搜档网
当前位置:搜档网 › 2009年高考数学压轴题系列训练含答案及解析详解

2009年高考数学压轴题系列训练含答案及解析详解

2009年高考数学压轴题系列训练含答案及解析详解
2009年高考数学压轴题系列训练含答案及解析详解

2009年高考数学压轴题系列训练含答案及解析详解一

1.(12分)已知抛物线、椭圆和双曲线都经过点()1,2M ,它们在x 轴上有共同焦点,椭圆和双曲线的对称轴是坐标轴,抛物线的顶点为坐标原点.

(Ⅰ)求这三条曲线的方程;

(Ⅱ)已知动直线l 过点()3,0P ,交抛物线于,A B 两点,是否存在垂直于x 轴的直线l '被以AP 为直径的圆截得的弦长为定值?若存在,求出l '的方程;若不存在,说明理由.

解:(Ⅰ)设抛物线方程为()220y px p =>,将()1,2M 代入方程得2p =

24y x ∴= 抛物线方程为: ………………………………………………(1分)

由题意知椭圆、双曲线的焦点为()()211,0,1,0,F F -∴ c=1…………………(2分) 对于椭圆,

1222a MF MF =+

+

(

2

2

2222211321

a a

b a

c ∴=+∴=+=+∴=-=+∴= 椭圆方程为:………………………………(4分)

对于双曲线,1222a MF MF '=-=

2222221321

a a

b

c a '∴='∴=-'''∴=-=∴= 双曲线方程为:………………………………(6分)

(Ⅱ)设AP 的中点为C ,l '的方程为:x a =,以AP 为直径的圆交l '于,D E 两点,DE 中点为H

令()11113,,,22x y A x y +??

∴ ??

? C ………………………………………………(7分)

()111231

23

22

DC AP x CH a x a ∴=

+=-=-+

()()(

)22

2

2

2

2111212

1132344-23246222

DH DC CH x y x a a x a a

a DH DE DH l x ????∴=-=

-+--+???

?=-+==-+=∴=='= 当时,为定值; 此时的方程为: …………(12分)

2.(14分)已知正项数列{}n a 中,16a =

,点(n n A a 在抛物线21y x =+上;数列{}n b 中,点

(),n n B n b 在过点()0,1,以方向向量为()1,2的直线上.

(Ⅰ)求数列{}{},n n a b 的通项公式;

(Ⅱ)若()()()

n n a f n b ??=???, n 为奇数, n 为偶数,问是否存在k N ∈,使()()274f k f k +=成立,若存在,求出k

值;若不存在,说明理由; (Ⅲ)对任意正整数n

,不等式

1

120111111n n n a b b b +-

≤??

????

+++ ? ????

?????

L 成立,求正数a 的取值范围.

解:

(Ⅰ)将点(n n A a 代入21y x =+中得

()11111115:21,21

n n n n n n a a a a d a a n n l y x b n ++=+∴-==∴=+-?=+=+∴=+ 直线 …………………………………………(4分)

(Ⅱ)()()()521n f n n ?+?=?+??, n 为奇数, n 为偶数………………………………(5分)

()()()()()()27274275421,42735

227145,2

4k k f k f k k k k k k k k k k ++=∴++=+∴=+∴++=+∴==Q 当为偶数时,为奇数, 当为奇数时,为偶数, 舍去综上,存在唯一的符合条件。

……………………(8分)

(Ⅲ)由

1

120111111n n n a b b b +-

≤??

????

+++ ? ????

?????

L

()()()()

12121211111111231111112311111111125123123241232525n n n n n a b b b n f n b b b n f n b b b b n f n n n n f n b n n n ++?????

?≤

+++ ? ???+??????

?????=+++ ?

???+??????

???

???

?∴+=++++

???

???+????????

+?

?+++∴=

?+=?= ?

+++??

L L L 即记 ()()()()()22

min 252341616

1

41615

1,445

1,35450n n n n n n f n f n f n f n f a +?+++=

>++∴+>∴==?

=∴<≤

即递增, ………………………………(14分)

3.(本小题满分12分)将圆O: 4y x 2

2

=+上各点的纵坐标变为原来的一半 (横坐标不变), 得到曲线C. (1) 求C 的方程;

(2) 设O 为坐标原点, 过点)0,3(F 的直线l 与C 交于A 、B 两点, N 为线段AB 的中点, 延长线段ON 交C 于点E.

求证: ON 2OE =的充要条件是3|AB |= .

解: (1)设点)y ,x (P '' , 点M 的坐标为)y ,x ( ,由题意可知??

?='=',

y 2y ,

x x ………………(2分)

又,4y x 2

2

='+'∴1y 4

x 4y 4x 22

2

2=+?=+. 所以, 点M 的轨迹C 的方程为1y 4

x 22

=+.………………(4分) (2)设点)y ,x (A 11 , )y ,x (B 22 , 点N 的坐标为)y ,x (00 , ㈠当直线l 与x 轴重合时, 线段AB 的中点N 就是原点O, 不合题意,舍去; ………………(5分)

㈡设直线l: ,3my x +=

由?????=++=4

y 4x 3my x 22消去x,

得01my 32y )4m (2

2=-++………………①

∴,4

m m

3y 2

0+-

=………………(6分) ∴4

m 3

44m 34m 34m m 33my x 2222200+=++++-=+=,

∴点N 的坐标为)4

m m 3,4m 34(

2

2+-+ .………………(8分) ①若2=, 坐标为, 则点E 的为)4

m m

32,4m 38(

22+-+ , 由点E 在曲线C 上,

得1)

4m (m 12)4m (482

22

22=+++, 即,032m 4m 24=-- ∴4m (8m 22-== 舍去). 由方程①得,14

m 1

m 44m 16m 4m 12|y y |2

222221=++=+++=- 又|,)y y (m ||m y m y ||x x |212121-=-=-

∴3|y y |1m |AB |212=-+= .………………(10分)

②若3|AB |= , 由①得,34

m )

1m (42

2=++∴ .8m 2= ∴点N 的坐标为)66,33(

± , 射线ON 方程为: )0x (x 2

2y >±= , 由?????=+>±=4y 4x )0x (x 22y 22 解得???

???

?±==36

y 332x ∴点E 的坐标为),36,332(± ∴2=.

综上, OE ON 2=的充要条件是3|AB |= .………………(12分)

4.(本小题满分14分)已知函数241

)x (f x +=

)R x (∈.

(1) 试证函数)x (f 的图象关于点)4

1

,21( 对称;

(2) 若数列}a {n 的通项公式为)m ,,2,1n ,N m ()m

n

(f a n Λ =∈=+, 求数列}a {n 的前m 项和

;S m

(3) 设数列}b {n 满足: 3

1b 1=

, n 2

n 1n b b b +=+. 设1b 11b 11b 1T n 21n ++++++=Λ. 若(2)中的n S 满足对任意不小于2的正整数n, n n T S <恒成立, 试求m 的最大值.

解: (1)设点)y ,x (P 000 是函数)x (f 的图象上任意一点, 其关于点)4

1,21

( 的对称点为)y ,x (P .

由???????=+=+412

y y 2

1

2x x 00 得?????-=-=.y 21

y ,x 1x 00 所以, 点P 的坐标为P )y 2

1

,x 1(00-- .………………(2分) 由点)y ,x (P 000 在函数)x (f 的图象上, 得2

41

y 0

x 0+=. ∵,)

24(244244241)x 1(f 0

000

x x x x x 10+=?+=+=

-- =+-=-24121y 210x 0,)24(240

x x + ∴点P )y 2

1,x 1(00-- 在函数)x (f 的图象上. ∴函数)x (f 的图象关于点)41

,2

1

( 对称. ………………(4分) (2)由(1)可知, 21)x 1(f )x (f =-+, 所以)1m k 1(2

1

)m k 1(f )m k (f -≤≤=-+ ,

即,2

1a a , 21)m k m (f )m k (f k m k =+∴=-+- ………………(6分)

由m 1m 321m a a a a a S +++++=-Λ, ……………… ① 得,a a a a a S m 13m 2m 1m m +++++=---Λ ………………② 由①+②, 得,6

12m 61221m a 221)1m (S 2m m -=?+-=+?-= ∴).1m 3(12

1

S m -=

………………(8分)

(3) ∵,3

1

b 1=

)1b (b b b b n n n 2n 1n +=+=+, ………………③ ∴对任意的0b ,N n n >∈+ . ………………④ 由③、④, 得

,1b 1b 1)1b (b 1b 1n n n n 1

n +-=+=

+即1

n n n b 1

b 11b 1+-=+.

∴1

n 1n 11n n 3221n b 1

3b 1b 1)b 1b 1()b 1b 1()b 1b 1(

T +++-=-=-++-+-=Λ.……………(10分) ∵,b b ,0b b b n 1n 2

n n 1n >∴>=-++ ∴数列}b {n 是单调递增数列. ∴n T 关于n 递增. 当2n ≥, 且+∈N n 时, 2n T T ≥. ∵,81

52)194(94b ,94)131(31b ,31b 321=+==+==

∴.52

75

b 13T T 12n =-=≥………………(12分) ∴,5275S m <

即,5275)1m 3(121<-∴,39

4639238m =< ∴m 的最大值为6. ……………(14分) 5.(12分)E 、F 是椭圆2

2

24x y +=的左、右焦点,l 是椭圆的右准线,点P l ∈,过点E 的直线交椭圆于A 、B 两点.

