搜档网
当前位置:搜档网 › 巷道锚杆支护计算公式

巷道锚杆支护计算公式

巷道锚杆支护计算公式
巷道锚杆支护计算公式

根据1552工作面围岩柱状资料分析,15#煤层顶板直接顶为粘土岩,厚度1.0-1.5m ,施工时,极易垮落,掘进施工时以14#煤层做顶沿15#煤层底板掘进,采取锚网支护。为了将锚杆加固的“组合梁”悬吊于老顶坚硬岩层中,需用高强度锚索做辅助支护。根据邻近1551运、回两巷掘进巷道的支护经验,确定1552回风巷、1552回风巷皮带机头硐室,采用锚杆—钢筋网—钢带--锚索联合支护。

二、支护参数设计

㈠采用类比法合理选择支护参数:根据15#煤层邻近巷道的支护经验,1552回风巷巷道顶锚杆选用φ16mm ×1800mm 的圆钢锚杆,间距1000mm,排距900mm ;选用1x7丝φ15.24mm ,锚固力不小于230kN 冷拔钢筋,长度4.2m 的锚索加强支护。

㈡采用计算法校核支护参数

1、锚杆长度计算

L = KH+L 1+L 2

式中:L ——锚杆长度,m H ——冒落拱高度,m

K----安全系数,取2

L 1——锚杆锚入稳定岩层深度,取0.5m

L 2——锚杆在巷道中的外露长度,取0.05m

其中: H=B/2f=3.4/(2×4)=0.43m

式中:B ——巷道宽度 f ——岩石坚固性系数,取4

L = 2H+L1+L2=2×0.43+0.5+0.05=1.41m 施工时取L=1.8m

2、锚杆间距、排距a 、b a=b=KHr

Q 式中:a 、b ——锚杆间、排距m

Q ——锚杆设计锚固力,50kN/根;

H ——冒落拱高度,取0.58m ;

K ——安全系数,取2;

r ——被悬吊粘土岩的重力密度,26.44kN/m 3

a=b=44

.2643.0250??=1.48m

施工中间距取1.0m ,排距取0.9m 。

3、锚杆直径的选择:

d =

P=abhr=0.9×1×1.8×23=37.26kN/m 2

式中:a---锚杆排距

h---锚杆承载岩体高度,取锚杆长度1.8m

b---锚杆间距

r---承载岩体容重23kN/m 3

K---安全系数 取2

Δ--锚杆材料抗拉强度,取38kN/m 2

d = =38002/3.1437304???=15.8mm

施工中取Φ=16mm

通过锚杆直径的验算,排距确定为0.9m ,间距为1.0m,能满足支护要求。

4、理论上锚杆锚固长度可用下式计算:

222r a r d l l D d

=- 式中:la —锚固长度,m ;

dr —锚固剂直径,mm ,取23mm ;

D —钻孔直径,mm ,取28mm ;

d —锚杆杆体直径,mm ,取20mm ;

lr —锚固剂长度,mm ,两种锚固剂CK2360和K2380,则锚固剂长度为1400mm 。

22

222223=1400=1928mm 2820

r a r d l l D d =-- 锚杆的外露长度假设为50mm ,则锚杆为全锚。

5、锚索支护参数计算:

⑴确定锚索的长度:

L=La+Lb+Lc+Ld

式中 L----锚索总长度,m

La---锚索深入到较稳定岩层的锚固长度,m

Lb---需要悬吊的不稳定岩层厚度,取1.5m

Lc---上托盘及锚具的厚度,取0.1m

Ld---需要外露的张拉长度,取0.3m

锚索锚固长度La按下式确定:

La≥K×(d1fa/4fc)

式中:K---安全系数,取2

d1---锚索钢绞线直径,取15.24mm

fa---钢绞线抗拉强度,N/m㎡(1920MPa,含1883.52N/mm2)

fc—锚索与锚固剂的粘合强度,取10N/mm2

则La≥(2×15.24×1883.52)/4×10=1435.242㎜≈1.44m

L=1.44+1.5+0.1+0.3=3.34m 施工取锚索长度为4.2m。

⑵锚索的间、排距校核:

L=NF2/{BHr-(2F1sinθ)/L1}

式中 L—锚索间排距,m

B—巷道最大冒落宽度,正巷3.4m

H—巷道冒落高度,按最严重冒落高度取2.0m

r---岩体容重,23kN/m3

L1—锚杆的排距,0.9m

F1—锚杆的锚固力,50kN

F2—锚索极限承载力,17.8mm取335kN,21.6mm取550kN。

θ—角锚杆与巷道顶板的夹角,75度

n—一排锚索个数,取2

通过上述计算,1552回风巷锚索间距小于2.5m布置。根据巷道掘进支护情况,1552回风巷巷道顶板施工一排锚索加强支护,长度4.2m,间距为2.0m布置,每根锚索使用不少于四节树脂药卷锚固,可满足支护要求。

直墙圆拱形巷道

锚杆长度确定:

(1)锚杆长度

锚杆长度可按式1确定

123b b b b L L L L =++

式中:b L ——锚杆长度,m

1b L ——锚杆外露长度(一般取0.1-0.15m )

2b L ——锚杆有效长度,m

3b L ——锚杆锚固长度(一般取0.3-0.4m

锚杆有效长度2b L 的确定方法为: 直墙半圆拱巷道:顶:22

2(/2)()b p a c d L L c d

++=-+ 帮:22

b p a L L =-

式中:a —巷道宽度,m ; c —直墙圆形拱巷道墙高,m ;

d —直墙圆形拱巷道拱高,m ;

Lp —塑性软化区的范围,m ,一般状况下当采深<200m,Lp=0-2m ;当采深在200-400m 之间时,Lp=2-5m ;当采深>400m ,Lp=5-8m 。

(2)锚杆的间排距:

假设锚杆的间排距相同,都为Sb ,则计算公式为:

12

[]b b S P σ??= ??? 式中:Sb ——等距排列时锚杆的间排距,m ;

[]b σ____单根锚杆的极限破断力,kN ;

P ——巷道的各部位支护载荷,kN/m 2

顶板:14d W P k

a

π= 帮部:2b W P k a = k ——安全系数,一般取1.05-2.0;

经验公式是在大量支护设计经验的基础上,得出的指导支护设计的简单公式。目前,国内外有多种锚杆支护设计的经验公式,以下列举数例。

(1) 锚杆长度选取

①Hoek与Brown等提出确定锚杆长度的一般经验准则:最小锚杆长度=max [锚杆间距的两倍,三倍不连续面平均间距确定的不稳定岩块宽度,巷道跨度之半]。

②Lang与Bischoff认为,锚杆长度与锚杆间排距之比应为1.2~1.5,锚杆长度可作为巷道宽度的函数确定,如:L=B2/3,其中L为锚杆长度,B为巷道宽度。

③Schach等人提出确定锚杆长度的经验公式为:

L=1.4+0.184B (非预应力锚杆)

L=1.6+(1+0.012B2)1/2 (预应力锚杆)

④日本的经验表明,锚杆长度为巷道宽度或高度的0.6倍。如果再加长锚杆,支护效果将不会明显变化。

⑤新奥法对锚杆长度的选择也提出一些准则。基于锚杆支护的作用是在围岩中形成自承拱的原理,锚杆长度主要与巷道围岩条件及跨度有关:对于比较完整的硬岩,锚杆长度取1.0~1.2m;对于完整性较差的中硬岩石,锚杆长度取巷道宽度的1/4~1/3,一般为2~3m;对于松软破碎的岩体,锚杆长度取巷道宽度的1/2~2/3,一般为4~6m。

⑥其它经验公式,如:

公式1:

顶板锚杆长度L=2+0.15B/K

帮锚杆长度L=2+0.15H/K

其中:B—巷道宽度,m;

H—巷道高度,m;

K—与围岩性质等有关的系数,一般取3~5。

公式2:

锚杆长度L=k(1.5+B/10)

