搜档网
当前位置:搜档网 › 平面向量与解三角形

平面向量与解三角形

平面向量与解三角形
平面向量与解三角形

平面向量与解三角形

第八单元平面向量与解三角形 (120分钟150分) 第Ⅰ卷 一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.锐角△ABC的三内角A、B、C所对边的长分别为a、b、c,若2c sin B=b,则角C的大小为 A.B.C.D. 解析:由正弦定理得2sin B==,∴sin C=,∴C=. 答案:A 2.若向量u=(3,-6),v=(4,2),w=(-12,-6),则下列结论中错误的是 A.u⊥v B.v∥w C.w=u-3v D.对任一向量,存在实数a,b,使=a u+b v 解析:因为u·v=0,所以u⊥v,显然w∥v,因为u与v不共线,所以对任意向量,存在实数a,b,使=a u+b v. 答案:C 3.在△ABC中,B=,三边长a,b,c成等差数列,且ac=6,则b的值是 A.B.C.D. 解析:因为2b=a+c,由余弦定理得b2=a2+c2-2ac cos B=(a+c)2-3ac,化简得b=. 答案:D 4.在△ABC中,AB=4,∠ABC=30°,D是边BC上的一点,且·=·,则·等于 A.—4 B.0 C.4 D.8 解析:由·=·,得·(-)=·=0,即⊥,所以||=2,∠BAD=60°,所以 ·=4×2×=4. 答案:C 5.在△ABC中,角A,B,C所对边的长分别为a,b,c,若a2+b2=2c2,则cos C的最小值为 A.B.C.D.-

解析:cos C==≥=,当且仅当a=b时等号成立. 答案:C 6.设A(a,1),B(2,b),C(4,3)为坐标平面上三点,O为坐标原点,若与在方向上的投影相同,则 a与b满足的关系式为 A.5a-4b=3 B.4a-3b=5 C.4a+5b=14 D.5a+4b=14 解析:由与在方向上的投影相同,可得·=·?(a,1)·(4,3)=(2,b)·(4,3),即4a+3=8+3b,4a-3b=5. 答案:B 7.在△ABC内,角A,B,C的对边分别是a,b,c,若b sin B+a sin A=c sin C,c2+b2-a2=bc,则B等于 A.B.C.D. 解析:因为c2+b2-a2=bc,所以cos A==,所以cos A=,A=, 因为b sin B+a sin A=c sin C,所以b2+a2=c2,所以C=,B=. 答案:A 8.已知向量a=(x-1,2),b=(4,y),其中x>1,y>0,若a∥b,则log2(x-1)+log2y等于 A.1 B.2 C.3 D.4 解析:∵a∥b,则=,∴(x-1)y=8,∴log2(x-1)+log2y=log2(x-1)y=log28=3. 答案:C 9.在△ABC中,若(a+b+c)(a+b-c)=3ab且sin C=2sin A cos B,则△ABC是 A.等腰三角形 B.等边三角形 C.等腰直角三角形 D.直角三角形 解析:因为(a+b+c)(a+b-c)=3ab,所以a2+b2-c2=ab,cos C==,所以C=,因为sin C=2sin A cos B,所 以c=2a·,得a=b,所以△ABC是等边三角形. 答案:B 10.如图,在矩形ABCD中,AB=,BC=2,点E为BC的中点,点F在边CD上,若·=,则·的值是

(浙江专用)高考数学二轮复习专题一三角函数与平面向量第2讲三角恒等变换与解三角形学案

第2讲 三角恒等变换与解三角形 高考定位 1.三角函数的化简与求值是高考的命题热点,其中同角三角函数的基本关系、诱导公式是解决计算问题的工具,三角恒等变换是利用三角恒等式(两角和与差、二倍角的正弦、余弦、正切公式)进行变换,“角”的变换是三角恒等变换的核心;2.正弦定理与余弦定理以及解三角形问题是高考的必考内容,主要考查边、角、面积的计算及有关的范围问题. 真 题 感 悟 1.(2018·全国Ⅲ卷)若sin α=1 3,则cos 2α=( ) A.89 B.79 C.-79 D.-89 解析 cos 2α=1-2sin 2 α=1-2×? ????132 =7 9 . 答案 B 2.(2018·全国Ⅲ卷)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若△ABC 的面积为a 2+b 2-c 2 4 , 则C =( ) A.π2 B.π3 C.π4 D. π6 解析 根据题意及三角形的面积公式知12ab sin C =a 2 +b 2 -c 2 4,所以sin C =a 2 +b 2 -c 2 2ab =cos C ,所以在△ABC 中,C =π4 . 答案 C 3.(2018·浙江卷)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =7,b =2,A =60°,则sin B =________,c =________. 解析 因为a =7,b =2,A =60°,所以由正弦定理得sin B =b sin A a =2× 3 27=21 7.由 余弦定理a 2 =b 2 +c 2 -2bc cos A 可得c 2 -2c -3=0,所以c =3. 答案 21 7 3 4.(2017·浙江卷)已知△ABC ,AB =AC =4,BC =2.点D 为AB 延长线上一点,BD =2,连接 CD ,则△BDC 的面积是________,cos ∠BDC =________.

