搜档网
当前位置:搜档网 › 对二甲苯PX生产工艺

对二甲苯PX生产工艺

对二甲苯PX生产工艺
对二甲苯PX生产工艺

对二甲苯PX生产工艺

一、选择性甲苯歧化工艺

20世纪80年代中到末期美孚公司(现在的埃克森美孚公司)开发了一种选择性甲苯歧化工艺(MSTDP),使用择形催化剂生产富对二甲苯的二甲苯产品。埃克森美孚已向世界的一些生产装置(如科克和信任公司)出售了该技术的专利许可证,近来它停止提供MSTDP工艺许可证,但继续提供其普通甲苯歧化工+艺的技术许可证。埃克森美孚开发了一种更新的甲苯歧化工艺,称为PxMax,近来向韩国LG-加德士出售了该项技术的专利许可证。UOP公司从1997年就提供自己的选择性甲苯歧化技术专利许可,该技术称为PXPlus。更晚些时候,GTC公司(福斯特惠勒的子公司)得到了出售印度石化公司选择性甲苯歧化工艺GT-STDP的排他权力。

(1)埃克森美孚的PxMax工艺。使用MTPX催化剂的PxMax工艺于1996年首次在美国路易斯安那州的一家炼油厂实现工业化,另一套装置在埃克森美孚位于得州贝汤和博芒特的化工厂投产。工艺流程与MSTDP相似,只是催化剂不同。埃克森美孚申请了许多关于其HZSM-5催化剂的专利。最有希望的分子筛催化剂似乎要用沉积的二氧化硅活化,并在转化条件下用含二氧化硅的对二甲苯高效选择性试剂处理。 硅胶改性的HZSM-5催化剂(含5%-10%Si02/HZSM-5),在甲苯转化率为20%--25%时,对二甲苯的选择性大约为98%。沉积在沸石表面的硅酸盐涂层降低了表面活性,而提高了择形性。一般认为MTPX的优点是反应物基本无法接近外表面的酸性中心。催化剂外表面的酸性中心可以将催化剂孔中的对二甲苯重新异构化为与其他两种异构体的平衡混合物,从而将二甲苯中对二甲苯的含量减少到24%。通过减少催化剂孔中对二甲苯与这些酸性中心的接近,就可以得到相对高含量的对二甲苯。MTPX催化剂通过用对二甲苯高效选择性试剂对表面酸性中心进行化学改性,阻碍了对二甲苯与这些外部酸性中心的接触。 埃克森美孚公司的专利数据表明,随温度升高,对二甲苯的选择性降低,甲苯转化率提高;随重时空速(WHSV)提高,甲苯转化率降低,对二甲苯的选择性提高;随氢/烃比提高,甲苯转化率降低,而对二甲苯选择性提高。进一步改进的MTPX催化剂可以降低不需要的副

产物,主要是降低乙苯生成量。这是通过增加催化剂加氢或脱氢功能实现的,例如可以加入铂(0.01%-2%)等金属化合物。专利表明,当每10%的Si02/HZSM-5加入0.25%铂时,乙苯生成量可减少3-4倍,而对二甲苯的选择性仍保持在98%以上。此外C9芳烃的生成量也可减少3倍。这种PxMax工艺可提供高效转化,减少了邻位和问位异构体的生成,有利于生成更多的对二甲苯产品。专利中大部分例子表明,PxMax工艺反应器温度稍高于MSTDP工艺(440-443℃),WHSV和氢/烃比都非常相似。甲苯的转化率明显低于MSTDP工艺,但对二甲苯的选择性较高。预计PxMax的流程与MSTDP工艺相近,老的MSTDP装置可以改造使用MTPX催化剂。

(2)UOP的PXPlus工艺。UOP的PXPlus工艺在1998年末实现工业化。该工艺与美孚的MSTDP无论在操作上、还是在流程上都很相似。这种PX工艺也是用于同时需要大量苯与对二甲苯的情况。与UOP的Tatory工艺不同,PX Plus和MSTDP工艺不支持会降低苯收率的甲苯和C9芳烃之间的烷基转移反应。当与Raytheon/Niro结晶技术一起应用时,这项技术被称为PXPlusXP工艺。UOP称该工艺可制得对二甲苯含量高于80%,甚至高到90%的混合二甲苯,而普通甲苯歧化的平衡值对二甲苯只有25%。在甲苯转化率为30%时,该工艺单程轻组分产率小于2%。

一套独立的PXPlus装置包括苯、甲苯塔和一套单段的结晶回收装置。与UOP的Tatoray工艺相比,PX Plus的工艺流程相对简单。新鲜的甲苯与来自甲苯塔的循环甲苯和循环富氢物流混合,进料用反应器流出物预热,然后通过固定床加热器,升高至所要求的反应温度。热进料进入一台固定床反应器,该反应器可以是下流式,也可以是径流式设计。出自进料/产物换热器的反应产物被冷却和冷凝,并送到气液分离器。来自分离器的气体含有循环氢,需排放一部分气体物料,以阻止惰性物质的积累,补充一部分新鲜氢气,以保持氢气的高纯度。分离器液体被送到汽提塔,通过汽提副产轻组分使产品稳定。被稳定的塔底产品送至苯和甲苯分馏塔。从苯塔塔顶回收高纯度苯。第二塔的塔顶产品含有甲苯,循环至装置的前端:甲苯塔塔底含有二甲苯(对二甲苯含量高达90%),被送到二甲苯再处理塔。该塔塔顶产物直接进入单段结晶器,在一套独立的装置中回收对二甲苯产品。如果PX Plus是一套大型的芳烃联合企业的一部分,浓缩的对二甲苯可以由二甲苯再处理塔与新鲜的混合二甲苯及循环的异构物一起送到Parex吸附分离装置。

(3)埃克森美孚的MSTDP工艺

在选择性甲苯歧化(STDP)工艺中得到的富二甲苯产物可直

接送到单段结晶或一套小型的Parex装置回收高纯度对二甲苯产品。但这套装置也产生不需要的混合二甲苯,此外还产生大量的苯,苯与二甲苯的质量比接近1.0。每种工艺都有自己的优势。STDP工艺可从甲苯原料提供高浓度对二甲苯物料(大于80%)和大量的苯副产物;普通甲苯歧化技术C9芳烃可以和甲苯一起加工,得到二甲苯的平衡混合物(对二甲苯含量大约为20%~25%),但苯副产物较少。普通甲苯歧化技术既应用了甲苯歧化反应,又利用了烷基转移反应。究竟选择何种工艺取决于用户的特殊需要。埃克森美孚的第一代甲苯歧化工艺是美孚的选择性甲苯歧化(MSTDP)工艺,该工艺生产的二甲苯一般含对二甲苯90%左右。高选择性的关键是一种经结焦预处理的ZSM-5催化剂。分子筛是一种择形催化剂,凭借表面孔大小、发生反应的内腔体积来控制化学反应。这些催化剂晶体结构的重要特点是,可以提供有选择性、有约束的入口和出口,通过规定孔体积和孔窗口提供结晶内的自由空间。与空间体积更大的间位和邻位异构体相比,对二甲苯更容易从经过预处理的催化剂孔中逃逸,其他两种异构体在催化剂孔内重新平衡,生成更多的对二甲苯。这种选择性的甲苯歧化工艺从1988年就在位于意大利杰拉的埃尼化学公司的装置进行工业化操作。其他MSTDP装置由埃克森(现在的埃克森美孚)和科克公司建设。

当使用选择甲苯歧化工艺时,甲苯转化率只有30%,增加了BTX 装置的物料处理量,但因为二甲苯物料中对二甲苯含量高,可以明显减少吸附或结晶装置的分离处理量。此外,从经济上考虑,没有必要再将少量的二甲苯其他异构体循环回异构化单元。工艺流程与选择性和非选择性甲苯歧化工艺相似。干燥的甲苯进料与循环气体一起用反应器流出物通过间接换热预热,然后用火焰加热器加热,再进入固定床反应器。反应器产物被冷却,再通过相分离器。大部分富氢气体循环,排放一小部分维持适当的氢分压。分离器的液体被稳定,除去小量的轻组分,并用白土处理除去小量烯烃。反应器条件因具体工艺不同而不同。普通甲苯歧化工艺的压力一般为4-4.5MPa,温度为320-500℃。MSTDP技术的操作压力一般为2.2-3.5MPa,温度为400-470℃。最初的预处理是在较高的温度和较低的压力下进行。

(4)从选择性甲苯歧化工艺产品回收对二甲苯。几种工业化的结晶技术都可用来从选择性甲苯歧化工艺的产品中回收对二甲苯。如上所述,这些产物的二甲苯含量较高,二甲苯含量高于70%的进料对于许多尚存在问题的分离技术都具有吸引力。①BEFSPROKEM的熔融静态结晶工艺。约翰布朗公司的一个部门BEFSPROKEM,开发了熔融静态结晶(MSC)一步法间歇操作工艺。重要的MSC设备是一台专为对二甲苯回收设计的结晶器。该结晶器包含用于加热和冷却的传热表面

和促使结晶固相和液相更好分离的专用内部构件。温度要降低到现有控制条件以下,以便形成大的结晶,最后形成一种结晶网或结晶床。取决于结晶器的设计和静态操作,液体部分没有机会发展,形成结晶的对二甲苯纯度接近100%。

含杂质的母液靠重力排出。这种母液可以在现有的吸附装置或结晶装置加工,或者直接作为混合二甲苯出售。当排放完成后,结晶器内的结晶网就好像传质塔中的填料。工艺的其他部分包括清除粘附在结晶上的杂质。排出的晶体用熔融的纯产品洗涤,稀释了包围晶体的液体膜内的杂质。这种结晶饼的纯度可以提高到规定值,并可以高达99.9%以上。工艺的最后一步是使晶体熔融,并将纯的对二甲苯排到产品罐;②苏尔寿化学技术公司的热泵结晶系统。热泵结晶系统是新开发的由二甲苯异构体混合物制纯对二甲苯技术。苏尔寿(Sulzer)公司称对二甲苯纯度可达99.95%,而且装置投资低、能耗和维修费用也低。苏尔寿设计的关键项目是热泵结晶器。这种结晶器可以在用液体致冷剂冷却和加热致冷剂蒸发两种操作模式间转换。两台结晶器是要求的最低限,如果装置规模大,也可以使用更多的结晶器。当一台结晶器作为蒸发器在结晶模式下操作时,另一台作为冷凝器在表面凝结或在熔融模式下操作。设备基本由提供传热表面的立管系统组成。二甲苯混合物从管的顶部进入。液体在外管表面以向下流的薄膜形式分布。冷却用的致冷剂在管顶部通过内管分布,润湿结晶管的内部;