其中:k—围岩影响系数,一般取0.9-1.2,围岩稳定性差时取大值。

(2) 锚杆间排距选取

①Hoek与Brown等提出,最大锚杆间距=min[锚杆长度之半,1.5倍不连续间距确定的不稳定岩块宽度]。

②Lang与Bischoff认为,锚杆间排距与锚杆长度之比为2/3~5/6比较合理。

③Schach等从拱形巷道顶部能够形成有效的压力拱出发,认为锚杆长度与

锚杆间距的比值应接近2。

④新奥法对锚杆间距的选择提出一些准则:硬岩,锚杆间距取1.5~2.0m;中硬岩石,锚杆间距取1.5m;松软破碎的岩体,锚杆间距取0.8~1.0m。

1 悬吊理论

悬吊理论认为锚杆的作用是将下部不稳定的岩层悬吊在上部稳定的岩层中,阻止软弱破碎岩层垮落。悬吊理论只考虑了锚杆的被动抗拉作用,根据不稳定岩层厚度计算锚杆长度,根据锚杆悬吊的不稳定岩层重量计算锚杆直径和间排距。

(1) 锚杆长度

如图4.1(a),锚杆长度用下式计算:

L=L1+L2+L3(4-1)

式中:L-锚杆长度,m;

L1-锚杆外露长度,m,取决于锚杆类型与锚固方式,一般取0.15m;

L2-锚杆有效长度,m,不小于不稳定岩层的厚度;

L3-锚杆锚固长度,m,端部锚固一般取0.3-0.4m。

(2) 锚杆锚固力与直径

锚杆锚固力应不小于被悬吊不稳定岩层的重量,用下式计算:

Q=KL2a1a2γ(4-2)

式中:Q-锚杆锚固力,kN;

K-安全系数,一般取1.5~2;

a1、a2-锚杆间排距,m;

γ-不稳定岩层平均容重,kN/m3。

如果锚杆锚固力与杆体的破断力相等,则锚杆直径可由下式得出:

d=(4-3)

式中:d-锚杆直径,m;

σt-杆体材料的抗拉强度,MPa。

(3) 锚杆间排距

如图4.1(b),当锚杆间排距相等时,即a=a1=a2,则间排距为:

a=(4-4)

(a) (b)

图4.1 悬吊理论锚杆支护参数计算示意图

(a)-锚杆长度组成;(b)-支护参数计算图

2 自然平衡拱理论

该理论认为,巷道开掘后,围岩失去了层间联系。在上覆岩层压力作用下,浅部围岩发生破坏,而在深部一定范围内形成自然平衡拱。自然平衡拱以上的岩体是稳定的,锚杆的作用主要是防止破坏区围岩垮落。锚杆所需要的承载能力由破坏岩石的重量确定,而且与巷道断面形状与尺寸、埋藏深度、采动影响程度、岩层倾角、强度、结构等有关。可见,自然平衡拱理论对锚杆支护作用的分析实质上是悬吊作用,并提供了计算围岩破坏范围的一种方法。

(1) 围岩破坏范围

如图4.2是自然平衡拱理论确定巷道围岩破坏范围的计算图。煤层巷道煤帮破坏深度C(m)由下式确定:

4901102CX

y K HB C htg f γ????-=- ? ???

(4-5) 式中:K CX —巷道周边挤压应力集中系数,按巷道断面形状与宽高比确定; γ—巷道上方至地表间地层的平均容重,kN/m 3;

H —巷道距地表的深度,m ;

B —表征采动影响程度的无因次参数;

f y —煤层硬度系数;

h —煤层厚度或巷道轮廓范围内煤夹层的厚度,m ;

φ—煤的内摩擦角。

Q

Q H

图4.2 巷道围岩破坏范围计算图

按式(4-5)求出的C 为负值时表明煤体稳定,正值表明煤体发生破坏。

顶板岩层的破坏深度b(m),按相对于层理的法线计,可根据下式求出:

n

y f k C a b αcos )(+= (4-6) 式中:a —巷道的半跨距,m ;

α—煤层倾角,°;

k y —待锚岩层的稳定性系数;

f n —锚固岩层的硬度系数。

(2) 围岩压力

当C 为正值时,作用在地压破煤一侧支架上的压力Q(kN/m)为:

90(sin )2

Y n Q C h a btg ?γγ?-=+ (4-7) 式中:y γ、n γ—煤和岩石的容重,kN/m 3。

顶板支架压力Q H (kN/m),按相对于岩层层理的法线确定为:

abB Q n H γ2= (4-8)

(3) 锚杆长度

锚杆长度为:

顶板锚杆长度:L r =b+Δ

煤帮锚杆长度:L s =C+Δ

式中:Δ—锚杆锚入围岩破坏范围之外的深度与锚杆外露长度之和,一般取0.5~0.7m 。

(4) 锚杆间排距

锚杆排距a r (m)按下式求出:

r a π= (4-9) 式中:Z —锚杆锚入自然平衡拱范围之外的额定深度,m ,Z=0.35m 。

锚杆的锚固强度P(kN)取决于岩石硬度,按下式计算:

2100048

t d f P f πσ=+ (4-10) 式中:d —锚杆杆体直径,m ;

f —锚固段岩层的硬度系数;

σt —锚杆杆体的极限抗拉强度,MPa 。

顶板每排锚杆数N K 根据作用力的平衡条件按下式求出:

3H r K K Q a N P

= (4-11) 式中:K 3—安全系数,取2。

所求得的N K 值根据实际情况取整数,并按式(4-11)复核锚杆排距。

当C 为正值时,煤帮锚杆排距按下式求出:

3y y N P

a K Q = (4-12)

式中:y N ——煤帮每排锚杆数。

3 组合梁理论

组合梁理论认为,在层状岩层中,锚杆的作用是提供轴向和切向约束,阻止岩层产生离层和相对滑动,将若干薄岩层锚固成一个较厚的岩层,形成组合梁。与不锚固岩梁相比,组合梁的最大弯曲应变和应力都将大大减少,从而提高巷道顶板的稳定性。通过计算组合梁所必需的承载能力确定锚杆支护参数。

如图4.3是顶板组合梁的力学模型。设组合梁上部受均布载荷q 作用,在平面应变状态下,计算锚杆长度与锚杆间排距。

图4-3 顶板锚杆支护组合梁力学模型

(1) 锚杆长度

锚杆长度L 仍由(4.1)式确定,L 1、L 3分别为锚杆外露长度和锚固长度。锚杆有效长度L 2,即组合梁厚度,根据满足顶板最下一层岩石外表面抗拉强度条件确定。

固支梁中点下表面上拉应力最大,其值为:

22

2

25.0L qB =σ (4-13) 式中:B —巷道跨度,m 。

设岩石抗拉强度为t σ,则顶板稳定时应满足:

t K σσ≤1 (4-14)

即:

20.5L ≥ (4-15) 式中:1K —安全系数,一般取1K =3~5。

考虑岩层蠕变的影响,在(4-15)式右端引入蠕变安全系数ζ(ζ=1.204)。考虑顶板各岩层间摩擦作用对梁应力和弯曲的影响,引入随岩层数目变化的惯性矩折减系数η,则锚杆有效长度的表达式为:

)

(602.012h t q K B L σση+= (4-16) 式中:h σ—原岩水平应力分量,MPa ;

η—岩层数为1、2、3时,η分别为1、0.75、0.7;岩层数≥4时,η=0.65。

(2) 锚杆间排距

锚杆间距由组合梁的抗剪强度确定。设锚杆间距(a 1)与排距(a 2)相等为a ,梁

半跨内由均布载荷引起的总剪力可近似用下式表示:

2max 2

316qaB Q L =∑ (4-17) 不考虑组合梁层间摩擦力,同一范围内锚杆具有的抗剪能力为:

2

8b B Q d a

τπ= (4-18) 顶板抗剪安全条件为:

∑≥m a x 2Q K Q b

得:

1.4472a ≤ (4-19) 式中:d —锚杆杆体直径,m ;

τ—锚杆杆体材料抗剪强度,MPa ;

K 2—顶板抗剪安全系数,一般取3~6。

4 组合拱理论

组合拱理论认为,在锚杆锚固力作用下,每根锚杆周围形成一个两头带圆锥的筒状压缩区,各锚杆所形成的压缩区彼此联成一个一定厚度的组合拱(或均匀压缩带)。该拱(带)具有较大的承载能力和一定的可缩性,能够起到有效支护巷道的作用。根据所需组合拱的厚度计算锚杆参数(图4.4)。

图4.4 锚杆支护组合拱力学模型

研究表明,组合拱厚度、锚杆长度与锚杆间排距有以下近似关系:

tan tan b a L αα

+= (4-20) 式中:L —锚杆有效长度,m ;

b —组合拱厚度,m ;