三角函数与解三角形知识点总结

1. 任意角的三角函数的定义:设α是任意一个角,P (,)x y 是α的终边上的任意一点(异 于原点),它与原点的距离 是0r =>,那么sin ,cos y x r r αα== , ()tan ,0y x x α=≠ 三角函数值只与角的大小有关,而与终边上点P 的位置无关。 2.三角函数在各象限的符号:(一全二正弦,三切四余弦) + + - + - + - - - + + - sin α cos α tan α 3. 同角三角函数的基本关系式: (1)平方关系:2 222 1 sin cos 1,1tan cos αααα +=+= (2)商数关系:sin tan cos α αα = (用于切化弦) ※平方关系一般为隐含条件,直接运用。注意“1”的代换

4.三角函数的诱导公式 诱导公式(把角写成 απ ±2 k 形式,利用口诀:奇变偶不变,符号看象限) Ⅰ)?????=+=+=+x x k x x k x x k tan )2tan(cos )2cos(sin )2sin(πππ Ⅱ)?????-=-=--=-x x x x x x tan )tan(cos )cos(sin )sin( Ⅲ) ?? ???=+-=+-=+x x x x x x tan )tan(cos )cos(sin )sin(πππ Ⅳ)?????-=--=-=-x x x x x x tan )tan(cos )cos(sin )sin(πππ Ⅴ)???????=-=-ααπααπsin )2cos(cos )2sin( Ⅵ)??? ????-=+=+α απααπsin )2cos(cos )2sin( 5.特殊角的三角函数值

三角函数与解三角形-专题复习

专题一 三角函数与解三角形 一、任意角、弧度制及任意角的三角函数 1、弧度制的定义与公式: 定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角. 弧度记作rad. 公式 角的弧度数公式 r =α 角度与弧度的换算 ①rad 180 1π=? ② 弧长公式 扇形面积公式 2、任意角三角函数(正弦、余弦、正切)的定义 第一定义:设是任意角,它的终边与单位圆交于点P(x,y),则 第二定义:设 是任意角,它的终边上的任意一点 P(x,y),则 . 考点1 三角函数定义的应用 例1 .已知角α的终边在直线043=+y x 上,则=++αααtan 4cos 5sin 5 . 变式:(1)已知角α的终边过点)30sin 6,8(? --m P ,且5 4 cos - =α,则m 的值为 . (2)在直角坐标系中,O 是原点,A (3,1),将点A 绕O 逆时针旋转90°到B 点,则B 点坐标为__________. (3)4tan 3cos 2sin 的值( ) A .小于0 B .大于0 C .等于0 D .不存在 考点2 扇形弧长、面积公式的应用 例 2.已知扇形的半径为10cm,圆心角为? 120,则扇形的弧长为 面积为 . 变式:已知在半径为10的圆O 中,弦AB 的长为10,则弦AB 所对的圆心角α的大小 为 ,α所在的扇形弧长 为 ,弧所在的弓形的面积S 为 .

二、同角三角函数的基本关系及诱导公式 1、1cos sin 2 2=+αα α αcos tan = 2、三角函数的诱导公式 例1.已知α是三角形的内角,且.5 cos sin =+αα (1)求αtan 的值; (2)把α α22sin cos 1 +用αtan 表示出来,并求其值. 变式:1、已知α是三角函数的内角,且3 1 tan -=α,求ααcos sin +的值. 2、已知.34tan -=α(1)求α αααcos 2sin 5cos 4sin +-的值;(2)求αααcos sin 2sin 2 +的值. 3.若cos α+2sin α=-5,则tan α=________.