③Badge/Niro结晶工艺。Badge/Niro称,他们的技术也具有低投资、低公用工程消耗的优势。该工艺也使用了简单的结晶器设计(刮面立式结晶器),但附加特点是使用了Niro的螺杆式洗涤塔(与离心操作相反)。据称,该工艺可得到纯度为99.93%(质量)的对二甲苯,当进料纯度为90%时,回收率可达到95%。来自结晶器的浆液进入到洗涤塔的底部,塔内的螺杆装置推动塔内浆液向上移动。随着母液被逆流的对二甲苯洗掉,晶体被压实。结晶在床顶被刮掉,并在循环纯二甲苯的顶部流化。形成的浆液被加热到使晶体熔融。从熔融器流出的物流分成两股,一股是纯的产品,另一股回流到洗涤塔。为了得到高纯度产品,无论BEFS还是苏尔寿工艺,除非使用高对二甲苯含量的进料,都必须至少进行两次结晶。两种技术都由于从母液中分离结晶(或者用对二甲苯产品洗涤或者通过结晶的表面凝结)损失了附加效率。Badge/Niro工艺由于产品只结晶一次,且由于结晶和液体分离,基本不循环对二甲苯,因而似乎是能效最高的工艺。此外,3种技术中,只有Badge/Niro技术可以有效地用于改造现有的结晶装置。

二、甲苯甲基化工艺

甲苯甲基化即甲苯用甲醇烷基化生产二甲苯,一直是许多公司投

入大量精力研究的课题,这些公司包括阿莫科(现为BP)、杜邦、联碳(现为陶氏)、埃克森美孚、联合油和UOP。近来GTC技术公司开始出售由印度石化公司(1PCL)开发的甲苯甲基化工艺(GT-TolAkl)。

GTC称,用专有高硅分子筛催化剂,对二甲苯选择性可达85%以上。反应是在氢和水存在的条件下,在固定床反应器中进行的。对二甲苯的回收一般在结晶系统中进行。GT-TolAkl系统的操作条件如下:温度400-450℃,压力100-500kPa,重时空速1-2时-1,对二甲苯选择性80%-90%(质量)。与STDP装置比较,甲苯甲基化路线的优点是:①每吨对二甲苯所需的甲苯数量可由约2.8吨降到1.0吨;②甲醇容易得到,比较便宜(如2001年l季度为79美分/加仑,是5年中的最高价);③苯的产生可以忽略(每磅对二甲苯产生0.006加仑苯)。根据甲苯甲基化工艺的概念设计,补充的甲苯和甲醇被蒸发,并与循环甲苯、氢结合,用反应器流出物预热,用加热炉进一步加热到400~C。将这种进料送入甲基化反应器,生成二甲苯和各种副产物(如苯、乙苯、一氧化碳、二氧化碳和氢)。由于放热,反应温度升至450℃。反应器流出物通过与反应器进料的换热冷却,然后再通过一台部分冷凝器,在这里一些有机产品,如苯、乙苯、甲苯和二甲苯被冷凝。剩余的气相产物(一氧化碳、二氧化碳和氢)在一台分离罐中与有机液体分离,部分气体循环,提供反应所需要的氢,其余的气体被排放,用作副产物燃料。

液体产物被送到苯塔,苯在塔顶作为副产物回收。苯塔塔底产品再送至甲苯回收塔。由于反应器中甲苯单程转化率低,反应器流出物的液体中含有较多甲苯,因而较大的甲苯回收塔和较多的蒸汽消耗是必要的。两段甲苯蒸馏模式中,其中第一段的操作压力高于第二段,与一段操作模式相比,两段模式蒸汽耗量可明显减少。通过定制蒸馏的段数有可能进一步减少蒸汽消耗。

高压甲苯蒸馏塔塔顶产品可用作低压塔再沸器的能源。通过在低压塔再沸器的冷凝,甲苯与低压塔塔顶产品结合,循环回甲基化反应器。低压塔塔底产品含有混合二甲苯和乙苯,被送到结晶装置。含混合二甲苯的物流中,80%-90%是对二甲苯,此外包含小量的乙苯。

在结晶工艺中,混合二甲苯被冷却,然后进入第一段结晶,包括一段或两段串联的结晶器,主要取决于进料组成。一段结晶的浆液流入连续离心部分,80%-90%的对二甲苯结晶与滤液分开。第一段滤液与新鲜原料交换后,离开本装置,用作二甲苯异构化装置的原料。

第一段结晶被熔融,再送到一套两段结晶器,来自结晶器的汇合的晶体浆液进入第二段连续离心操作,将结晶与液体分开。液体滤液中含有高浓度的对二甲苯,被循环回第一段。晶体用离心操作中的甲

苯洗涤,从离心机中排出,并被熔融。对二甲苯物料再进入最后的结晶段,制得高纯度的对二甲苯。

三、对二甲苯的分离工艺

(1)UOP公司的Parex工艺。对对二甲苯有强亲合力,而对与其他C8芳烃异构体有弱吸附性的分子筛吸附剂的开发使从C8芳烃中回收对二甲苯的吸附工艺成为可能。Parex工艺是UOP公司20世纪60年代开发的,可从液相混合C8馏分中连续吸附对二甲苯。该公司已出售了多套Parex装置的技术许可证,目前世界范围内有58套装置在运转。该工艺通常与异构化工艺结合,高收率地生产对二甲苯。原料是具有平衡组成的C8芳烃。

来自异构化部分脱庚烷塔塔底的C8芳烃和混合二甲苯物流进二甲苯分离塔,二甲苯和更轻的组分从塔顶采出,C9+芳烃从重组分塔塔底采出,用作汽油原料。塔顶物料被送到Parex装置。该装置是使用分子筛的固定床。通过分子筛优选吸附对二甲苯,实现对二甲苯的分离。这是一种与液相色谱相似的工艺。为从分子筛中回收对二甲苯,需要一种对分子筛亲合力比对二甲苯更强的液体解吸对二甲苯。分离在120-170℃,适中的压力下进行。解吸剂和对二甲苯的沸点差值足够大,可以用分馏法使它们分离。单程对二甲苯的回收率为90%-97%(而结晶法只有60%-70%)。

吸附剂通常是ADS-27,是钡离子和钾离子交换的沸石,吸附剂可以允许主要的原料成分进入其孔结构。Parex工艺的吸附室使用了模拟移动床的连续固定床吸附技术。这是通过移动吸附床的原料和解吸剂入口和产品出口实现的。多条进料管线被联结在一座独特的有专利权的分配阀和吸附床内的分配器上。4条附加的管线联在阀上,将4种工艺流体(即混合二甲苯原料、解吸剂、抽余液和抽提液)送到吸附剂塔和分馏塔(抽余液和抽出液)。所有4种物流都被适当控制,使其流速保持恒定。这4种物流都通过旋转阀,旋转阀按预定的时间将物流转向与床层下一部分相联的另一个管线进口或出口。这4种物流的切换是以同样的方向连续进行,在规定的时间间隔内,从一套管线转到下面邻近的另一套管线,切换速度要与这些物流的流速保持协调。入口点和出口点以同步的时间间隔从一个位置移向邻近的另一个位置,就好像分子筛可以慢慢地、连续地通过吸附床、通过固定的入口点和出口点移动,同时接受或提交液体二样。

液体通过独立于旋转阀的管线从吸附塔的底部循环到顶部。吸附床的移动是通过移动分配器的旋转部件而实现的物理上的模拟。抽出

液进入一座蒸馏塔回收对二甲苯,解吸剂从塔底产出料。来自抽提塔的对二甲苯在精制塔中用循环甲苯洗涤纯化。从该塔可得到对二甲苯产品。抽余液被送到抽余液蒸馏塔,乙苯、间二甲苯和邻二甲苯从塔顶回收,解吸剂从塔底采出。抽余液塔塔顶产品虽然可用作调合汽油原料,但更通常的是作为一套吸附/异构化一体化装置的异构化反应器的原料。

对于大部分吸附和抽提操作,用一座再处理塔保持解吸剂的质量是必要的,在这种工艺中,解吸剂(一般是对二乙基苯)被送到再处理塔,在该塔中分出一部分重组分杂质,以避免这些杂质的积累。

与IFP的EluxyI工艺相似,UOP也提供了一些组合设计。Hysorb XP工艺用于纯化混合二甲苯,制得用作结晶装置原料的浓缩二甲苯物料。UOP装置对二甲苯纯度一般为99.9%(质量)。1987年后设计的所有Parex新装置都能生产纯度99.9%的对二甲苯。从1971年开始共出售了73套Parex装置的专利许可证,其中1994年后有23套。

(2)IFP的Eluxyl吸附工艺。IFP开发了Eluxyl对二甲苯分离提纯的吸附工艺技术,并提供了专利许可证。Eluxyl与UOP的Parex技术相比,概念相似,但设备设计不同。IFP有自己的高性能吸附剂(SPX 3000),在第一套工业化装置中(韩国的S-Oil公司)得到了纯度高达99.9%的产品。该技术使用了接近120个单独的开关阀,而不是像UOP 那样用一个专有的大型多个进口和多个出口的旋转阀。IFP称,大量小阀门的成本要低于UOP的单一旋转阀,检修期间阀门可以维修。在线维修也在第一套工业化装置进行了成功的试验。

IFP运用拉曼光谱测量塔内的浓度曲线。这种创新的分析方法利用光导纤维传输光谱,允许即时准确地对塔内浓度曲线作出反映,结合计算机应用控制阀门顺序,达到优化和控制操作的目的。IFP还优化了内部构件的设计,减少了死体积,提高了效率。