α—锚杆在围岩中的控制角;

a —锚杆间排距,m 。

如果锚杆的控制角取45°,则有:

L=a+b(4-21)

理论计算法作为一种比较简单、方便的锚杆支护设计方法,虽然得到一定程度的应用,但是,由于围岩地质条件复杂多变,各种理论对锚杆支护作用的认识都有片面性和局限性,有些理论的力学参数难以确定和选取,这就大大影响了计算结果的可信度。因此,理论计算法的设计结果大多仅能作为参考。

巷道锚杆支护参数设计

巷道锚杆支护参数设计 一、锚杆支护理论研究 (一)锚杆支护综述 1、锚杆支护技术的发展 锚杆支护作为一种有效的、技术经济优越的采准巷道支护方式,自美国1912年在aberschlesin(阿伯施莱辛)的Friedens(弗里登斯)煤矿首次使用锚杆支护顶板至今已有90多年的历史。 1945~1950年,机械式锚杆研究与应用; 1950~1960年,采矿业广泛采用机械式锚杆,并开始对锚杆支护进行系统研究; 1960~1970年,树脂锚杆推出并在矿山得到了应用; 1970~1980年,发明管缝式锚杆、胀管式锚杆并得到了应用,同时研究新的设计方法,长锚索产生; 1980~1990年,混合锚头锚杆、组合锚杆、特种锚杆等得到了应用,树脂锚固材料得到改进。 美国、澳大利亚、加拿大等国由于煤层埋藏条件好,加之锚杆支护技术不断发展和日益成熟,因而锚杆支护使用很普遍,在煤矿巷道的支护中的比重几乎达到了100%。 澳大利亚锚杆支护技术已经形成比较完整的体系,处于国际领先水平。澳大利亚的煤矿巷道几乎全部采用W型钢带树脂全长锚固组合锚杆支护技术,尽管其巷道断面比较大,但支护效果非常好。对于复合顶板、破碎顶板及其巷道交叉点、大跨度硐室等难维护的地方,采用锚索注浆进行补强加固,控制了围岩的强烈变形。美国一直采用锚杆支护巷道,锚杆消耗量很大。锚杆种类也较多,有胀壳式、

树脂式、复合锚杆等。组合件有钢带。具体应用时,根据岩层条件选择不同的支护方式和参数。 锚杆支护发展最快的是英国。在1987年以前,英国煤矿巷道支护90%以上采用金属支架,而且主要是矿用工字钢拱型刚性支架。由于回采工作面单产低、效率低、巷道支护成本高,因而亏损严重。为了摆脱煤炭行业的这种困境,在巷道支护方面积极发展锚杆支护,到1987年,英国从澳大利亚引进了成套的锚杆支护技术,从而扭转了过去的被动局面,煤巷锚杆支护得到迅速发展,经过近10年实验的基础上,又进行了改进和提高,到1994年在巷道支护中所占的比重己达到80%以上。锚杆支护技术的广泛采用给英国煤矿带来巨大的活力和经济效益。 德国是U型钢支架使用最早、技术上最为成熟的国家,自1932年发明U型钢支架以来,U型钢支架发展迅速,支护比重很快达到了90%以上,从井底车场一直到采煤工作面两巷均采用U型钢可缩性支架。但是自20世纪80年代以来,随着矿井开采深度日益增加,维护日益困难。面临这种困境,德国采用不断增加金属支架的型钢质量,逐步减小棚距的做法,这不仅使巷道支护费用增高,而且施工、运输更加困难和复杂。即便如此,巷道维护困难的状况仍然难以改观,于是寻求成本低,运输和施工简单方便、控制围岩变形效果好的锚杆支护变得尤为重要。到20世纪80年代初期,锚杆支护在鲁尔矿区实验成功后获得推广,现己应用到千米的深井巷道中,取得了许多成功的经验。 法国煤巷锚杆支护的发展也很迅速,到1986年其比重己达50%。在采区巷道支护中同时发展金属支架、锚杆支护、混凝土支架。 俄罗斯锚杆支护的发展也引人瞩目。他们研制了多种类型的锚杆,在俄罗斯第一大矿区——库兹巴斯矿区锚杆支护巷道所占比重己达50%。 我国在煤矿岩巷中使用锚杆支护也已有近50余年的历史。从1956年起在煤矿岩巷中使用锚杆支护,20世纪60年代锚杆支护开始进入采区,但由于煤层巷道围岩松软,受采动影响后围岩变形量很大,对支护技术要求很高,加之锚杆支护理论、设计方法,锚杆材料、施工机具、检测手段等还不够完善,因而发展缓慢。“八五”期间,原煤炭工业部把煤巷锚杆支护技术作为重点项目进行攻关,在“九五”期间,原煤炭工业部将“锚杆支护”列为煤炭工业科技发展的五个项目之一,

锚杆(锚索)支护计算

锚杆(锚索)支护设计技术参数 一、锚索设计承载力 钢绞线直径为φ时230kN ,钢绞线直径为φ时320kN ,钢绞线直径为φ时454kN 。 二、锚索设计破断力 钢绞线直径为φ时260kN ,钢绞线直径为φ时355kN ,钢绞线直径为φ时504kN 。 } 三、锚杆(锚索)支护参数校核 1、顶锚杆通过悬吊作用,帮锚杆通过加固帮体作用,达到支护效果的 条件,应满足:L ≥L 1+L 2+L 3 式中L ——锚杆总长度,m ; L 1——锚杆外露长度(包括钢带、托板、螺母厚度),m ; L 2——有效长度(顶锚杆取围岩松动圈冒落高度b ,帮锚杆取帮破碎深度c ),m; · L 3——锚入岩(煤)层内深度,m 。 其中围岩松动圈冒落高度 b= 顶 f H B ??? ? ? -+?245tan 2ω 式中B 、H ——巷道掘进荒宽、荒高; 顶f ——顶板岩石普氏系数; } ω——两帮围岩的似内摩擦角,ω=()顶f arctan 。

? ?? ? ? -?=245tan ωH c 2、校核顶锚杆间、排距:应满足 γ 2kL G a < 式中a ——锚杆间、排距,m ; G ——锚杆设计锚固力,kN/根; # k ——安全系数,一般取2;(松散系数) L 2——有效长度(顶锚杆取b ); γ——岩体容重 3、加强锚索长度校核,应满足d c b a L L L L L +++= 式中L ——锚索总长度,m ; 《 a L ——锚索深入到较稳定岩层的锚固长度,m ; c a a f f d K L 41? ≥ 其中: K ——安全系数; 1d ——锚索直径; ¥ a f ——锚索抗拉强度,N/㎜2; c f ——锚索与锚固剂的粘合强度,N/㎜2;(10) b L ——需要悬吊的不稳定岩层厚度,m ; c L ——托板及锚具的厚度,m ; d L ——外露张拉长度,m ;

锚杆计算公式

第三节支护设计 一、确定巷道支护形式 根据柱状资料分析,5#煤顶板直接顶砂质页岩、第三砂岩,属较稳定岩层,适合锚网支护。为了将锚杆加固的“组合梁”悬吊于坚硬岩石中,需用高强锚索做辅助支护。支护方式为:锚杆+网+锚索联合支护方式。 二、支护参数设计 (1)支护参数 顶锚杆选用Φ18×2400mm的普通圆钢钢锚杆,间距750mm,排距为1000mm;顶锚索选用Φ17.8×8300mm,1860级低松弛钢绞线,锚索在巷道布置两排,间距3000mm,排距为1500mm;帮锚杆选用Φ18×2400mm的普通圆钢钢锚杆,分四排呈“五花”布置,间距750mm,排距为850mm。 所有巷道顶锚杆锚固力不小于70kN,扭力矩不小于150N·m;帮锚杆锚固力不小于50kN,扭力矩不小于120N·m;顶锚索预紧力不小于160kN,承载力不小于320kN。 (2)采用计算法校核支护参数 1、顶锚杆通过悬吊作用,帮锚杆通过加固帮体作用,达到支护效果的条件,应满足:

L≥L1+L2+L3 式中L—锚杆总长,m; L1—锚杆外露长(钢带厚度+托板厚度+螺母厚度+0.01~0.05m,顶锚杆取0.07m,帮锚杆取0.15m),m; L2—有效长度(顶锚杆取免压拱高b,帮锚杆取煤帮破碎深度c)m; L 3—锚入岩层内深度(顶锚杆取0.8m,帮锚杆取0.6m)m; 普氏免压拱高: b=[B/2+Htan(45°-ω帮 /2)]/f 顶 式中B、H—巷道掘进跨度和高度,取B max=4.3m,H=3.0m; f —顶板岩石普氏系数,f顶取3; ω—两帮围岩的内摩擦角,ω取56.31° b max=[4300/2+3000×tan(45°-56.31/2)]/3=1020mm c=3000×tan(45°-56.31/2)=909mm 根据上述公式计算得出:顶锚杆长 L顶≥1890mm;帮锚杆长L帮max ≥1659mm。 所选锚杆长度均能满足计算要求。 2、按锚杆所能悬吊的重量校核锚杆的排距:

锚杆(锚索)支护设计公式

锚杆(锚索)支护设计技术参数 一、锚索设计承载力 钢绞线直径为φ15.24mm 时230kN ,钢绞线直径为φ17.8mm 时320kN ,钢绞线直径为φ21.6mm 时454kN 。 二、锚索设计破断力 钢绞线直径为φ15.24mm 时260kN ,钢绞线直径为φ17.8mm 时355kN ,钢绞线直径为φ21.6mm 时504kN 。 三、锚杆(锚索)支护参数校核 1、顶锚杆通过悬吊作用,帮锚杆通过加固帮体作用,达到支护效果的条件,应满足:L ≥L 1+L 2+L 3 式中L ——锚杆总长度,m ; L 1——锚杆外露长度(包括钢带、托板、螺母厚度),m ; L 2——有效长度(顶锚杆取围岩松动圈冒落高度b ,帮锚杆取帮破碎深度c ),m; L 3——锚入岩(煤)层内深度,m 。 其中围岩松动圈冒落高度 b=顶 f H B ??? ? ? -+?245tan 2ω 式中B 、H ——巷道掘进荒宽、荒高; 顶f ——顶板岩石普氏系数; ω——两帮围岩的似内摩擦角,ω=()顶f arctan 。 ? ?? ? ? -?=245tan ωH c 2、校核顶锚杆间、排距:应满足 γ 2kL G a < 式中a ——锚杆间、排距,m ;

G ——锚杆设计锚固力,kN/根; k ——安全系数,一般取2;(松散系数) L 2——有效长度(顶锚杆取b ); γ——岩体容重 3、加强锚索长度校核,应满足d c b a L L L L L +++= 式中L ——锚索总长度,m ; a L ——锚索深入到较稳定岩层的锚固长度,m ; c a a f f d K L 41? ≥ 其中: K ——安全系数; 1d ——锚索直径; a f ——锚索抗拉强度,N/㎜2; c f ——锚索与锚固剂的粘合强度,N/㎜2;(10)? b L ——需要悬吊的不稳定岩层厚度,m ; c L ——托板及锚具的厚度,m ; d L ——外露张拉长度,m ; 4、悬吊理论校核锚索排距: L ≤nF 2/[BH γ-(2F 1sin θ)/L 1] 式中 L---锚索排距,m ; B---巷道最大冒落宽度, m ; H---巷道最大帽落高度, m ;(最大取锚杆长度) γ---岩体容重,kN/m 3(包括顶煤+直接顶) L 1---锚杆排距, m, F 1---锚杆锚固力, kN;70

锚杆支护及其分类

行业资料:________ 锚杆支护及其分类 单位:______________________ 部门:______________________ 日期:______年_____月_____日 第1 页共8 页

锚杆支护及其分类 锚杆支护实质上是把锚杆安装在巷道的围岩中,使层状的、软质的岩体以不同的形态得到加固,形成完整的支护结构,提供一定的支护抗力,共同阻抗其外部围岩的位移和变形。 (1)木锚杆。我国使用的木锚杆有两种,即普通木锚杆和压缩木锚杆。 (2)钢筋或钢丝绳砂浆锚杆。以水泥砂桨作为锚杆与围岩的粘结剂。 (3)倒楔式金属锚杆。这种锚杆曾经是使用最为广泛的锚杆形式之一。由于它加工简单,安装方便,具有一定的锚固力,因此这种锚杆在一定范围内至今还在使用。 (4)管缝式锚杆。是一种全长摩擦锚固式锚杆。这种锚杆具有安装简单、锚固可靠、初锚力大、长时锚固力随围岩移动而增长等特点。 (5)树脂锚杆。用树脂作为锚杆的粘结剂,成本较高。 (6)快硬膨胀水泥锚杆。采用普通硅酸盐水泥或矿渣硅酸盐水泥加入外加剂而成,具有速凝、早强、减水、膨胀等特点。 (7)双快水泥锚杆。是由成品早强水泥和双快水泥按一定比例混合而成的。具有快硬快凝、早强的特点。 锚杆支护安全技术操作规程 第1条本规程适用于各类煤矿在掘进工作面从事锚杆支护作业的 人员。 第 2 页共 8 页

第2条锚杆支护基本支护形式是指巷道单体锚杆支护、锚网支护、锚网带(梁)支护。其他支护形式参照基本支护形式执行。 上岗条件 第3条锚杆支护工必须经过专门培训、考试合格后,方可上岗。 第4条锚杆支护工必须掌握作业规程中规定的巷道断面、支护形式和支护技术参数和质量标准等;熟练使用作业工具,并能进行检查和保养。 安全规定 第5条在支护前和支护过程中要敲帮问顶,及时摘除危岩悬矸。 1.应由两名有经验的人员担任这项工作,一人敲帮问顶,一人观察顶板和退路。敲帮问顶人员应站在安全地点,观察人应站在找顶人的侧后面,并保证退路畅通。 2.敲帮问顶应从有完好支护的地点开始,由外向里,先顶部后两帮依次进行,敲帮问顶范围内严禁其他人员进入。 3.用长把工具敲帮问顶时,应防止煤矸顺杆而下伤人。 4.顶帮遇到大块断裂煤矸或煤矸离层时。应首先设置临时支护,保证安全后,再顺着裂隙、层理敲帮问顶,不得强挖硬刨。 第6条严禁空顶作业,临时支护要紧跟工作面,其支护形式、规格、数量、使用方法必需在作业规程中规定。放炮前最大空顶距不大于锚杆排距,放炮后最大空顶距不大于锚杆排距+循环进度。 第7条煤巷两帮打锚杆前用手镐刷至硬煤,并保持煤帮平整。 第8条严禁使用不符合规定的支护材料: 1.不符合作业规程规定的锚杆和配套材料及严重锈蚀、变形、弯曲、径缩的锚杆杆体。 第 3 页共 8 页

锚杆计算书

从几种规范来探讨全长粘结岩石锚杆承载力的计算 关键词:全长粘结岩石锚杆;承载力;计算 摘要:全长粘结岩石锚杆是岩土工程中常采用的工程措施。各行业的设计规范对全长粘结岩石锚杆的设计计算均有相关规定。由于出发点的差异,各种规范对全长粘结岩石锚杆计算的内容和要求也不尽相同。本文试从现行各规范对全长粘结岩石锚杆计算的规定出发,对比分析各行业对全长粘结岩石锚杆承载力验算的一般要求,总结和探讨全长粘结岩石锚杆承载力验算的一般方法。 1、引言 锚杆是岩土工程中常见的工程处理措施,在建筑、水利、公路、铁道、港口等岩土工程中经常使用,其中全长粘结岩石锚杆是常见的一种锚杆形式。为规范锚杆工程的设计,建筑、公路、铁道、水利等行业的设计规范对锚杆的设计计算作了相关的规定。但由于各规范的出发点不同,对锚杆计算的内容和要求也不尽相同。本文试从现行各规范对全长粘结岩石锚杆计算的规定出发,对比分析各行业对全长粘结岩石锚杆承载力验算的要求,总结全长粘结岩石锚杆承载力验算的一般规定,并进一步探讨全长粘结岩石锚杆承载力验算的一般方法。 2、各种规范对全长粘结岩石锚杆承载力计算的规定: 对全长粘结岩石锚杆承载力计算在很多规范中均有规定,笔者摘录如下: (1)、《建筑地基基础设计规范》(GB50007—2002)8.6.3条: 对设计等级为甲级的建筑物,单根锚筋承载力特征值t R 应通过现场实验确定;对于其它建筑物可按下式计算: lf d R t 18.0π≤……………(8.6.3) 式中: f —砂浆与岩石间的粘结强度特征值; 1d —锚杆孔直径; l —锚杆的有效锚固长度; (2)、《建筑边坡工程技术规范》(GB50330—2002)7.2.2条~7.2.3条: 锚杆钢筋截面面积应满足下式的要求: y a s f N A 20ξγ≥ ……………(7.2.2)

