搜档网
当前位置:搜档网 › 直流电机振动的原因

直流电机振动的原因

直流电机振动的原因
直流电机振动的原因

直流电动机振动分析与减振措施

振动是所有电机在制造、安装、运行维护与检修中经常遇到和必须解决的问题。振动过大会导致电机的运行稳定性破坏、换向条件恶化、零部件损坏、电机寿命缩短,甚至造成停机故障。与所有的电机一样,引起直流电动机振动的主要原因是机械上、电气上和安装上的原因。电机振动极限值在国家标准GB100068.2

一88《旋转电机振动测定方法及极限振动极限》中都有规定。

1.电气原因

(1)电磁力。这种电磁力主要是由极靴下磁通的纵振荡产生的,通常具有齿频率,尤其是定子也是开口槽时,磁通脉振增加,更易造成交变磁拉力。由于直流电动机固定在机座上的主极是集中质量,在交变磁拉力和主极集中力的作用下,使机座产生挠曲和横向振动。

设计上采用非均匀气隙、电枢斜槽以及磁性定子开口槽楔,都是减少磁通振荡和振动电磁力的有效措施。

(2)气隙不均匀。由于装配气隙不均匀,电机运行时产生单边磁拉力,其作用相当于电机转轴挠度增加。因此保证气隙装配均匀是防止振动的必要措施。

(3)转子线圈损坏。由于转子线圈损坏使电机运行时转子径向受力不均匀,其结果与转子不平衡类似。转子线圈损坏可用电工仪表测出。

2.机械原因

(1)电枢不平衡。由于旋转时不平衡质量产生的离心力的作用,使轴承上作用有一个旋转力,造成了电机和基础的振动。当气隙不匀、主极固定不紧或机座、端盖的刚度较差时,都会造成振动加剧,因此检查发现转子不平衡时,必须重新进行动平衡。

(2)轴承径向间隙过大、外圈与端盖配合松动。在装配时,轴承应经过检验合格。轴承与轴颈、轴承座的配合必须符合要求,否则须采取喷涂或刷涂工艺进行处理,避免轴承工作不良引起振动。对于磨损轴承,在电机运转时其振动噪声频率较高,较易判断,发现这一情况应更换轴承。

(3)轴颈椭圆或转轴弯曲。当电机旋转时,由于转子重力而产生干扰振动,其振动频率通常是电机工作频率的双倍。转轴弯曲造成了一个不平衡的重量,以角速度围绕静平衡位置旋转,其结果和转子不平衡相同。轴颈椭圆或转轴弯曲可用百分表在盘车时测得,轴颈椭圆必须进行焊修或刷镀后磨圆处理,转轴弯曲时必须校正处理。

(4)机座、端盖重要支承件制造误差或运行变形。由于机座、端盖等转子重要支承件的配合面形位误差超差,特别是大、中型电机运行较长时间后机座、端盖等重要支承件变形,使电机在运行时轴承产生干扰力,造成电机振动。这些配件的误差或变形可采用回转打百分表等方式测得,发现有这一情况后,应对配件进行焊修等工艺方式处理,或更换配件。

3.安装原因

由于电机与负载机械之间的连接安装不良,也必然造成电机运行时的干扰力,使机组产生与转速相同角频率的振动。采用联轴器、联轴节连接时,应保证同轴度要求;采用三角带传动连接时,应保证带槽的平行要求,减少皮带的振动;采用齿轮传动连接时,应保证两轴之间的平行度要求,使齿轮能正确啮合。

4.振动原因的初步判别方法

在解决电机振动问题时,首先要判别电机的振动由哪方面原因引起的,即机械、电气和安装上三者之间的原因判定。

(1)区分振动是电动机还是负载机械引起的。方法是断开电动机与负载机械的连接,若振动变化较大,则与负载机械或安装有关;若振动变化很小,则是电动机本身产生的。

(2)区分振动是电气原因还是机械原因产生的。方法是将电机运转至最高转速,突然切断电源,若振动随之突然减小,振动则是电气原因引起的;若振动变化不大,则主要是机械原因引起的。

电机振动的原因

电机振动的原因 电机振动的原因很多,也很复杂。8极以上大极数电机不会因为电机制造质量问题引起振动。振动常见于2--6极电机,GB10068-2000,《旋转电机振动限值及测试方法》规定了在刚性基础上不同中心高电机的振动限值、测量方法及刚性基础的判定标准,依据此标准可以判断电机是否符合标准。 电动机振动的危害 电动机产生振动,会使绕组绝缘和轴承寿命缩短,影响滑动轴承的正常润滑,振动力促使绝缘缝隙扩大,使外界粉尘和水分入侵其中,造成绝缘电阻降低和泄露电流增大,甚至形成绝缘击穿等事故。另外,电动机产生振动,又容易使冷却器水管振裂,焊接点振开,同时会造成负载机械的损伤,降低工件精度,会造成所有遭到振动的机械部分的疲劳,会使地脚螺丝松动或断掉,电动机又会造成碳刷和滑环的异常磨损,甚至会出现严重刷火而烧毁集电环绝缘,电动机将产生很大噪音,这种情况一般在直流电机中也时有发生。 电动机振动的十个原因 1.转子、耦合器、联轴器、传动轮(制动轮)不平衡引起的。 2.铁心支架松动,斜键、销钉失效松动,转子绑扎不紧都会造成转动部分不平衡。 3.联动部分轴系不对中,中心线不重合,定心不正确。这种故障产生的原因主要是安装过程中,对中不良、安装不当造成的。 4.联动部分中心线在冷态时是重合一致的,但运行一段时间后由于转子支点,基础等变形,中心线又被破坏,因而产生振动。 5.与电机相联的齿轮、联轴器有故障,齿轮咬合不良,轮齿磨损严重,对轮润滑不良,联轴器歪斜、错位,齿式联轴器齿形、齿距不对、间隙过大或磨损严重,都会造成一定的振动。 6.电机本身结构的缺陷,轴颈椭圆,转轴弯曲,轴与轴瓦间间隙过大或过小,轴承座、基础板、地基的某部分乃至整个电机安装基础的刚度不够。 7.安装的问题,电机与基础板之间固定不牢,底脚螺栓松动,轴承座与基础板之间松动等。 8.轴与轴瓦间间隙过大或过小不仅可以造成振动还可使轴瓦的润滑和温度产生异常。 9.电机拖动的负载传导振动,比如说电机拖动的风机、水泵振动,引起电机振动。