(1) 当AE AF ⊥时,求AEF ?的面积; (2) 当3AB =时,求AF BF +的大小; (3) 求EPF ∠的最大值.

解:(1)22

41

28

2AEF m n S mn m n ?+=??==?+=? (2)因4

84AE AF AB AF BF BE BF ?+=??++=?

+=??

, 则 5.AF BF +=

(1)

设)(0)P t t > ()tan EPF tan EPM FPM ∠=∠-∠

221(

(1663

t t t t t t -=-÷+==≤++,

当t =

303

tan EPF EPF ∠=

?∠=o 6.(14分)已知数列{}n a 中,11

3a =,当2n ≥时,其前n 项和n S 满足2221

n n n S a S =-,

(2) 求n S 的表达式及2

lim

n

n n

a S →∞的值;

(3) 求数列{}n a 的通项公式; (4)

设n b =

n N ∈且2n ≥时,n n a b <.

解:(1)21111

211

22(2)21n n n n n n n n n n n S a S S S S S S n S S S ----=-=?-=?-=≥-

所以1n S ???

???

是等差数列.则1

21n

S n =+. 222

lim

lim 2212lim 1n n n n n

n n a S S S →∞→∞→∞

===---.

(2)当2n ≥时,12

112

212141

n n n a S S n n n --=-=

-=+--, 综上,()()21

13

2214n n a n n ?=??=??≥?-?

.

(3

)令a b =

=,当2n ≥

时,有0b a <<≤ (1) 法1:等价于求证

1

1

21

21

n n >

-+.

当2

n ≥

时,0<

≤令

()23,0f x x x x =-<≤ (

)233232(1)2(12(10222f x x x x x x x '=-=-≥-=->,

则()f

x 在递增.

又021213n n <

<≤+-, 所以33(

)(),2121

g g n n <+-即n n a b <.

法(2)223333

11()()2121(21)(21)n n a b b a b a n n n n -=

---=---+-+- 22()()a b a b ab a b =-++-- (2)

22()[()()]22ab ab a b a a b b =-+

-++- ()[(1)(1)]22

b a a b a a b b =-+-++- (3) 因33

111110222223

a b a b a +

-<+-<-<-=-<,所以(1)(1)022b a a a b b +-++-<

由(1)(3)(4)知n n a b <.

法3:令()22g b a b ab a b =++--,则()12102

a

g b b a b -'=+-=?= 所以()()(){}{}

220,,32g b max g g a max a a a a ≤=-- 因0,3

a <≤

则()210a a a a -=-<,2214323()3(

)0339a a a a a -=-≤-< 所以()2

2

0g b a b ab a b =++--< (5) 由(1)(2)(5)知n n a b < 7. (本小题满分14分)

设双曲线22

22b

y a x -=1( a > 0, b > 0 )的右顶点为A ,

P 是双曲线上异于顶点的一个动点,从A 引双曲线的两条渐近线的平行线与直线OP 分别交于Q 和R 两点.

(1) 证明:无论P 点在什么位置,总有|→

--OP |2 = |→

-OQ ·→

--OR | ( O 为坐标原点);

(2) 若以OP 为边长的正方形面积等于双曲线实、虚轴围成的矩形面积,求双曲线离心率的取值范围; 解:(1) 设OP :y = k x, 又条件可设AR: y =

a

b

(x – a ),

解得:→

--OR = (b ak ab --,b ak kab --), 同理可得→-OQ = (b ak ab +,b

ak kab

+),

∴|→

-OQ ·→

--OR | =|b ak ab --b ak ab ++b ak kab --b ak kab

+| =|

b k a |)k 1(b a 2

22222-+. 4分 设→

--OP = ( m, n ) , 则由双曲线方程与OP 方程联立解得:

m 2 =

22222k a b b a -, n 2

= 2

22222k a b b a k -,

∴ |→

--OP

|2 = :m 2 + n 2 =

22222k a b b a -+ 2222

22k a b b a k -=2

22222k

a b )k 1(b a -+ , ∵点P 在双曲线上,∴b 2 – a 2k 2 > 0 . ∴无论P 点在什么位置,总有|→

--OP

|2 = |→-OQ ·→

--OR | . 4分

(2)由条件得:2

22222k

a b )

k 1(b a -+= 4ab, 2分 即k 2 = 2

2a 4ab ab

b 4+-> 0 , ∴ 4b > a, 得e >

4

17

2分

2009年高考数学压轴题系列训练含答案及解析详解二

1. (本小题满分12分)

已知常数a > 0, n 为正整数,f n ( x ) = x n – ( x + a)n ( x > 0 )是关于x 的函数. (1) 判定函数f n ( x )的单调性,并证明你的结论. (2) 对任意n ≥ a , 证明f `n + 1 ( n + 1 ) < ( n + 1 )f n `(n) 解: (1) f n `( x ) = nx n – 1 – n ( x + a)n – 1 = n [x n – 1 – ( x + a)n – 1 ] ,

∵a > 0 , x > 0, ∴ f n `( x ) < 0 , ∴ f n ( x )在(0,+∞)单调递减. 4分 (2)由上知:当x > a>0时, f n ( x ) = x n – ( x + a)n 是关于x 的减函数, ∴ 当n ≥ a 时, 有:(n + 1 )n – ( n + 1 + a)n

n n – ( n + a)n . 2分

又 ∴f `n + 1 (x ) = ( n + 1 ) [x n –( x+ a )n ] ,

∴f `n + 1 ( n + 1 ) = ( n + 1 ) [(n + 1 )n –( n + 1 + a )n ] < ( n + 1 )[ n n – ( n + a)n ] = ( n + 1 )[ n n – ( n

+ a )( n + a)n – 1 ] 2分

( n + 1 )f n `(n) = ( n + 1 )n[n n – 1 – ( n + a)n – 1 ] = ( n + 1 )[n n – n( n + a)n – 1 ], 2分 ∵( n + a ) > n ,

∴f `n + 1 ( n + 1 ) < ( n + 1 )f n `(n) . 2分 2. (本小题满分12分)

已知:y = f (x) 定义域为[–1,1],且满足:f (–1) = f (1) = 0 ,对任意u ,v [–1,1],都有|f (u) –

f (v) | ≤ | u –v | .

(1) 判断函数p ( x ) = x 2 – 1 是否满足题设条件?

(2) 判断函数g(x)=1,[1,0]1,[0,1]x x x x +∈-??-∈?

,是否满足题设条件?

解: (1) 若u ,v

[–1,1], |p(u) – p (v)| = | u 2 – v 2 |=| (u + v )(u – v) |,

取u =

4

3

[–1,1],v =

2

1[–1,1],

则 |p (u) – p (v)| = | (u + v )(u – v) | = 4

5

| u – v | > | u – v |, 所以p( x)不满足题设条件. (2)分三种情况讨论: 10. 若u ,v [–1,0],则|g(u) – g (v)| = |(1+u) – (1 + v)|=|u – v |,满足题设条件; 20. 若u ,v [0,1], 则|g(u) – g(v)| = |(1 – u) – (1 – v)|= |v –u|,满足题设条件;

30. 若u

[–1,0],v

[0,1],则:

|g (u) –g(v)|=|(1 – u) – (1 + v)| = | –u – v| = |v + u | ≤| v – u| = | u –v|,满足题设条件; 40 若u

[0,1],v

[–1,0], 同理可证满足题设条件.

综合上述得g(x)满足条件. 3. (本小题满分14分)

已知点P ( t , y )在函数f ( x ) = 1

x x +(x –1)的图象上,且有t 2 – c 2at + 4c 2 = 0 ( c 0 ).

(1) 求证:| ac |

4;

(2) 求证:在(–1,+∞)上f ( x )单调递增. (3) (仅理科做)求证:f ( | a | ) + f ( | c | ) > 1. 证:(1) ∵ t

R, t

–1,

∴ ⊿ = (–c 2a)2 – 16c 2 = c 4a 2 – 16c 2 0 , ∵ c

0, ∴c 2a 2

16 , ∴| ac |

4.

(2) 由 f ( x ) = 1 –

1

x 1+, 法1. 设–1 < x 1 < x 2, 则f (x 2) – f ( x 1) = 1–

1x 12+–1 + 1x 1

1+= )

1x )(1x (x x 1221++-. ∵ –1 < x 1 < x 2, ∴ x 1 – x 2 < 0, x 1 + 1 > 0, x 2 + 1 > 0 , ∴f (x 2) – f ( x 1) < 0 , 即f (x 2) < f ( x 1) , ∴x 0时,f ( x )单调递增.

法2. 由f ` ( x ) =

2

)1x (1

+> 0 得x

–1,

∴x > –1时,f ( x )单调递增.