锚杆、锚索、土钉的区别

锚杆:是一种设置于钻孔内,端部伸入稳定土层中的钢筋或钢绞线与孔内注浆体组成的受拉杆体,它一端与工程构筑物相连,另一端锚入土层中,通常对其施加预应力,以承受由土压力、水压力、或风荷载等所产生的拉力,用以维护构筑物的稳定.一般由锚头段和锚固段三部分组成,其中锚固段用水泥浆或水泥砂浆将杆体与土体粘结在一起形成锚杆的锚固体.根据土体类型、工程特性与使用要求,土层锚杆锚固体结构可设计为圆形、端部扩大头型或连续球体型3类。2土钉:用来加固或同时锚固现场原位土体的细长杆件。通常采取土中钻孔、置入变形钢筋即带肋钢筋并沿孔全长注浆的方法做成。土钉依靠与土体之间的界面粘结力或摩擦力,在土体发生变形条件下被动受力,并主要承受拉力作用。土钉也可用钢管、角钢等作为钉体,采用直接击入的方法置入土中。土钉墙支护适用于下列土体:可塑、硬塑或坚硬的黏性土,胶结或弱胶结(包括毛细水黏结)的粉土、砂土或角砾,填土、风化岩层等。

一、几个概念: 锚杆:将拉力传至稳定岩土层的构件。当采用钢绞线或高强钢丝束作杆体材料时,也可称为锚索。——《建筑边坡工程技术规范》GB50330-2002 土层锚杆:锚固于土层中的锚杆。——《建筑边坡工程技术规范》GB50330-2002 由设置于钻孔内、端部伸入稳定土层中的钢筋或钢绞线与孔内注浆体组成的受拉杆体。——《建筑基坑支护技术规程》JGJ 120-99 岩石锚杆:锚固于岩层内的锚杆。——《建筑边坡工程技术规范》GB50330-2002 系统锚杆:为保证边坡整体稳定,在坡体上按一定格式设置的锚杆群。——《建筑边坡工程技术规范》GB50330-2002 为使围岩整体稳定,在隧洞周边上按一定格式布置的锚杆群。——《锚杆喷射混凝土支护技术规范》GB50086-2001 锚固:利用锚定在洞室围岩或岩体边坡中的锚杆来加固岩体的工程措施。《岩土工程基本术语标准》GB/T 50279-98 锚杆挡墙:用水泥砂浆把钢杆或多股钢丝索等锚固在岩土中作为抗拉构件以保持墙身稳定,支挡土体的挡墙。《岩土工程基本术语标准》GB/T 50279-98 土钉墙:采用土钉加固的基坑侧壁土体与护面组成的支护结构。——《建筑基坑支护技术规程》JGJ 120-99 土钉:是一种基于新奥隧道法原理,在天然边坡或开挖形成的边坡、基坑原位岩土体中近于水平设置加筋杆件并沿坡面设置混凝土面层,使整体土工系统的力学性能得以改善从而提高边坡、基坑稳定性的原位加筋技术。——《岩土工程治理手册》林宗元注编,2005年10月第1版 土钉可被视为小尺寸的被动式锚杆(部份类似于全长粘结型锚杆),分为钻孔注浆钉与击入钉两种,土钉材料为角钢、圆钢、钢筋或钢管。——《岩土锚固技术手册》闫莫明、徐祯祥、苏自约主编。其后二个参与了《锚杆喷射混凝土支护技术规范》GB50086-2001的编写。 二、区别: 土钉与锚杆不同之处有: 一、受力机理 1)土钉是被动受力,即土体发生一定变形后,土钉才受力,从而阻止土体的继续变形; 2)锚杆是主动受力,即通过对锚杆时间预应力,在基坑未开挖前就限制土体发

巷道锚杆支护管理规定

新光集团有限公司新司发[2007]56号文 巷道锚杆支护管理规定 第一章总则 第1条为提高锚杆支护巷道的施工质量,保证支护效果,实现安全施工,特依据《煤矿安全规程》、上级有关规定、矿区近年锚杆支护实践制定本规定。 第2条各单位必须建立完善锚杆支护管理责任制,建立健全锚杆支护巷道质量保证体系。明确从班组、区队到矿井的各级管理责任,并落实到人,实现全方位、全过程的安全管理。 第3条各单位必须加强对锚杆支护的过程控制及各环节的管理。地测、技术、物管、区队等单位要分工负责、协调配合,切实做好地质资料提供、支护设计、施工机具和材料的供应、质量控制、监测监控、后路级护、支护效果分析、缺陷改正等工作。 第4条各单位必须对管理人员、技术人员及操作工人进行锚杆支护的技术培训。 第5条各单位要依靠技术进步,结合生产实际,积极推广应用新技术、新装备、新材料、新工艺,不断提高锚杆支护水平。 第6条各单位必须严格贯彻执行本规定。本规定未涉及的内容,按上级及集团公司有关规定执行。 第二章锚杆支护设计 第7条锚杆支护设计前,首先要做好地质力学评估工作。内容包括:现场地质条件调查,巷道围岩力学性质测定,围岩应力测定及短锚杆拨拉试验等。以判断其可锚性及支护难易程度,为围岩分类提供一份全面的地质力学资料。并对类似地质条件已掘巷道的支护状况进行分析,有关地质资料、图纸齐全。 第8条煤锚支护设计过程应遵循巷道围岩分类→初步设计→监测分析→优化设计的程序。做到围岩分类准确、设计科学合理。 第9条要贯彻“动态设计”的思想,不能生搬硬套已有设计。根据具体地质条件的不同,同一矿井、同一煤层、同一巷道的不同区域、不同地段,可选择不同的支护形式和参数。 第10条锚杆初步设计基本原则: 1、巷道应尽量采用矩形断面,在满足通风、运输、行人的前提下,巷道

锚杆锚索参数计算

(一)按加固拱原理确定锚杆参数 综合分析国内外关于锚杆参数的经验数据和规定,对于跨度小于10米的巷道、硐室,可按下面经验公式确定锚杆参数 1.锚杆长度L=N(1.1+W/10) =1.1×(1.1+3.6/10) =1.606m (2200mm) 2.锚杆间(排)距D≤0.5L=0.5×1.606 =0.803m (800×900mm) 3.锚杆直径d=1/110×L=1/110×1.606 =0.0146米=14.6mm (18mm)式中W-巷道或硐室跨度,米;取3.6; N-围岩稳定量影响系数,取1.1,规定如下: Ⅱ类(稳定性较好)围岩,N=0.9; Ⅲ类(中等稳定)围岩,N=1.0; Ⅳ类(稳定性较差)围岩,N=1.1; Ⅴ类(不稳定)围岩,N=1.2; 通过计算,φ18×L2200(mm)锚杆满足设计要求,间排距800×900(mm)满足设计要求。 (二)悬吊理论校核锚索间(排)距 为防止巷道顶板岩层发生大面积整体跨落,用φ17.8mm,L=6300mm的钢绞线,将锚杆加固的“组合梁”整体悬吊于坚硬岩层中,校核锚索间(排)距,冒落方式按最严重的冒落高度大于锚杆长度的整体冒落考虑,此时,靠巷

道两帮锚杆和锚索一起发挥悬吊作用,在忽略岩体粘结力和内摩擦力的条件下,取垂直方向力的平衡,可用下式计算锚索间(排)距。 L=nF2/[BHγ-(2F1sinθ) /L1] 式中L-锚索间(排)距,m; B-巷道最大冒落宽度,取3.6+1.2=4.8m; H-巷道冒落高度,按最严重冒落高度取2.0m; γ-岩体容重,25kN/m3; L1-锚杆排距,0.9m; F1-锚杆锚固力(以最小锚固力计算),85kN; F2-锚索极限承载力(以最小锚固力计算),取200kN; θ-角锚杆与巷道顶板夹角,90°; n -锚索每排根数,取2; 通过上式计算, L=2×200÷[4.8×2.0×25-(2×85×sin90°÷0.9)] =400÷﹙240-188.9﹚=7.8m 得出锚索间排距小于7.8m,所选间排距2150×900(mm)满足设计要求。