除了阀的差别外,IFPEluxyl工艺估计与UOP的Parex工艺相近。一种组合方式的工艺将吸附特点与结晶技术结合,可用来改造现有的结晶装置。Eluxyl装置安排在结晶装置的上游,生产95%纯度的对二甲苯,这股物流进入单段结晶器。这种组合型装置用甲苯作溶剂,段数较少,吸附剂存量较少,使用两个蒸馏塔(即由提液塔和抽余液塔),而不是用4个塔。组合型装置投资降低,主要来自Eluxyl装置的对二甲苯物流纯度较低(即95%,而不是99%),进料C9芳烃的含量规格也不十分严格。抽提液塔塔底物料进入结晶器,来自结晶器的滤液循环回吸附塔。抽余液送到异构化装置。由于结晶装置进料的对二甲苯含量高,因而操作明显改善。从结晶装置得到的对二甲苯纯度可达到99.9%以上。

1995年1月至1996年5月,一套Eluxyl示范装置在雪佛龙公司的帕斯卡古拉炼油厂操作,对二甲苯产量为8000-10000吨/年。第一套工业装置1997年12月在韩国蔚山S-Oil炼厂投产,能力为50万吨/年。第二套工业装置1998年5月在雪佛龙公司的帕斯卡古拉炼厂投产,能力为45万吨/年。更晚一些,IFP向中国石化的镇海炼厂出售了Eluxyl技术许可,能力为4527吨/年。IFP的第一套、也是世界最大的装置,据称能力现已超过额定设

计能力。现EluxyI最大单线设计能力可达到75万吨/年,已出售8套EluxyI装置的专利许可证,目前已经有多套装置在运行中。

(3)结晶法分离技术。结晶法分离对二甲苯的工艺是现仍在使用的一种较古老的工艺,利用结晶与离心结合方式从二甲苯异构体中分离对二甲苯。

直到分子筛吸附法开发之前,结晶法是生产对二甲苯的唯一方法,将分步结晶与异构化合与单一的结晶装置相比可使对二甲苯收率明显提高。结晶/异构化结合的对二甲苯收率可达到原料的80%,而只用结晶法对二甲苯收率只相当于重整产物的12%。一些工艺,如GTC公司的GT-CrystPX由于提高了设备的可靠性,扩大了设备的规模(相应减少了系列数和转动设备的数量),竞争力已有明显提高。

混合二甲苯与异构化部分的循环产品结合进入重组分塔。如果邻二甲苯需要回收,间,二甲苯和对二甲苯从该塔塔顶采出,塔底产品必定含有邻二甲苯和C9+芳烃。塔底产品进入邻二甲苯再处理塔,回收的邻二甲苯可以作为产品,也可以雇环回异构化反应器。邻二甲苯再处理塔的塔底产品,C9+芳烃,通常用作高辛烷值汽油的掺混成分。如果邻二甲苯不需要回收,邻二甲苯和轻组分可以从塔顶采出,含有C9+芳烃的塔底产品作为副产品送往界区外。

两种情况下,来自重组分塔的塔顶产品都被送到分步结晶部分。第一段结晶的操作温度为-62--67℃,第一段结晶器通常是表面带刮刀的管式换热器或釜式结晶器。在结晶器内螺旋负载的刀片从壁上刮掉对二甲苯结晶。第一段形成的结晶较小,有必要严格控制其粒径,以确保在离心段和过滤段的回收。结晶的增长要求针对具体原料仔细控制时间和温度的关系。第一段以相对小的激冷速度增加停留时间可促进结晶增长。

高效固液分离设施的开发取得了较大的进展。大部分现代装置在第一段使用连续固体碗式离心机。两个碗以不同的速度水平旋转,造成内碗外表面上的螺旋运动。这种螺旋运动使固体从沉降的浆液池中通过一个排放部分移出,而且排出的是几乎干燥的滤饼。离心机可以装有背洗,但是否有利于二甲苯的分离还有待研究。其他的模式或者

应用了表面有刮刀的换热器或者在中心杆上装有刮刀,中心杆提供搅拌,并保持良好的换热表面。停留时间大约3小时,由乙烯提供冷却。第一段结晶倾向增长为长而薄的单斜针状晶体,很难排出。相当部分的母液被滞留在对二甲苯晶体之间的界面上。通过调整离心转速、碗的差别和浆液池深度,出自第一段的对二甲苯纯度可达85%。来自第一段分离了对二甲苯的滤液被送到异构化反应器,生产更多的富对二甲苯原料,用作结晶装置的进料。

第一段的结晶产品被熔融或部分重新熔融,并在第二段结晶器中重结晶,操作温度为0℃,用丙烷提供冷却。第二段生产的结晶形状为圆柱体,大小为200X 360μm,加之第二段温度比较高,母液的粘度比较低(第二段为1cP,而第一段为5cP),因而结晶排放时问题小得多。第二段结晶器的排出部分利用了推进器板机理,有利于物料排出。由于来自第二段的滤液仍富含对二甲苯,因而循环用作第一段结晶器的原料。来自第二段结晶器的结晶一般用循环甲苯物流洗篷熔融、并在甲苯/对二甲苯分离塔中与甲苯分离。甲苯在分离塔塔顶回收,循环至位于第二段结晶器的洗涤工序。

从分离塔塔底得到对二甲苯。用这种形式操作得到对二甲苯的纯度大于或等于99.5%。

改进的结晶装置用Niro洗涤塔替代第二段离心,可使产品纯度达到99.9%。

雪佛龙菲利普斯公司、BP公司(以前的阿莫科和阿科)、克虏伯伍德公司和日本的丸善公司都开发了结晶法工艺,并实现了产业化。雪佛龙技术是世界上用得最多的技术,但直到20世纪90年代初到90年代中出现MSTDP建设波以前,美国一多半的对二甲苯能力使用的是阿莫科公司技术。GTC技术公司也提供由莱昂戴尔化工公司开发的结晶技术(GT-CrystPX)许可证。

(4)异构化工艺。主要的工业化异构化技术有埃克森美孚公司、UOP公司、IFP、GTC/IPCL公司和恩格哈德公司的技术。这些竞争工艺的流程非常相似。UOP技术中液体进料是由在其他工艺中使对位和邻位二甲苯异构体含量减少了的C8芳烃组成。这种进料与补充和循环氢混合,经间接换热和加热炉加热后,通过一台固定床催化反应器。反应器流出物通过换热冷却后进入相分离器。富氢的气相被循环,排放一部分气体,维持所要求的最低氢浓度。将分离器液体送到脱庚烷塔,分离异构体中的轻烃,然后异构体进入白土塔。在白土塔中微量的二烯烃被聚合,保护对二甲苯分离吸附剂(如果使用),并使邻二甲苯符合酸洗颜色规格。白土塔使用一种切换系统,离线装置用蒸汽再生。经白土处理的异构体在装置内循环,形成二甲苯分离塔的

部分混合二甲苯原料。

异构化工艺使用了双功能催化剂(即酸功能和金属功能),操作压力为2.2MPa。工艺物流接近平衡。用UOP公司的I-9催化剂,乙苯可以转化为二甲苯。UOP的I-210催化剂可使环的损失降低,从1998年4月后已工业化应用。应用IFP的一些催化剂体系(如Opairs)也可以使乙苯转化为二甲苯。一些企图由固定数量的原料最大化生产对二甲苯和邻二甲苯的芳烃生产厂通常选择这种催化剂体系。

埃克森美孚公司提供了一些类型的异构化工艺。美孚的高活性异构化(MHA工)工艺使用了择形沸石催化剂ZSM-5,反应操作条件一般为420-425℃和1.6MPa。EM-4500是埃克森美孚最新开发的二甲苯异构化催化剂,异构化混合物的对二甲苯含量为平衡含量的102%-104%。其优点包括催化剂再生之间的运转时间长,引用的例子超过4年。在整个操作过程中性能保持稳定。最新一代异构化技术XyMax,使用EM-4500催化剂。XyMax的特点是使用了专有的高择形性催化剂,可提供更高的收率、更好的操作灵活性和更大的脱瓶颈潜力。其乙苯转化率可提高到8b%以上,损失减少50%以上。

其他可将乙苯脱烷基转化为苯的工艺包括BPAMSAC工艺、GTC 公司的GT-IsomPx工艺、UOP公司使用I-100或I-300催化剂的Isomar工艺。先进的MHAI(AMHAI)工艺使用了独特的双催化剂床系统,可使乙苯转化、非芳烃裂化和异构化过程得以优化。在需要苯时,经常使用这种催化剂系统。

另一种工艺是在低压、无氢循环的条件下操作,称为美孚的低压二甲苯异构化(MLPl)工艺,该工艺使用的催化剂也以ZSM-5沸石为基础。

对二甲苯生产工艺总结

2.4 国内外工业制备方法 对二甲苯工业化的生产工艺主要有芳烃联合生产以及甲苯甲醇烷基化法。其中芳烃联合生产法通常包括甲苯歧化及烷基转移、二甲苯异构化、二甲苯吸附分离和二甲苯分离等专利技术 2.4.1芳烃联合生产法 目前拥有全套PX工艺生产技术的专利商有美国UOP公司和法国Axens公司两家,国内外其他公司只拥有单项工艺技术,如日本东丽公司Isolenede的异构化技术和Aromax吸附分离技术、ARCO公司的深冷结晶分离PX技术。其中UOP 公司拥有生产芳烃的全套专利技术,各项工艺技术指标先进,尤其是吸附分离技术核心的模拟移动床旋转阀技术,成熟可靠,PX回收率高,纯度高(大于99.8% ),工艺操作简便,安全可靠,安装方便。 而芳烃联合生产中常用的甲苯歧化及烷基转移方法的典型工艺主要是美国环球油品(UOP )和日本东丽公司联合开发的“Tatoray " 工艺、ExxonMobil公司开发的“MTDP-3”工艺、Arco公司开发的“Xylene-Plus" 工艺、UOP公司开发的"Px-Plus"工艺、Mobile Oil公司开发的MTDP工艺和Mobile公司开发的MSTDP工艺等。 在异构化单元中,常用的工艺有:UOP公司的Isomer工艺、东丽公司的Isolene工艺、Engelhard公司的Octafining工艺等。目前国内各炼油石化企业、科研院校也陆续开发出了自己的异构化催化剂,比如中石化股份公司天津分公司采用SKI-400沸石铂金属催化剂得到了很好的生产效益,并在国内得到广泛使用;再如调整ZSM-5催化剂与丝光沸石催化剂的配比后开发出了乙苯转化型二甲苯异构化催化剂,其性能可与IFP公司的EU-I媲美。这些催化剂的共同点都是,在尽可能减小对二甲苯损失的同时,通过使乙苯发生异构化甚至脱烷基化和歧化反应,提高乙苯转化率,降低乙苯含量,提升二甲苯收率。