高中数学解三角形和平面向量

高中数学解三角形和平面向量试题 一、选择题: 1.在△ABC 中,若a = 2 ,23b =,0 30A = , 则B 等于( B ) A .60o B .60o 或 120o C .30o D .30o 或150o 2.△ABC 的内角A,B,C 的对边分别为a,b,c ,若c =2,b =6,B =120o ,则a 等于( D ) A .6 B .2 C .3 D .2 3.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c, 且2=a ,A=45°,2=b 则sinB=( A ) A . 1 2 B .22 C . 3 2 D .1 4.ABC ?的三内角,,A B C 的对边边长分别为,,a b c ,若5 ,22 a b A B ==,则cos B =( B ) A . 53 B .54 C .55 D .5 6 5.在△ABC 中,若)())((c b b c a c a +=-+,则A ∠=( C ) A .0 90 B .0 60 C .0 120 D .0 150 6.在△ABC 中,角A,B,C 的对边分别为a,b,c ,若(a 2+c 2-b 2)tan B =3ac ,则角B 的值为(D ) A. 6 π B. 3π C.6π或56 π D. 3π或23 π 7. 在△ABC 中, b a B A =--cos 1cos 1,则△AB C 一定是( A ) A. 等腰三角形 B. 直角三角形 C. 锐角三角形 D. 钝角三角形 8.在ABC ?中,角A 、B 、C 所对应的边分别为a 、b 、c ,若角A 、B 、C 依次成等差数列,且a=1, ABC S b ?=则,3等于( C ) A. 2 B. 3 C. 2 3 D. 2 9.已知锐角△ABC 的面积为33,BC=4,CA=3则角C 大小为( B ) A 、75° B 、60° C 、45° D 、30° 10.在200米高的山顶上,测得山下一塔顶与塔底的俯角分别为30°、60°,则塔高为( A ) A. 3 400 米 B. 33400米 C. 2003米 D. 200米 11.已知A 、B 两地的距离为10km ,B 、C 两地的距离为20km ,现测得0 120ABC ∠=,则A,C 两地 的距离为( D )。 A. 10km B. 103km C. 105km D. 107km 12.已知M 是△ABC 的BC 边上的中点,若向量AB =a ,AC = b ,则向量AM 等于( C ) A . 21(a -b ) B .21(b -a ) C .21( a +b ) D .1 2 -(a +b ) 13.若 ,3) 1( )1, 1(B A -- ,5) (x C 共线,且 BC AB λ=则λ等于( B ) A 、1 B 、2 C 、3 D 、4 14.已知平面向量),2(),2,1(m -==,且∥,则32+=( C ) A .(-2,-4) B. (-3,-6) C. (-4,-8) D. (-5,-10) 15. 已知b a b a k b a 3),2,3(),2,1(-+-==与垂直时k 值为 ( C ) A 、17 B 、18 C 、19 D 、20 16.(2,1),(3,),(2),a b x a b b x ==-⊥r r r r r 若向量若则的值为 ( B ) A .31-或 B.13-或 C .3 D . -1 17. 若|2|= ,2||= 且(-)⊥ ,则与的夹角是 ( B ) (A ) 6π (B )4π (C )3π (D )π12 5 183 =b , a 在 b 方向上的投影是2 3 ,则 b a ?是( B ) A 、3 B 、 29 C 、2 D 、2 1 19.若||1,||2,a b c a b ===+r r r r r ,且c a ⊥r r ,则向量a r 与b r 的夹角为( C ) (A )30° (B )60° (C )120° (D )150°

三角函数与解三角形(师)

三角函数与解三角形 一、 y=Asin (ωx+φ)函数的图像与性质重难点突破 二、经验分享 【知识点1 用五点法作函数y=Asin (ωx+φ)的图象】 用“五点法”作sin()y A x ω?=+的简图,主要是通过变量代换,设z x ω?=+,由z 取3 0,,,,222 π πππ来求出相应的x ,通过列表,计算得出五点坐标,描点后得出图象. 【知识点2 由y=sinx 得图象通过变换得到y=Asin (ωx+φ)的图象】 1.振幅变换: sin y A x x R =∈,(A>0且A≠1)的图象可以看作把正弦曲线上的所有点的纵坐标伸长(A>1)或缩短 (0≠,且的图象,可看作把正弦曲线上所有点的横坐标缩短()1ω>或伸长()01ω<<到原来的1 ω 倍(纵坐标不变).若0ω<则可用诱导公式将符号“提出”再作图.ω决定了函数的周期. 3.相位变换: 函数()sin y x x R ?=+∈,(其中0?≠)的图象,可以看作把正弦曲线上所有点向左(当?>0时)或向右(当?<0时)平行移动?个单位长度而得到.(用平移法注意讲清方向:“左加右减”). 一般地,函数()sin()0,0y A x A x R ω?ω=+>>∈,的图象可以看作是用下面的方法得到的: (1) 先把y=sinx 的图象上所有的点向左(?>0)或右(?<0)平行移动?个单位; (2) 再把所得各点的横坐标缩短()1ω>或伸长()01ω<<到原来的 1 ω 倍(纵坐标不变); (3) 再把所得各点的纵坐标伸长(A>1)或缩短(0

2015届高考数学(理)二轮练习:三角函数、解三角形、平面向量(含答案)