(3)(仅理科做)∵f ( x )在x > –1时单调递增,| c |

|

a |4

> 0 , ∴f (| c | )

f (|a |4) = 1|

a |4|a |4

+= 4|a |4+

f ( | a | ) + f ( | c | ) =

1|a ||a |++ 4|a |4+> 4|a ||a |++4

|a |4

+=1. 即f ( | a | ) + f ( | c | ) > 1. 4.(本小题满分15分)

设定义在R 上的函数432

01234()f x a x a x a x a x a =++++(其中i a ∈R ,i=0,1,2,3,4),当

x= -1时,f (x)取得极大值2

3

,并且函数y=f (x+1)的图象关于点(-1,0)对称. (1) 求f (x)的表达式;

(2) 试在函数f (x)的图象上求两点,使这两点为切点的切线互相垂直,且切点的横坐标都在区间

2,2?-?上; (3) 若+212(13),(N )23n n n n n n x y n --==∈,求证:4

()().3

n n f x f y -< 解:(1)3

1().3

f x x x =

-…………………………5分 (2)()20,0,2,3-?或()20,0,2,.3? ??

…………10分 (3)用导数求最值,可证得4

()()(1)(1).3

n n f x f y f f -<--<……15分 5.(本小题满分13分)

设M 是椭圆22

:

1124

x y C +=上的一点,P 、Q 、T 分别为M 关于y 轴、原点、x 轴的对称点,N 为椭圆C 上异于M 的另一点,且MN ⊥MQ ,QN 与PT 的交点为E ,当M 沿椭圆C 运动时,求动点E 的轨迹方程.

解:设点的坐标112211(,),(,)(0),(,),M x y N x y x y E x y ≠

则111111(,),(,),(,),P x y Q x y T x y ----……1分

2

2

112

222

1,(1)12

4 1.(2)124

x y x y ?+=????+=??L L L L L L L L ………………………………………………………3分 由(1)-(2)可得1.3

MN QN k k ?=-………………………………6分 又MN ⊥MQ ,111,,MN MQ MN x k k k y ?=-=-

所以11

.3QN y k x = 直线QN 的方程为1111()3y y x x y x =

+-,又直线PT 的方程为11

.x

y x y =-……10分 从而得1111

,.22

x x y y =

=-所以112,2.x x y y ==- 代入(1)可得2

21(0),3

x y xy +=≠此即为所求的轨迹方程.………………13分 6.(本小题满分12分)

过抛物线y x 42

=上不同两点A 、B 分别作抛物线的切线相交于P 点,.0=?

(1)求点P 的轨迹方程;

(2)已知点F (0,1),是否存在实数λ使得0)(2=+?λ?若存在,求出λ的值,若不存在,请说明理由.

解法(一):(1)设)(),4

,(),4,(212

2

2211x x x x B x x A ≠

由,42

y x =得:2

'

x y =

2

,221x k x k PB PA ==

4,,021-=∴⊥∴=?x x PB PA Θ………………………………3分

直线PA 的方程是:)(241121x x x x y -=-即4

22

11x x x y -= ① 同理,直线PB 的方程是:4

22

2

2x x x y -= ② 由①②得:??

??

?

∈-==+=),(,

142212

121R x x x x y x x x ∴点P 的轨迹方程是).(1R x y ∈-=……………………………………6分

(2)由(1)得:),14,(211-=x x FA ),14,(2

22-=x x FB )1,2

(21-+x

x P 4),2,2

(

212

1-=-+=x x x x 42)14)(14(2

2

21222121x x x x x x +--=--+=? …………………………10分

24

44)()(2

2

212212

++=++=x x x x

所以0)(2=+?FP FB FA

故存在λ=1使得0)(2=+?λ…………………………………………12分 解法(二):(1)∵直线PA 、PB 与抛物线相切,且,0=? ∴直线PA 、PB 的斜率均存在且不为0,且,PB PA ⊥ 设PA 的直线方程是)0,,(≠∈+=k R m k m kx y

由??

?=+=y

x m kx y 42

得:0442

=--m kx x 016162=+=?∴m k 即2k m -=…………………………3分

即直线PA 的方程是:2

k kx y -=

同理可得直线PB 的方程是:211k

x k y --

= 由??

???--=-=2211k x k y k kx y 得:?????

-=∈-=11y R k k x 故点P 的轨迹方程是).(1R x y ∈-=……………………………………6分 (2)由(1)得:)1,1

(),1,2(),,2(22

---

k

k P k k B k k A )11

,2(),1,2(22--=-=k

k FB k k FA

)2,1

(--=k

k FP

)1

(2)11)(1(42222k

k k k +--=--+-=?………………………………10分

)1

(24)1()(2222k

k k k ++=+-=

故存在λ=1使得0)(2=+?λ…………………………………………12分 7.(本小题满分14分)

设函数x ax

x

x f ln 1)(+-=

在),1[+∞上是增函数. (1) 求正实数a 的取值范围;

(2) 设1,0>>a b ,求证:.ln 1b

b

a b b a b a +<+<+ 解:(1)01

)(2

'

≥-=

ax ax x f 对),1[+∞∈x 恒成立, x

a 1

∴对),1[+∞∈x 恒成立 又

11

≤x

1≥∴a 为所求.…………………………4分 (2)取b b a x +=,1,0,1>+∴>>b

b

a b a Θ,

一方面,由(1)知x ax

x

x f ln 1)(+-=在),1[+∞上是增函数, 0)1()(=>+∴f b b a f

0ln 1>+++?+-

b b a b

b a a b b a

即b

a b b a +>

+1

ln

……………………………………8分 另一方面,设函数)1(ln )(>-=x x x x G

)1(01

11)('>>-=-

=x x

x x x G Θ ∴)(x G 在),1(+∞上是增函数且在0x x =处连续,又01)1(>=G ∴当1>x 时,0)1()(>>G x G

∴x x ln > 即b

b

a b b a +>+ln

综上所述,.ln 1b

b

a b b a b a +<+<+………………………………………………14分

8.(本小题满分12分)

如图,直角坐标系xOy 中,一直角三角形ABC ,90C ∠=o ,

B 、

C 在x 轴上且关于原点O 对称,

D 在边BC 上,3BD DC =,

ABC !的周长为12.

若一双曲线E 以B 、C 为焦点,且经过A 、D 两点.

(1) 求双曲线E 的方程;

(2) 若一过点(,0)P m (m 为非零常数)的直线l 与双曲线E

相交于不同于双曲线顶点的两点M 、N ,且MP PN λ=u u u r u u u r

,问在x 轴上是否存在定点G ,使()BC GM GN λ⊥-u u u r u u u u r u u u r

?若存在,求出所有这样定点G 的坐标;若不存在,请说明理由.

解:(1) 设双曲线E 的方程为22

221(0,0)x y a b a b

-=>>,

则(,0),(,0),(,0)B c D a C c -.

由3BD DC =,得3()c a c a +=-,即2c a =.

∴222

||||16,

||||124,||||2.AB AC a AB AC a AB AC a ?-=?

+=-??-=?

(3分)

解之得1a =

,∴2,c b ==

∴双曲线E 的方程为2

2

13

y x -=.

(5分) (2) 设在x 轴上存在定点(,0)G t ,使

()BC GM GN λ⊥-u u u r u u u u r u u u r

x

x

设直线l 的方程为x m ky -=,1122(,),(,)M x y N x y . 由MP PN λ=u u u r u u u r

,得120y y λ+=.

即12

y

y λ=-

① (6分)

∵(4,0)BC =u u u r

1212(,)GM GN x t x t y y λλλλ-=--+-u u u u r u u u r

, ∴()BC GM GN λ⊥-u u u r u u u u r u u u r

12()x t x t λ?-=-.

即12()ky m t ky m t λ+-=+-. ② (8分)

把①代入②,得

12122()()0ky y m t y y +-+=

③ (9分)

把x m ky -=代入2

2

13y x -=并整理得

222(31)63(1)0k y kmy m -++-=

其中2310k -≠且0?>,即21

3

k ≠

且2231k m +>. 212122263(1)

,3131km m y y y y k k --+==

--.

(10分)

代入③,得

2226(1)6()

03131k m km m t k k ---=--,

化简得 kmt k =. 当1

t m

=

时,上式恒成立. 因此,在x 轴上存在定点1

(,0)G m

,使()BC GM GN λ⊥-u u u r u u u u r u u u r .

(12分)

9.(本小题满分14分)

已知数列{}n a 各项均不为0,其前n 项和为n S ,且对任意*n ∈N 都有(1)n n p S p pa -=-(p 为大于1

的常数),记12121C C C ()2n

n n n n

n n

a a a f n S ++++=L .

(1) 求n a ;

x

(2) 试比较(1)f n +与

1

()2p f n p

+的大小(*n ∈N )

; (3) 求证:21

11(21)()(1)(2)(21)

112n p p n f n f f f n p p -??

??++-+++--?? ?-??????

L 剟,

(*n ∈N ). 解:(1) ∵(1)n n p S p pa -=-,

① ∴11(1)n n p S p pa ++-=-.

②-①,得

11(1)n n n p a pa pa ++-=-+,

即1n n a pa +=.

(3分)

在①中令1n =,可得1a p =.

∴{}n a 是首项为1a p =,公比为p 的等比数列,n n a p =. (4分)

(2) 由(1)可得(1)(1)

11

n n n p p p p S p p --==

--. 12121C C C n n n n n a a a ++++L 1221C C C (1)(1)n n n n

n n n p p p p p =++++=+=+L .