对二甲苯生产

对二甲苯生产方法 典型的对二甲苯生产方法是从石脑油催化重整生成的热力学平衡的混二甲苯(C8A)中通过多级深冷结晶分离或分子筛模拟移动床吸附分离(简称吸附分离)技术,将对二甲苯从沸点与之相近的异构体混合物中分离出来,再对其进行下一步利用。 下面介绍一下结晶分离。混合二甲苯的凝固点区别很大,分别是:PX13.3 ℃,邻二甲苯-25.2℃、间二甲苯-47.9℃,乙苯-95.0℃。分离工艺的一段结晶在-62℃~-68℃形成低共熔结晶体,二段结晶温度-20℃~ -10℃,由此深冷结晶除去PX异构体,多次反复,使PX的产品纯度达到98%以上,但收率最高只有70%左右。结晶法因其能耗低,产品纯度高,生产工艺及设备简单等优点而被较早应用于工业生产。其工艺包括深冷结晶工艺,熔融结晶工艺(GT2CrystPx工艺、Mobil工艺、BP 工艺、MWP工艺、PROABD工艺与PX PlusXP工艺),其中的GT2CrystPx工艺因其突出的优点早期就得以广泛应用。 GT2CrystPx 结晶工艺的原理是:PX在13.2℃时发生凝固,而其异构体(间二甲苯、邻二甲苯和乙苯)的凝固点小于- 25℃,可由结晶法分离C8芳香族异构体。GT2CrystPX工艺即可以在对二甲苯含量较低或较高的进料下操作。对于前者进料,结果可得到含有80%~90%PX的固体,滤液则循环利用,使再结晶得到高纯度的PX 结晶。而对于富含PX的进料,结晶比吸附具有更大的优势,即第一步的结晶就形成高纯度的PX。而且系统与操作费用都较低,操作示意见图3。 图3 从富含PX的进料中回收PX的GT2Cryst PX工艺

[wiki]石油[/wiki][wiki]化工[/wiki]生产二甲苯的工艺竞争路线: 1)煤焦油路线生产BTX(通过粗苯催化精制) 2)甲醇和甲苯生产对二甲苯(美国GTC和大连理工大学) 3)甲醇催化转化生产BTX路线(中国科学院山西[wiki]煤炭[/wiki]化学研究所) 第一路线和第二路线目前已经工业化,煤化所的技术则正在开发之中。目前,在国外出现了一种新的甲醇和甲苯反应制取苯乙烯的中试技术,其经济性将大大好于目前的乙苯脱[wiki]氢[/wiki]技术,希望引起研究界和工业界的高度重视。 1. 选择性甲苯歧化工艺 20世纪80年代中到末期美孚公司(现在的埃克森美孚公司)开发了一种选择性甲苯歧化工艺(MSTDP),使用择形[wiki]催化剂[/wiki]生产富对二甲苯的二甲苯产品。埃克森美孚已向世界的一些生产装置(如科克和信任公司)出售了该技术的专利许可证,近来它停止提供MSTDP工艺许可证,但继续提供其普通甲苯歧化工+艺的技术许可证。埃克森美孚开发了一种更新的甲苯歧化工艺,称为PxMax,近来向韩国LG-加德士出售了该项技术的专利许可证。UOP公司从1997年就提供自己的选择性甲苯歧化技术专利许可,该技术称为PXPlus。更晚些时候,GTC公司(福斯特惠勒的子公司)得到了出售印度石化公司选择性甲苯歧化工艺GT-STDP的排他权力。 在选择性甲苯歧化(STDP)工艺中得到的富二甲苯产物可直接送到单段结晶或一套小型的Parex装置回收高纯度对二甲苯产品。但这套装置也产生不需要的混合二甲苯,此外还产生大量的苯,苯与二甲苯的质量比接近1.0。每种工艺都有自己的优势。STDP工艺可从甲苯原料提供高浓度对二甲苯物料(大于80[wiki]%[/wiki])和大量的苯副产物;普通甲苯歧化技术C9芳烃可以和甲苯一起加工,得到二甲苯的平衡混合物(对二甲苯含量大约为20%~25%),但苯副产物较少。普通甲苯歧化技术既应用了甲苯歧化反应,又利用了烷基转移反应。究竟选择何种工艺取决于用户的特殊需要。 (1)埃克森美孚的PxMax工艺。使用MTPX催化剂的PxMax工艺于1996年首次在美国路易斯安那州的一家炼油厂实现工业化,另一套装置在埃克森美孚位于得州贝汤和博芒特的化工厂投产。工艺流程与MSTDP相似,只是催化剂不同。埃克森美孚申请了许多关于其HZSM-5催化剂的专利。最有希望的分子筛催化剂似乎要用沉积的二氧化硅活化,并在转化条件下用含二氧化硅的对二甲苯高效选择性试剂处理。 硅胶改性的HZSM-5催化剂(含5%-10%Si02/HZSM-5),在甲苯转化率为20%--25%时,对二甲苯的选择性大约为98%。沉积在沸石表面的硅酸盐涂层降低了表面活性,而提高了择形性。一般认为MTPX的优点是反应物基本无法接近外表面的酸性中心。催化剂外表面的酸性中心可以将催化剂孔中的对二甲苯重新异构化为与其他两种异构体的平衡混合物,从而将二甲苯中对二甲苯的含量减少到24%。通过减少催化剂孔中对二甲苯与这些酸性中心的接近,就可以得到相对高含量的对二甲苯。MTPX催化剂通过用对二甲苯高效选择性试剂对表面酸性中心进行化学改性,阻碍了对二甲苯与这些外部酸性中心的接触。 埃克森美孚公司的专利数据表明,随温度升高,对二甲苯的选择性降低,甲苯转化率提高;随重时空速(WHSV)提高,甲苯转化率降低,对二甲苯的选择性提高;随氢/烃比提高,甲苯转化率降低,而对二甲苯选择性提高。进一步改进的MTPX催化剂可以降低不需要的副产物,主要是降低乙苯生成量。这是通过增加催化剂加氢或脱氢功能实现的,例如可以加入铂(0.01%-2%)等金属化合物。专利表明,当每10%的Si02/HZSM-5加入0.25%铂时,乙苯生成量可减少3-4倍,而对二甲苯的选择性仍保持在98%以上。此外C9芳烃的生成量也可减少3倍。这种PxMax工艺可提供高效转化,减少了邻位和问位异构体的生成,有利于生成更多的对二甲苯产品。专利中大部分例子表明,PxMax工艺反应器温度稍高于MSTDP工艺(440-443℃),WHSV和氢/烃比都非常相似。甲苯的转化率明显低于MSTDP工艺,但对二

对二甲苯生产技术

1对二甲苯生产技术进展 对二甲苯通常来自于重整油或热裂解汽油中的C8及以上芳烃,通过异构化和分离的方法可以得到高纯度的对二甲苯。对二甲苯的技术进步主要包括开辟C8及以上芳烃新来源以及芳烃的转化和对二甲苯分离工艺革新。 1.1轻烃制芳烃工艺 低分子烃类经过裂解和脱氢、烯烃的齐聚和环化、环烷烃脱氢等反应可选择性的生成芳烃。许多公司开发出了轻烃制芳烃工艺,如表1所示[1]。 1.2甲苯歧化和烷基转移技术 a)MSTDP及MTPX甲苯歧化工艺: 由美国Mobil公司开发,其特点是PX的选择性较高,在甲苯转化率20%~25%的条件下,选择性大于80%,MTPX是MSTDP的改进,主要是催化剂的改进,采用氧化硅对HZSM-5进行改性,可使对二甲苯的选择性达到98%以上。 b)PX Plus甲苯歧化工艺: 由UOP公司开发,将该工艺与一段结晶技术结合使用,是一项可扩大现有芳烃联合生产装置的具有吸引力的方法。 c)GT-TOLALK甲苯烷基化工艺: 甲苯与甲醇在高硅沸石催化剂上进行烷基化反应,其优点是:首先,与甲苯歧化工艺(TDP)相比,生产1t对二甲苯,甲苯的消耗量从2.5t减少到1t;甲醇可最大限度地提高芳烃生成对二甲苯转化率,且十分便宜。另外,该工艺几乎不联产苯。其次,用甲苯和甲醇替代混合二甲苯为原料的装置,在采用新工艺后,可生产出低成本的对二甲苯,这是因为混合二甲苯消耗量可以减少1/2。第三,由于对二甲苯回收装置的费用较低,芳烃联合装置的起始投资费用可相应下降。另外,该工艺使用比较传统的设备,项目从规划到开车所需要的时间可大大缩短。 d)Mobil Oil高效甲苯制对二甲苯流化床工艺: 该工艺可以比较容易的控制反应中放出的热量,改善反应选择性和催化剂寿命,还可实现催化剂连续再生。 e)ZA-95催化剂: 由中国石化集团公司上海石油化工研究院开发的甲苯歧化催化剂,在天津石化公司引进装置上应用1年多,操作平稳。各项技术指标达到国外同类催化剂水平。 f)Oparis异构化沸石催剂: 由法国IFP推出,适合于处理具有较高乙苯浓度的进料。Oparis催化剂与以前的丝光沸石催化剂相比具有更好的稳定性和较高的活性。 g)埃克森美孚公司最近开发出了新的选择性甲苯歧化(STDP)技术: 在STDP过程中,催化剂选择性极好,甲苯只转化为对二甲苯和苯,邻二甲苯和间二甲苯也只转化成对二甲苯。该工艺对二甲苯的选择性高于90%,而以前的STDP工艺为80%。同时,该工艺生成的对二甲苯也较以前多5%。 1.3对二甲苯分离技术 a)Eluxyl工艺: 由法国IFP公司开发,其原理与UOP的Parex法相似。它建立在模拟逆流吸附概 念之上,其关键部分是高选择性吸附物(专利)和配方(Spx300)。工艺特点是:通过高选择性分子筛获得超高纯度(99.9%)对二甲苯,具有独立的开/关阀系统,由微处理器操作,简单可靠。 b)Sulzer工艺: 由瑞士Sulzer公司开发的一种熔体结晶提纯对二甲苯工艺,可以将对二甲苯从混合二甲苯中分离出来。无需使用固体吸附剂、溶剂、催化剂及其他化学品,回收对二甲苯的质量分数高达99.5%。投资低,操作费用省,可与UOP开发的吸附分离方法竞争。