电机异响的原因

原因:1、电动机机械摩擦,包括定、转子相擦。 处理:应检查转动部分与静止部分间隙,找出相擦的原因然后进行校正。原因:2、电动机有可能单相运行。 处理:应先断电,再合闸,如不能起动且声音异常则可能有一相断电,应检查电源接线并加以修复。 原因:3、电动机轴承缺油或损坏。 处理:应对轴承进行清洗加油,若轴承损坏,应更换新轴承。 原因:4、电动机接线错误。 处理:应检查接线情况,并进行更正。 原因:5、电动机转子绕组断路。 处理:应查找断路处,加以修复。 原因:6、电动机轴弯曲。 处理:应进行校直或更换转轴。 原因:7、转子或皮带盘不平衡。 处理:断电后校平衡。 原因:8、电动机联轴器连接松动。 处理:应查找松动处,把螺栓拧紧。

原因:9、安装基础不平或有缺陷。 处理:应检查基础和底板的固定情况,并加以修正。 原因:10、直接连接中心未对正。 处理:应重新找中心,再进行连接。 三相异步电动机异音产生的原因分析 摘要:三相异步电动机因其简单可靠,使用方便,坚固耐用、维护和保养成本低,被广泛运用于各式动力设备之中。三相异步电动机的故障处理是电动机使用过程无法回避的一个问题。主要介绍了低压三相异步电动机的三种噪声类型及产生的原因,重点阐述了电磁噪声的抑制方法,经实例验证该方法切实可行。同时也提出了机械噪声和通风噪声的解决措施。为安装问题提供了可靠的参考依据。 ?关键词:三相异步电动机;异音原因;维修措施?? 引言? 电机就是将电能转化为机械能,为各种设备提供可靠的驱动力。电机的振动和噪声水平是评定电机质量的重要标志之一,振动的强弱不仅影响电机的寿命,而且也是引起噪声的主要原因。电机噪声的形成以及解决方法是十分复杂的,是一个综合性的问题。本文仅就电机噪声的分类、形成原因及实践中总结的解决方法进行阐述。 ? 1、三相异步电动机的基本工作原理? 三相异步电动机主要由转子、定子以及其它附属构件(如端盖、轴承和风扇等)构成。如图1(a)所示。三相异步电动机的基本工作原理是:在三相电源同异步电机定子组连通后,定子组会产生三相对称电流,同时会在气体间隙中形成