巷道锚杆支护计算公式

根据1552工作面围岩柱状资料分析,15#煤层顶板直接顶为粘土岩,厚度1.0-1.5m ,施工时,极易垮落,掘进施工时以14#煤层做顶沿15#煤层底板掘进,采取锚网支护。为了将锚杆加固的“组合梁”悬吊于老顶坚硬岩层中,需用高强度锚索做辅助支护。根据邻近1551运、回两巷掘进巷道的支护经验,确定1552回风巷、1552回风巷皮带机头硐室,采用锚杆—钢筋网—钢带--锚索联合支护。 二、支护参数设计 ㈠采用类比法合理选择支护参数:根据15#煤层邻近巷道的支护经验,1552回风巷巷道顶锚杆选用φ16mm ×1800mm 的圆钢锚杆,间距1000mm,排距900mm ;选用1x7丝φ15.24mm ,锚固力不小于230kN 冷拔钢筋,长度4.2m 的锚索加强支护。 ㈡采用计算法校核支护参数 1、锚杆长度计算 L = KH+L 1+L 2 式中:L ——锚杆长度,m H ——冒落拱高度,m K----安全系数,取2 L 1——锚杆锚入稳定岩层深度,取0.5m L 2——锚杆在巷道中的外露长度,取0.05m 其中: H=B/2f=3.4/(2×4)=0.43m 式中:B ——巷道宽度 f ——岩石坚固性系数,取4 L = 2H+L1+L2=2×0.43+0.5+0.05=1.41m 施工时取L=1.8m 2、锚杆间距、排距a 、b a=b= KHr Q 式中:a 、b ——锚杆间、排距m Q ——锚杆设计锚固力,50kN/根; H ——冒落拱高度,取0.58m ; K ——安全系数,取2; r ——被悬吊粘土岩的重力密度,26.44kN/m 3 a=b= 44 .2643.0250 ??=1.48m

巷道锚杆支护安全技术措施(正式)

编订:__________________ 单位:__________________ 时间:__________________ 巷道锚杆支护安全技术措 施(正式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-3226-87 巷道锚杆支护安全技术措施(正式) 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体、周密的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 根据我矿工作安排,决定对C8运输顺槽掘进巷道、C8回风顺槽掘进巷道和采区回风巷道进行锚杆喷浆支护。特制定本安全技术措施。 一、锚杆机操作 1、检修锚杆机时必须退至安全地点。 2、按规定数量、型号、周期注油换油;按规定进行油脂过滤;定期清洗液压系统过滤器;严禁用普通棉纱擦试液压元件。 3、打锚杆时,严禁将手放在钻臂防护板与顶板之间,严禁用钻杆或其他物品硬顶锚杆。 4、液压泵工作期间,两钻臂及工作范围内严禁有人;严禁在钻箱和钻臂上爬站。 5、两站摆动时既不能碰撞两帮,也不能靠的太近,

以免钻架相互碰撞。 6、锚杆机工作过程中遇到紧急情况时,必须立即停机。 7、施工中如遇顶板出现淋水或淋水加大、围岩层(节)理发育、突发性片帮掉碴、巷道不易成形、钻孔速度异常、放煤炮顶底板及两帮移近量增加显著等到情况,应立即停止作业,向有关领导及管理部门汇报,并采取加强支护措施,必要时应立即撤出人员。 二、锚杆安装 1、卸下钻杆,安装带托盘及快速预紧力螺母的锚杆,操纵钻机给进阀杆,将锚杆升起使锚杆端头距钻孔口约一卷树脂固剂的长度。 2、按作业规程规定的规格、数量、顺序将锚固剂首尾相接装入钻孔。 3、操纵钻机给进阀杆推动锚杆,使锚杆端头顶住最后一卷锚固剂尾部,将锚固剂缓慢送入孔底。 4、旋转锚杆将其推到孔底位置,达到规定的搅拌

锚杆支护参数计算

1 地质条件 岱庄煤矿综掘煤巷位于313采区中部,沿3上煤层顶板掘进,巷道底板标高在-203~-208m ,地表松散层厚度平均36m ;煤层厚度为3~3.83m ,平均3.4m ;煤层直接顶为砂质泥岩,厚度在0.60~.95m 之间,平均0.8m ;老顶为细砂岩,厚度15m 左右;底板为粉砂岩,厚度在1.158~.58m ,平均为4.9m 。 煤巷两侧及底板为煤体,粘聚力0.45MPa 、内摩擦角26°、容重1.33kg /m 3、单向抗压强度6.35MPa ;煤巷顶板为砂质泥岩,粘聚力2MPa 、内摩擦角28°、容重 2.76kg/m 3单向抗压强度20MPa ;原岩应力6.48MPa ;围岩稳定性系数为1.7,巷道围岩为Ⅳ类,属较稳定围岩。 2 锚杆及托盘材料 目前顶板锚杆采用Φ16mm 螺纹钢,设计强度240MPa ,托盘为铸钢托盘;两侧采用压缩木锚杆,设计强度17.6MPa 。 3 锚杆支护参数计算 3.1锚杆长度计算 21l l l += (1) 式中:1l 为锚杆外露长度,一般为0.1m ;2l 为被锚固围岩的厚度, 2/2h R l p -= (2) Ccon rH rH R R p +=sin 0 (3) 式中:p R 巷道围岩塑性区半径;o R 为矩形断面的等效圆掘进半径(见图1),其值为 2.18m ;h 为巷道宽度或高度,两者之间取小值,即h =2.6m 。 将上述巷道围岩参数代入式(3)得: ①巷道顶板岩层: m con R p 53.228228sin 48.648.618.2=?+?= ②卷道侧壁(煤体): m con R p 08.32645.026sin 48.648.618.2=?+?= 由式(2),得锚杆锚固区围岩厚度: 煤巷顶板岩层:m l 23.12=

锚杆锚索支护安全技术措施

锚杆、锚索支护安全技术措施 1、临时支护: 掘进工作面迎头到永久支护之间应设临时支护,临 时支护也即贴帮柱和护身柱,临时支护应打金属带帽的点柱,排距0.5-0.8m,若顶板破碎可缩小到0.3-0.5m。进行临时支护时要严格 执行敲帮问顶制度,及时清理活矸、危岩。 2、永久支护: 根据该掘进工作面煤层及围岩特征及顶底板类型, 该掘进巷道的永久支护采用锚杆+锚索+金属菱形铁丝网+钢带+托盘,永久支护距掘进工作面的距离不得大于3m。锚杆间排距为 800×800mm呈“四四”排正方形布置,锚索间排距视顶板情况在2000-2500mm范围内布置,两帮采用木锚杆配合木托板并加挂金属菱形网支护,锚杆间距900×800呈矩形布置。 (1)顶锚杆支护:

使用左旋无纵筋高强度螺纹钢锚固锚杆,锚杆规格:Ф×L=16×1800mm,使用两个MLCK2356型树脂锚固剂,钻孔直径 20mm,每排,,靠边两帮煤壁的锚杆安 装角度与垂线成30。安设角锚,其他锚杆垂直于顶板布置,锚杆眼 直径20mm,深1.6-1.8m并配套Ф16圆钢钢带和12号铁丝编织的菱形金属网支护打锚杆使用MQT-110C2型气动锚杆机Ф20mm16mm长 1.0m和1.5m中空内六角钢杆套杆打眼,且用MQT气动锚杆机搅拌树脂锚固剂,搅拌时间30-35秒,锚杆安装5分钟后,必须使用扭力扳手检查紧固力,要求紧固力不小于75KN/M2,锚杆外露长度不大于 30mm。

(2)铺网工艺: 在顶板与钢带之间铺设单层金属菱形网规格: L×B=1100×5000mm,金属网平行掘进工作面铺设,网与网搭接重叠不小于100mm,用双股14#铁丝呈“三花”型连接。连接扣间距不大于200mm要铺设平整,贴顶相互要拉紧。 (3)锚索施工: 使用高强度低松驰,预应力钢绞线锚索,钢绞线规格为6000--Ф15.24-7股,其中有效锚固长度5.80-5.85m,外露长度150m-200mm,用3卷MSCK2356型树脂锚固剂,端头锚固,使用MQT-110C2型气动锚杆机Ф20mm16mm长1.0m和1.5m中空内六角内丝,外丝接长钎杆打锚索孔,孔深5.80-5.85m。 (4)锚索安装: a、检查锚索孔深度和锚固剂质量。

