx f x '=? ()()().;B df x dx f x =? ()()(). ;d C f x dx f x dx =? ()()()..D d f x dx f x =? 例2.下列写法是否有误,为什么? ()1 .ln c dx e e x x +=?(c 为任意正常数) ()2 ).0(1 3 3 2 ≠+=?c c dx x x ()3 .arccos arcsin 12 c x c x dx dx x +-=+=-? 例3.下列积分结果正确吗? ()211sin .cos sin ;2x xdx x C =+?√ ()21 2sin .cos cos ;2x xdx x C =-+?√ ()1 3sin .cos cos 2.2 x xdx x C =-+?√ 例3说明不定积分的结果具有形式上的多样性。 二.直接积分法 利用不定积分的性质及基本积分表,我们就可以计算较简单的函数的积分,这种方法称做直接积分法. 例4.求().arctan 3 1111113 2 2 24 2 4 c x x dx dx dx dx x x x x x x x ++-= + +-= ++-= +???? 例5.求.sin 21 2cos 212cos 12sin 2 c x x xdx dx dx x dx x +-=-=-=???? 例6.求.tan 44422csc sin cos sin 2 222c x c xdx x dx x x dx +-===??? 例7.已知某个函数的导数是x x cos sin +,又知当2 π=x 时,这函数值为2,求 此函数. 解:因为() .sin cos cos sin c x x dx x x ++-=+?, 所以,可设().sin cos c x x x f ++-=

高等数学(复旦大学版)第十章_多元函数积分学(一)

第十章 多元函数积分学(Ⅰ) 一元函数积分学中,曾经用和式的极限来定义一元函数()f x 在区间[a,b]上的定积分,并且已经建立了定积分理论,本章我们将推广到多元函数,建立多元函数积分学理论。 第一节 二重积分 教学目的: 1、熟悉二重积分的概念; 2、了解二重积分的性质和几何意义,知道二重积分的中值定理; 3、掌握二重积分的(直角坐标、极坐标)计算方法; 4、能根据积分区域和被积函数正确选择积分顺序 教学重点: 1、二重积分的性质和几何意义; 2、二重积分在直角坐标系下的计算 教学难点: 1、二重积分的计算; 2、二重积分计算中的定限问题 教学容: 一、二重积分的概念 1. 曲顶柱体的体积 设有一立体, 它的底是xOy 面上的闭区域D , 它的侧面是以D 的边界曲线为准线而母线平行于z 轴的柱面, 它的顶是曲面z =f (x , y ), 这里f (x , y )≥0且在D 上连续. 这种立体叫做曲顶柱体. 现在我们来讨论如何计算曲顶柱体的体积. 首先, 用一组曲线网把D 分成n 个小区域?σ 1, ?σ 2, ? ? ? , ?σ n .分别以这些小闭区域的边界曲线为准线, 作母线平行于z 轴的柱面, 这些柱面把原来的曲顶柱体分为n 个细曲顶柱体. 在每个?σ i 中任取一点(ξ i , η i ), 以f (ξ i , η i )为高而底为?σ i 的平顶柱体的体积为 f (ξ i , η i ) ?σi (i =1, 2, ? ? ? , n ). 这个平顶柱体体积之和 i i i n i f V σηξ?≈=∑),(1 . 可以认为是整个曲顶柱体体积的近似值. 为求得曲顶柱体体积的精确值, 将分割加密, 只需取极限, 即 i i i n i f V σηξλ?==→∑),(lim 1 0. 其中λ是个小区域的直径中的最大值.