立式高压电机振动故障分析与处理 郝元

立式高压电机振动故障分析与处理郝元 发表时间:2018-01-10T10:05:54.933Z 来源:《电力设备》2017年第27期作者:郝元林享[导读] 摘要:某电厂两台立式高压电机在调试期间,非驱动端轴承径向振动严重超标,多次调整后无明显好转。 (福建福清核电有限公司福建福清 350318)摘要:某电厂两台立式高压电机在调试期间,非驱动端轴承径向振动严重超标,多次调整后无明显好转。经测试分析表明故障为螺栓虚脚及底板结构缺陷等所致。通过消除虚脚及添加减振垫片等方法,最终消除振动故障,为同类机组振动故障处理提供了参考。 关键词:立式高压电机;振动故障;螺栓虚脚;底板缺陷;减振垫片 Abstract:During commissioning of two vertical and high-voltage motors in a power plant, the radial vibrations of the motor non-driving end bearings are found undue. The faults keep the same after being extensively debugged. Through spot tests and analyses, the authors consider the faults are due to the bolt-gap and foundation-plate flaw. By the way of eliminating bolt-gaps and adding damper shims, the vibration faults are removed finally. The methods in the paper can be adopted in other vibration troubleshooting situations. Keywords:Vertical and High-voltage Motor; Vibration Fault; Bolt-gap;Foundation-plate Flaw; Damper Shim 观察表3,可知供货商C版文件(现行采用)的力矩值较小,可能导致电机紧固不足产生松动,从而导致振动故障。 为此,将上述连接板螺栓和地脚螺母力矩增大至供货商A版文件要求重新紧固(M20螺栓保持C版要求)。对电机试车,最大振动值却升至7.8mm/s。由此,排除了螺栓力矩不足的因素。之后,将上述螺栓力矩值减小至供货商C版文件要求,此时最大振动值降低至5.5mm/s (仍超标)。 为进一步探究故障原因,确定先从力矩较小便于施工的电机机座螺栓着手,适当减小紧固力矩(前已验证振动值随螺栓力矩增大而增大),检查振动变化情况。 起动电机A后,将一颗机座螺栓力矩从345N?m减小为100N?m,电机最大振动降为2.7mm/s。然后按该方法处理邻近第二颗螺栓,最大振动变为2.0mm/s。依次处理完最后一颗螺栓后,最大振动降为1.6mm/s。 上述轴承振动值随螺栓力矩增大(减小)而显著增大(降低)的现象比较符合螺栓虚脚或基础缺陷等导致的振动故障特征。综合前述分析,判断电机振动故障原因是螺栓虚脚或电机底板结构缺陷。 3电机振动故障处理 3.1电机A振动故障处理 3.1.1处理过程 现已得出机座螺栓虚脚是导致振动超标的因素,则采取打百分表法测量出电机座的虚脚情况,然后通过添加不锈钢垫片予以消除。主要过程如下: 1)标点。将两法兰面分别等分为若干测量点并标记(两法兰面的测量点应在法兰就位时重叠); 2)架表。架百分表于电机联轴器上并将指向电机座法兰面,然后将电机轴盘车一周记录各测量点的表值。测连接板法兰面虚脚时同理。 3)计算。将电机座法兰和连接板法兰重叠位置的测量点数值分别求代数和Xi,若其中最大值为Xmax,则任一测量点的虚脚(间隙)值Xj。 Xj=Xmax—Xi 4)垫实。根据计算的虚脚值,添加对应厚度(Xj)的垫片。 将电机正确就位后再用塞尺检验,若仍有间隙须补偿,最后将所有螺栓按要求正确紧固。 3.1.2效果验证 为避免不锈钢冷却水管道的应力干扰前述调整结果,将冷却器法兰处更换为橡胶软管后对电机试车,检查最大振动降至1.4mm/s(合格)。然后将橡胶软管换成正式不锈钢管,最大振动增加至3.8mm/s(超标)。分析原因是在消除虚脚过程中,电机位置移动导致冷却器进出口法兰偏移,将冷却水管道连接后,冷却水管道对电机施加过大应力而导致振动增大。 为此,采取以下步骤消除管道应力:拆卸冷却水管道,先将不锈钢冷却水管道连接至冷却器法兰上,再连接好另一端法兰。再次对电机空载试车,非驱动端轴承最大振动降为1.8mm/s。 至此,消除机座螺栓虚脚后,电机A空载振动值合格。 3.2电机B振动故障处理 3.2.1处理过程 参照电机A消除故障的方法处理电机B,振动故障始终无法消除,且无论冷却水管为不锈钢管或橡胶软管,振动值均超标,甚至一度达到11.3mm/s,显示了电机B振动故障的复杂性。 据前文分析,判断电机B存在底板结构缺陷。为此,吊出电机B,检查电机底板等。 检查得出如下两点可能导致振动超标的因素: 1)法兰翘边。检查发现连接板在与电机座配合的法兰面、基础板与连接板配合的法兰面均存在一圈最大0.10mm的翘边,测量电机法兰面平面度合格(如图4示)。测量得电机连接板水平度为0.15mm/m,稍高于0.10mm/m的标准值,但据现场经验该微差不至于造成振动故障。

电机振动噪音的原因及解决措施

电机振动噪音的原因及解决措施 电机振动噪音的原因及解决措施一般评估电动机的品质除了运转时之各特性外,以人之五感判断电机振动及电机振动噪音的情形较多。而电动机产生的电机振动电机振动噪音,主要有: 1、机械电机振动电机振动噪音,为转子的不平衡重量,产生相当转数的电机振动。 2、电动机轴承的转动,正常的情形产生自然音,精密小型电动机或高速电动机情形以外,几乎不会有问题。但轴承自然的电机振动与电动机构成部材料的共振,轴承的轴方向弹簧常数使转子的轴方向电机振动,润滑不良产生摩擦音等问题产生。 3、电刷滑动,具有电刷的DC电动机或整流子电动机,会产生电刷的电机振动噪音。 4、流体电机振动噪音,风扇或转子引起通风电机振动噪音对电动机很难避免,很多情形左右电动机整体的电机振动噪音,除风扇的叶片或铁心的齿引起气笛音外,也有必要注意通风上的共鸣。 5、电磁的电机振动噪音,为磁路的不平衡或不平衡磁力及气隙的电磁力波产生之电机振动噪音,又磁通密度饱和或气隙偏心引起磁的电机振动噪音。一、机械性电机振动的产生原因与对策 1、转子的不平衡电机振动 A、原因: ·制造时的残留不平衡。

·长期间运转产生尘埃的多量附着。 ·运转时热应力引起轴弯曲。 ·转子配件的热位移引起不平衡载重。 ·转子配件的离心力引起变形或偏心。 ·外力(皮带、齿轮、直结不良等)引起轴弯曲。 ·轴承的装置不良(轴的精度或锁紧)引起轴弯曲或轴承的内部变形。 B、对策: ·抑制转子不平衡量。 ·维护到容许不平衡量以内。 ·轴与铁心过度紧配的改善。 ·对热膨胀的异方性,设计改善。 ·强度设计或装配的改善。 ·轴强度设计的修正,轴联结器的种类变更以及直结对中心的修正。 ·轴承端面与轴附段部或锁紧螺帽的防止偏靠。 2、轴承之异常电机振动与电机振动噪音 A、原因: ·轴承内部的伤。 ·轴承的轴方向异常电机振动,轴方向弹簧常数与转子质量组成电机振动系统的激振。