∴12121C C C ()2n

n n n n

n n a a a f n S ++++=L 1(1)2(1)

n n n p p p p -+=?-,

(5分)

(1)f n +1111(1)2(1)

n n n p p p p +++-+=

?-. 而1

()2p f n p

+1111(1)2()n n n p p p p p +++-+=

?-,且1p >, ∴1110n n p p p ++->->,10p ->. ∴(1)f n +<

1

()2p f n p

+,

(*n ∈N ). (8分)

(3) 由(2)知 1(1)2p f p +=

,(1)f n +<1

()2p f n p

+,(*n ∈N ). ∴当2n …时,211111()(1)()(2)()(1)()2222n n

p p p p f n f n f n f p p p p

-++++<

-<-<<=L . ∴2

21

111(1)(2)(21)222n p p p f f f n p p p -??

??++++++-+++ ? ?????

L L ?

2111112n p p p p -????++=-?? ?-??????

, (10分)

(当且仅当1n =时取等号).

另一方面,当2n …,1,2,,21k n =-L 时, 2221(1)(1)()(2)2(1)2(1)k n k k k n k n k p p p f k f n k p p p ---??

-+++-=+??--??

2221(1)(1)22(1)2(1)

k n k k k n k n k p p p p p p ----++??--…

212(1)1

2(1)(1)

n

n k

n k p p p p p --+=?

--

2212(1)1

21

n n

n k n k p p p p p p --+=?

--+.

∵22k n k n p p p -+…,∴2222121(1)n k n k n n n p p p p p p ---+-+=-?.

∴12(1)()(2)2()2(1)

n

n n p p f k f n k f n p p -++-?=-…,

(当且仅当k n =时取等号).(13分) ∴21

21

21

1

11

1()[()(2)]()(21)()2n n n k k k f k f k f n k f n n f n ---====+-=-∑

∑∑….

(当且仅当1n =时取等号). 综上所述,21

211

11(21)()()

112n n k p p n f n f k p p --=??

??++--??∑ ?-??????

剟,

(*n ∈N ).(14分)

2009年高考数学压轴题系列训练含答案及解析详解三

1.(本小题满分13分)

如图,已知双曲线C :x a y

b

a b 222

2100-=>>(),的右准线l 1

与一条渐近线l 2交于点M ,F 是双曲线C 的右焦点,O 为坐标原点.

(I )求证:O MM F

→⊥→

; (II )若||M F →=1且双曲线C 的离心率e =

6

2

,求双曲线C 的方程;

(III )在(II )的条件下,直线l 3过点A (0,1)与双曲线C 右支交于不同的两点P 、Q 且P 在A 、

Q 之间,满足A P A Q →=→λ,试判断λ的范围,并用代数方法给出证明.

解:(I )Θ右准线l 12:x a c =,渐近线l 2:y b

a

x =

∴=+

M a c a b c F c c ab ()()2222

0,,,,Θ,∴→=O M a c a b c ()2, M F c a c a b c b c a b

c

→=--=-()()

22,, ΘO M M F a b c a b

c

O M M F →?→=-=∴→⊥→222222

0 ……3分 (II )Θe b

a

e a b

=∴=-=∴=62122

22

22

,, Θ||()

M F b c a b c b b a c

b a →=∴+=∴+=∴==11111

422222222

22,,, ∴

双曲线C 的方程为:x y 2

22

1-= ……7分 (III )由题意可得01

<<λ

……8分

证明:设l 31:y k x =+,点P x y Q x y ()()1122

,,, 由x y y k x 22221-==+???

得()12440

22--+=k x k x Θl 3与双曲线C 右支交于不同的两点P 、Q

∴-≠=+->+=->=-->??????

?

??∴≠±<<-

???

??

?1201616120412041202

210120222122

122

2

2

k k k x x k k xx k k k k k ?() ∴

-<<-12

2

k

……11分

ΘA P A Q x y x y →=→

∴-=-λ

λ

,,,()()112211,得x x 12

∴+=-=--∴+=--=-=+-()()()14124121164124212221

2222

2

2222

22

λλλλx k k x k

k k k k k , Θ-<<-∴<-<∴+>122

021114

2

2

k k ,,()λλ

∴+>∴-+>()14

210

2

2

λλλλ ∴λ的取值范围是(0,1)

……13分

2.(本小题满分13分)

已知函数f x x n x n f n n x n n N ()()[()]()(*)

=≤--+--<≤∈?

?

?

00111,,

数列{}a n 满足a f n n N n

=∈()(*) (I )求数列{}a n 的通项公式;

(II )设x 轴、直线xa =与函数y f x =()的图象所围成的封闭图形的面积为S a a ()()≥0,求S n S n n N ()()(*)

--∈1; (III )在集合M N N k k Z ==∈{|2,,且10001500≤

->--10051()()对一切n N >恒成立?若存在,则这样的正整数N 共有多少个?并求出满足条件的最小的正整数N ;若不存在,请说明理由.

(IV )请构造一个与{}a n 有关的数列{}b n ,使得l i m ()n n

bb b →∞

+++12Λ存在,并求出这个极限值. 解:(I )Θn N ∈*

∴=--+-=+-f n n n n f n n f n ()[()]()()111 ∴--=f nf n n

()()1

……1分

∴-=-=-=f f f f f f ()()()()()()101

212323

……

f n f n n

()()--=1

2017年高考全国1卷理科数学试题和答案解析

绝密★启用前 2017年普通高等学校招生全国统一考试 理科数学 本试卷5页,23小题,满分150分。考试用时120分钟。 注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。用2B 铅笔将 试卷类型(B )填涂在答题卡相应位置上。将条形码横贴在答题卡右上角“条形码粘贴处”。 2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试卷上。 3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。 4.考生必须保证答题卡的整洁。考试结束后,将试卷和答题卡一并交回。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目 要求的。 1.已知集合A ={x |x <1},B ={x |31x <},则 A .{|0}A B x x =U D .A B =?I 2.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是 A .14 B .π8 C . 12 D . π4 3.设有下面四个命题 1p :若复数z 满足1 z ∈R ,则z ∈R ; 2p :若复数z 满足2z ∈R ,则z ∈R ; 3p :若复数12,z z 满足12z z ∈R ,则12z z =;

[数学]数学高考压轴题大全

1、(本小题满分14分) 已知函数. (1)当时,如果函数仅有一个零点,求实数的取值范围; (2)当时,试比较与的大小; (3)求证:(). 2、设函数,其中为常数. (Ⅰ)当时,判断函数在定义域上的单调性; (Ⅱ)若函数的有极值点,求的取值范围及的极值点; (Ⅲ)当且时,求证:. 3、在平面直角坐标系中,已知椭圆.如图所示,斜率为且不过原 点的直线交椭圆于,两点,线段的中点为,射线交椭圆于点,交直 线于点. (Ⅰ)求的最小值; (Ⅱ)若?,(i)求证:直线过定点;

(ii )试问点,能否关于轴对称?若能,求出 此时 的外接圆方程;若不能,请说明理由. 二、计算题 (每空? 分,共? 分) 4 、设函数 的图象在点处的切线的斜率 为 ,且函数为偶函数.若函数 满足下列条件:①;② 对一切实数 ,不等式恒成立. (Ⅰ)求函数的表达式; (Ⅱ)求证: . 5 、已知函数: (1 )讨论函数的单调性; (2) 若函数 的图像在点 处的切线的倾斜角为,问:在什么范围取值 时,函数 在区间上总存在极值? (3)求证:.

6、已知函数=,. (Ⅰ)求函数在区间上的值域; (Ⅱ)是否存在实数,对任意给定的,在区间上都存在两个不同的, 使得成立.若存在,求出的取值范围;若不存在,请说明理由; (Ⅲ)给出如下定义:对于函数图象上任意不同的两点,如果对 于函数图象上的点(其中总能使得 成立,则称函数具备性质“”,试判断函数是不是具 备性质“”,并说明理由. 7、已知函数 (Ⅰ)若函数是定义域上的单调函数,求实数的最小值; (Ⅱ)方程有两个不同的实数解,求实数的取值范围; (Ⅲ)在函数的图象上是否存在不同两点,线段的中点的横坐标 为,有成立?若存在,请求出的值;若不存在,请说明理由. 8、已知函数: ⑴讨论函数的单调性;

高考理科数学压轴题及答案汇编

高考理科数学压轴题 (21)(本小题满分 12 分)已知椭圆 C 的中心在坐标原点 ,焦点在 x 轴上,椭圆 C 上的点到焦点 的距离的最大值为 3,最小值为 1. (I) 求椭圆 C 的标准方程 ; (II) 若直线l : y kx m 与椭圆 C 相交于 A,B 两点(A,B 不是左右顶点 ),且以 AB 为直径的圆 过椭 圆 C 的右顶点 .求证 :直线 l 过定点 ,并求出该定点的坐标 . (22)(本小题满分 14分)设函数 f(x) x 2 bln(x 1),其中 b 0. 1 (I) 当 b 时 ,判断函数 f (x) 在定义域上的单调性 ; 2 (II)求函数 f (x)的极值点 ; 1 1 1 (III) 证明对任意的正整数 n ,不等式 ln( 1) 2 3 都成立 . n n n 22 xy (21)解: (I) 由题意设椭圆的标准方程为 2 2 1(a b 0) ab 2 a c 3,a c 1,a 2,c 1, b 2 3 22 x 2 y 2 1. 43 Q 以AB 为直径的圆过椭圆的右顶点 D(2,0), k AD k BD 1, y kx m (II)设 A(x 1, y 1),B(x 2,y 2), 由 2 x 2 y 得 1 4 3 2 2 2 (3 4k 2 )x 2 8mkx 4(m 2 3) 2 2 2 64m 2 k 2 16( 3 4k 2)( 2 m 3) 0, 22 3 4k 2 m 2 0 8mk 2 ,x 1 x 2 2 4(m 2 3) 3 4k 2 y 1 y 2 2 (kx 1 m) (kx 2 m) k x 1x 2 mk(x 1 x 2) m 2 3(m 2 4k 2) 3 4k 2

