搜档网
当前位置:搜档网 › 机械专业英文文献翻译

机械专业英文文献翻译

机械专业英文文献翻译
机械专业英文文献翻译

英文原文

High Productivity —A Question of Shearer Loader

Cutting Sequences

K. Nienhaus, A. K. Bayer & H. Haut, Aachen University of

Technology, GER

1 Abstract

Recently, the focus in underground longwall coal mining has been on increasing the installed motor power of shearer loaders and armoured face conveyors (AFC), more sophisticated support control systems and longer face length, in order to reduce costs and achieve higher productivity. These efforts have resulted in higher output and previously unseen face advance rates. The trend towards “bigger and better” equipment and layout schemes, however, is rapidly nearing the limitations of technical and economical feasibility. To realise further productivity increases, organisational changes of longwall mining procedures looks like the only reasonable answer. The benefits of opti-mised shearer loader cutting sequences, leading to better performance, are discussed in this paper.

2 Introductions

Traditionally, in underground longwall mining operations, shearer loaders produce coal using either one of the following cutting sequences: uni-directional or bi-directional cycles. Besides these pre-dominant methods, alternative mining cycles have also been developed and successfully applied in underground hard coal mines all over the world. The half-web cutting cycle as e.g. utilized in RAG Coal International’s Twentymile Mine in Colorado, USA, and the “Opti-Cycle” of Matla’s South African shortwall operation must be mentioned in this context. Other mines have also tested similar but modified cutting cycles resulting in

improved output, e.g. improvements in terms of productiv-ity increases of up to 40 % are thought possible。

Whereas the mentioned mines are applying the alternative cutting methods according to their spe-cific conditions, –e.g. seam height or equipment used, –this paper looks systematically at the differ-ent methods from a generalised point of view. A detailed description of the mining cycle for each cutting technique, including the illustration of productive and non-productive cycle times, will be followed by a brief presentation of the performed production capacity calculation and a summary of the technical restrictions of each system. Standardised equipment classes for different seam heights are defined, after the most suitable and most productive mining equipment for each class are se-lected. Besides the technical parameters of the shearer loader and the AFC, the length of the

long-wall face and the specific cutting energy of the coal are the main variables for each height class in the model. As a result of the capacity calculations, the different shearer cutting methods can be graphically compared in a standardised way showing the productivity of each method. Due to the general char-acter of the model, potential optimisations (resulting from changes in the cutting cycle and the benefits in terms of higher productivity of the mining operation) can be derived.

3 State-of-the-art of shearer loader cutting sequences

The question “Why are different cutting sequences applied in longwall mining?” has to be an-swered, before discussing the significant characteristics in terms of operational procedures. The major constraints and reasons for or against a special cutting method are the seam height and hard-ness of the coal, the geotechnical parameters of the coal seam and the geological setting of the mine influencing the caving properties as well as the subsidence and especially the length of the longwall face. For each mining environment the application of either sequence results in different production rates and consequently advance rates of the face. The coal flow onto the AFC is another point that varies like the

loads on the shearer loader, especially the ranging arms and the stresses and the wear on the picks. A thorough analysis is necessary to choose the best-suited mining cycle; therefore, general solutions do not guarantee optimal efficiency and productivity.

A categorization of shearer loader cutting sequences is realised by four major parameters . Firstly, one can separate between mining methods, which mine coal in two directions – meaning from the head to the tailgate and on the return run as well –or in one direction only. Secondly, the way the mining sequence deals with the situation at the face ends, to advance face line after extract-ing the equivalent of a cutting web, is a characteristic parameter for each separate method. The nec-essary travel distance while sumping varies between the sequences, as does the time needed to per-form this task, too. Another aspect defining the sequences is the proportion of the web cutting coal per run. Whereas traditionally the full web was used, the introduction of modern AFC and roof sup-port automation control systems allows for efficient operations using half web methods. The forth parameter identifying state of the art shearer loader cutting sequences is the opening created per run. Other than the partial or half-open ing method like those used in Matla’s “Opti-Cycle”, the cutting height is equal to the complete seam height including partings and soft hanging or footwall material.

Bi-directional cutting sequence

The bi-directional cutting sequence, depicted in Figure 1a, is characterised by two sumping opera-tions at the face ends in a complete cycle, which is accomplished during both the forward and return trip. The whole longwall face advances each complete cycle at the equivalent of two web distances by the completion of each cycle. The leading drum of the shearer cuts the upper part of the seam while the rear drum cuts the bottom coal and cleans the floor coal. The main disadvantages of this cutting method are thought to be the unproductive time resulting from the face end activities and the complex operation. Therefore, the trend in recent years was to increase face length to reduce the relative impact of sumping in favour of longer production time.

Uni-directional cutting sequence

In contrast to the bi-directional method, the shearer loader cuts the coal in one single direction when in uni-directional mode. On the return trip, the floor coal is loaded and the floor itself cleaned. The shearer haulage speeds on the return trips are restricted only by the operators’ movement through the longwall face, or the haulage motors in a fully automated operation. The sumping procedure starts in near the head gate, as shown in Figure 1b. The low machine

utilisation because of cutting just one web per cycle is the main disadvantage of

the uni-directional cutting sequence. Besides the coal flow can be quite irregular depending on the position of the shearer in the cycle.