电机振动十大原因,查找检修得看这些具体案例

电机振动十大原因,查找检修得看这些具体案例 电机振动的原因很多,也很复杂。8极以上大极数电机不会因为电机制造质量问题引起振动。振动常见于2--6极电机,GB10068-2000,《旋转电机振动限值及测试方法》规定了在刚性基础上不同中心高电机的振动限值、测量方法及刚性基础的判定标准,依据此标准可以判断电机是否符合标准。 电动机振动的危害 电动机产生振动,会使绕组绝缘和轴承寿命缩短,影响滑动轴承的正常润滑,振动力促使绝缘缝隙扩大,使外界粉尘和水分入侵其中,造成绝缘电阻降低和泄露电流增大,甚至形成绝缘击穿等事故。另外,电动机产生振动,又容易使冷却器水管振裂,焊接点振开,同时会造成负载机械的损伤,降低工件精度,会造成所有遭到振动的机械部分的疲劳,会使地脚螺丝松动或断掉,电动机又会造成碳刷和滑环的异常磨损,甚至会出现严重刷火而烧毁集电环绝缘,电动机将产生很大噪音,这种情况一般在直流电机中也时有发生。 电动机振动的十个原因 1.转子、耦合器、联轴器、传动轮(制动轮)不平衡引起的。 2.铁心支架松动,斜键、销钉失效松动,转子绑扎不紧都会造成转动部分不平衡。 3.联动部分轴系不对中,中心线不重合,定心不正确。这种故障产生的原因主要是安装过程中,对中不良、安装不当造成的。 4.联动部分中心线在冷态时是重合一致的,但运行一段时间后由于转子支点,基础等变形,中心线又被破坏,因而产生振动。 5.与电机相联的齿轮、联轴器有故障,齿轮咬合不良,轮齿磨损严重,对轮润滑不良,联轴器歪斜、错位,齿式联轴器齿形、齿距不对、间隙过大或磨损严重,都会造成一定的振动。 6.电机本身结构的缺陷,轴颈椭圆,转轴弯曲,轴与轴瓦间间隙过大或过小,轴承座、基础板、地基的某部分乃至整个电机安装基础的刚度不够。 7.安装的问题,电机与基础板之间固定不牢,底脚螺栓松动,轴承座与基础板之间松动等。 8.轴与轴瓦间间隙过大或过小不仅可以造成振动还可使轴瓦的润滑和温度产生异常。 9.电机拖动的负载传导振动,比如说电机拖动的风机、水泵振动,引起电机振动。 10.交流电机定子接线错误、绕线型异步电动机转子绕组短路,同步电机励绕组匝间短路,同步电机励磁线圈联接错误,笼型异步电动机转子断条,转子铁心变形造成定、转子气隙不均,导致气隙磁通不平衡从而造成振动。

电机常见的振动故障原因

编号:SM-ZD-75861 电机常见的振动故障原因Organize enterprise safety management planning, guidance, inspection and decision-making, ensure the safety status, and unify the overall plan objectives 编制:____________________ 审核:____________________ 时间:____________________ 本文档下载后可任意修改

电机常见的振动故障原因 简介:该安全管理资料适用于安全管理工作中组织实施企业安全管理规划、指导、检查和决策等事项,保证生产中的人、物、环境因素处于最佳安全状态,从而使整体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 一般来讲,电机振动是由于转动部分不平衡、机械故障或电磁方面的原因引起的。 一、转动部分不平衡主要是转子、耦合器、联轴器、传动轮(制动轮)不平衡引起的。 处理方法是先找好转子平衡。如果有大型传动轮、制动轮、耦合器、联轴器,应与转子分开单独找好平衡。再有就是转动部分机械松动造成的。如:铁心支架松动,斜键、销钉失效松动,转子绑扎不紧都会造成转动部分不平衡。 二、机械部分故障主要有以下几点: 1、联动部分轴系不对中,中心线不重合,定心不正确。这种故障产生的原因主要是安装过程中,对中不良、安装不当造成的。还有一种情况,就是有的联动部分中心线在冷态时是重合一致的,但运行一段时间后由于转子支点,基础等变形,中心线又被破坏,因而产生振动。 2、与电机相联的齿轮、联轴器有毛病。这种故障主要表

水泵电机振动检修案例

电动机振动的危害 电动机产生振动,会使绕组绝缘和轴承寿命缩短,影响滑动轴承的正常润滑,振动力促使绝缘缝隙扩大,使外界粉尘和水分入侵其中,造成绝缘电阻降低和泄露电流增大,甚至形成绝缘击穿等事故。另外,电动机产生振动,又容易使冷却器水管振裂,焊接点振开,同时会造成负载机械的损伤,降低工件精度,会造成所有遭到振动的机械部分的疲劳,会使地脚螺丝松动或断掉,电动机又会造成碳刷和滑环的异常磨损,甚至会出现严重刷火而烧毁集电环绝缘,电动机将产生很大噪音,这种情况一般在直流电机中也时有发生。 电动机振动的十个原因 1.转子、耦合器、联轴器、传动轮(制动轮)不平衡引起的。 2.铁心支架松动,斜键、销钉失效松动,转子绑扎不紧都会造成转动部分不平衡。 3.联动部分轴系不对中,中心线不重合,定心不正确。这种故障产生的原因主要是安装过程中,对中不良、安装不当造成的。