高等数学微积分复习题

第五章 一元函数积分学 1.基本要求 (1)理解原函数与不定积分的概念,熟记基本积分公式,掌握不定积分的基本性质。 (2)掌握两种积分换元法,特别是第一类换元积分法(凑微分法)。 (3)掌握分部积分法,理解常微分方程的概念,会解可分离变量的微分方程,牢记非齐次 线性微分方程的通解公式。 (4)理解定积分的概念和几何意义,掌握定积分的基本性质。 (5)会用微积分基本公式求解定积分。 (6)掌握定积分的凑微分法和分部积分法。 (7)知道广义积分的概念,并会求简单的广义积分。 (8)掌握定积分在几何及物理上的应用。特别是几何应用。 2.本章重点难点分析 (1) 本章重点:不定积分和定积分的概念及其计算;变上限积分求导公式和牛顿—莱布 尼茨公式;定积分的应用。 (2) 本章难点:求不定积分,定积分的应用。 重点难点分析:一元函数积分学是微积分学的一个重要组成部分,不定积分可看成是微分运算的逆运算,熟记基本积分公式,和不定积分的性质是求不定积分的关键,而定积分则源于曲边图形的面积计算等实际问题,理解定积分的概念并了解其几何意义是应用定积分的基础。 3.本章典型例题分析 例1:求不定积分sin3xdx ? 解:被积函数sin3x 是一个复合函数,它是由()sin f u u =和()3u x x ?==复合而成,因此,为了利用第一换元积分公式,我们将sin3x 变形为'1 sin 3sin 3(3)3x x x = ,故有 ' 111 sin 3sin 3(3)sin 3(3)3(cos )333 xdx x x dx xd x x u u C ===-+??? 1 3cos33 u x x C =-+ 例2:求不定积分 (0)a > 解:为了消去根式,利用三解恒等式2 2 sin cos 1t t +=,可令sin ()2 2 x a t t π π =- << ,则 cos a t ==,cos dx a dt =,因此,由第二换元积分法,所以积分 化为 2221cos 2cos cos cos 2 t a t a tdt a tdt a dt +=?==??? 2222cos 2(2)sin 22424a a a a dt td t t t C =+=++?? 2 (sin cos )2 a t t t C =++ 由于sin ()2 2 x a t t π π =- << ,所以sin x t a = ,arcsin(/)t x a =,利用直角三角形直接写

一元函数积分学的应用

一元函数积分学的应用 一元函数积分学研究的是研究函数的整体性态,一元函数积分的本质是计算函数中分划的参数趋于零时的极限。 一元积分主要分为不定积分 ?dx x f )(和定积分? b a dx x f )(。化为函数 图像具体来说,不定积分是已知导数求原函数,也就是说,把f(x)积分,不一定能得到F(x),因为F(x)+C 的导数也是f(x)(C 是任意常数)。所以f(x)积分的结果有无数个,是不确定的。而定积分就是求函数f(X)在区间[a,b]中图线下包围的面积,可以说是不定积分在给定区间的具体数值化。因为积分在其它方面应用时一般都有明确的区间,所以本文主要研究定积分的各种应用。 积分的应用十分巧妙便捷,能解决许多不直观、不规则的或是变化类型的问题。故其主要应用在数学上的几何问题和物理上的各种变量问题和公式的证明以及解决一些实际生活问题。 微元法建立积分表达式 在应用微积分于实际问题时,首先要建立积分表达式,一般情况下,只要具备都是给定区间上的非均匀连续分布的量和都具有对区间的可加性这两个条件就都可以用定积分来描述(以下的讨论都是建立在这两个条件下,因此不再提示此条件)。 而建立积分表达式的方法我们一般用微元法。其分为两个步骤:(1)任意分割区间[]b a ,为若干子区间,任取一个子区间[]dx x x +,,求Q

在该区间上局部量的Q ?的近似值dx x f dQ )(=;(2)以dx x f )(为被积式,在],[b a 上作积分即得总量Q 的精确值 ??==b a b a dx x f dQ Q )(。(分割,近似,求和,取极限) 在实际应用中,通过在子区间],[dx x x +上以“匀”代“非匀”或者把子区间],[dx x x +近似看成一点,用乘法所求得的近似值就可以作为Q ?所需要的近似值,即为所寻求的积分微元dx x f dQ )(= 。 定积分在几何中的应用 在几何中,定积分主要应用于平面图形的面积、平面曲线的弧长、已知平行截面面积函数的立体体积、旋转体的侧面积。下面我们来分类讨论: 一、 平面图形的面积 求图形面积是定积分最基本的应用,因为定积分的几何意义就是在给定区间内函数曲线与x 轴所围成图形的面积。而求面积时会出现两种情况:直角坐标情形和极坐标情形。 1、直角坐标情形 在求简单曲边图形(能让函数图像与之重合)的面时只要建立合适的直角坐标系,再使用微元法建立积分表达式,运用微积分基本公式计算定积分,便可求出平面图形的面积。如设曲 y O