高考数学压轴题专题训练20道

高考压轴题专题训练 1. 已知点)1,0(F ,一动圆过点F 且与圆8)1(2 2 =++y x 内切. (1)求动圆圆心的轨迹C 的方程; (2)设点)0,(a A ,点P 为曲线C 上任一点,求点A 到点P 距离的最大值)(a d ; (3)在10<

2020年高考数学真题汇编答案及解析

2020年高考数学真题汇编答案及解析 (本栏目内容,学生用书中以活页形式单独装订成册!) 一、选择题(每小题6分,共36分) 1.集合A={1,2,a},B={2,3,a2},C={1,2,3,4},a∈R,则集合(A∩B)∩C不可能是( ) A.{2} B.{1,2} C.{2,3} D.{3} 【解析】若a=-1,(A∩B)∩C={1,2}; 若a=3,则(A∩B)∩C={2,3} 若a≠-1且a≠3,则(A∩B)∩C={2},故选D. 【答案】 D 2.(2020全国卷Ⅰ)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∪B,则集合?U(A∩B)中的元素共有( ) A.3个B.4个 C.5个D.6个 【解析】A∩B={4,7,9},A∪B={3,4,5,7,8,9},?U(A∩B)={3,5,8},故选A. 【答案】 A 3.(2020年广东卷)已知全集U=R,集合M={x|-2≤x-1≤2}和N={x|x=2k-1,k=1,2,…}的关系的韦恩(Venn)图如右图

所示,则阴影部分所示的集合的元素共有( ) A.3个B.2个 C.1个D.无穷多个 【解析】M={x|-1≤x≤3},M∩N={1,3},有2个. 【答案】 B 4.给出以下集合: ①M={x|x2+2x+a=0,a∈R}; ②N={x|-x2+x-2>0}; ③P={x|y=lg(-x)}∩{y|y=lg(-x)}; ④Q={y|y=x2}∩{y|y=x-4}, 其中一定是空集的有( ) A.0个B.1个 C.2个D.3个 【解析】在集合M中,当Δ=4-4a≥0时,方程有解,集合不是空集;而Q={y|y=x2}∩{y|y=x-4}={y|y≥0}∩{y|y∈R}={y|y≥0},所以不是空集;在P中,P={x|y=lg(-x)}∩{y|y=lg(-x)}={x|x<0}∩R={x|x<0},不是空集;在N中,由于不等式-x2+x-2>0?x2-x+2<0,Δ=-7<0,故无解,因此,只有1个一定是空集,所以选B. 【答案】 B 5.如右图所示

2018高考理科数学选填压轴题专练32题(含详细答案)

学校 年级 姓名 装 装 订 线 一.选择题(共26小题) 1.设实数x ,y 满足 ,则z= +的取值范围是( ) A .[4,] B .[,] C .[4,] D .[,] 2.已知三棱锥P ﹣ABC 中,PA ⊥平面ABC ,且,AC=2AB ,PA=1,BC=3, 则该三棱锥的外接球的体积等于( ) A . B . C . D . 3.三棱锥P ﹣ABC 中,PA ⊥平面ABC 且PA=2,△ABC 是边长为的等边三角形, 则该三棱锥外接球的表面积为( ) A . B .4π C .8π D .20π 4.已知函数f (x +1)是偶函数,且x >1时,f ′(x )<0恒成立,又f (4)=0,则(x +3)f (x +4)<0的解集为( ) A .(﹣∞,﹣2)∪(4,+∞) B .(﹣6,﹣3)∪(0,4) C .(﹣∞,﹣6)∪(4,+∞) D .(﹣6,﹣3)∪(0,+∞) 5.当a >0时,函数f (x )=(x 2﹣2ax )e x 的图象大致是( ) A . B . C D . 6.抛物线y 2=4x 的焦点为F ,M 为抛物线上的动点,又已知点N (﹣1,0),则 的取值范围是( ) A .[1,2 ] B . [ , ] C .[ ,2] D .[1, ] 7.《张丘建算经》卷上第22题为“今有女善织,日益功疾,初日织五尺,今一月日织九匹三丈.”其意思为:现有一善于织布的女子,从第2天开始,每天比前一天多 织相同量的布,第1天织了5尺布,现在一月(按30天计算)共织390尺布,记该女子一月中的第n 天所织布的尺数为a n ,则a 14+a 15+a 16+a 17的值为( ) A .55 B .52 C .39 D .26 8.已知定义在R 上的奇函数f (x )满足:当x ≥0时,f (x )=x 3+x 2,若不等式f (﹣4t )>f (2m +mt 2)对任意实数t 恒成立,则实数m 的取值范围是( ) A . B . C . D . 9.将函数 的图象向左平移 个单位得到y=g (x )的图象,若对满足|f (x 1)﹣g (x 2)|=2的x 1、x 2,|x 1﹣x 2|min = ,则φ的值是( ) A . B . C . D . 10.在平面直角坐标系xOy 中,点P 为椭圆C :+=1(a >b >0)的下顶点, M ,N 在椭圆上,若四边形OPMN 为平行四边形,α为直线ON 的倾斜角,若α∈ (,],则椭圆C 的离心率的取值范围为( ) A .(0, ] B .(0 , ] C .[ , ] D .[ , ]

历年高考数学压轴题集锦

高考数学压轴题集锦 1.椭圆的中心是原点O ,它的短轴长为(,)0F c (0>c )的准线l 与x 轴相交于点A ,2OF FA =,过点A 的直线与椭圆相交于P 、Q 两点。 (1)求椭圆的方程及离心率; (2)若0OP OQ ?=,求直线PQ 的方程; (3)设AP AQ λ=(1λ>),过点P 且平行于准线l 的直线与椭圆相交于另一点M ,证 明FM FQ λ=-. (14分) 2. 已知函数)(x f 对任意实数x 都有1)()1(=++x f x f ,且当]2,0[∈x 时,|1|)(-=x x f 。 (1) )](22,2[Z k k k x ∈+∈时,求)(x f 的表达式。 (2) 证明)(x f 是偶函数。 (3) 试问方程01 log )(4=+x x f 是否有实数根?若有实数根,指出实数根的个数;若没有实数根,请说明理由。 3.(本题满分12分)如图,已知点F (0,1),直线L :y=-2,及圆C :1)3(2 2 =-+y x 。 (1) 若动点M 到点F 的距离比它到直线L 的距离小1,求动点M 的轨迹E 的方程; (2) 过点F 的直线g (3) 过轨迹E 上一点P 点P 的坐标及S

4.以椭圆2 22y a x +=1(a >1)短轴一端点为直角顶点,作椭圆内接等腰直角三角形,试 判断并推证能作出多少个符合条件的三角形. 5 已知,二次函数f (x )=ax 2 +bx +c 及一次函数g (x )=-bx ,其中a 、b 、c ∈R ,a >b >c ,a +b +c =0. (Ⅰ)求证:f (x )及g (x )两函数图象相交于相异两点; (Ⅱ)设f (x )、g (x )两图象交于A 、B 两点,当AB 线段在x 轴上射影为A 1B 1时,试求|A 1B 1|的取值范围. 6 已知过函数f (x )=12 3++ax x 的图象上一点B (1,b )的切线的斜率为-3。 (1) 求a 、b 的值; (2) 求A 的取值范围,使不等式f (x )≤A -1987对于x ∈[-1,4]恒成立; (3) 令()()132 ++--=tx x x f x g 。是否存在一个实数t ,使得当]1,0(∈x 时,g (x )有 最大值1? 7 已知两点M (-2,0),N (2,0),动点P 在y 轴上的射影为H ,︱PH ︱是2和→ → ?PN PM 的等比中项。 (1) 求动点P 的轨迹方程,并指出方程所表示的曲线; (2) 若以点M 、N 为焦点的双曲线C 过直线x+y=1上的点Q ,求实轴最长的双曲线C 的方程。 8.已知数列{a n }满足a a a a b a a a a a a a n n n n n n +-=+=>=+设,2),0(322 11 (1)求数列{b n }的通项公式; (2)设数列{b n }的前项和为S n ,试比较S n 与 8 7 的大小,并证明你的结论. 9.已知焦点在x 轴上的双曲线C 的两条渐近线过坐标原点,且两条渐近线与以点)2,0(A 为圆心,1为半径的圆相切,又知C 的一个焦点与A 关于直线x y =对称. (Ⅰ)求双曲线C 的方程; (Ⅱ)设直线1+=mx y 与双曲线C 的左支交于A ,B 两点,另一直线l 经过M (-2,0)及AB 的中点,求直线l 在y 轴上的截距b 的取值范围; (Ⅲ)若Q 是双曲线C 上的任一点,21F F 为双曲线C 的左,右两个焦点,从1F 引21QF F ∠的平分线的垂线,垂足为N ,试求点N 的轨迹方程. 10. )(x f 对任意R x ∈都有.2 1)1()(= -+x f x f