4.联动部分中心线在冷态时是重合一致的,但运行一段时间后由于转子支点,基础等变形,中心线又被破坏,因而产生振动。 5.与电机相联的齿轮、联轴器有故障,齿轮咬合不良,轮齿磨损严重,对轮润滑不良,联轴器歪斜、错位,齿式联轴器齿形、齿距不对、间隙过大或磨损严重,都会造成一定的振动。 6.电机本身结构的缺陷,轴颈椭圆,转轴弯曲,轴与轴瓦间间隙过大或过小,轴承座、基础板、地基的某部分乃至整个电机安装基础的刚度不够。 7.安装的问题,电机与基础板之间固定不牢,底脚螺栓松动,轴承座与基础板之间松动等。 8.轴与轴瓦间间隙过大或过小不仅可以造成振动还可使轴瓦的润滑和温度产生异常。 9.电机拖动的负载传导振动,比如说电机拖动的风机、水泵振动,引起电机振动。 10.交流电机定子接线错误、绕线型异步电动机转子绕组短路,同步电机励绕组匝间短路,同步电机励磁线圈联接错误,笼型异步电动机转子断条,转子铁心变形造成定、转子气隙不均,导致气隙磁通不平衡从而造成振动。 振动原因及典型案例 振动原因主要有三种情况:电磁方面原因;机械方面原因;机电混合方面原因。 一 . 电磁方面的原因 1. 电源方面:三相电压不平衡,三相电动机缺相运行。 2. 定子方面:定子铁心变椭圆(公众号:泵管家)、偏心、松动;定子绕组发生断线、接地击穿、匝间短路、接线错误,定子三相电流不平衡。 举例:锅炉房密封风机电机检修前发现定子铁心有红色粉末,怀疑定子铁心有松动现象,但不属于标准大修范围内的项目,所以未处理,大修后试转时电机发生刺耳的尖叫声,更换一台定子后故障排除。 3.转子故障:转子铁心变椭圆、偏心、松动。转子笼条与端环开焊,转子笼条断裂,绕线错误,电刷接触不良等。 举例:轨枕工段无齿锯电机运行中发现电机定子电流来回摆动,电机振动逐渐增大,根据现象判断电机转子笼条有开焊和断裂的可能,电机解体后发现,转子笼条有7处断裂,严重的2根两侧与端环已全部断裂,如发现不及时就有可能造成定子烧损的恶劣事故发生。 二 .机械原因 1. 电机本身方面: 转子不平衡,转轴弯曲,滑环变形,定、转子气隙不均,定、转子磁力中心不一致,轴承故障,基础安装不良,机械机构强度不够、共振,地脚螺丝松动,电机风扇损坏。

电机震动标准

第一章、电动机维护检修规范 1、电动机完好标准 1.1零部件质量 1.1.1外壳完整,无明显缺陷,表面油漆色调一致,铭牌清晰。 1.1.2润滑油脂质量符合要求,油量适当,不漏油。 1.1.3电动机内部无积灰和油污,风道畅通。 1.1.4外壳防护能力或防爆性能良好,既符合电动机出厂标准,又符合周围环境的要求。 1.1.5定转子绕组及铁芯无老化、变色和松动现象,槽楔、端部垫块及绑线齐全紧固。 1.1.6定转子间的间隙符合要求。 1.1.7风扇叶片齐全,角度适合,固定牢固。 1.1.8外壳有良好而明显的接地(接零)线。 1.1.9各部件的螺栓、螺母齐全紧固,正规合适。 1.1.10埋入式温度计齐全,接线完整,测温表计指示正确。 1.1.1l起动装置好用,性能符合电动机要求。 1.1.12通风系统完整,防锈漆无脱落,风道不漏风,风过滤器、风冷却器性能良好,风机运行正常。1.1.13励磁装置运行稳定可靠,直流电压、电流能满足电动机要求。 1.1.14操作盘油漆完好,部件齐全,接线正规,标示明显。 1.1.15保护、测量、信号、操作装置齐全,指示正确,动作灵活可靠。 1.1.16电动机基础完整无缺。 1.1.17 电源线路接线正确牢固,相序标志分明,电缆外皮有良好的接地(接零)线。

1.2运行状况 1.2.1在额定电压下运行,能达到铭牌数据要求,各部位温升不超过表1所列允许值。 表1 电动机的最高允许温升(环境温度为40~C时) ℃ 绝缘等级 A级绝缘 E级绝缘 B级绝缘 F级绝缘 H级绝缘 测量方法温度计法电阻法温度计法电阻法温度计法电阻法温度计法电阻法温度计法电阻法 与绕组接触的铁芯及其他部件 60 —— 75 —— 80 —— 100 —— 125 —— 集电环或整流子 60 —— 70 —— 80 —— 90 —— 100 —— 滑动轴承 40 —— 40 —— 40 —— 40 —— 40 —— 滚动轴承 55 —— 55 —— 55 —— 55 —— 55 —— 电动机绕组 50 60 65 75 70 80 85 100 105 125 1.2.2电动机的振动值(两倍振幅值),一般应不大于表2的规定。对于Y系列电动机,空载振动、速度的有效值应不超过表3所列数据。 表2电动机的允许振动值 转速,r/min 3000 2000 1500 1000 750及以下 两倍振幅值,mm 表3 Y系列电动机空载振动、速度允许值 安装方式弹性刚性 轴中心高H,mm 56≤H≤132 132≤H≤225 225≤H≤400 400≤H≤630 转数n,r/min 600≤n≤1800 1800