PX(对二甲苯)生产工艺

PX(对二甲苯)生产工艺 PX主要来自石油炼制过程的中间产品石脑油,经过催化重整或者乙烯裂解之后获得重整汽油、裂解汽油,再经过芳烃抽提工艺得到混合二甲苯,然后经吸附分离制取。目前国际上典型的PX生产工艺主要有美国UOP公司与法国IFP开发的生产工艺,国内中国石化在2011年也攻克了PX的全流程工艺难关,成了主要的PX技术专利商之一。这些工艺都已攻克了安全生产和环保关,能够保证PX在安全的环境中生产。运用这些先进技术,人类在PX的生产历史上,至今为止没有发生过一件对环境、居民造成严重危害的重特大污染事故。我国从上世纪70年代引进PX生产技术以来,生产PX已有30多年的历史,直到目前,国内13家PX企业没发生过任何生产事故及严重的污染事件。 1、关于PX 对二甲苯(PX)是一种重要的有机化工原料,主要用它可生产精对苯二甲酸(PTA)或对苯二甲酸二甲酯(DMT),PTA或DMT再和乙二醇反应生成聚对苯二甲酸乙二醇酯(PET),即聚酯,进一步加工纺丝生产涤纶纤维和轮胎工业用聚酯帘布,PET树脂还可制成聚酯瓶、聚酯膜、塑料合金及其它工业元件等,除此之外,PX还用来做溶剂及生产医药、香料。 基本的行业产业链为:原油→石脑油→混二甲苯(MX)→对二甲苯(PX)→对苯二甲酸(PTA)→聚脂→纺织品等。

2、生产对二甲苯的原料 对二甲苯的原料主要是混二甲苯(MX),混二甲苯是由对二甲苯、邻二甲苯及间二甲苯组成,而混二甲苯过去主要来自于炼焦工业,现在主要来自石脑油的催化重整,或炼油的C6+重整生成油。其次,苯、甲苯等芳烃可以通过烷基化反应,歧化反应生成对二甲苯。 由于石油产业链上原料的限制,以煤炭为原料,通过煤制甲醇,甲醇制芳烃,芳烃分离提取对二甲苯,煤炭或者甲醇也将成为生产对二甲苯的原始原料之一。 3、石化工业生产对二甲苯的主要工艺路线 重整油和裂解加氢汽油中抽提一直以来是生产PX的主要工艺路线,由于PX需求量日益增长,用此工艺来生产PX已远不能满足需求。当前芳烃联合装置的目的是增加二甲苯的产率,同时减少苯的产率。受热力学平衡的限制,通常在二甲苯混合物中间二甲苯(MP)含量较高,而工业上需求量较大的对二甲苯(PX)含量却较低。所以工业上常常通过甲苯歧化和烷基转移工艺、C8芳烃异构化工艺以及甲苯选择性歧化工艺来增产对二甲苯。 1、芳烃抽提 芳烃抽提aromatics extraction也称芳烃萃取,用萃取剂从烃类混合物中分离芳的液液萃取过程。主要用于从催化重整和烃类裂解汽中回收轻质芳烃(苯、甲苯、各种二甲苯),有时也用从催化裂化柴油回收萘,抽出芳烃以后的非芳烃剩余称抽余油。芳香烃简称“芳烃”,

二甲苯及混和二甲苯的生产工艺、性能、用途和产业链

3.4二甲苯及混合二甲苯 1 3.4.1二甲苯及混和二甲苯的生产工艺、性能与用途 (3) 3.4.1.1二甲苯及混和二甲苯生产工艺路线 (3) 3.4.1.2二甲苯及混和二甲苯各工艺路线的比较分析 (3) 3.4.1.3二甲苯及混和二甲苯的性能与用途 (3) 3.4.2二甲苯及混和二甲苯产品链结构及技术分析 (4) 3.4.2.1二甲苯及混和二甲苯下游产品链 (4) 3.4.2.2二甲苯及混和二甲苯产品链技术分析 (4)

3.4.1二甲苯及混和二甲苯的生产工艺、性能与用途 3.4.1.1二甲苯及混和二甲苯生产工艺路线 1. 二甲苯的来源及生产工艺路线 工业上二甲苯的来源有4种,即催化重整油、蒸汽裂解汽油、甲苯歧化和煤焦油,前一种来自石油,后一种来自煤。 这4者也是混二甲苯的来源。 1.1催化重整油、蒸汽裂解汽油和煤焦油中提取二甲苯及混合二甲苯 催化重整过程包括了加氢处理和催化重整两大部分,可以处理多种原料。经过催化重整过程,原料中的环烷烃转化成为芳烃,烷烃转化为芳烃或燃料气。裂解汽油是生产乙烯的副产品。典型的裂解汽油含有质量分数0.5到0.8的芳烃成份。由于裂解汽油中含有二烯烃等易聚合成胶状物的极活泼化合物,在裂解汽油进一步加工前必须先加氢处理。煤焦化的主要产品是焦炭,收率为65%到75%,同时放出25%到35%的煤焦气。煤焦气由煤气、焦油和水组成,其中焦油中含有甲苯和二甲苯。以前我国的芳烃原料中,焦油芳烃所占比例较高。 1.2芳烃联合装置生产二甲苯及混合二甲苯 典型的芳烃联合装置通常包括石脑油加氢、催化重整、裂解汽油加氢、芳烃抽提、芳烃分馏、歧化、异构化或吸附分离等装置。其中芳烃转化装置主要包括甲苯歧化制苯和二甲苯,或甲苯与C9芳烃歧化与烷基转移制苯和二甲苯,以及二

对二甲苯生产技术研究进展及发展趋势

对二甲苯生产技术研究进展及发展趋势 摘要:现如今,我国的经济在迅猛发展,社会在不断进步,阐述了甲苯歧化和 烷基转移、二甲苯异构化、甲醇芳构化、甲苯选择性歧化及甲醇甲苯选择性烷基 化等对二甲苯生产技术的研究进展,并分析了各种技术的优势及不足。分析表明,与甲醇制芳烃技术相比,甲醇甲苯选择性烷基化制对二甲苯技术具有对二甲苯选 择性高、流程短、无需吸附分离等方面的显著优势,是实现煤经甲醇(和甲苯或苯)制对二甲苯产业发展的最佳选择;采用芳烃联合装置与甲醇甲苯选择性烷基 化技术耦合,理想状况下可实现对二甲苯增产40%以上,同时不副产苯。提出了 对二甲苯生产工艺技术的发展趋势:发展甲醇甲苯选择性烷基化制对二甲苯技术,既利于煤炭的清洁高效利用,保障聚酯产业链安全,还有助于形成煤化工和石油 化工技术互补、协调发展的新格局。 关键词:二甲苯;生产技术;研究进展 引言 对二甲苯作为炼油和化工的桥梁,既是芳烃产业中最重要的产品,亦是聚酯 产业的龙头原料。目前,对二甲苯应用中约97%用于生产精对苯二甲酸(PTA),其 余用于医药、溶剂、涂料等领域。近年来,随着我国聚酯产业的飞速发展,对二 甲苯供不应求,利润率居高不下,引发项目建设热潮。未来几年,对二甲苯产能 将集中释放,供需格局将发生巨大变化。本文就对分离技术进行简要介绍并对市 场进行分析,为企业应对未来市场变化提供参考。 1对二甲苯生产工艺技术 现在全球美国环球油品公司(UOP)和法国Axens公司拥有整套且比 较成熟的对二甲苯生产工艺技术,2011年我国拥有了自主知识产权的对二甲 苯整套生产技术。其中UOP是世界领先的芳烃生产工艺技术供应商,截至20 14年,UOP已经为100多套联合成套装置和700多套单独芳烃生产工艺 装置发布了许可。本文主要以混合二甲苯为原料,装置采用无歧化流程,即由二 甲苯精馏、异构化、产品分离三个单元组成。其中二甲苯精馏是通过精馏除去混 合二甲苯原料中除二甲苯之外的其它组分;异构化是将精馏后二甲苯中的1,2 -二甲苯(邻二甲苯)、1,3-二甲苯(间二甲苯)和乙苯转化为1,4-二 甲苯(对二甲苯),最大限度地生产需要的PTA原料;PTA原料分离是将异 构化产物中的1,4-二甲苯与反应后还存在的1,2-二甲苯和1,3-二甲 苯等进一步分离,从而得到纯度符合要求的1,4-二甲苯。工艺全部采用美国 UOP(环球油品公司)的成套专利技术。其中,吸附分离采用ParexTM 工艺技术和ADS-37吸附剂,该工艺利用吸附分离原理选择分离生产高纯度 的1,4-二甲苯,利用模拟移动床原理实现固液相连续逆向分离;异构化工艺 采用IsomarTM工艺技术和乙苯异构型催化剂I-400,可充分利用C 8芳烃资源,最大限度地生产1,4-二甲苯。 2二甲苯异构化技术 2.1甲苯一甲醇烷基化工艺 以甲苯和甲醇为原料,在一定的反应条件和催化剂存在的条件下,就会发生烷基化反应,从而得到对二甲苯以及其他附加产品,这个过程就是甲苯一甲醇烷基化工艺。甲苯一甲醇烷基化工艺以分子筛为催化剂,采用氢气或氮气或水蒸气为反应载气,对二甲苯选择性可达到百分之九十以上。甲苯一甲醇烷基化工艺作为一种新型 的生产工艺,与传统生产工艺相比具有诸多优点。首先,极大地降低了原料的消耗,