江苏高考数学答案及解析

绝密★启用前 2009年普通高等学校招生全国统一考试(江苏卷) 数学Ⅰ 参考公式: 样本数据12 ,,,n x x x L 的方差2 2 1111(),n n i i i i s x x x x n n ===-=∑∑其中 一、填空题:本大题共14小题,每小题5分,共70分。请把答案填写在答题卡相应的位置 上. 1.若复数 12429,69z i z i =+=+,其中i 是虚数单位,则复数12()z z i -的实部为★. 【答案】20- 【解析】略 2.已知向量a 和向量b 的夹角为30o ,||2,||==a b ,则向量a 和向量b 的数量积 =g a b ★ . 【答案】3 【解析】232=?=g a b 。 3.函数 32()15336f x x x x =--+的单调减区间为 ★ . 【答案】 (1,11)- 【解析】 2 ()330333(11)(1)f x x x x x '=--=-+,由 (11)(1)0x x -+<得单调减区间为(1,11)-。

4.函数 sin()(,,y A x A ω?ω?=+为常数,0,0)A ω>>在闭区间[,0]π-上的图象如 图所示,则ω= ★ . 【答案】3 【解析】3 2T π =, 23T π =,所以3ω=, 5.现有5根竹竿,它们的长度(单位:m )分别为2.5,2.6,2.7,2.8,2.9,若从中一次随机 抽取2根竹竿,则它们的长度恰好相差0.3m 的概率为 ★ . 【答案】0.2 【解析】略 6.某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮练习,每人投10次,学生 1号 2号 3号 4号 5号 甲班 6 7 7 8 7 乙班 6 7 6 7 9 则以上两组数据的方差中较小的一个为 2s = ★ . 【答案】2 5 w.w.w.k.s.5.u.c.o.m 【解析】略 7.右图是一个算法的流程图,最后输出的W = ★ . 【答案】22 【解析】略 8.在平面上,若两个正三角形的边长的比为1:2,则它们的面积比为1:4,类似地,在空间,若两个正四面体的棱长的比为1:2,则它们的体积比为 ★ . 【答案】1:8 【解析】略 9.在平面直角坐标系xoy 中,点P 在曲线 3 :103C y x x =-+上, 且在第二象限内,已知曲线C 在点P 处的切线的斜率为2,则点P 的坐标为 ★ . 【答案】 (2,15)- w.w.w.k.s.5.u.c.o.m 【解析】略 10.已知 51 2a -= ,函数()x f x a =,若实数,m n 满足()()f m f n >,则,m n 的大 小关系为 ★ . 【答案】m n < 0S ← 结束

2020年高考数学压轴题系列训练含答案及解析详解4

第 1 页 共 16 页 第 1 页 共 2020年高考数学压轴题系列训练含答案及解析详解4 1.(本小题满分14分) 已知f(x)= 2 22 +-x a x (x ∈R)在区间[-1,1]上是增函数. (Ⅰ)求实数a 的值组成的集合A ; (Ⅱ)设关于x 的方程f(x)= x 1 的两个非零实根为x 1、x 2.试问:是否存在实数m ,使得不等式m 2+tm+1≥|x 1-x 2|对任意a ∈A 及t ∈[-1,1]恒成立?若存在,求m 的取值范 围;若不存在,请说明理由. 本小题主要考查函数的单调性,导数的应用和不等式等有关知识,考查数形结合及分类讨 论思想和灵活运用数学知识分析问题和解决问题的能力.满分14分. 解:(Ⅰ)f '(x)=222)2(224+-+x x ax = 2 22) 2() 2(2+---x ax x , ∵f(x)在[-1,1]上是增函数, ∴f '(x)≥0对x ∈[-1,1]恒成立, 即x 2-ax -2≤0对x ∈[-1,1]恒成立. ① 设?(x)=x 2-ax -2, 方法一: ?(1)=1-a -2≤0,

— 2 — ① ? ?-1≤a ≤1, ?(-1)=1+a -2≤0. ∵对x ∈[-1,1],f(x)是连续函数,且只有当a=1时,f '(-1)=0以及当a=-1时,f ' (1)=0 ∴A={a|-1≤a ≤1}. 方法二: 2a ≥0, 2 a <0, ①? 或 ?(-1)=1+a -2≤0 ?(1)=1-a -2≤0 ? 0≤a ≤1 或 -1≤a ≤0 ? -1≤a ≤1. ∵对x ∈[-1,1],f(x)是连续函数,且只有当a=1时,f '(-1)=0以及当a=-1时,f ' (1)=0 ∴A={a|-1≤a ≤1}. (Ⅱ)由 2 22 +-x a x =x 1,得x 2-ax -2=0, ∵△=a 2 +8>0 ∴x 1,x 2是方程x 2-ax -2=0的两非零实根, x 1+x 2=a ,

北京市高考数学压轴题汇编51题(含答案)

1.如图,正方体1111ABCD A B C D -中,E ,F 分别为 棱1DD ,AB 上的点. 已知下列判断: ①1 AC ^平面1B EF ;②1B EF D 在侧面11BCC B 上 的正投影是面积为定值的三角形;③在平面 1111A B C D 内总存在与平面1B EF 平行的直线;④平 面1B EF 与平面ABCD 所成的二面角(锐角)的大小与点E 的位置有关,与点F 的位 置无关. 其中正确判断的个数有 (A )1个 (B )2个 (C )3个 (D )4个(B ) 2.如图所示,在正方体ABCD -A 1B 1C 1D 1中,E 是棱DD 1的中点,F 是侧面CDD 1C 1上的动点,且B 1F//面A 1BE ,则B 1F 与平面CDD 1C 1 所成角的正切值构成的集合是 C A. {}2 B. 255?? ? ??? C. {|222}t t ≤≤ D. 2 {|52}5 t t ≤≤ 3. 如图,四面体OABC 的三条棱OC OB OA ,,两两垂直,2==OB OA ,3=OC ,D 为四 面体OABC 外一点.给出下列命题. ①不存在点D ,使四面体ABCD 有三个面是直角三角形 ②不存在点D ,使四面体ABCD 是正三棱锥 ③存在点D ,使CD 与AB 垂直并且相等 ④存在无数个点D ,使点O 在四面体ABCD 的外接球面上 其中真命题的序号是D (A )①② (B )②③ (C )③ (D )③④ 4. 在一个正方体1111ABCD A B C D -中,P 为正方形 1111A B C D 四边上的动点,O 为底面正方形ABCD 的中心, ,M N 分别为,AB BC 中点,点Q 为平面ABCD 内一点,线段1D Q 与OP 互相平分,则满足MQ MN λ=u u u u r u u u u r 的实数λ的值 有 C A. 0个 B. 1个 C. 2个 D. 3个 5. 空间点到平面的距离定义如下:过空间一点作平面的垂线,这点和垂足之间的距离叫做 A B C D E 1A 1 D 1 B 1 C O A B D C A 1 D 1 A 1 C 1 B D C B O P N M Q

历届高考数学压轴题汇总及答案

历届高考数学压轴题汇总及答案 一、2019年高考数学上海卷:(本题满分18分) 已知等差数列{}n a 的公差(0,]d π∈,数列{}n b 满足()sin n n b a =,集合 {}*|,n S x x b n N ==∈. (1)若120,3 a d π ==,求集合S ; (2)若12 a π = ,求d 使得集合S 恰好有两个元素; (3)若集合S 恰好有三个元素:n T n b b +=,T 是不超过7的正整数,求T 的所有可能的 值. 二、2019年高考数学浙江卷:(本小题满分15分) 已知实数0a ≠,设函数()=ln 0.f x a x x +> (Ⅰ)当34 a =-时,求函数()f x 的单调区间; (Ⅱ)对任意21[ ,)e x ∈+∞均有()2f x a ≤ 求a 的取值范围. 注: 2.71828e =为自然对数的底数.

设2 *012(1),4,n n n x a a x a x a x n n +=+++ +∈N .已知2 3242a a a =. (1)求n 的值; (2)设(1n a =+*,a b ∈N ,求223a b -的值. 四、2018年高考数学上海卷:(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分) 给定无穷数列{}n a ,若无穷数列{}n b 满足:对任意*n N ∈,都有1n n b a -≤,则称{}n b 与{}n a “接近”。 (1)设{}n a 是首项为1,公比为1 2 的等比数列,11n n b a +=+,*n N ∈,判断数列{}n b 是否与{}n a 接近,并说明理由; (2)设数列{}n a 的前四项为:12341,248a a a a ====,,,{}n b 是一个与{}n a 接近的数列,记集合1,2,|,4{3,}i M x x b i ===,求M 中元素的个数m ; (3)已知{}n a 是公差为d 的等差数列,若存在数列{}n b 满足:{}n b 与{}n a 接近,且在 2132201200,,,b b b b b b ﹣﹣﹣中至少有100个为正数,求d 的取值范围.