一元函数积分知识点完整版

一元函数积分相关问题 前言: 考虑到学习的效率问题,我在本文献中常常会让一个知识点在分隔比较远的地方出现两次。这种方法可以让你在第二次遇到同样的知识点时顺便复习下这个知识点,同时第二次出现这个知识点时问题会稍微升华点,不做无用的重复。 一.考查原函数与不定积分的概念和基本性质 讲解:需要掌握原函数与不定积分的定义、原函数与不定积分的关系,知道求不定积分与求微分是互逆的关系,理解不定积分的线性性质。 问题1: 若)(x f 的导函数是x sin ,则所有可能成为)(x f 的原函数的函数是_______。 二.考查定积分的概念和基本性质 讲解:需要掌握定积分的定义与几何意义,了解可积的充分条件和必要条件,掌握定积分的基本性质。 定积分的基本性质有如下七点: 1、线性性质 2、对区间的可加性 3、改变有限个点的函数值不会改变定积分的可积性与积分值 4、比较定理(及其三个推论) 5、积分中值定理 6、连续非负函数的积分性质 7、设)(x f 在],[b a 上连续,若在],[b a 的任意子区间],[d c 上总是有 ? =d c dx x f 0)(,则当 ],[b a x ∈时,0)(≡x f 问题2: 设? = 2 )sin(sin π dx x M ,?=20 )cos(cos π dx x N ,则有() (A )N M <<1 (B )1<

分的关系,了解初等函数在定义域内一定存在原函数但不一定能积出来,需要重点掌握牛顿—莱布尼兹公式及其推广。 其中变限积分的求导方法为: 设)(x f 在],[b a 上连续,)(x ?和)(x ψ在],[βα上可导,当],[βα∈x 时, b x x a ≤≤)(),(ψ?,则? =) () ()(x x dt t f y ?ψ在],[βα上可以对x 求导,且 )('))(()('))((x x f x x f dx dy ψψ??-= 牛顿—莱布尼兹定理为: 设)(x f 在],[b a 上连续,)(x F 是)(x f 在],[b a 上的一个原函数,则 )()()(a F b F dx x f b a -=? 问题3: 已知 ? +=) 1ln(2)(x x t dt e t x f ,求)('x f )0(≥x 四.考查奇偶函数和周期函数的积分性质 讲解:需要掌握对称区间上奇偶函数的定积分性质、周期函数的积分性质,学会用性质化简积分。 问题4: 设)(x f 在]1,0[上连续, A dx x f =? 2 )cos (π ,则==? π 20 )cos (dx x f I _______。 五.利用定积分的定义求某些数列极限 讲解:需要掌握把某些和项数列和积项数列求极限的问题转化为求解定积分的方法。关键是确定被积函数、积分区间及区间的分点。 常见的情形有: ∑? =∞ →--+ =n i n b a n a b n a b i a f dx x f 1))((lim )( ∑? =∞ →---+ =n i n b a n a b n a b i a f dx x f 1 )))(1((lim )( 问题5: 求∑ =∞ →+=n i n i n n i n w 1 2tan lim 六.考察基本积分表 讲解:需要掌握基本初等函数的积分公式。 七.考察分项积分方法

自考高等数学(一)第五章 一元函数积分学.

第五章一元函数积分学 5.1 原函数和不定积分的概念 一、原函数与不定积分的概念 定义:如果在区间I内,存在可导函数F(x)使都有F'(x)=f(x)或dF(x)=f(x)dx,那么函数F(x)就称为f(x)在区间I内原函数。 例:,sinx是cosx的原函数。 Lnx是在区间(0,+∞)内的原函数。 原函数存在定理:

如果函数f(x)在区间I内连续,那么在区间I内存在可导函数F(x),使,都有F'(x)=f(x)。 简言之:连续函数一定有原函数。 问题:(1)原函数是否唯一? (2)若不唯一它们之间有什么联系? 例:(sinx)'=cosx (sinx+C)'=cosx (C为任意常数) 关于原函数的说明: (1)若F'(x)=f(x),则对于任意常数C,F(x)+C都是f(x)的原函数。 (2)若F(x)和G(x)都是f(x)的原函数,则F(x)-G(x)=C(C为任意常数) 证∵[F(x)-G(x)] '=F'(x)-G'(x) =f(x)=f(x)=0 ∴F(x)-G(x)=C(C为任意常数) 不定积分的定义: 函数f(x)的全体原函数的集合称f(x)的不定积分,记为∫f(x)dx。 ,其中∫为“积分号”,f(x)为被积函数,f(x)dx为被积表达式,C为任意常数。

例:求。 【答疑编号11050101】 解: 例:求。 【答疑编号11050102】 解: 积分曲线 例设曲线通过点(1,2),且其上任一点处的切线斜率等于这点横坐标的两倍,求此曲线方程。

【答疑编号11050103】 解:设曲线方程为y=f(x), 根据题意知 即f(x)是2x的一个原函数。 由曲线通过点(1,2) 所求曲线方程为y =x2+1。 函数f(x)的原函数的图形称为f(x)的积分曲线。显然,求不定积分得到一积分曲线族。 不定积分的性质