三角函数、解三角形、平面向量 1.α终边与θ终边相同(α的终边在θ终边所在的射线上)?α=θ+2k π(k ∈Z ),注意:相等的角的终边一定相同,终边相同的角不一定相等. 任意角的三角函数的定义:设α是任意一个角,P (x ,y )是α的终边上的任意一点(异于原点),它与原点的距离是r =x 2+y 2>0,那么sin α=y r ,cos α=x r ,tan α=y x (x ≠0),三角函数值只与 角的大小有关,而与终边上点P 的位置无关. [问题1] 已知角α的终边经过点P (3,-4),则sin α+cos α的值为________. 答案 -1 5 2.同角三角函数的基本关系式及诱导公式 (1)平方关系:sin 2α+cos 2α=1. (2)商数关系:tan α=sin α cos α . (3)诱导公式记忆口诀:奇变偶不变、符号看象限 [问题2] cos 9π 4 +tan ???-7π6+sin 21π的值为___________________________. 答案 22-3 3 3.三角函数的图象与性质 (1)五点法作图; (2)对称轴:y =sin x ,x =k π+π 2 ,k ∈Z ;y =cos x ,x =k π,k ∈Z ; 对称中心:y =sin x ,(k π,0),k ∈Z ;y =cos x ,????k π+π2,0,k ∈Z ;y =tan x ,????k π 2,0,k ∈Z . (3)单调区间: y =sin x 的增区间:????-π2+2k π,π 2+2k π (k ∈Z ), 减区间:??? ?π2+2k π,3π 2+2k π (k ∈Z );

专题复习解三角形与平面向量

专题复习 解三角形与平面向量 1.三角形的有关公式: (1)在△ABC 中:sin(A +B )= ,sin A +B 2 = (2)正弦定理: (3)余弦定理: _____________________________________________________________________ (4)面积公式:S =12ah a =12ab sin C =1 2 r (a +b +c )(其中r 为三角形内切圆半径). 2.平面向量的数量积 a · b = .特别地,a 2=a·a =|a|2,|a|=a 2.当θ为锐角时,a ·b >0,且a·b >0是θ为锐角的必要非充分条件;当θ为钝角时,a·b <0,且a·b <0是θ为钝角的必要非充分条件. 3.b 在a 上的射影为|b |cos_θ. 4.平面向量坐标运算 设a =(x 1,y 1),b =(x 2,y 2),且a≠0,b≠0,则:(1)a·b = ;(2)|a |= ,a 2=|a |2= ; (3)a ∥b ?a =λb ? =0;(4)a ⊥b ?a ·b =0?|a +b |=|a -b |? =0. (5)若a 、b 的夹角为θ,则cos θ= = . 5.△ABC 中向量常用结论 (1)PA →+PB →+PC →=0?P 为△ABC 的 ; (2)PA →·PB →=PB →·PC →=PC →·PA → ?P 为△ABC 的 ; (3)向量λ? ?? ???AB →|AB → |+AC →|AC →|(λ≠0)所在直线过△ABC 的 ;(4)|PA →|=|PB →|=|PC →|?P 为△ABC 的 . 考点一 解三角形 例 1-1设△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,若b =2,B =π3,C =π 4,则△ABC 的面积为( )A .1 + 33 +1 C .1-3 3 -1 例 1-2△ABC 中,已知3b =23a sin B ,角A ,B ,C 成等差数列,则△ABC 的形状为( ) A .直角三角形 B .等腰三角形 C .等边三角形 D .等腰直角三角形 例 1-3若△ABC 的三个内角满足sin A ∶sin B ∶sin C =5∶11∶13,则△ABC ( ) A .一定是锐角三角形 B .一定是直角三角形 C .一定是钝角三角形 D .可能是锐角三角形,也可能是钝角三角形 变式训练【1-1】设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =2,c =23,cos A = 3 2 ,且b

高考真题_三角函数与解三角形真题(加答案)

全国卷历年高考三角函数及解三角形真题归类分析 三角函数 一、三角恒等变换(3题) 1.(2015年1卷2)o o o o sin 20cos10cos160sin10- =( ) (A ) (B (C )12- (D )12 【解析】原式=o o o o sin 20cos10cos 20sin10+ =o sin30=1 2 ,故选D. 考点:本题主要考查诱导公式与两角和与差的正余弦公式. 2.(2016年3卷)(5)若3 tan 4 α= ,则2cos 2sin 2αα+=( ) (A)6425 (B) 4825 (C) 1 (D)1625 【解析】由3tan 4α=,得34sin ,cos 55αα==或34 sin ,cos 55αα=-=-,所以 2161264 cos 2sin 24252525 αα+=+?=,故选A . 考点:1、同角三角函数间的基本关系;2、倍角公式. 3.(2016年2卷9)若π3 cos 45α??-= ???,则sin 2α= (A ) 7 25 (B )15 (C )1 5 - (D )725 - 【解析】∵3cos 45πα??-= ???,2ππ 7sin 2cos 22cos 12425ααα????=-=--= ? ????? ,故选D . 二、三角函数性质(5题) 4.(2017年3卷6)设函数π ()cos()3 f x x =+,则下列结论错误的是() A .()f x 的一个周期为2π- B .()y f x =的图像关于直线8π 3 x =对称 C .()f x π+的一个零点为π6x = D .()f x 在π (,π)2 单调递减 【解析】函数()πcos 3f x x ? ?=+ ?? ?的图象可由cos y x =向左平移π3个单位得到, 如图可知,()f x 在π,π2?? ??? 上先递减后递增,D 选项错误,故选D.