国内外对二甲苯生产工艺

国外对二甲苯生产工艺

摘要:对二甲苯PX是重要的芳烃产品之一,是二甲苯中用量最大的产品。它主要用于制备对苯二甲酸PTA以及对苯二甲酸二甲酯DMT,进而生产聚对苯二甲酸乙二醇酯PET。对二甲苯还可用作溶剂以及作为医药、香料、油墨等的生产原料,用途十分广泛。我将浅谈从国内外PX生产工艺。 石油二甲苯、煤焦油二甲苯中,都含有相当量的对二甲苯。由于对、间二甲苯的沸点差只有0.75℃,故不能采用精馏分离法,目前国内外研究发展的方法是低温结晶分离法;吸附分离法和络合分离法。低温结晶分离法利用二甲苯异构体的熔点差异进行分离,主要方法为深冷分步结晶,工艺技术成熟,在二甲苯分离中占优势。但此法设备庞大,对二甲苯受共熔点的限制,回收率低,只有60-70%。吸附分离法是70年代发展的新方法,此法比深冷结晶法投资少,生产总成本低,对二甲苯收率高,纯度也高,有可能取代深冷结晶法。 然而单纯的从石油和煤焦油中提取二甲苯已满足不了使用需求。因此甲苯烷基化生产对二甲苯,成为工业生产的一个新方向。原料甲苯在烷基转移反应器中,进行烷基转移反应,生成二甲苯和苯。混合二甲苯在异构化反应器中,使部分间二甲苯异构化生成对二甲苯,反应物在稳定塔中除去轻馏分后与烷基转移工段来的二甲苯混合进入脱C9馏分塔,在塔顶获得对二甲苯含量较高的混合二甲苯,塔釜为C9以上组分。从稳定塔塔顶得到的混合二甲苯进入吸附分离工段,采用非分子筛型固体吸附剂吸附对二甲苯,解吸得纯度高达99.9%的对二甲苯产品,同时副产间二甲苯。此外,还有氟化氢-三氟化硼抽提法。 一、国外深冷结晶法工艺 传统的生产PX 的原料来源主要有催化重整生成油和裂解加氢汽油以及煤焦油副产物, 由于受热力学平衡的限制, 这些原料中的PX 质量分数均不大于24%。为了达到较高的PX 回收率, 结晶过程需要在很低的温度下进行, 深冷结晶工艺便是针对这种低浓度PX 原料所开发的。深冷结晶法通常都采用两级结晶过程, 第1级结晶温度为-62到68℃,分离出85%到90% 的粗对二甲苯, 再通过第2 级重结晶分离出高纯度的对二甲苯。由于混合二甲苯是一个多元体系, 其固液相图十分复杂, 在理论上能形成多个低共熔点, 从而限制了PX 回收率的无限制提高PX的总回收率在冷却到- 65时仅能达到65% 左右,因此深冷结晶法中对二甲苯单程回收率较低, 二甲苯损失量和物料循环量都较大。而且在分离对二甲苯晶体时还需要相应的离心机、回旋过滤器等固液分离设备, 因此深冷结晶法中的设备投资和维护费用均较大。再加上当时的机械制造加工水平相对较低, 自动化控制技术相对落后, 使得深冷结晶工艺中许多设备的可靠性较差, 大型化困难, 结晶过程的维护保养费用较高, 因此深冷结晶法逐渐被后续开发

《安全操作规程》之对二甲苯安全生产要点

对二甲苯安全生产要点 1工艺简述对二甲苯(PX)是芳烃工艺的最终目的产品。采用吸附分离法生产对二甲苯的工艺由吸附、解析、分离、精制等工序组成。其简要工艺过程是将脱去碳九的混合二甲苯送入进料加热器,用蒸汽预热至177℃,经过滤后进旋转阀,然后进入两台串联吸附塔的吸附室,在0.88MPa压力下,吸附剂ADS-7(K-Ba-X分子筛)与液体组分逆流接触,被吸附的对二甲苯再用解析剂对二乙基苯进解析,旋转阀用来周期性地转换吸附塔的进料口,模拟吸附剂的移动作用,达到移动床吸附分离的目的。在吸附塔内经过吸附分离后分成抽余液和抽出液。抽余液是含少量对二甲苯的混合二甲苯和解析剂的混合物,经抽余液塔蒸出水份后送异构化单元;抽出液是对二甲苯和解析剂的混合物,从吸附塔抽出,经旋转阀控制流量换热后进抽出液塔。从该塔顶抽出粗对二甲苯到成品塔,其塔顶的轻馏分主要是甲苯,塔底则是精制的对二甲苯产品。本工艺接触的物料甲苯、混合二甲苯、对二甲苯均为易燃、易爆、有毒物质。对二乙基苯、燃料油等为易燃品。2重点部位 2.1旋转阀是一台多通道液流分配装置。通过旋转阀周期性地步进(时间间隔为80-90秒),改变吸附塔内的七股工艺物料进出床层的位置,达到吸附中的移动床效果。该阀的关键部位是密封垫片,它有可能窜漏物料而造成污染产品,严重的情况下有着火危险。 2.2吸附塔装置每一系列为两台吸附塔,用两个循环泵维持吸附剂的液流循环。在吸附塔进行对二甲苯的吸附和解析操作,将抽余液和抽出液分开。本岗位的操作直接决定了产品的收率和质量,同时又易泄漏发生毒害事故。3安全要点 3.1旋转阀 3.1.1经常监视拱顶压力是否达到1.25MPa,防止压力太小,密封垫片起不到密封作用和损坏垫片造成物料相互渗漏,产品不合格;还应检查每个旋转阀拱顶解吸剂流量是否达到 2.9m3/h,防止因流量

对二甲苯的合成方法

有机合成 对 二 甲 苯 合 成 方 法 专业:应用化学 班级:1203班 姓名:王慧慧

对二甲苯合成方法 王慧慧 (应用化学1203班) 对二甲苯,英文名为Paraxylene ,缩写为PX ,分子式C 8H 10,其物理性质见表1。主要用于生产精对苯二甲酸(PTA )和对苯二甲酸二甲酯(DMT ),是重要的基本有机化工原料,而PTA 和DMT 是生产聚酯(PET )化纤的主要原料。 表1 对二甲苯的主要物理性质 项目 数值 项目 数值 外观 无色透明无沉淀 冰点 13.263℃ 沸点 138.351℃ 比重d20/4℃ 0.86105 闪点 30℃ 蒸汽比重 3.65 燃点 500℃ 爆炸极限 1.1~6.6%(vol) 折光率D20 1.49582 空气中允许浓度 <200ppm 表面张力 20℃ 28.31达因/cm Tc 345℃ 粘度 20℃ 6.5586×10-6kgs/m 2 Pc 34kg/cm 2 目前,生产对二甲苯的方法主要有:甲苯歧化、吸附分离、二甲苯的异构化。 一、甲苯歧化 甲苯歧化工艺就是选择性地将甲苯转化成苯和二甲苯。甲苯转化成二甲苯叫做歧化,或“TDP ”。术语“烷基转移”描述了甲苯和C 9A ?的混合物转化成了二甲苯。 歧化反应: 烷基转移: CH 3 2 CH 3 CH 3 + CH 3 CH 3 C H 3 甲苯歧化是唯一成功地使歧化与烷基转移在同一个工艺装置上发生的工业 CH 32 CH 3 CH 3 +

技术。将甲苯歧化装置与芳烃装置结合起来,可以最大限度的提高高品质的苯和对二甲苯产量,同时也将低品质的甲苯和重质芳烃副产品的产品降到最低(ZRCC考虑到C8芳烃资源情况,暂缓建甲苯歧化与烷基单元)。 在现代化的芳烃装置中,甲苯歧化过程位于芳烃抽提和二甲苯回收之间(图1-2-1),抽提甲苯作为甲苯歧化的原料,而不再与汽油调和或当作溶剂卖掉。如果想最大限度的生产对二甲苯,则C9A也可以送到甲苯歧化装置作原料,而不再与汽油调和。C9A的加工改变甲苯歧化装置化学平衡,产物不再是苯,而是二甲苯。 近来,人们对对二甲苯的需求超过了混合二甲苯的供应量,甲苯歧化工艺提供了一个由低品质的甲苯和重质芳烃生产额外的混合二甲苯的理想方式。对于一个石脑油进料固定的装置,增加一个甲苯歧化工艺,可以成倍增长对二甲苯的产量。 二、吸附分离 目前国际上吸附分离技术成熟的有UOP的Parex工艺和IFP的Eluxyl工艺技术。两者都是新颖的吸附分离法,用于回收来自混合二甲苯的对二甲苯。“混合二甲苯”是指包括乙苯、对二甲苯、间二甲苯和邻二甲苯在内的C8芳烃异构体的混合物。这些异构体在一起蒸发用常规蒸馏使其分离是不可能的。吸附分离工艺采用一种为对二甲苯而选择的固体沸石吸附剂,为回收对二甲苯提供了一种有效的途径。与传统的色谱分离法不一样,吸附分离工艺为连续工艺,它模拟液体进料逆流到固体吸附床上。进料与产品连续进出吸附层,且组份基本保持不变。 吸附分离工艺于1971年问世不久,很快就成为世界对二甲苯回收的最佳技术。?在该工艺之前,只能用分步结晶生产对二甲苯,1975年建造了最新的对二甲苯结晶器,吸附分离装置能从单程进料中回收97%以上的对二甲苯,而提供的对二甲苯产品纯度达99.9%或更高。 吸附分离工艺的优点 (1)产品纯度高 近20年来,市场需求的对二甲苯纯度大大提高。1970年吸附分离工艺问世时,市场上销售的对二甲苯纯度为99.2%;到1992年,纯度标准已升至99.7%(Wt),且纯度标准有继续上升趋势。为了满足用户的需求,所有新建的吸附分