第三章-一元函数积分学

第三章 一元函数积分学 §3-1 不定积分 不定积分是计算定积分、重积分、线面积分和解微分方程的基础,要求在掌握基本积分法的基础上,更要注重和提高计算的技巧。 一、基本概念与公式 1. 原函数与不定积分的概念 2. 不定积分与微分的关系(互为逆运算) 3. 不定积分的性质 4.基本积分表 2222 22 312 22 3 2max{1}d .,1 max{1,}1,11, , 111max{1,}d d 3 11max{1,}d 1d 11 max{1,}d d . 3x x x x x x x x x x x x x x C x x x x x C x x x x x x C ?<-? =-≤≤??>?<-==+-≤≤==+>==+???????1求,因 当时 ;当时 ; 当时 例解 ()()3111321 11232 31lim lim 3,1lim lim 323 ,232 133 max{1,}d 1 1.2 1 33 x x x x x C x C x C x C C C C C x C x x x x C x x C x -+ - +→-→-→→??? +=+ ????? ? ???+=+ ?????? =-+??? ?=+?? ?-+<-???=+-≤≤???++>?? ? 由原函数的连续性,有 得 故 ,,,

二、不定积分的基本方法 1. 第一类换元法(凑微分法) ()d ()[()]d []d [].f u u F u C f x x x f x x F x C ?????=+'()=()()=()+???若,则 2. 第二类换元法 ()10[]()()d []d ()[]. x t t x x t t f t t G t f x x f t t t G t C G x C ?????????-1=() =-''=()()≠()()'()()=+()+? ? 令代回 若是单调可导函数,且,又具有原函数,则有换元公式 3. 分部积分法 ()()d ()()()()d d d . u x v x x u x v x u x v x x u v uv v u ''=-=-????或 4. 有理函数的积分法 化有理真分式为部分分式. 5. 三角函数有理式的积分 (sin cos )d ()tan 2 R x x x R u v u v x t =?对于,(其中,表示关于,的有理函数),可用“万能代换”化为有理函数的积分. 三、题解示例

高数2016寒假训练试卷一(一元函数微积分学与微分方程)答案

淮安现代教育2016年“专转本”高等数学寒假训练试卷一参考答案(一元函数微积分学与微分方程) 一、单项选择题(本大题共6小题,每小题4分,满分24分) 1、( B ) 2、( B ) 3、( C ) 4、( A ) 5、( C ) 6、( D ) 二、填空题(本大题共6小题,每小题4分,满分24分) 7、2ln 2 8、-2 9、-2 10、2 2sin x x dx - 11、1266 (cos sin )22 x y e C x C x =+ 12、 2π (注:原题须修改为 ( ) 2 2 201322arctan 4-+-? dx x x x ) 三、解答题(本大题共8小题,每小题8分,满分64分) 13、求极限:2 03 arcsin lim ln(1)tan(121) x x tdt x x →---? 解:原式2 03arcsin lim 41()(2) 2 x x tdt x x →'=-?-? 223300arcsin 211lim lim 8422x x x x x x x x →→??'=== 14、设函数)(x y y =由参数方程2 arctan ln(1) x t y t =??=+?确定,求2 2,dx y d dx dy 解:22 211124t dy dt t dx dt t dy t dx ++' == = 2 22 21 122(1)8t d y t dx +'==+ 15、求曲线1y y xe -=在点()0,1处的切线方程 解:方程两边对x 求导得: 0, 51y y y y e y e xe y y xe ''''--?==- 切线斜率01 x y k y e ==' == , 则切线方程为:1y e x -=?,即:108ex y '-+= 16、设x y x =,求dy dx 解: ln 2x x x y x e '== ,()ln 1ln ln 18x x x dy e x x x x dx x ??'=+?=+ ?? ? 17、求微分方程()2 2210x dy xy x dx +-+=的通解 解:原方程可化为:2221 2x y y x x -'+ = , 所以 通解22 2 216dx dx x x x y e e dx C x -??-??'=+ ???? ()222118-'=-+=-+ C x x x C x x 18、计算不定积分2 cos x xdx ? 解:2cos x xdx ?2222 (sin )sin sin ()sin 2sin 4x d x x x xd x x x x xdx '==-=-??? 22 sin 2(cos )sin 2(cos cos )x x xd x x x x x xdx =+=+-?? 2 sin 2cos 2sin 8x x x x x C '=+-+ 19、计算定积分 52 31 dx x +-? 解:令1x t -= ,则2 1,22x t dx tdt '=+= 5 222 121123 5 52(1)2[3l n (3)] 26l n 8 334 31''==-=-+=-+++-??? dx tdt dt t t t t x 20、利用函数的单调性证明不等式: 当0x >时,(1)ln(1)arctan x x x ++> 证明:令()(1)ln(1)arctan 2f x x x x '=++- ,()2 22 11ln(1)ln(1)4111x x f x x x x x x +''=++-=+++++ 当0>x 时,()0f x '>,于是()f x 在()0,+∞内单调递增,且()f x ∞在[0,+)内连续, 所以()()00>=f x f ,因而有(1)(1)arctan 8x ln x x '++> 四、证明题(本大题共2小题,每小题9分,满分18分) 21、证明:方程4 410x x -+=有且仅有一个小于1的正实根 证明:(1)存在性:令4 ()41f x x x =-+,则()f x 在[0,1]上连续2' ()()010,120f f =>=-<,由零点定理知,()()0,10f ?∈=ξξ使 即方程4 410x x -+=有小于1的正实根5ξ' (2)唯一性:4 ()41f x x x =-+ ,()33 0,1()44=410x f x x x '∈=--当时,()<7' ()f x ∴在[0,1]上单调减少,故()0f x =在[0,1]上最多有一个实根