电机振动的原因

电机振动得原因 电机振动得原因很多,也很复朵。8极以上大极数电机不会因为电机制造质量问题引起振动。振动常见J- 2—6极电机,GB10068-2000,《旋转电机振动限值及测试方法》规定了在刚性基础上不同中心高电机得振动限值、测量方法及刚性基础得判定标准,依据此标准可以判断电机就是否符合标准。 电动机振动得危害4 电动机产生振动,会使绕组绝缘与轴承寿命缩短,影响滑动轴承得正常润滑,振动力促使绝缘缝隙扩大,使外界粉尘与水分入侵其中,造成绝缘电阻降低与淤露电流增大, 甚至形成绝缘击穿等事故.另外,电动机产生振动,乂容易使冷却器水管振裂,焊接点振开,同时会造成负载机械得损伤,降低工件精度,会造成所有遭到振动得机械部分得疲劳,会使地脚螺丝松动或断掉,电动机乂会造成碳刷与滑环得异常磨损,甚至会出现严重刷火而烧毁集电环绝缘,电动机将产生很大噪音,这种情况一般在直流电机中也时有发生。 电动机振动得十个原因A 转子.耦合器.联轴器.传动轮(制动轮)不平衡引起得. 瑟、铁心支架松动,斜键、销钉失效松动,转子绑扎不紧都会造成转动部分不平衡。A 3、联动部分轴系不对中,中心线不重合,定心不正确。这种故障产生得原因主耍就是安装过程中,对中不良、安装不当造成得。 哀4、联动部分中心线在冷态时就是重合一致得,但运行一段时间后由于转子支点,基础等变形,中心线乂被破坏?因而产生振动」 5、与电机相联得齿轮、联轴器有故障,齿轮咬合不良,轮齿磨损严重,对轮润滑不良,联轴器歪斜、错位,齿式联轴器齿形、齿距不对、间隙过大或磨损严重,都会造成一定得振动.皿 6、电机本身结构得缺陷,轴颈椭圆,转轴弯曲,轴与轴瓦间间隙过大或过小, 轴承座、基础板、地基得某部分乃至整个电机安装基础得刚度不够. 7、安装得问题,电机与基础板之间固定不牢,底脚螺栓松动,轴承座与基础板之间松动等。 8、轴与轴瓦间间隙过大或过小不仅可以造成振动还可使轴瓦得润滑与温度产生异常。 9、电机拖动得负载传导振动,比如说电机拖动得风机、水泵振动,引起电机振动。 10、交流电机定子接线错课、绕线型异步电动机转子绕组短路,同步电机励绕组匝间短路,同步电机励磁线圈联接错误,笼型异步电动机转子断条,转子铁心变形造成定、转子气隙不均,导致气隙磁通不平衡从而造成振动。却 振动原因及典型案例 嫌动原因主要有三种情况:电磁方面原因;机械方而原因;机电混合方面原因。 一、电磁方面得原因1山. 电源方而:三相电压不平衡,三相电动机缺相运行?如、定子方面:定子铁心变椭圆、偏心、松动:定子绕组发生断线、接地击穿. 匝间短路、接线错误,定子三相电流不半衡。 举例:锅炉房密封风机电机检修前发现定子铁心有红色粉末,怀疑定子铁心有松动现象, 但不属

Noise and vibration DC-motor(直流电机噪音及振动)