解三角形与三角函数专题

三角函数与解三角形 1.已知函数f (x )=sin x -23sin 2x 2. (1)求f (x )的最小正周期; (2)求f (x )在区间??????0,2π3上的最小值. 2.(2019·济南调研)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a sin A =4b sin B ,ac =5(a 2-b 2-c 2). (1)求cos A 的值; (2)求sin(2B -A )的值. 3.已知函数f (x )=sin 2x -cos 2x +23sin x cos x (x ∈R ). (1)求f (x )的最小正周期; (2)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若f (A )=2,c =5,cos B =1 7,求△ABC 中线AD 的长.

4.(2018·湘中名校联考)已知函数f (x )=cos x (cos x +3sin x ). (1)求f (x )的最小值; (2)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若f (C )=1,S △ABC =334,c =7,求△ABC 的周长. 5.已知△ABC 中内角A ,B ,C 的对边分别为a ,b ,c ,向量m =(2sin B ,-3),n =(cos 2B ,2cos 2B 2-1),B 为锐角且m ∥n . (1)求角B 的大小; (2)如果b =2,求S △ABC 的最大值. 6.(2019·信阳二模)已知a ,b ,c 分别是△ABC 内角A ,B ,C 的对边,且满足(a +b +c )(sin B +sin C -sin A )=b sin C . (1)求角A 的大小; (2)设a =3,S 为△ABC 的面积,求S +3cos B cos C 的最大值.

用平面向量解三角形问题

第五编 平面向量、解三角形 §5.1 平面向量的概念及线性运算 基础自测 1.下列等式正确的是 (填序号). ①a +0=a ②a +b =b +a ③+≠0 ④=++ 答案 ①②④ 2.如图所示,在平行四边行ABCD 中,下列结论中正确的是 . ①= ②+= ③-= ④+=0 答案 ①②④ 3.(20082广东理,8)在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F .若=a ,=b ,则= . 答案 3 2a +31b 4.若ABCD 是正方形,E 是DC 边的中点,且AB =a ,AD =b ,则= . 答案 b -2 1a 5.设四边形ABCD 中,有=2 1 ,且||=||,则这个四边形是 . 答案 等腰梯形 例1 给出下列命题 ①向量的长度与向量的长度相等; ②向量a 与向量b 平行,则a 与b 的方向相同或相反; ③两个有共同起点并且相等的向量,其终点必相同; ④两个有共同终点的向量,一定是共线向量; ⑤向量与向量是共线向量,则点A 、B 、C 、D 必在同一条直线上; ⑥有向线段就是向量,向量就是有向线段. 其中假命题的个数为 . 答案 4 例2 如图所示,若四边形ABCD 是一个等腰梯形, AB ∥DC ,M 、N 分别是DC 、AB 的中点,已知=a , =b , =c ,试用 a 、 b 、 c 表示,, +. C D

∵MN =MD ++AN , ∴=-21,=-,=2 1 , ∴MN = 21a -b -2 1c . +CN =+MN +CM +MN =2MN =a -2b -c . 例3 设两个非零向量a 与b 不共线, (1)若=a +b ,=2a +8b ,=3(a -b ), 求证:A 、B 、D 三点共线; (2)试确定实数k ,使k a +b 和a +k b 共线. (1)证明 ∵=a +b ,=2a +8b ,=3(a -b ), ∴=+=2a +8b +3(a -b ) =2a +8b +3a -3b =5(a +b )=5. ∴、共线, 又∵它们有公共点B , ∴A 、B 、D 三点共线. (2)解 ∵k a +b 与a +k b 共线, ∴存在实数λ,使k a +b =λ(a +k b ), 即k a +b =λa +λk b . ∴(k -λ)a =(λk -1)b . ∵a 、b 是不共线的两个非零向量, ∴k -λ=λk -1=0,∴k 2 -1=0. ∴k =±1. 例4 (14分)如图所示,在△ABO 中,=4 1 , = 2 1 ,AD 与BC 相交于点M ,设=a ,=b .试 用a 和b 表示向量. 解 设OM =m a +n b , 则=-=m a +n b -a =(m -1)a +n b . =-= 21-=-a +2 1b . 又∵A 、M 、D 三点共线,∴AM 与AD 共线. ∴存在实数t ,使得=t , 即(m -1)a +n b =t (-a +2 1 b ). 4分 ∴(m -1)a +n b =-t a + 2 1 t b . ?? ???=-=-21t n t m ,消去t 得:m -1=-2n . 即m +2n =1. ① 6分 ∴