一元函数积分知识点完整版

一元函数积分知识点完整版

牛顿—莱布尼兹定理为: 设)(x f 在],[b a 上连续,)(x F 是)(x f 在],[b a 上的一个原函数,则 )()()(a F b F dx x f b a -=? 问题3: 已知?+=) 1ln(2)(x x t dt e t x f ,求)('x f )0(≥x 一.考查奇偶函数和周期函数的积分性质 讲解:需要掌握对称区间上奇偶函数的定积分性质、周期函数的积分性质,学会用性质化简积分。 问题4: 设)(x f 在 ]1,0[上连续,A dx x f =?20)cos (π,则 ==?π 20)cos (dx x f I _______。 二.利用定积分的定义求某些数列极限 讲解:需要掌握把某些和项数列和积项数列求极限的问题转化为求解定积分的方法。关键是确定被积函数、积分区间及区间的分点。 常见的情形有: ∑?=∞→--+=n i n b a n a b n a b i a f dx x f 1))((lim )( ∑?=∞→---+=n i n b a n a b n a b i a f dx x f 1 )))(1((lim )( 问题5:

求∑=∞→+=n i n i n n i n w 12tan lim 三.考察基本积分表 讲解:需要掌握基本初等函数的积分公式。 四.考察分项积分方法 讲解:利用不定积分(定积分)线性性质把复杂函数分解成几个简单函数的和,再求积分。 问题6: 求下列不定积分: dx x x ?++2cos 1cos 12 五.考察定积分的分段积分方法 讲解:利用定积分的区间可加性把复杂的区间分解成几个简单区间的和,再求积分。 问题7: 计算以下定积分: {}?-+22cos ,5.0min )1(ππdx x x 六.考察不定积分的分段积分方法 讲解:有时被积函数是用分段函数的形式表示的,这时应该采用分段积分法。 问题8:

高数一元函数积分学习题及答案

第四章 不定积分 一、是非题: 1.已知()211 arcsin x x -='π+,则?π+=-x dx x arcsin 112. 错 2. 连续函数的原函数一定存在. 对 3. ()()?? =dx x f d dx x f dx d . 错 4. ax y ln =和x y ln =是同一函数的原函数. 对 ()2x x e e y -+=和()2x x e e y --=是同一函数的原函数. 对 5. ()()??=dx x f k dx x kf (k 是常数) 错 二、填空题: 1.()()? ='dx x f x f (C x f +)(ln ). 2.()?=''dx x f x (()C x f x f x x f xd +-'='? )()( ). 3.知()()?+=C x F dx x f ,则()?=+dx b ax f (C b ax F a ++)(1),b a ,为常数. 4.已知 ()?+=C e dx x f x ,则()=??dx x x f sin cos ( C e x +-cos ). 5.已知()[]x dx x f sin ='?,则()=x f (x sin ). 6. 设()x f 、()x f '连续,则() ()[]=+'?dx x f x f 21([]C x f +)(arctan ). 7. 设()x f 的一个原函数为x e -,则()ln f x dx x =?( 1C x + ). 8. 函数(21ln(1)2x C ++)是2 1x x +的原函数. 9. 设()x f x e =,则()ln f x dx x '=?(x C +). 三、选择填空: 1.已知()x F 是()x f 的一个原函数,C 为任意常数,下列等式能成立的是( a ) a .()()?+=C x F x dF b .()()? ='x F dx x F