3482
IEEE TRANSACTIONS ON MAGNETICS, VOL. 40, NO. 6, NOVEMBER 2004
Characterization of Noise and Vibration Sources in Interior Permanent-Magnet Brushless DC Motors
Hong-Seok Ko and Kwang-Joon Kim
Abstract—This paper characterizes electromagnetic excitation forces in interior permanent-magnet (IPM) brushless direct current (BLDC) motors and investigates their effects on noise and vibration. First, the electromagnetic excitations are classi?ed into three sources: 1) so-called cogging torque, for which we propose an ef?cient technique of computation that takes into account saturation effects as a function of rotor position; 2) ripples of mutual and reluctance torque, for which we develop an equation to characterize the combination of space harmonics of inductances and ?ux linkages related to permanent magnets and time harmonics of current; and 3) ?uctuation of attractive forces in the radial direction between the stator and rotor, for which we analyze contributions of electric currents as well as permanent magnets by the ?nite-element method. Then, the paper reports on an experimental investigation of in?uences of structural dynamic characteristics such as natural frequencies and mode shapes, as well as electromagnetic excitation forces, on noise and vibration in an IPM motor used in washing machines. Index Terms—Brushless machines, electromagnetic forces, noise, permanent magnet, vibrations.
Fig. 1.
Cross sections of BLDC motors.
I. INTRODUCTION
C
ONVENTIONAL direct current commutator motors with permanent magnets are easy to control and require few semiconductor devices. Yet, they have serious operational problems in association with brushes. For examples, the brushes require regular maintenance and induce noise by friction with the commutators. A solution for these problems is brushless direct current (BLDC) motors. BLDC motors can be classi?ed into two types, as shown in Fig. 1 according to the geometric shape and location of permanent magnets. Compared with surface mounted permanent-magnet (SPM) motors, interior permanent-magnet (IPM) motors have several advantages. One advantage comes from the position of magnets. Because permanent magnets are embedded in the rotor, the IPM motors can be used at higher speeds without debonding of the permanent magnets from the rotor due to the centrifugal forces. Another obvious advantage of the IPM motors is higher ef?ciency. That is, in addition to the mutual torque from the permanent magnets, the IPM motors utilize the reluctance torque generated by the rotor saliency [1].
Manuscript received June 28, 2002; revised June 7, 2004. H.-S. Ko was with the Mechanical Engineering Department, Korea Advanced Institute of Science and Technology (KAIST), Daejon 305-701, Korea. He is now with Samsung Electronics Company Ltd., Suwon 443-742, Korea (e-mail: hskatom@yahoo.co.kr). K.-J. Kim is with the Mechanical Engineering Department, KAIST, Daejon 305-701, Korea (e-mail: kjkim@mail.kaist.ac.kr). Digital Object Identi?er 10.1109/TMAG.2004.832991
Regarding the noise and vibration, the IPM motors have more sources than the SPM motors. Furthermore, analysis of magnetic ?eld in the IPM motors is more dif?cult due to the magnetic saturations, especially in the rotors. In an IPM motor, the electromagnetic excitation sources can be classi?ed into three parts: cogging torque, ripples of mutual and reluctance torque, and ?uctuations of radial attractive force between the rotor and stator. In an SPM motor, only the mutual torque is generally considered and an analytical method can be used [2], [3]. For the IPM motors, however, the ?nite-element method (FEM) is used to account for the magnetic saturation at the rotor core and, besides the mutual torque, the reluctance torque needs to be considered. In addition, although only the permanent magnet may be considered to calculate the radial attractive forces between the rotor and stator in the IPM motors [4], the electromagnetic ?eld due to the currents may become signi?cant depending on the loading and generate serious excitation forces. In this paper, a technique that can ef?ciently calculate the cogging torque as a function of rotor position by including saturation effects is proposed. Then, a torque equation for characterizing the space and time harmonics with respect to the mutual and reluctance torque ripples is used to extract their ?uctuating components. The radial attractive forces due to the electric currents in the stator as well as the permanent magnets in the rotor are calculated by the FEM and its effects on noise and vibration are investigated. The noise and vibration in the motors are mostly generated by the electromagnetic sources and subsequently can be ampli?ed by the dynamic characteristics of the motor structure. Therefore, in?uences of natural frequencies and mode shapes of the structures are experimentally investigated for the noise and vibration of an IPM motor under study. II. ELECTROMAGNETIC EXCITATION SOURCES Electromagnetic excitations in electric motors are caused by variation of both circumferential and radial forces acting between the stator and the rotor with respect to the time and space.
0018-9464/04$20.00 ? 2004 IEEE

机力冷却塔风机电机振动原因分析及处理

机力冷却塔风机电机振动原因分析及处理 The manuscript was revised on the evening of 2021

机力冷却塔风机电机振动原因分析及处理 刘明义 (神华河北国华定洲发电有限责任公司,定州073000) 摘要:介绍了某电厂公用开冷水机力冷却塔风机电机出现振动劣化后,专业振动监测人员通过频谱分析对其进行的分析判断,以及后续振动处理情况。 关键词:振动频谱软地脚 01 Mechanical Cooling Tower Fan Motor Vibration Reason Analysis and Processing LIU Ming-yi (Shenhua Hebei Guohua Dingzhou Power Generation ,Dingzhou 073000,China) Abstract:Introduction of a power plant utility running water 01 mechanical cooling tower fan motor vibration deterioration, professional vibration monitoring personnel through the frequency spectrum analysis to carry on the analysis judgment, and follow-up vibration treatment. Key words:Vibration;Frequency spectrum;Soft foundation 1、前言: 某电厂2×660MW发电机组为空冷机组,设计有3台公用开冷水机力冷却塔风机,配置电机型号YD315L1-8/4-W,功率110KW,转速715/1425r/min。投产初期,01机力冷却塔风机电机振动就比其它两台电机略大,但没有超标。2010年5月份,01机力冷却塔风机电机振动出现上升趋势,机务、电气人员现场检查后,都认为不是自己专业设备的原因。在此情况下,专业振动监测人员用爱默生2130测试仪对01机力冷却塔风机电机进行了现场数据采集,给出科学分析,最终得到解决。

电动机振动的危害和原因

电动机振动的危害和原因 电机振动的原因很多,也很复杂。8极以上大极数电机不会因为电机制造质量问题引起振动。振动常见于2--6极电机,GB10068-2000,《旋转电机振动限值及测试方法》规定了在刚性基础上不同中心高电机的振动限值、测量方法及刚性基础的判定标准,依据此标准可以判断电机是否符合标准。 电动机振动的危害 电动机产生振动,会使绕组绝缘和轴承寿命缩短,影响滑动轴承的正常润滑,振动力促使绝缘缝隙扩大,使外界粉尘和水分入侵其中,造成绝缘电阻降低和泄露电流增大,甚至形成绝缘击穿等事故。 另外,电动机产生振动,又容易使冷却器水管振裂,焊接点振开,同时会造成负载机械的损伤,降低工件精度,会造成所有遭到振动的机械部分的疲劳,会使地脚螺丝松动或断掉,电动机又会造成碳刷和滑环的异常磨损,甚至会出现严重刷火而烧毁集电环绝缘,电动机将产生很大噪音,这种情况一般在直流电机中也时有发生。 电动机振动的十个原因 1、转子、耦合器、联轴器、传动轮(制动轮)不平衡引起的。