2019年江苏省高考数学试卷以及答案解析

绝密★启用前 2019年普通高等学校招生全国统一考试(江苏卷) 数学 一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上. 1.(5分)已知集合A={﹣1,0,1,6},B={x|x>0,x∈R},则A∩B=.2.(5分)已知复数(a+2i)(1+i)的实部为0,其中i为虚数单位,则实数a的值是.3.(5分)如图是一个算法流程图,则输出的S的值是. 4.(5分)函数y=的定义域是. 5.(5分)已知一组数据6,7,8,8,9,10,则该组数据的方差是. 6.(5分)从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是. 7.(5分)在平面直角坐标系xOy中,若双曲线x2﹣=1(b>0)经过点(3,4),则该双曲线的渐近线方程是. 8.(5分)已知数列{a n}(n∈N*)是等差数列,S n是其前n项和.若a2a5+a8=0,S9=27,则S8的值是. 9.(5分)如图,长方体ABCD﹣A1B1C1D1的体积是120,E为CC1的中点,则三棱锥E﹣BCD 的体积是.

10.(5分)在平面直角坐标系xOy中,P是曲线y=x+(x>0)上的一个动点,则点P到直线x+y=0的距离的最小值是. 11.(5分)在平面直角坐标系xOy中,点A在曲线y=lnx上,且该曲线在点A处的切线经过点(﹣e,﹣1)(e为自然对数的底数),则点A的坐标是. 12.(5分)如图,在△ABC中,D是BC的中点,E在边AB上,BE=2EA,AD与CE交于点O.若?=6?,则的值是. 13.(5分)已知=﹣,则sin(2α+)的值是. 14.(5分)设f(x),g(x)是定义在R上的两个周期函数,f(x)的周期为4,g(x)的周期为2,且f(x)是奇函数.当x∈(0,2]时,f(x)=,g(x)= 其中k>0.若在区间(0,9]上,关于x的方程f(x)=g(x)有8个不同的实数根,则k的取值范围是. 二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(14分)在△ABC中,角A,B,C的对边分别为a,b,c. (1)若a=3c,b=,cos B=,求c的值; (2)若=,求sin(B+)的值. 16.(14分)如图,在直三棱柱ABC﹣A1B1C1中,D,E分别为BC,AC的中点,AB=BC.求证:(1)A1B1∥平面DEC1; (2)BE⊥C1E.

2019-2020年高考数学压轴题集锦——导数与其应用(五)

2019-2020 年高考数学压轴题集锦——导数及其应用(五) 46.已知函数f ( x)x2ax 4 ( aR)的两个零点为x1, x2 , 设 x1 x2. (Ⅰ)当 a0 时,证明:2x1 0. (Ⅱ)若函数g (x)x2| f ( x) |在区间 (, 2)和(2,) 上均单调递增,求 a 的取值范围. 47.设函数 f ( x)2 R ).x ax ln x (a (Ⅰ)若 a 1时,求函数 f (x)的单调区间; (Ⅱ)设函数 f ( x) 在[1 , ] 有两个零点,求实数 a 的取值范围. e e 48.已知函数 f ( x) ln( ax b) x ,g (x)x2ax ln x . (Ⅰ)若 b 1,F ( x) f ( x) g (x) ,问:是否存在这样的负实数 a ,使得 F ( x) 在x1处存在切线且该切线与直线y 1 x 1平行,若存在,求a的值;若不存在,请说明理 23 由. (Ⅱ)已知 a 0 ,若在定义域内恒有 f (x) ln( ax b) x 0 ,求 a(a b) 的最大值.

49.设函数 f ( x) x ln x b(x 1 )2(b R),曲线y f x在1,0处的切线与直线 2 y3x 平行.证明: (Ⅰ)函数 f ( x) 在 [1,) 上单调递增; (Ⅱ)当 0 x 1 时, f x1. 50.已知 f( x) =a( x-ln x)+2 x 1 , a∈ R. x 2(I )讨论 f( x)的单调性; (II )当 a=1 时,证明f( x)> f’( x) + 3 对于任意的x∈ [1,2] 恒成立。 2 2 51.已知函数f(x) =x +ax﹣ lnx, a∈ R. (1)若函数f(x)在 [1, 2]上是减函数,求实数 a 的取值范围; (2)令 g( x) =f( x)﹣ x2,是否存在实数a,当 x∈( 0, e] ( e 是自然常数)时,函数g (x)的最小值是 3,若存在,求出 a 的值;若不存在,说明理由; (3)当 x∈( 0, e]时,证明: e2x2-5 x> (x+1)ln x.2

高考理科数学全国卷三导数压轴题解析

2018年高考理科数学全国卷三导数压轴题解析 已知函数2()(2)ln(1)2f x x ax x x =+++- (1) 若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >; (2) 若0x =是()f x 的极大值点,求a . 考点分析 综合历年试题来看,全国卷理科数学题目中,全国卷三的题目相对容易。但在2018年全国卷三的考察中,很多考生反应其中的导数压轴题并不是非常容易上手。第1小问,主要通过函数的单调性证明不等式,第2小问以函数极值点的判断为切入点,综合考察复杂含参变量函数的单调性以及零点问题,对思维能力(化归思想与分类讨论)的要求较高。 具体而言,第1问,给定参数a 的值,证明函数值与0这一特殊值的大小关系,结合函数以及其导函数的单调性,比较容易证明,这也是大多数考生拿到题目的第一思维方式,比较常规。如果能结合给定函数中20x +>这一隐藏特点,把ln(1)x +前面的系数化为1,判断ln(1)x +与2/(2)x x +之间的大小关系,仅通过一次求导即可把超越函数化为求解零点比较容易的代数函数,解法更加容易,思维比较巧妙。总体来讲,题目设置比较灵活,不同能力层次的学生皆可上手。 理解什么是函数的极值点是解决第2问的关键。极值点与导数为0点之间有什么关系:对于任意函数,在极值点,导函数一定等于0么(存在不存在)?导函数等于0的点一定是函数的极值点么?因此,任何不结合函数的单调性而去空谈函数极值点的行为都是莽撞与武断的。在本题目中,0x =是()f x 的极大值点的充要条件是存在10δ<和20δ>使得对于任意1(,0)x δ∈都满足()(0)=0f x f <( 或者()f x 单调递增),对于任意2(0,)x δ∈都满足()(0)=0f x f <( 或者()f x 单调递减),因此解答本题的关键是讨论函数()f x 在0x =附近的单调性或者判断()f x 与(0)f 的大小关系。题目中并没有限定参数a 的取值范围,所以要对实数范围内不同a 取值时的情况都进行分类讨论。在第1小问的基础上,可以很容易判断0a =以及0a >时并不能满足极大值点的要求,难点是在于判断0a <时的情况。官方标准答案中将问题等价转化为讨论函数2 ()ln(1)/(2)h x x x x =+++在0x =点的极值情况,非常巧妙,但是思维跨度比较大,在时间相对紧张的选拔性考试中大多数考生很难想到。需要说明的是,官方答案中的函数命题等价转化思想需要引起大家的重视,这种思想在2018年全国卷2以及2011年新课标卷1的压轴题中均有体现,这可能是今后导数压轴题型的重要命题趋势,对学生概念理解以及思维变通的能力要求更高,符合高考命题的思想。 下面就a 值变化对函数()f x 本身在0x =附近的单调性以及极值点变化情况进行详细讨论。

2018年高考数学压轴题小题

2018年高考数学压轴题小题 一.选择题(共6小题) 1.(2018?新课标Ⅱ)已知f(x)是定义域为(﹣∞,+∞)的奇函数,满足f(1﹣x)=f(1+x),若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)=() A.﹣50 B.0 C.2 D.50 2.(2018?新课标Ⅱ)已知F1,F2是椭圆C:=1(a>b>0)的左、右焦点,A是C的左顶点,点P在过A且斜率为的直线上,△PF1F2为等腰三角形,∠F1F2P=120°,则C的离心率为() A.B.C.D. 3.(2018?上海)设D是函数1的有限实数集,f(x)是定义在D上的函数,若f(x)的图象绕原点逆时针旋转后与原图象重合,则在以下各项中,f(1)的可能取值只能是() A. B.C.D.0 4.(2018?浙江)已知,,是平面向量,是单位向量.若非零向量与的夹角为,向量满足﹣4?+3=0,则|﹣|的最小值是() A.﹣1 B.+1 C.2 D.2﹣

5.(2018?浙江)已知四棱锥S﹣ABCD的底面是正方形,侧棱长均相等,E是线段AB上的点(不含端点).设SE与BC所成的角为θ1,SE与平面ABCD所成的角为θ2,二面角S﹣AB﹣C的平面角为θ3,则() A.θ1≤θ2≤θ3B.θ3≤θ2≤θ1C.θ1≤θ3≤θ2D.θ2≤θ3≤θ1 6.(2018?浙江)函数y=2|x|sin2x的图象可能是() A.B.C. D. 7.(2018?江苏)在平面直角坐标系xOy中,若双曲线﹣=1(a>0,b>0)的右焦点F(c,0)到一条渐近线的距离为c,则其离心率的值为.