《高等数学》(上)一元函数微分学复习题

《高等数学》(上)“一元函数微分学”复习题 1.设x x f +=1)(ln ,求)(x f '. 2.设函数)(x f 二阶可导,且0)0(=f ,1)0(='f ,2)0(=''f ,求20)(lim x x x f x -→. 3.设)(x f 在2=x 处连续,且22)(lim 2=-→x x f x ,求)2(f '. 4.若)(sin x f y =,求dy . 5.若函数)(x f 可导,)(sin 2x f y =则 dx dy 为多少? 6.设函数)1ln()(2x x f -=,求)(x f ''. 7.求等边曲线x y 1=在点2) ,2 1(的切线方程. 8.设函数???≥+<=0 ),1ln(0,sin )(x x x x x f ,求)0(-'f 、)0(+'f ,并判断)0(f '是否存在. 9.确定常数a ,b 使函数? ??>-≤+=0,0,13sin )(x b ae x x x f x 在0=x 处可导. 10.求曲线???==t y t x sin 2cos 在3π=t 处的切线方程和法线方程. 11.求由方程0=-+e xy e y 所确定的隐函数的微分dy . 12.设函数x x x y ?? ? ??+=1,求其导数y '. 13.设曲线的参数方程为?????==-t t e y e x 23,求22dx y d . 14.求由方程12 2=-y x 所确立的隐函数)(x y y =的二阶导数22dx y d . 15.设函数)(x f y =由方程4ln 2y x xy =+确定,求() 1,1dx dy . 16.求椭圆442 2=+y x 在点()2,0处的二阶导数22dx y d . 17.设()3,1是曲线2 3bx ax y +=的拐点,求b a ,.

成人高考一元函数积分学整理.

一元函数积分学 【知识要点】 1、理解原函数与不定积分的概念及其关系,掌握不定积分的性质。 2、熟练掌握不定积分的基本公式。 3、熟练掌握不定积分第一换元法,掌握第二换元法(仅限三角代换与简单的根式代换。 4、熟练掌握不定积分的分部积分法。 5、掌握简单有理函数不定积分的计算。 6、理解定积分的概念及其几何意义,了解函数可积的条件 7、掌握定积分的基本性质 8、理解变上限积分是变上限的函数,掌握对变上限积分求导数的方法。 9、熟练掌握牛顿—莱布尼茨公式。 10、掌握定积分的换元积分法与分部积分法。 11、 . 理解无穷区间的广义积分的概念,掌握其计算方法。 12、掌握直角坐标系下用定积分计算平面图形的面积以及平面图形绕坐标轴旋转所生成的旋转体的体积。 1不定积分 定义函数 (x f 的全体原函数称为函数 (x f 的不定积分 , 记作?dx x f (, 并称?微积分号, 函数 (x f 为被积函数, dx x f (为被积表达式, x 为积分变量。因此 ? +=C x F dx x f ( (, 其中 (x F 是 (x f 的一个原函数, C 为任意常数(积分常数。基本积分公式(要求熟练记忆 (1 ?=C dx 0 (2 1(1

11 -≠++=+?a C x a dx x a a . (3 C x dx x +=? ln 1. (4 C a a dx a x x += ?ln 1 1, 0(≠>a a (5 C e dx e x x +=? (6 ?+-=C x xdx cos sin (7 ?+=C x xdx sin cos (8 C x x +=?tan cos 1 2 . (9 C x x +-=?cot sin 1

一元函数积分学在经济中的应用(1)