2015届高考数学文二轮专题训练专题三第2讲三角变换与解三角形

第2讲 三角变换与解三角形 考情解读 1.高考中常考查三角恒等变换有关公式的变形使用,常和同角三角函数的关系、诱导公式结合.2.利用正弦定理或余弦定理解三角形或判断三角形的形状、求值等,经常和三角恒等变换结合进行综合考查. 1.两角和与差的正弦、余弦、正切公式 (1)sin(α±β)=sin αcos β±cos αsin β. (2)cos(α±β)=cos αcos β?sin αsin β. (3)tan(α±β)=tan α±tan β1?tan αtan β . 2.二倍角的正弦、余弦、正切公式 (1)sin 2α=2sin αcos α. (2)cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α. (3)tan 2α=2tan α 1-tan 2α. 3.三角恒等式的证明方法 (1)从等式的一边推导变形到另一边,一般是化繁为简. (2)等式的两边同时变形为同一个式子. (3)将式子变形后再证明. 4.正弦定理 a sin A = b sin B = c sin C =2R (2R 为△ABC 外接圆的直径). 变形:a =2R sin A ,b =2R sin B ,c =2R sin C . sin A =a 2R ,sin B =b 2R ,sin C =c 2R . a ∶ b ∶ c =sin A ∶sin B ∶sin C . 5.余弦定理 a 2= b 2+ c 2-2bc cos A ,b 2=a 2+c 2-2ac cos B , c 2=a 2+b 2-2ab cos C . 推论:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 2 2ac , cos C =a 2+b 2-c 2 2ab .

专题 三角函数及解三角形(解析版)

专题 三角函数及解三角形 1.【2019年高考全国Ⅰ卷理数】函数f (x )= 在[,]-ππ的图像大致为 A . B . C . D . 2.【2019年高考全国Ⅰ卷理数】关于函数()sin |||sin |f x x x =+有下述四个结论: ①f (x )是偶函数 ②f (x )在区间( 2 π,π)单调递增 ③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2 其中所有正确结论的编号是 A .①②④ B .②④ C .①④ D .①③ 3.【2019年高考全国Ⅱ卷理数】下列函数中,以2 π为周期且在区间( 4 π, 2 π)单调递增的是 A .f (x )=|cos2x | B .f (x )=|sin2x | C .f (x )=cos|x | D .f (x )=sin|x | 4.【2019年高考全国Ⅱ卷理数】已知α∈(0, 2 π),2sin2α=cos2α+1,则sin α= A . 15 B . 5 C 3 D 5 5.【2019年高考全国Ⅲ卷理数】设函数()f x =sin (5 x ωπ + )(ω>0),已知()f x 在[]0,2π有且仅有5个零点,下述四个结论: ①()f x 在(0,2π)有且仅有3个极大值点 ②()f x 在(0,2π)有且仅有2个极小值点 2 sin cos ++x x x x

③()f x 在(0, 10 π )单调递增 ④ω的取值范围是[1229 510 ,) 其中所有正确结论的编号是 A .①④ B .②③ C .①②③ D .①③④ 6.【2019年高考天津卷理数】已知函数()sin()(0,0,||)f x A x A ω?ω?=+>><π是奇函数,将()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为()g x .若()g x 的最小正周期为2π ,且4g π?? = ???38f π??= ??? A .2- B . C D .2 7.【2019年高考北京卷理数】函数f (x )=sin 22x 的最小正周期是__________. 8.【2019年高考全国Ⅱ卷理数】ABC △的内角,,A B C 的对边分别为,,a b c .若π 6,2,3 b a c B === ,则ABC △的面积为_________. 9.【2019年高考江苏卷】已知 tan 2π3tan 4αα=-??+ ?? ?,则πsin 24α? ?+ ???的值是 ▲ . 10.【2019年高考浙江卷】在ABC △中,90ABC ∠=?,4AB =,3BC =,点D 在线段AC 上,若 45BDC ∠=?,则BD =___________,cos ABD ∠=___________. 11.【2019年高考全国Ⅰ卷理数】ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,设 22(sin sin )sin sin sin B C A B C -=-. (1)求A ; (2 2b c +=,求sin C . 12.【2019年高考全国Ⅲ卷理数】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin sin 2 A C a b A +=. (1)求B ;