8.(2018?江苏)若函数f(x)=2x3﹣ax2+1(a∈R)在(0,+∞)内有且只有一个零点,则f(x)在[﹣1,1]上的最大值与最小值的和为. 9.(2018?天津)已知a>0,函数f(x)=.若关于x的方程f(x)=ax恰有2个互异的实数解,则a的取值范围是. 10.(2018?北京)已知椭圆M:+=1(a>b>0),双曲线N:﹣=1.若双曲线N的两 条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,则椭圆M的离心率为;双曲线N的离心率为. 11.(2018?上海)已知实数x1、x2、y1、y2满足:x12+y12=1,x22+y22=1,x1x2+y1y2=,则+的最大值为. 12.(2018?上海)已知常数a>0,函数f(x)=的图象经过点P(p,),Q(q,).若2p+q=36pq,则a=.

高中数学经典高考难题集锦解析版

2015年10月18日姚杰的高中数学组卷 一.解答题(共10小题) 1.(2012?宣威市校级模拟)设点C为曲线(x>0)上任一点,以点C为圆心的圆与x 轴交于点E、A,与y轴交于点E、B. (1)证明多边形EACB的面积是定值,并求这个定值; (2)设直线y=﹣2x+4与圆C交于点M,N,若|EM|=|EN|,求圆C的方程.2.(2010?江苏模拟)已知直线l:y=k(x+2)与圆O:x2+y2=4相交于A、B两点,O是坐标原点,三角形ABO的面积为S. (Ⅰ)试将S表示成的函数S(k),并求出它的定义域; (Ⅱ)求S的最大值,并求取得最大值时k的值. 3.(2013?越秀区校级模拟)已知圆满足:①截y轴所得弦长为2;②被x轴分成两段圆弧,其弧长的比为3:1;③圆心到直线l:x﹣2y=0的距离为.求该圆的方程. 4.(2013?柯城区校级三模)已知抛物线的顶点在坐标原点,焦点在y轴上,且过点(2,1).(Ⅰ)求抛物线的标准方程; (Ⅱ)是否存在直线l:y=kx+t,与圆x2+(y+1)2=1相切且与抛物线交于不同的两点M,N,当∠MON为钝角时,有S△MON=48成立?若存在,求出直线的方程,若不存在,说明理由. 5.(2009?福建)(1)已知矩阵M所对应的线性变换把点A(x,y)变成点A′(13,5),试求M的逆矩阵及点A的坐标. (2)已知直线l:3x+4y﹣12=0与圆C:(θ为参数)试判断他们的公共 点个数; (3)解不等式|2x﹣1|<|x|+1. 6.(2009?东城区一模)如图,已知定圆C:x2+(y﹣3)2=4,定直线m:x+3y+6=0,过A (﹣1,0)的一条动直线l与直线相交于N,与圆C相交于P,Q两点,M是PQ中点.(Ⅰ)当l与m垂直时,求证:l过圆心C; (Ⅱ)当时,求直线l的方程; (Ⅲ)设t=,试问t是否为定值,若为定值,请求出t的值;若不为定值,请说明理 由. 7.(2009?天河区校级模拟)已知圆C:(x+4)2+y2=4,圆D的圆心D在y 轴上且与圆C 外切,圆D与y 轴交于A、B两点,定点P的坐标为(﹣3,0). (1)若点D(0,3),求∠APB的正切值; (2)当点D在y轴上运动时,求∠APB的最大值; (3)在x轴上是否存在定点Q,当圆D在y轴上运动时,∠AQB是定值?如果存在,求出Q点坐标;如果不存在,说明理由. 8.(2007?海南)在平面直角坐标系xOy中,已知圆x2+y2﹣12x+32=0的圆心为Q,过点P (0,2)且斜率为k的直线与圆Q相交于不同的两点A,B.

高考数学压轴题秒杀

第五章压轴题秒杀 很多朋友留言说想掌握秒杀的最后一层。关于秒杀法的最难掌握的一层,便是对于高考数学压轴题的把握。压轴题,各省的难度不一致,但毫无疑问,尤其是理科的,会难倒很多很多很多人。 不过,压轴题并不是那般神秘难解,相反,出题人很怕很怕全省没多少做出来的,明白么?他很怕。那种思想,在群里面我也说过,在这里就不多啰嗦了。 想领悟、把握压轴题的思路,给大家推荐几道题目。 全是数学压轴题,且是理科(09的除山东的外我都没做过,所以不在推荐范围内)。 08全国一,08全国二,07江西,08山东,07全国一 一年过去了,很多题目都忘了,但这几道题,做过之后,虽然一年过去了,可脉络依然清晰。都是一些可以秒杀的典型压轴题,望冲击清华北大的同学细细研究。 记住,压轴题是出题人在微笑着和你对话。 具体的题目的“精”,以及怎么发挥和压榨一道经典题目的最大价值,会在以后的视频里面讲解的很清楚。 不过,我还是要说一下数列压轴题这块大家应该会什么(难度以及要求依次增高)\ 1:通项公式的求法(不甚解的去看一下以前的教案,或者问老师,这里必考。尤其推荐我押题的第一道数列解答题。) 2.:裂项相消(各种形式的都要会)、迭加、迭乘、错位相减求和(这几个是最基本和简单的数列考察方式,一般会在第二问考) 3:数学归纳法、不等式缩放 基本所有题目都是这几个的组合了,要做到每一类在脑中都至少有一道经典题想对应才行哦。 开始解答题了哦,先来一道最简单的。貌似北京的大多挺简单的。 这道题意义在什么呢?对于这道题在高考中出现的可能性我不做解释,只能说不大。意义在于,提醒大家四个字,必须必须必须谨记的四个字:分类讨论!!!!!!! 下面07年山东高考的这道导数题,对分类讨论的考察尤为经典,很具参考性,类似的题目在08、09、10年高考题中见了很多。 (22)(本小题满分14分) 设函数f(x)=x2+b ln(x+1),其中b≠0. (Ⅰ)当b> 时,判断函数f(x)在定义域上的单调性; (Ⅱ)求函数f(x)的极值点; (Ⅲ)证明对任意的正整数n,不等式ln( )都成立. 这道题我觉得重点在于前两问,最后一问..有点鸡肋了~ 这道题,太明显了对吧?

2018高考江苏数学试题与答案解析[解析版]

2017年普通高等学校招生全国统一考试(卷) 数学I 一、填空题:本大题共14小题,每小题5分,共计70分. 请把答案填写在答题卡相应位置上......... (1)【2017年,1,5分】已知集合}2{1A =,,23{},B a a =+.若{}1A B =I ,则实数a 的值为_______. 【答案】1 【解析】∵集合}2{1A =,,23{},B a a =+.{}1A B =I ,∴1a =或231a +=,解得1a =. 【点评】本题考查实数值的求法,是基础题,解题时要认真审题,注意交集定义及性质的合理运用. (2)【2017年,2,5分】已知复数()()1i 12i z =-+,其中i 是虚数单位,则z 的模是_______. 【答案】10 【解析】复数()()1i 12i 123i 13i z =-+=-+=-+,∴() 2 21310z = -+=. 【点评】本题考查了复数的运算法则、模的计算公式,考查了推理能力与计算能力,属于基础题. (3)【2017年,3,5分】某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100 件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取_______件. 【答案】18 【解析】产品总数为2004003001001000+++=件,而抽取60辆进行检验,抽样比例为606 1000100 = ,则应从丙 种型号的产品中抽取6 30018100 ?=件. 【点评】本题的考点是分层抽样.分层抽样即要抽样时保证样本的结构和总体的结构保持一致,按照一定的比例, 即样本容量和总体容量的比值,在各层中进行抽取. (4)【2017年,4,5分】如图是一个算法流程图:若输入x 的值为1 16 ,则输出y 的值是_______. 【答案】2- 【解析】初始值116 x =,不满足1x ≥,所以41 216 222log 2log 2y =+=-=-. 【点评】本题考查程序框图,模拟程序是解决此类问题的常用方法,注意解题方法的积累,属于 基础题. (5)【2017年,5,5分】若1tan 46πα? ?-= ?? ?.则tan α=_______. 【答案】7 5 【解析】tan tan tan 114tan 4tan 161tan tan 4 π απααπαα--??-= == ?+? ?+Q ,∴6tan 6tan 1αα-=+,解得7tan 5α=. 【点评】本题考查了两角差的正切公式,属于基础题. (6)【2017年,6,5分】如如图,在圆柱12O O 有一个球O ,该球与圆柱的上、下底面及母线均相 切。记圆柱12O O 的体积为1V ,球O 的体积为2V ,则12 V V 的值是________. 【答案】3 2 【解析】设球的半径为R ,则球的体积为:3 43 R π,圆柱的体积为:2322R R R ππ?=.则313223423 V R R V ππ==. 【点评】本题考查球的体积以及圆柱的体积的求法,考查空间想象能力以及计算能力. (7)【2017年,7,5分】记函数2()6f x x x =+- 的定义域为D .在区间[45]-,上随机取一个数x ,则x ∈D

相关主题