锚杆支护理论计算方法

锚杆支护参数的确定 一、锚杆长度 L≥L1+L2+L3------------------------- ① =0.1+1.5+0.3=1.9m 式中: L——锚杆总长度,m; L1 ——锚杆外露长度(包括钢带+托板+螺母厚度),取0.1m; L2 ——锚杆有效长度或软弱岩层厚度,m; L3——锚入岩(煤)层内深度(锚固长度),按经验L3≥300mm。 (一)锚杆外露长度L1 L1=(0.1~0.15)m,[钢带+托板+螺母厚度+(0.02~0.03)] (二)锚入岩(煤)层内深度(锚固长度)L3 1.经验取值法 《在锚杆喷射混凝土支护技术规范》GBJ86-85“第三节锚杆支护设计”中、第3.3.3条第四款规定: 第3.3.3条端头锚固型锚杆的设计应遵守下列规定: 一、杆体材料宜用20锰硅钢筋或3号钢钢筋; 二、杆体直径按表3.3.3选用; 三、树脂锚固剂的固化时间不应大于10分钟,快硬水泥的终凝时间不应大于12分钟;

四、树脂锚杆锚头的锚固长度宜为200~250毫米,快硬水泥卷锚杆锚头的锚固长度 宜为300~400毫米; 五、托板可用3号钢,厚度不宜小于6毫米,尺寸不宜小于150×150毫米; 六、锚头的设计锚固力不应低于50千牛顿; 七、服务年限大于5年的工程,应在杆体与孔壁间注满水泥砂浆。 一般取300mm ~400mm 2. 理论估算法 《在锚杆喷射混凝土支护技术规范》GBJ86-85“第三节 锚杆支护设计”中规定: 第3.3.11条 局部锚杆或锚索应锚入稳定岩体。水泥砂浆锚杆或预应力锚索的水泥砂浆胶结式内锚头锚入稳定岩体的长度,应同时满足下列公式: 公式(3.3.11-1)、(3.3.11-2)见图形所示。 cs st f f d k l 412≥ (3.3.11-1) cr st a f d f d k l 2214≥ (3.3.11-2) 式中la ——锚杆杆体或锚索体锚入稳定岩体的长度(cm ); d1——锚杆钢筋直径走私或锚索体直径(cm ); d2——锚杆孔直径(cm );

锚杆支护参数设计

煤巷锚杆支护参数设计方法 煤巷的突出特点就是承受采动支承压力,围岩破碎,变形量大。巷道锚杆支护设计,首先要对巷道所经受采动影响过程及影响程度进行准确的评估,对巷道使用要求和设计目标要予以准确定位。比如,是按采动影响时的支护难度设计支护,还是按照采动影响前的使用要求设计,不同的设计思想,结果大不相同。 目前,我国煤巷支护设计方法大致分为三类,即工程类比法、理论计算法及实例法。 1)工程类比法 工程类比法是当前应用较广的方法。它是根据已经支护的类似工程的经验,通过工程类比,直接提出支护参数。它与设计者的实践经验有很大关系。然而,要求每一个设计人员都具有丰富的实践经验是不切实际的。为了将特定岩体条件下的设计与个别的工程相应条件下的实践经验联系起来进行工程类比,做出比较合理的设计方案,正确的围岩分类是非常必要的。进行围岩分类后,就可根据不同类别的岩层,确定不同的支护形式和参数。 (1)巷道围岩分类方法 围岩分类方法的研究工作历史悠久,早在18世纪,在采矿及各地下工程已开始用分类的方法研究围岩的稳定性。随着采矿和人们对岩石物理力学性质认识的不断深入,国内外围岩分类研究得到了迅速发展,据不完全统计,有影响的围岩分类有五六十种之多。 a. 普氏岩石分级法 该法用岩石坚固性系数f(普氏系数)来对围岩分类,f值等于岩石的单向抗压强度除以10。坚固性系数是岩石间相对的坚固性在数量上的表现,它最重要的性质在于不论是何种抗力,以及这种抗力是如何引起的,而给予岩石相互之间进行比较的可能性。普氏岩石分级法来自实践,并且有抽象概括的程序可取,所提出的岩石坚固性系数值简单明确,到目前仍有一定的使用价值。 b. 煤矿锚喷支护围岩分类 为了适应巷道锚杆支护的需要,原煤炭工业部颁布的《煤炭井巷工程锚喷支护设计试行规范》制定了煤矿锚杆支护围岩分类,见表1。该分类综合考虑了岩石的单向抗压强度、岩体结构和结构面发育状况、岩体完整性系数、围岩稳定时间等多种因素,是一种典型的多指标分类方法。 c. 围岩松动圈分类 围岩松动圈是一个定量的综合指标,它是建立在对巷道围岩实测的基础上,几乎不作任何假设,用现场实测和模拟试验,研究围岩状态,找出围岩松动圈这一综合指标,用来作为围岩分类的依据。这一分类方法简单、直观性强、易于掌握,受到众多煤矿巷道设计与施工人员的欢迎。 经过大量的现场松动圈测试及其与巷道支护难易程度相关关系的调研之后,依据围岩松动圈的大小将围岩分成小松动圈,中松动圈、大松动圈三大类六小类,如表2所示。

最完整的锚杆、锚索、土钉的区别

根据各规范,总结:锚杆、锚索、土钉、锚管 一、锚杆、锚索、土钉、锚管的定义 锚杆:将拉力传至稳定岩土层的构件。当采用钢绞线或高强钢丝束作杆体材料时,也可称为锚索。——《建筑边坡工程技术规范》GB50330-2002 锚索:当锚杆杆体采用高强钢绞线制作的时候可称之为锚索 土层锚杆:锚固于土层中的锚杆。——《建筑边坡工程技术规范》GB50330-2002 由设置于钻孔内、端部伸入稳定土层中的钢筋或钢绞线与孔内注浆体组成的受拉杆体。——《建筑基坑支护技术规程》JGJ 120-99 岩石锚杆:锚固于岩层内的锚杆。——《建筑边坡工程技术规范》GB50330-2002 系统锚杆:为保证边坡整体稳定,在坡体上按一定格式设置的锚杆群。——《建筑边坡工程技术规范》GB50330-2002 为使围岩整体稳定,在隧洞周边上按一定格式布置的锚杆群。——《锚杆喷射混凝土支护技术规范》GB50086-2001 锚固:利用锚定在洞室围岩或岩体边坡中的锚杆来加固岩体的工程措施。《岩土工程基本术语标准》GB/T 50279-98 锚杆挡墙:用水泥砂浆把钢杆或多股钢丝索等锚固在岩土中作为抗拉构件以保持墙身稳定,支挡土体的挡墙。《岩土工程基本术语标准》GB/T 50279-98 土钉墙:采用土钉加固的基坑侧壁土体与护面组成的支护结构。——《建筑基坑支护技术规程》JGJ 120-99 土钉:是一种基于新奥隧道法原理,在天然边坡或开挖形成的边坡、基坑原位岩土体中近于水平设置加筋杆件并沿坡面设置混凝土面层,使整体土工系统的力学性能得以改善从而提高边坡、基坑稳定性的原位加筋技术。——《岩土工程治理手册》林宗元注编,2005年10月第1版 土钉可被视为小尺寸的被动式锚杆(部份类似于全长粘结型锚杆),分为钻孔注浆钉与击入钉两种,土钉材料为角钢、圆钢、钢筋或钢管。——《岩土锚固技术手册》闫莫明、徐祯祥、苏自约主编。其后二个参与了《锚杆喷射混凝土支护技术规范》GB50086-2001的编写。 锚管:当土钉杆体采用钢花管(就是钢管上面钻出几个注浆孔)的时候可称之为

锚杆支护巷道管理制度示范文本

锚杆支护巷道管理制度示 范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

锚杆支护巷道管理制度示范文本 使用指引:此管理制度资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 开拓巷道普遍推广和应用了锚杆支护工艺,取得了良好 的支护效果,为了从技术上保证锚杆支护的可靠性和安全性, 加强巷道维护,使巷道支护达到标准化标准,特制定锚杆支护 巷道管理制度 1.锚杆巷道的测试结果,技术人员必须填写测试台 帐,及时汇报测试结果。 2.锚杆的锚固力及扭矩,施工队每天测试一次(20 根一组),每组测试不少于3根(顶部2根,帮1根)由 施工员监督,做好测试记录,每天将测试记录汇报生产技 术科一次。 3.锚杆测试标准为顶锚杆固力不少于70kN,帮锚杆 固力不少于50KN,岩石锚杆扭矩不小于(9#煤