一元函数积分学在经济中的应用 一、导数在经济分析中的应用 (一)边际成本 总成本函数的导数称为边际成本。 边际成本是指在一定产量水平下,增加或减少一个单位产量所引起成本总额的变动数,用以判断增减产量在经济上是否合算。它是在管理会计和经营决策中常用的名词。当产量未达到一定限度时,边际成本随产量的扩大而递减,但当产量超越一定限度时,就转而递增。因此,当增加一个单位产量所增加的收入高于边际成本时,是合算的;反之,是不合算的。因此计算边际成本等于边际收入时,为企业获得其最大利润的产量。通过确定边际成本来提供经营决策所需资料的成本决策,称为边际成本计算。在实际工作中,边际成本计算常只按变动成本计算。 (二)边际收益 总收益函数的导数称为边际收益。 它表示销售一个单位产品后,再销售一个单位的产品所增加的收益。它可以是正值或负值。边际收益是厂商分析中的重要概念。利润最大化的一个必要条件是边际收益等于边际成本。在完全竞争条件下,任何厂商的产量变化都不会影响价格水平,需求弹性对个别厂商来说是无限的,总收益随销售量增加同比例增加,边际收益等于平均收益,等于价格。在非完全竞争)条件下,厂商的销售量同价格成反比。如果需求弹性大于1,即售量的增加的百分比,快于价格降低的百分比,总收益随销售量增加而增加,尽管不是同比例增加,平均收益下降,边际收益为零;如果需求弹性小于1,这时总收益随销售量增加而减少,平均收益更快下降,边际收益为负数。 (三)边际利润 总利润函数的导数称为边际利润。它表示:若已经生产了x个单位的产品,再生产多一个单位的产品总利润的增加量。 边际利润是反映增加产品的销售量能为企业增加的收益。销售单价扣除边际成本即为边际利润,边际利润是指增加单位产量所增加的利润。企业的经营收益减去会计成本,所得到的就是会计利润。按照我国的财会制度,有销售利润、利润总额及税后利润等概念。销售利润是销售收入扣除成本、费用和各种流转税及附加费后的余额;利润总额是企业在一定时期内实现盈亏的总额;税后利润是企业利润总额扣除应缴所得税后的利润。 一般情况下,总利润函数等于总收益函数与总成本函数之差,则边际利润是边际收益与边际成本之差。 二、函数在经济学中的应用。 需求函数。在经济管理中,需求函数是用来表示一种商品的需求数量和影响该需求数量的各种因素之间的相互关系的。也就是说,影响需求数量的各种因素是自变量,需求数量是因变量。需求函数是单调减少函数。 供给函数。供给函数表示一种商品的供给量和该商品的价格之间存在着一一对应的关系。 均衡价格。均衡价格是指一种商品的需求价格和供给价格相一致时的价格,也就是这种商品的市场需求曲线与市场供给曲线相交时的价格。

高等数学讲义-- 一元函数微分学

24 第二章 一元函数微分学 §2.1 导数与微分 (甲)内容要点 一、导数与微分概念 1、导数的定义 设函数)(x f y =在点0x 的某领域内有定义,自变量x 在0x 处有增量x ?,相应地函数增量)()(00x f x x f y -?+=?。如果极限 x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000 存在,则称此极限值为函数)(x f 在0x 处的导数(也称微商),记作0()f x ',或0 x x y =' , x x dx dy =, )(x x dx x df =等,并称函数)(x f y =在点0x 处可导。如果上面的极限不存在,则 称函数)(x f y =在点0x 处不可导。 导数定义的另一等价形式,令x x x ?+=0,0x x x -=?,则 0000 ()() ()l i m x x f x f x f x x x →-'= - 我们也引进单侧导数概念。 右导数:0 000000()()()() ()lim lim x x x f x f x f x x f x f x x x x + + +→?→-+?-'==-? 左导数:0 000000()()()() ()lim lim x x x f x f x f x x f x f x x x x - - -→?→-+?-'==-? 则有 )(x f 在点0x 处可导)(x f ?在点0x 处左、右导数皆存在且相等。 2.导数的几何意义与物理意义 如果函数)(x f y =在点0x 处导数0()f x '存在,则在几何上0()f x '表示曲线)(x f y =在点()(,00x f x )处的切线的斜率。 切线方程:000()()()y f x f x x x '-=-

第三章一元函数积分学(下)

1 分析:如果构造函数 F(x) =xf(x) - % f(t)dt ,想用零点定理证明该结论,由于只能得到 F(0)F(1)冬0,无法证明F(x)在区间的端点处函数值异号,故应选择用罗尔定理证明?利 i i 用罗尔定理证明困难在于找辅助函数,只要注意到 x f (t )dt -Xf (X )二[X x f (t)dt 「,辅助 函数便可以得到了. i 证明:令 F(x) =x f (t)dt ,贝V F(x)在区间[0,1]上连续,在区间(0, 1)内可导,且F(0) = F(1) = 0,所以根据罗尔定 1 理可得:至少存在一点 x^ (0,1),使得F'(X 0)= 0,艮卩x 0f(x °) = f f (t)dt ? 所以存在x^ (0,1),使得在[0,沧]上以f(x 。)为高的矩形面积,等于在区间 [x °,1] 上 以y = f (x)为曲边的曲边梯形的面积. IV 已知被积函数有高阶导数,且最高阶导数连续的积分等式的证明 此种类型的积分等式一般用泰勒公式证明?解题一般思路:①对变上限定积分 F(x)二 x .f (t)dt 在适当的点(由已知条件或所证结论的形式来确定)泰勒展开;②令展开式中的 a 变量分别取积分等式中的积分的上下限, 得到两个关系式;③对上述关系式进行适当的运算 推出所证结论. [例3232]设f(x)在[a,b ]上具有连续的二阶导数, 试证在(a,b)内存在一点 ,使得 a + b 1 3 u f(x)dx = (b-a)f(_2b) 24(b-a)3f (). x 分析:由于被积函数具有连续的二阶导数, 所以F(x) f(t)dt 在[a,b ]上具有三阶导数, a 于是将F(x)展开成二阶泰勒公式,根据结论的特点,应将 x a + b 证明:将函数 F( xr a f(t)dt 在点 1 处展开为二阶泰勒公式,则 F (x)在 X 。二