2、铁心支架松动,斜键、销钉失效松动,转子绑扎不紧都会造成转动部分不平衡。 3、联动部分轴系不对中,中心线不重合,定心不正确。这种故障产生的原因主要是安装过程中,对中不良、安装不当造成的。 4、联动部分中心线在冷态时是重合一致的,但运行一段时间后由于转子支点,基础等变形,中心线又被破坏,因而产生振动。 5、与电机相联的齿轮、联轴器有故障,齿轮咬合不良,轮齿磨损严重,对轮润滑不良,联轴器歪斜、错位,齿式联轴器齿形、齿距不对、间隙过大或磨损严重,都会造成一定的振动。 6、电机本身结构的缺陷,轴颈椭圆,转轴弯曲,轴与轴瓦间间隙过大或过小,轴承座、基础板、地基的某部分乃至整个电机安装基础的刚度不够。 7、安装的问题,电机与基础板之间固定不牢,底脚螺栓松动,轴承座与基础板之间松动等。 8、轴与轴瓦间间隙过大或过小不仅可以造成振动还可使轴瓦的润滑和温度产生异常。 9、电机拖动的负载传导振动,比如说电机拖动的风机、水泵振动,引起电机振动。 10、交流电机定子接线错误、绕线型异步电动机转子绕组短路,同步电机励绕组匝间短路,同步电机励磁线圈联接错误,笼型异步电动机转子断条,转子铁心变形造成定、转子气隙不均,导致气隙磁通不平衡从而造成振动。

电机振动的危害、原因及判断和排除故障的方法

电机振动的危害、原因及判断和排除故障的方法 内容简介:一般来讲,引起电动机振动的原因不外乎机械和电磁两方面的原因。引起直流电动机振动的主要原因是机械上、电气上和安装上的原因。在生产中我们经常采用断电法来检查区分是由于电磁还是机械原因引起的振动 电动机在各行各业中有着广泛的应用,而在使用中会出现许多问题,其中电机振动是日常生产生活中较轻易碰到的。 一、电动机振动的危害 电动机振动会加速电动机轴承磨损,使轴承的正常使用寿命大大缩短,同时,电动机振动将使绕组绝缘下降。由于振动使电机端部绑线松动,造成端部绕组产生相互磨擦,绝缘电阻降低,绝缘寿命缩短,严重时造成绝缘击穿。另外,电动机振动会造成所拖动机械的损坏,影响四周设备的正常工作,发出很大的噪声。 二、电动机振动的原因 一般来讲,引起电动机振动的原因不外乎机械和电磁两方面的原因。引起直流电动机振动的主要原因是机械上、电气上和安装上的原因。电机振动极限值在国家标准GB100068.2一88《旋转电机振动测定方法及极限振动极限》中都有规定。振动是所有电机在制造、安装、运行维护与检修中经常遇到和必须解决的问题。振动过大会导致电机的运行稳定性破坏、换向条件恶化、零部件损坏、电机寿命缩短,甚至造成停机故障。 机械部分故障主要有以下几点: 机械方面主要存在地脚紧固不牢,基础台面倾斜,不平;轴承损坏,转轴弯曲变形,电动机轴线中心与其所拖动机械轴线中心不一致;定、转子铁芯磁中心不一致,转子动平衡不良等。转动部分不平衡主要是转子、耦合器、联轴器、传动轮(制动轮)不平衡引起的。处理方法是先找好转子平衡。如果有大型传动轮、制动轮、耦合器、联轴器,应与转子分开单独找好平衡。再有就是转动部分机械松动造成的。如:铁心支架松动,斜键、销钉失效松动,转子绑扎不紧都会造成转动部分不平衡。 1、联动部分轴系不对中,中心线不重合,定心不正确。这种故障产生的原因主要是安装过程中,对中不良、安装不当造成的。还有一种情况,就是有的联动部分中心线在冷态时是重合一致的,但运行一段时间后由于转子支点,基础等变形,中心线又被破坏,因而产生振动。机座、端盖重要支承件制造误差或运行变形。由于机座、端盖等转子重要支承件的配合面形位误差超差,特别是大、中型电机运行较长时间后机座、端盖等重要支承件变形,使电机在运行时轴承产生干扰力,造成电机振动。这些配件的误差或变形可采用回转打百分表等方式测得,发现有这一情况后,应对配件进行焊修等工艺方式处理,或更换配件。 2、与电机相联的齿轮、联轴器有毛病。这种故障主要表现为齿轮咬合不良,轮齿磨损严重,对轮润滑不良,联轴器歪斜、错位,齿式联轴器齿形、齿距不对、间隙过大或磨损严重,都会造成一定的振动。 3、电机本身结构的缺陷和安装的问题。这种故障主要表现为轴颈椭圆,转轴弯曲,轴与轴瓦间间隙过大或过小,轴承座、基础板、地基的某部分乃至整个电机安装基础的刚度不够,电机与基础板之间固定不牢,底脚螺栓松动,轴承座与基础板之间松动等。而轴与轴瓦间间隙过大或过小不仅可以造成振动还可使轴瓦的润滑和温度产生异常。电枢不平衡。由于旋转时不平衡质量产生的离心力的作用,使轴承上作用有一个旋转力,造成了电机和基础的振动。当气隙不匀、主极固定不紧或机座、端盖的刚度较差时,都会造成振动加剧,因此检

相关主题