10kg/m,,15#煤12kg/m)锚杆的外露长度自托板到螺母外不超过50mm。 4.现场锚杆实行标签管理。每排顶锚杆对锚固力和扭矩测试选1根贴标签,每排帮锚杆对锚固力和扭矩测试后选1根贴标签。贴标签工作由每班的带班长负责。 5.锚杆的测试结果由部门负责人每周汇总后报生产技术科一份,并由生产技术科和安全科每月对锚杆的锚固力,扭矩进行抽查,锚杆的锚固力,扭矩不得小于设计值的90%,否则该锚杆为不合格,合格率达不到100%时,各施工队组必须全部重新锚固。 请在此位置输入品牌名/标语/slogan Please Enter The Brand Name / Slogan / Slogan In This Position, Such As Foonsion

锚杆锚索锚固力计算

锚杆锚索锚固力计算文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

锚杆、锚索锚固力计算1、帮锚杆 锚固力不小于50KN(或5吨或12.5MPa) 公式计算: 拉力器上仪表读数(MPa)×4=锚固力(KN) 锚固力(KN)÷10=承载力(吨) 例: 13MPa(拉力器上仪表读数)×4= 52KN(锚固力)52KN(锚固力)÷10=5.2吨(承载力) 2、顶锚杆 锚固力不小于70KN(或7吨或17.5MPa) 公式计算: 拉力器上仪表读数(MPa)×4=锚固力(KN) 锚固力(KN)÷10=承载力(吨) 例: 18MPa(拉力器上仪表读数)×4= 72KN(锚固力)72KN(锚固力)÷10=7.2吨(承载力) 3、Ф15.24锚索 锚固力不小于120KN(或12吨或40MPa) 公式计算: 拉力器上仪表读数(MPa)×3.044=锚固力(KN) 锚固力(KN)÷10=承载力(吨)

例: 40MPa(拉力器上仪表读数)×3.044= 121.76KN(锚固力)121.76KN(锚固力)÷10=12.176吨(承载力) 4、Ф17.8锚索 锚固力不小于169.6KN(或16.96吨或45MPa) 公式计算: 拉力器上仪表读数(MPa)×3.768=锚固力(KN) 锚固力(KN)÷10=承载力(吨) 例: 45MPa(拉力器上仪表读数)×3.768= 169.56KN(锚固力)169.56KN(锚固力)÷10=16.956吨(承载力) 5、Ф21.6锚索 锚固力不小于250KN(或25吨或55MPa) 公式计算: 拉力器上仪表读数(MPa)×4.55=锚固力(KN) 锚固力(KN)÷10=承载力(吨) 例: 55MPa(拉力器上仪表读数)×4.55= 250KN(锚固力) 250KN(锚固力)÷10=25吨(承载力) 型号为:YCD22-290型预应力张拉千斤顶 备注:

锚杆锚索设计计算案例

锚杆(索)设计 根据现场地质条件和地形特征,斜坡体由于受到先期构造作用和后期风化作用强烈影响,出露基岩破碎,裂隙发育,且距交通要道较近的特点,拟采用锚杆(索)对局部卸荷裂隙发育、稳定性较差的危岩体进行锚固,以达到加固坡面,抑制风化剥落、崩塌的发生。通过现场调查及三维激光扫描数据分析,半壁山危岩体主要失稳模式为倾倒式和滑移式。 1.倾覆推力计算: 推力计算: 式中: k-后缘裂隙深度(m)。取11.1m; hv-后缘裂隙充水高度(m).取3.7m; H-后缘裂隙上端到未贯通段下端的垂直距离(m). 取15m; a-危岩带重心到倾覆点的水平距离(m),取3.4m; b-后缘裂隙未贯通段下端到倾覆点之间的水平距离(m),取6.8m; h0-危岩带重心到倾覆点的垂直距离(m),取7.2m; fk-危岩带抗拉强度标准值(kPa),根据岩石抗拉强度标准值乘以0.4折减系数确定暴雨工况下190kPa; θ-危岩带与基座接触面倾角(°),外倾时取正,内倾时取负值; β-后缘裂隙倾角(°);

K-安全系数取1.5; 2.锚杆计算 (1)锚杆轴向拉力设计值计算公式: , 式中 Nak -锚杆轴向拉力标准值(kN); Na -锚杆轴向拉力设计值(kN); Htk -锚杆所受水平拉力标准值(kN); α-锚杆倾角(°),设计取值为15°; γa-荷载分项系数,可取1.30; (2) 锚杆钢筋截面图面积计算公式: 锚杆截面积: As-锚杆钢筋或预应力钢绞线截面面积(m2); ξ2-锚杆抗拉工作条件系数,永久性锚杆取0.69,临时性锚杆取0.92;γ0-边坡工程重要系数,取1.0; fy-钢筋或预应力钢绞线的抗拉强度标准值(kN),取300N/ mm;(3) 锚杆锚固体与地层的锚固长度计算公式:

锚杆、锚索、土钉、锚管区分

锚杆、锚索、土钉、锚管区分 在现场,一般认为钻孔在150mm的为锚杆,一般他们孔深,钢筋粗,而且施加预应力。土钉一般都短、孔径在100mm,只放一根钢筋。但是,锚杆、锚索、土钉、锚管的区别到底是什么?不知道的赶紧看过来啦! 定义 锚杆:将拉力传至稳定岩土层的构件。当采用钢绞线或高强钢丝束作杆体材料时,也可称为锚索。——《建筑边坡工程技术规范》GB50330-2002 锚索:当锚杆杆体采用高强钢绞线制作的时候可称之为锚索 土层锚杆:锚固于土层中的锚杆。——《建筑边坡工程技术规范》GB50330-2002 由设置于钻孔内、端部伸入稳定土层中的钢筋或钢绞线与孔内注浆体组成的受拉杆体。——《建筑基坑支护技术规程》JGJ 120-99 岩石锚杆:锚固于岩层内的锚杆。——《建筑边坡工程技术规范》GB50330-2002系统锚杆:为保证边坡整体稳定,在坡体上按一定格式设置的锚杆群。——《建筑边坡工程技术规范》GB50330-2002 为使围岩整体稳定,在隧洞周边上按一定格式布置的锚杆群。——《锚杆喷射混凝土支护技术规范》GB50086-2001 锚固:利用锚定在洞室围岩或岩体边坡中的锚杆来加固岩体的工程措施。《岩土工程基本术语标准》GB/T 50279-98 锚杆挡墙:用水泥砂浆把钢杆或多股钢丝索等锚固在岩土中作为抗拉构件以保持墙身稳定,支挡土体的挡墙。《岩土工程基本术语标准》GB/T 50279-98

土钉墙:采用土钉加固的基坑侧壁土体与护面组成的支护结构。——《建筑基坑支护技术规程》JGJ 120-99 土钉:是一种基于新奥隧道法原理,在天然边坡或开挖形成的边坡、基坑原位岩土体中近于水平设置加筋杆件并沿坡面设置混凝土面层,使整体土工系统的力学性能得以改善从而提高边坡、基坑稳定性的原位加筋技术。——《岩土工程治理手册》林宗元注编,2005年10月第1版 土钉可被视为小尺寸的被动式锚杆(部份类似于全长粘结型锚杆),分为钻孔注浆钉与击入钉两种,土钉材料为角钢、圆钢、钢筋或钢管。——《岩土锚固技术手册》闫莫明、徐祯祥、苏自约主编。其后二个参与了《锚杆喷射混凝土支护技术规范》GB50086-2001的编写。 锚管:当土钉杆体采用钢花管(就是钢管上面钻出几个注浆孔)的时候可称之为锚管。 区别 土钉与锚杆不同之处有: 1、受力机理 1)土钉是被动受力,即土体发生一定变形后,土钉才受力,从而阻止土体的继续变形; 2)锚杆是主动受力,即通过对锚杆时间预应力,在基坑未开挖前就限制土体发生过大变形; 2、受力范围

相关主题