平面向量与解三角形复习试题

平面向量与解三角形复习试题 23.解:如图,OC=OD+OE=λOA+μOB, 在△OCD中,∠COD=30°,∠OCD=∠COB=90°, 可求|OD|=4, 同理可求|OE|=2, ∴λ=4,μ=2, ∴λ+μ=6. 24.解:(1)由条件知:3a+2b=(7,7), 故|3a+2b|=72+72=72. (2)a+kb=(3,1)+k(?1,2)=(3?k,1+2k),2a?b=(7,0). ∵(a+kb)∥(2a?b), ∴(3-k)?0-7(1+2k)=0, 解得k=?12 25.解:由A,B,C成等差数列,有2B=A+C(1) 因为A,B,C为△ABC的内角,所以A+B+C=π. 由(1)(2)得B=π3.(3) 由a,b,c成等比数列,有b2=ac(4) 由余弦定理及(3),可得b2=a2+c2-2accosB=a2+c2-ac 再由(4),得a2+c2-ac=ac, 即(a-c)2=0 因此a=c 从而A=C(5) 由(2)(3)(5),得A=B=C=π3 所以△ABC为等边三角形. 26.解:(Ⅰ)∵3acosC=csinA, 由正弦定理得:3sinAcosC=sinCsinA, ∵0<A<π,∴sinA>0, ∴3cosC=sinC,即tanC=3, 又0<C<π,∴C=π3; (Ⅱ)∵a=3,△ABC的面积为332, ∴S=12absinC=12×3bsinπ3=332, ∴b=2, 由余弦定理得:c2=4+9-6=7,即c=7,cosA=22+(7)2?322×2×7=714,则CA?AB=bccos(π-A)=27×(-714)=-1. 27.解:(Ⅰ)∵在△ABC中,设AB=a,AC=b, AP的中点为Q,BQ的中点为R,CR的中点恰为P. AP=AR+AC2,AR=AQ+AB2,AQ=12AP,消去AR,AQ ∵AP=λa+μb,

(精心整理)三角变换与解三角形

第2讲 三角变换与解三角形 一、选择题 1.(2010·福建卷)计算1-2sin 222.5°的结果等于 ( ) A.12 B.22 C.33 D.32 解析:1-2sin 222.5°=cos 45°=22 . 答案:B 2.已知tan θ=2,则sin 2θ+sin θcos θ-2cos 2θ= ( ) A .-43 B.54 C .-34 D.45 解析:sin 2θ+sin θ·cos θ-2cos 2θ=sin 2θ+sin θcos θ-2cos 2θsin 2θ+cos 2θ=tan 2θ+tan θ-2 tan 2θ+1,又 tan θ=2,故原式=4+2-24+1=45. 答案:D 3.已知锐角△ABC 的面积为33,BC =4,CA =3,则角C 的大小为 ( ) A .75° B .60° C .45° D .30° 解析:由题知,12×4×3×sin C =33,∴sin C =3 2. 又00)的两根为 tan α、tan β,且α、β∈ ? ?? ??-π2,π2,则tan α+β2 的值是 ( ) A.12 B .-2 C.43 D.1 2或-2

解析:∵a >0,∴tan α+tan β=-4a <0,tan α·tan β= 3a +1>0,又∵α、β∈? ?? ??-π2,π2, ∴α、 β∈? ????-π2,0,则α+β2∈? ???? -π2,0,∴tan(α+β)= tan α+tan β 1-tan α·tan β=-4a 1-(3a +1) = 43 ,∴tan(α+β)=2tan α+β 2 1-tan 2 α+β 2 =4 3,整理得2tan 2α+β2+3tan α+β2-2=0,解得tan α+β2 =-2或1 2 (舍去).故选B. 答案:B 5.(2010·北京卷)某班设计了一个八边形的班徽(如图),它 由腰长为1,顶角为α的四个 等腰三角形,及其底边构成的正方形所组成.该八 边形的面积为 ( )

高三数学解三角形,平面向量与三角形的综合练习

解三角形,平面向量与三角形的综合练习 一、填空题 1.若角α的终边经过点(12)P -,,则tan 2α的值为______________. 2.已知向量a 与b 的夹角为120o ,且4==a b ,那么g a b 的值为________. 3.已知向量)3,1(=,)0,2(-=,则b a +=_____________________. 4. )6cos()(π ω-=x x f 最小正周期为5π ,其中0>ω,则=ω 5.b a ρ?,的夹角为ο 120,1,3a b ==r r ,则5a b -=r r 6.若BC AC AB 2,2= =,则ABC S ?的最大值 7.设02x π?? ∈ ??? ,,则函数22sin 1sin 2x y x +=的最小值为 . 8.设向量(12)(23)==,,,a b ,若向量λ+a b 与向量(47)=--,c 共线,则=λ . 9.若向量a r ,b r 满足1 2a b ==r r ,且a r 与b r 的夹角为3 π,则a b +=r r . 10.若3 sin()25 πθ+=,则cos2θ=_________。 11.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若 ( ) C a A c b cos cos 3=-, 则=A cos 。 12已知a r 是平面内的单位向量,若向量b r 满足()0b a b -=r r r g ,则||b r 的取值范围是 。 13..在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,已知3,30,a b c ===? 则A = . 14. 关于平面向量,,a b c .有下列三个命题: ①若g g a b =a c ,则=b c .②若(1)(26)k ==-,,,a b ,∥a b ,则3k =-. ③非零向量a 和b 满足||||||==-a b a b ,则a 与+a b 的夹角为60o . 其中真命题的序号为 .(写出所有真命题的序号) 三、解答题 1.已知函数()cos(2)2sin()sin()344 f x x x x π ππ =- +-+ (Ⅰ)求函数()f x 的最小正周期和图象的对称轴方程