对二甲苯场情况简介

对二甲苯市场情况简介 二〇一四年三月

目录 1 对二甲苯及其产业链简介 (2) 1.1 对二甲苯简介 (2) 1.2 对二甲苯产业链简介 (2) 2 对二甲苯(PX)上游原料供应分析 (3) 3对二甲苯(PX)下游产品-PTA需求分析 (5) 3.1 PTA产能严重过剩 (5) 3.2 PTA价格走低 (8) 3.3 PTA下游需求低迷 (9) 4宏观政策导向分析 (9) 5对二甲苯(PX)市场分析 (10) 5.1 对二甲苯(PX)供需分析 (10) 5.2 对二甲苯(PX)价格分析 (13)

1 对二甲苯及其产业链简介 1.1 对二甲苯简介 对二甲苯,英文名称为1,4-xylene;p-xylene,别名: 1,4-二甲苯,分子结构式如图1所示。分子量为106.17, 属于易燃类液体,其蒸气与空气可形成爆炸性混合物, 遇明火、高热能引起燃烧爆炸。 图1 对二甲苯分子图示对二甲苯常温常压下为无色透明液体,有类似甲 苯的气味。熔点为13.3℃,沸点为138.4℃,相对密度(水=1)为0.86,相对蒸气密度(空气=1)为3.66,蒸气压(kPa)为1.16(25℃),闪点为25℃。爆炸上限%(V/V)为7.0,爆炸下限%(V/V):1.1。不溶于水,可混溶于乙醇、乙醚、氯仿等多数有机溶剂。 根据《全球化学品统一分类和标签制度》(GHS)PX为易燃液体,会造成水污染,蒸气接触会导致中毒,存在对皮肤和眼的刺激性和全身(神经中枢)毒性,但是不会或没有证据表明有致癌性和致畸性。根据国际癌症研究所(IARC)的归类,PX属于第三类致癌物质,即属于缺乏对人体致癌证据的物质。此外,美国国家环保局也未将其列为致癌物质。根据《职业性接触毒物危害程度分级》GB 5044-85,PX为中度危害级别物质,与盐酸、甲醇属于同一级别。 1.2 对二甲苯产业链简介 对二甲苯(PX)是石化工业主要的基本有机原料之一,在化纤、合成树脂、农药、医药、塑料等众多化工生产领域有着广泛的用途,对二甲苯的产业链简图如图2所示。

66万吨年对二甲苯生产设计(文献综述)

66万吨/年对二甲苯生产设计 文献综述 聚酯纤维的迅速发展,拉动了其上游原料精对二苯甲酸的消耗,进而又拉动了PTA的上游原料对二甲苯的市场严重供不应求,产品需要大量进口[6]。2012年,世界PX的装置生产能力约4000万吨/年,70%以上的装置在亚洲地区,新建产能也大都集中在亚洲,主要为韩国和中国。中国石化集团公司是最大的生产集团,占总产能的42.5%其次是中国石油集团公司,占总产能的22.0%。2009年是我国PX生产能力增长最快的一年,新增产能284万吨,比2008年的442.1万吨增长64.2%。截至2012年9月底,我国PX 的生产厂家有13家总生产能力达到821.1万吨/年。目前,我国已是世界上最大的PX生产和消费国,产能约占全球产能的20%,消费量占全球38%左右[7]。 北美地区的新建PX装置主要集中在美国,用于生产PTA的PX将提高到82.1%。由于生产成本较低加之原料供应充足,中东的石化产业投资将稳步增长。该区域将建设更多的PTA和PX装置,用于生产PTA的PX比例也将进一步增长[8]。在欧洲对二甲苯PX的总生产能力约为310.0万吨/年。由于全球一系列对二甲苯生产装置的问题以及亚洲新对苯二甲酸生产装置的建成投产,使得世界对二甲苯供应紧张价格上涨。2002年由于有200多万吨/年的对苯二甲酸生产能力投产,其中第二季度在中国、中国台湾以及韩国就有155万吨/年的对苯二甲酸生产装置建成投产,使得亚洲地区的对二甲苯供应紧张。 《甲苯和甲醇烷基化反应热力学分析与计算》中,甲苯歧化反应是甲苯经过歧化反应生成苯和二甲苯。烷基转移反应是指苯与C9、C10芳烃之间的烷基转移反应。该工艺的特点是将产量相对过剩的甲苯和或价值相对较低的C9、C10转化成苯和二甲苯,是工业上增产PX的主要手段。代表性的工艺有Mobil公司的MSTD 工艺、UOP公司的Tatoray工艺、IEP/Mobil公司的Tranplus工艺等。甲苯歧化工艺技术主要取决于催化剂,目前甲苯歧化工艺方法主要有Xylcne-Plus法(常压气相不临氢工艺)、Tatoray法(加压气相临氢工艺法)、LTDP(低温加氢液相不临氢工艺)及MTDP法(气相加压不临氢工艺)等。 从催化重整油和裂解汽油中获得的C8芳烃,对二甲苯含量仅为混合二甲苯质量的25%左右,且乙苯所占比例较大,为最大限度地生产对二甲苯,需将C8 芳烃进行异构化反应生成对二甲苯[1]。典型的工艺有:东丽公司的Isolene(II)工艺、UOP公司的Isomer工艺、Engelhard公司的Octafining工艺、Mobil公

对二甲苯(PX)生产工艺技术

对二甲苯(PX)生产工艺技术 1.主要的技术是轻烃制芳烃工艺、甲苯歧化和烷基转移技术以及芳烃的分离技术。 2.对二甲苯抽提法生产工艺技术有美国UOP(环球油品公司)的ISOMAR和PAREX工艺;法国AXENS(艾克森斯)的ELUXYL工艺;美国EXXONMOBIL(埃克森美孚)化学的XYMAX工艺。PX通常由一体化重整装置/混合二甲苯回收路线以及甲苯的选择性歧化来生产。甲苯的甲基化路线是有望增加PX产量的第三种工艺路线,目前世界上还没有大规模的商业生产装置问世,主要是这类装置的经济效益要取决于是否与大规模的甲醇装置配套。这种方法的吸引力是收率要比传统的甲苯歧化工艺高一倍。 3.采用沸石分子筛,可从其他二甲苯单体中分离出对二甲苯(PX)。对二甲苯(PX)、间二甲苯(MX)、邻二甲苯(OX)的分子大小不同,因此可以采取措施,将较小的PX分子从MX和OX中分离出来。 在目前的PX生产工艺中,主要采用吸附/分离的方法得到PX,但这种方法工艺复杂,投资较大。沸石分子筛工艺路线较为简单,而且有可能显著降低PX的生产成本。 NGK采用孔径为0.5~0.6nm的 I(沸石)型膜,这一尺寸与二甲苯的分子尺寸大致相同。这种膜很薄,但避免了有沸石结晶体这一缺陷,并已证明,采用这种膜可以将PX从其他同分异构体中分离出来。 4.法国石油科学研究院(IFP)的ELUXYL吸附分离工艺技的核心是IFP 的"ELUXYL"PX吸附分离工艺和SPX3000吸附剂。 ELUXYL吸附分离工艺是根据模拟移动床逆流选择性吸附原理,将含有四种C8芳烃同分异构体的混合进料从不同位置引入装有吸附剂的24个床层的吸附塔,由于吸附剂对四种C8芳烃同分异构体吸附能力强弱的差异,吸附能力较弱的乙苯(EB)、间二甲苯(MX)和邻二甲苯(OX)很快随脱附剂从吸附剂中脱附出来,称为抽余液;而吸附能力较强的PX则缓慢地随脱附剂从吸附剂中脱附出来,称为抽出液,从而达到分离出PX的目的。进料、抽余液、抽出液、脱附剂和反洗液5股物流通过144个控制阀来实现选择性吸附分离的连续操作。该工艺可得到纯度大于99.8%的PX产品,回收率可达96%。1997年该工艺在韩国双龙公司首次工业化应用,装置规模为50万吨/年,是当今世界上规模最大的单系列PX吸附分离装置。至今,采用SPX3000吸附剂的"ELUXYL"PX 吸附分离工艺用于PX联合装置已建成三套。 5.对二甲苯的分离工艺 (1)UOP公司的Parex工艺。对对二甲苯有强亲合力,而对与其他C8芳烃异构体有弱吸附性的分子筛吸附剂的开发使从C8芳烃中回收对二甲苯的吸附工艺成为可能。Parex工艺是UOP公司20世纪60年代开发的,可从液相混合C8馏分中连续吸附对二甲苯。该公司已出售了多套Parex装置的技术许可

对二甲苯安全生产要点

对二甲苯安全生产要点 1工艺简述 对二甲苯(Px)是芳烃工艺的最终目的产品。采用吸附分离法生产对二甲苯的工艺由吸附、解析、分离、精制等工序组成。 其简要工艺过程是将脱去碳九的混合二甲苯送入进料加热器,用蒸汽预热至177℃,经过滤后进旋转阀,然后进入两台串联吸附塔的吸附室,在0.88MPa压力下,吸附剂ADS-7(K-Ba-x分子筛)与液体组分逆流接触,被吸附的对二甲苯再用解析剂对二乙基苯进解析,旋转阀用来周期性地转换吸附塔的进料口,模拟吸附剂的移动作用,达到移动床吸附分离的目的。在吸附塔内经过吸附分离后分成抽余液和抽出液。抽余液是含少量对二甲苯的混合二甲苯和解析剂的混合物,经抽余液塔蒸出水份后送异构化单元;抽出液是对二甲苯和解析剂的混合物,从吸附塔抽出,经旋转阀控制流量换热后进抽出液塔。从该塔顶抽出粗对二甲苯到成品塔,其塔顶的轻馏分主要是甲苯,塔底则是精制的对二甲苯产品。 本工艺接触的物料甲苯、混合二甲苯、对二甲苯均为易燃、易爆、有毒物质。对二乙基苯、燃料油等为易燃品。 2重点部位 2.1旋转阀是一台多通道液流分配装置。通过旋转阀周期性地步进(时间间隔为80-90秒),改变吸附塔内的七股工艺物料进出床层的位置,达到吸附中的移动床效果。该阀的关键部位是密封垫片,它有可能窜漏物料而造成污染产品,严重的情况下有着火危险。 2.2吸附塔装置每一系列为两台吸附塔,用两个循环泵维持吸附剂的液流循环。在吸附塔进行对二甲苯的吸附和解析操作,将抽余液