《高等数学》(上)一元函数积分学复习题(1)

《高等数学》(上)“一元函数积分学”复习题 1.求不定积分?dx x x 3cos sin . 2.求不定积分?+dx x x x 2)ln (ln 1. 3.求不定积分?-dx x x 2 2 1)(arcsin . 4..求不定积分?xdx 3sin . 5.求不定积分?+dx x 211 . 6.求不定积分?-dx x x 21. 7.求不定积分?-dx x x 92. 8.求不定积分?xdx x ln 2 9.求定积分? π20sin dx x . 10.求定积分?-+123)511(1dx x . 11.定积分?++4 01 22dx x x . 12.求定积分?--1145dx x x . 13.求定积分?+4 094dx e x . 14.求定积分?-121 221dx x x . 15.求定积分 ?21cos π xdx x . 16.求定积分?e xdx x 1ln . 17.若C e dx e x f x x +-=?--1 1 )(,则)(x f 等于多少? 18.求?''dx x f x )(. 19.已知)(x f 的一个原函数为x 2ln ,求?'dx x f x )(. 20.设函数? =x x dt t f x F ln 1)()(,求)(x F '. 21.设函数? +=32411)(x x dt t x F ,求)(x F '. 22.计算极限x dt e x x x t x --?→002sin lim . 23.当k 为何值时,反常积分dx x x k ?+∞ 2) (ln 1收敛?当k 为何值时,这反常积分发散? 24.求由曲线x y 1=与直线x y =及2=x 所围成图形的面积. 25.求由曲线2,32x y x y =+=所围成图形的面积.

[考研类试卷]考研数学二(一元函数积分概念、计算及应用)模拟试卷6.doc

[考研类试卷]考研数学二(一元函数积分概念、计算及应用)模拟试卷 6 一、选择题 下列每题给出的四个选项中,只有一个选项符合题目要求。 1 函数F(x)=∫x x+2πf(t)dt,其中f(t)=(1+sin2t)cos2t,则F(x) (A)为正数. (B)为负数. (C)恒为零. (D)不是常数. 2 设常数α>0,,则 (A)I1>I2. (B)I1<I2. (C)I1=I2. (D)I1与I2的大小与α的取值有关. 二、填空题 3 若f(x)的导函数是sinx,则f(x)的原函数是________. 4 =________. 5 =________.

6 设y=f(x)满足△y=△x+o(△x),且f(0)=0,则∫01f(x)dx=________. 7 =________. 三、解答题 解答应写出文字说明、证明过程或演算步骤。 8 n为自然数,证明: 9 求下列不定积分: 10 求I n=sin n xdx和J n=cos n xdx,n=0,1,2,3,…. 11 求下列定积分:(Ⅰ) I=(Ⅱ) J=sin2xarctane x dx. 12 已知抛物线y=ax2+bx+c经过点P(1,2),且在该点与圆 相切,有相同的曲率半径和凹凸性,求常数a,b,c. 13 在x轴上有一线密度为常数μ,长度为l的细杆,在杆的延长线上离杆右端为a 处有一质量为m的质点P,求证:质点与杆间的引力为F=(M为杆的质量).

14 计算下列不定积分: 15 假定所涉及的反常积分(广义积分)收敛,证明:∫-∞+∞f(x-)dx=∫-∞+∞f(x)dx. (*) 16 设f(x)=∫0x dt,求f'(x). 17 求曲线r=的全长. 18 求由曲线F:x=a(t-sint),y=a(1-cost)(0≤t≤2π)及y=0所围图形绕Ox轴旋转所成立体的体积. 19 求由曲线x2=ay与y2=ax(a>0)所围平面图形的质心(形心)(如图 3.34). 20 设f(x)在(-∞,+∞)连续,以T为周期,令F(x)=∫0x f(t)dt,求证:(Ⅰ)F(x)一定能表示成:F(x)=kx+φ(x),其中k为某常数,φ(x)是以T为周期的周期函数; (Ⅱ)(Ⅲ)若又有f(x)≥0(x∈(-∞,+∞)),凡为自然 数,则当nT≤x<(n+1)T时,有n∫0T f(x)dx≤∫0x f(t)dt<(n+1)∫0T f(x)dx. 21 求

相关主题