三角函数与解三角形练习题

三角函数及解三角形练习题 一.解答题(共16小题) 1.在△ABC中,3sinA+4cosB=6,4sinB+3cosA=1,求C的大小. 2.已知3sinθtanθ=8,且0<θ<π. (Ⅰ)求cosθ; (Ⅱ)求函数f(x)=6cosxcos(x﹣θ)在[0,]上的值域. 3.已知是函数f(x)=2cos2x+asin2x+1的一个零点. (Ⅰ)数a的值; (Ⅱ)求f(x)的单调递增区间. 4.已知函数f(x)=sin(2x+)+sin2x. (1)求函数f(x)的最小正周期; (2)若函数g(x)对任意x∈R,有g(x)=f(x+),求函数g(x)在[﹣,]上的值域. 5.已知函数f(x)=2sinωxcosωx+cos2ωx(ω>0)的最小正周期为π.(1)求ω的值; (2)求f(x)的单调递增区间. 6.已知函数f(x)=sin(ωx+φ)(ω>0,﹣≤φ<)的图象关于直线x=对称,且图象上相邻两个最高点的距离为π. (Ⅰ)求ω和φ的值; (Ⅱ)若f()=(<α<),求cos(α+)的值. 7.已知向量=(cosx,sinx),=(3,﹣),x∈[0,π]. (1)若∥,求x的值; (2)记f(x)=,求f(x)的最大值和最小值以及对应的x的值. 8.已知函数的部分图象如图所示.

(1)求函数f(x)的解析式; (2)在△ABC中,角A,B,C的对边分别是a,b,c,若(2a﹣c)cosB=bcosC,求的取值围. 9.函数f(x)=2sin(ωx+φ)(ω>0,0<φ<)的部分图象如图所示,M 为最高点,该图象与y轴交于点F(0,),与x轴交于点B,C,且△MBC的面积为π. (Ⅰ)求函数f(x)的解析式; (Ⅱ)若f(α﹣)=,求cos2α的值. 10.已知函数. (Ⅰ)求f(x)的最大值及相应的x值; (Ⅱ)设函数,如图,点P,M,N分别是函数y=g(x)图象的零值点、最高点和最低点,求cos∠MPN的值. 11.设函数f(x)=sin(ωx﹣)+sin(ωx﹣),其中0<ω<3,已知f ()=0.

专题复习解三角形与平面向量

1.三角形的有关公式: (1)在△ABC 中:sin(A +B )= ,sin A +B 2 = (2)正弦定理: (3)余弦定理: _____________________________________________________________________ (4)面积公式:S =12ah a =12ab sin C =1 2r (a +b +c )(其中r 为三角形内切圆半径). 2.平面向量的数量积 a · b = .特别地,a 2=a·a =|a|2,|a|=a 2.当θ为锐角时,a ·b >0,且a·b >0是θ为锐 角的必要非充分条件;当θ为钝角时,a·b <0,且a·b <0是θ为钝角的必要非充分条件. 3.b 在a 上的射影为|b |cos_θ. 4.平面向量坐标运算 设a =(x 1,y 1),b =(x 2,y 2),且a≠0,b≠0,则:(1)a·b = ;(2)|a |= ,a 2 =|a |2 = ; (3)a ∥b ?a =λb ? =0;(4)a ⊥b ?a ·b =0?|a +b |=|a -b |? =0. (5)若a 、b 的夹角为θ,则cos θ= = . 5.△ABC 中向量常用结论 (1)PA →+PB →+PC →=0?P 为△ABC 的 ; (2)PA →·PB →=PB →·PC →=PC →·PA → ?P 为△ABC 的 ; (3)向量λ? ?????AB →|AB → |+AC →|AC →|(λ≠0)所在直线过△ABC 的 ;(4)|PA →|=|PB →|=|PC →|?P 为△ABC 的 . 考点一 解三角形 例 1-1设△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,若b =2,B =π3,C =π 4,则△ABC 的面积为( )A .1 + 33 +1 C .1-3 3 -1 例 1-2△ABC 中,已知3b =23a sin B ,角A ,B ,C 成等差数列,则△ABC 的形状为( ) A .直角三角形 B .等腰三角形 C .等边三角形 D .等腰直角三角形 例 1-3若△ABC 的三个内角满足sin A ∶sin B ∶sin C =5∶11∶13,则△ABC ( ) A .一定是锐角三角形 B .一定是直角三角形 C .一定是钝角三角形 D .可能是锐角三角形,也可能是钝角三角形 变式训练【1-1】设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =2,c =23,cos A = 3 2 ,且b

相关主题