和抽出液分开。本岗位的操作直接决定了产品的收率和质量,同时又易泄漏发生毒害事故。 3安全要点 3.1旋转阀 3.1.1经常监视拱顶压力是否达到1.25MPa,防止压力太小,密封垫片起不到密封作用和损坏垫片造成物料相互渗漏,产品不合格;还应检查每个旋转阀拱顶解吸剂流量是否达到2.9m3/h,防止因流量过小造成旋转阀拱顶压力难以控制和防止流量太大造成拱顶解吸剂层流受到破坏,使拱顶受压不均匀而损坏密封垫片。 3.1.2应注意检查信号选择器是否有效投用。旋转阀拱顶操作最高压力不能超过1.57MPa,以防止压力过高损坏阀的密封垫片。 3.1.3应注意检查计时器、步进控制器,发现不复位或步进指令灯不亮、计数灯不前进时,应及时通知岗位联系仪表人员修复。 3.1.4应注意检查油压装置是否正常,如步进停止,应通知操作人员,首先检查油压泵是否停转,或蓄压器内的橡皮球是否坏了,如果坏了,则应停车处理。 3.2吸附塔 3.2.1开车前应注意检查系统氮封是否建立,系统是否用氮气置换,氧含量应小于0.2%,并用0.35MPa氮气保压。 停车时一定要用氮气保压在0.35~0.88MPa范围之内,以防停车初期塔内物料汽化而损坏塔内结构和防止内部解吸剂等物料与氧接触氧化而影响吸附剂性能。 3.2.2要经常检查封头冲洗流量是否符合工艺控制要求0.8m3/h,防止封头内形成死角对产品造成污染。

对二甲苯PX生产工艺

对二甲苯PX生产工艺 一、选择性甲苯歧化工艺 20世纪80年代中到末期美孚公司(现在的埃克森美孚公司)开发了一种选择性甲苯歧化工艺(MSTDP),使用择形催化剂生产富对二甲苯的二甲苯产品。埃克森美孚已向世界的一些生产装置(如科克和信任公司)出售了该技术的专利许可证,近来它停止提供MSTDP工艺许可证,但继续提供其普通甲苯歧化工+艺的技术许可证。埃克森美孚开发了一种更新的甲苯歧化工艺,称为PxMax,近来向韩国LG-加德士出售了该项技术的专利许可证。UOP公司从1997年就提供自己的选择性甲苯歧化技术专利许可,该技术称为PXPlus。更晚些时候,GTC公司(福斯特惠勒的子公司)得到了出售印度石化公司选择性甲苯歧化工艺GT-STDP的排他权力。 (1)埃克森美孚的PxMax工艺。使用MTPX催化剂的PxMax工艺于1996年首次在美国路易斯安那州的一家炼油厂实现工业化,另一套装置在埃克森美孚位于得州贝汤和博芒特的化工厂投产。工艺流程与MSTDP相似,只是催化剂不同。埃克森美孚申请了许多关于其HZSM-5催化剂的专利。最有希望的分子筛催化剂似乎要用沉积的二氧化硅活化,并在转化条件下用含二氧化硅的对二甲苯高效选择性试剂处理。 硅胶改性的HZSM-5催化剂(含5%-10%Si02/HZSM-5),在甲苯转化率为20%--25%时,对二甲苯的选择性大约为98%。沉积在沸石表面的硅酸盐涂层降低了表面活性,而提高了择形性。一般认为MTPX的优点是反应物基本无法接近外表面的酸性中心。催化剂外表面的酸性中心可以将催化剂孔中的对二甲苯重新异构化为与其他两种异构体的平衡混合物,从而将二甲苯中对二甲苯的含量减少到24%。通过减少催化剂孔中对二甲苯与这些酸性中心的接近,就可以得到相对高含量的对二甲苯。MTPX催化剂通过用对二甲苯高效选择性试剂对表面酸性中心进行化学改性,阻碍了对二甲苯与这些外部酸性中心的接触。 埃克森美孚公司的专利数据表明,随温度升高,对二甲苯的选择性降低,甲苯转化率提高;随重时空速(WHSV)提高,甲苯转化率降低,对二甲苯的选择性提高;随氢/烃比提高,甲苯转化率降低,而对二甲苯选择性提高。进一步改进的MTPX催化剂可以降低不需要的副

采用清洁生产工艺制取对二甲苯(PX)分厂设计报告

一、设计题目 为某一大型综合化工企业设计一座采用清洁生产工艺制取对二甲苯(PX)的分厂。 二、设计基础条件 1、原料 原料来源及原料规格由各参赛队根据不同的工艺路线和技术经济要求自行 确定。 2、产品 产品结构及其技术规格由参赛队根据本队的市场规划自行拟订。 3、生产规模 生产规模由参赛队根据本队的资源规划和市场规划以及国家的有关政策自 行确定。 4、环境要求 尽量采取可行的清洁生产技术,从本质上减少对环境的不利影响,并对可能 造成环境污染的副产物提出合理的处理方案。 5、公用工程 由总厂提供。 三、工作内容及要求

1、项目可行性论证 1)建设意义; 2)建设规模; 3)技术方案; 4)与企业的系统集成方案; 5)厂址选择; 6)与社会及环境的和谐发展; 7)经济效益分析。 2、工艺流程设计 1)工艺方案选择及论证 甲苯甲醇烷基化制对二甲苯反应过程是以摩尔比为7: 1的甲苯和甲醇作为反应原料,临氢、临水,其中氢气与原料的摩尔比为8: 1,水与原料的摩尔比为8: 1,在Si、P、Mg复合改性的ZSM-5催化剂上经过一系列复杂的反应,以达到高对二甲苯选择性的目的。甲苯甲醇烷基化反应体系是一个热效应较小的放热过程,其具体的化学反应计量式如下所示:

确定反应进度 在一个化丁流程的设计和模拟中,反应部分的设计模拟是整个工作的核心。该部分既囊括了反应原料所需的压力和温度,又包含了反 应产物的信息,所以既决定着反应之1000 1%年对二甲苯项目发前流

程的换热及输送设备的工艺参数,又是后续流程进行分离提纯的前提因素。而对反应部分各反应式的反应进度的准确模拟,则是反应部分模拟的基础。由前文可知,甲苯甲醇烷基化工艺中,除甲苯甲醇烷基化生成对二甲苯的反应之外还有18个副反应,各反应都有各自的反应进度和原料转化率,想要成功模拟反应并开发相应的工艺流程,首先就要通过化工流程模拟技术,确定这些反应的反应进度。大连理工大学工业催化剂研究所测得小试装置反应产物组成的流程如下:令小试得到的气相产物通过冷却器降温至15°C,得到气液两相,再通过色谱方法分别测得两相的组成。 根据催化剂研究所的检验流程,在流程模拟软件HYSYS中按图2.1搭建出模拟流程。 反应原料为甲苯、甲醇,水和氢做为载气,甲苯、甲醇摩尔比7:1,水与原料摩尔比8:1,氢与原料摩尔比8:1。四者混合后经加热器加热至反应温度460°C,流入反应器,反应产物为气相,从反应器流出,经冷

对二甲苯生产工艺情况分析

国外对二甲苯生产工艺情况 发布时间:2007-7-4 11:05:00 文章来源:中国化工七日讯网 一、选择性甲苯歧化工艺 20世纪80年代中到末期美孚公司(现在的埃克森美孚公司)开发了一种选择性甲苯歧化工艺(MSTDP),使用择形催化剂生产富对二甲苯的二甲苯产品。埃克森美孚已向世界的一些生产装置(如科克和信任公司)出售了该技术的专利许可证,近来它停止提供MSTDP工艺许可证,但继续提供其普通甲苯歧化工+艺的技术许可证。埃克森美孚开发了一种更新的甲苯歧化工艺,称为PxMax,近来向韩国LG-加德士出售了该项技术的专利许可证。UOP公司从1997年就提供自己的选择性甲苯歧化技术专利许可,该技术称为PXPlus。更晚些时候,GTC公司(福斯特惠勒的子公司)得到了出售印度石化公司选择性甲苯歧化工艺GT-STDP的排他权力。 (1)埃克森美孚的PxMax工艺。使用MTPX催化剂的PxMax工艺于1996年首次在美国路易斯安那州的一家炼油厂实现工业化,另一套装置在埃克森美孚位于得州贝汤和博芒特的化工厂投产。工艺流程与MSTDP相似,只是催化剂不同。埃克森美孚申请了许多关于其HZSM-5催化剂的专利。最有希望的分子筛催化剂似乎要用沉积的二氧化硅活化,并在转化条件下用含二氧化硅的对二甲苯高效选择性试剂处理。 硅胶改性的HZSM-5催化剂(含5%-10%Si02/HZSM-5),在甲苯转化率为20%--25%时,对二甲苯的选择性大约为98%。沉积在沸石表面的硅酸盐涂层降低了表面活性,而提高了择形性。一般认为MTPX的优点是反应物基本无法接近外表面的酸性中心。催化剂外表面的酸性中心可以将催化剂孔中的对二甲苯重新异构化为与其他两种异构体的平衡混合物,从而将二甲苯中对二甲苯的含量减少到24%。通过减少催化剂孔中对二甲苯与这些酸性中心的接近,就可以得到相对高含量的对二甲苯。MTPX催化剂通过用对二甲苯高效选择性试剂对表面酸性中心进行化学改性,阻碍了对二甲苯与这些外部酸性中心的接触。 埃克森美孚公司的专利数据表明,随温度升高,对二甲苯的选择性降低,甲苯转化率提高;随重时空速(WHSV)提高,甲苯转化率降低,对二甲苯的选择性提高;随氢/烃比提高,甲苯转化率降低,而对二甲苯选择性提高。进一步改进的MTPX催化剂可以降低不需要的副产物,主要是降低乙苯生成量。这是通过增加催化剂加氢或脱氢功能实现的,例如可以加入铂(0.01%-2%)等金属化合物。专利表明,当每10%的Si02/HZSM-5加入0.25%铂时,乙苯生成量可减少3-4倍,而对二甲苯的选择性仍保持在98%以上。此外C9芳烃的生成量也可减少3倍。这种PxMax工艺可提供高效转化,减少了邻位和问位异构体的生成,有利于生成更多

相关主题