Half web cutting sequence

The main benefit of half web cutting sequences is the reduction of unproductive times in the mining cycle, which results in high machine utilisation. This is achieved by cutting only a half web in mid face with bi-directional gate sequences as shown in Figure 2a. The full web is mined at the face ends, with lower speeds allowing faster shearer operation in both directions in mid seam. Beside the realisation of higher haulage speeds, the coal flow on the AFC is more balanced for shearer loader trips in both directions.

Half-/partial-opening cutting sequence

The advantage of the half- or, more precisely, partial- opening cutting sequence is the fact that the face is extracted in two passes. Figure 2b shows that the upper and middle part of the seam is cut during the pass towards the tailgate. Whereas the last part of this trip for the equivalent of a ma-chine length the leading drum is raised to cut the roof to allow the roof support to be advanced. On the return trip the bottom coal is mined with the advantage of a free face and a smaller proportion of the leading drum cutting coal; consequently leading to less restrictions of the haulage speed due to the specific cutting energy of the material. The shearer sumps in mid seam near the head gate to the full web without invoking unproductive cycle time. Like for the trip the tailgate the leading drum has to be lowered a machine length ahead of the main gate.

4 Production capacity calculations

A theoretical comparison of the productivity between different mining methods in general, or in this case between different shearer loader cutting cycles, is always based on numerous assumptions and technical and geological restrictions. As a result, this production capacity calculation does not claim to offer exact results, although it does indicate productivity trends and certain parameters for each analysed method. The model works with so-called height classes varying the seam thicknesses between 2m and 5m in steps of 50cm. Equipment is assigned to each class, having been selected by looking at the best-suited technical properties available on the market [4]. Apart from the defined equipment, it is assumed that the seam is flat and

no undulations or geological faults occur. In the model, the ventilation and the roof support system represent no restrictions to the production. Since the aim of this model is to show ways to further increases in longwall productivity, the calculation is based on a fully automated system with no manual operators required at the face. The haulage speed of the shearer is therefore only restricted by the AFC capacity, the cutting motors and the haulage motors respectively.

The variable parameters in this comparison of the four cutting sequences are, (besides seam thick-ness) the specific cutting energy of the coal to be cut and the length of the longwall face. The former varying between 0.2 and 0.4kWh/m3, the latter between 100m and 400m in 50m intervals. The 100m shortwalls were deliberately selected, since they are coming more into focus for various reasons. Geotechnical aspects, like e.g. the caving ability of the hanging wall and faults, restrict long-wall panels in many places to maximum face lengths of 150m or less, like in South Africa and Great Britain. For this reason, a detailed analysis of the potential of such longwalls is deemed appropriate.

5 Conclusions

In recent years much effort has been put into the optimisation of longwall operations to increase productivity and efficiency. In many cases the emphasis of these improvements was mainly focused on the equipment, e.g. increased motor power or larger dimensions of A FC’s. The organisational aspect has sometimes been neglected or did not rank as high on the agenda as other topics. In this paper, it has been demonstrated that the selected mining method has a significant impact on the achievable productivity.

In a theoretical model four cutting sequences have been compared to each other while varying seam thickness, face length and coal properties in terms of specific cutting energy.

For each seam or height class a defined set of equipment was used with consistent restraints. Though each mine is unique, some general conclusions can be drawn analysing the capacity model. Under the restrictions of the model the half web cutting sequence offers the highest output of all analysed methods fol-lowed by the half-opening mode. Depending on the face length, the bi-directional cutting method has advantages compared to the uni-directional sequence in terms of higher productivity.

中文译文

高效生产—一个关于采煤机截割的次序的问题

1摘要

目前, 地面下长壁采煤法致力于增加安装在采煤机和甲板输送机的电机功率, 以及更先进的支架控制系统和增加工作面长度,以达到减少费用和取得较高的生产效率的目的。这种努力已经造成较高的开支和先前未见过的设备费用增长速度。现在趋向于"更大和更好" 的仪器和装备,然而这种趋势在技术上和费用上的可行性已经达到极限。为了要实现进一步促进生产力的增加,合理、有机地规范长臂采煤法的工序应该是解决提高生产效率问题的唯一的合理答案。在本文中论述了通过合理安排采煤机的截割次序以实现提高采煤工作效率。

2简介

传统上,在地面下长壁采煤法操作方面,采煤机挖掘过程中,使用以下截割次序之一:反方向的或双方向的循环。除了这两种主要的方法,交替循环采煤也已经应用在地下的硬煤层开采中,它被成功地推广在全世界的挖掘过程中。就半边切断循环举例来说,在科罗拉多,美国在二十里煤矿利用,而且Matla's 的南非短巷道操作的开采也在这被应用。其他类似的采掘已经通过验证改进截割次序能提高开采产量,举例来说,它大约能够在产量上增加40%的。

然而提到应用在采煤上根据特殊情况而改变切割的方法,–用煤层高度和设备的使用来举例说明,论文系统地论述通过从不同的角度采取不同的方法。详细描述了采矿的每种切割方法, 包括能生产的和不能生产的循环,以下将会给出一个简短的关于采煤机生产能力的计算和每个系统在技术上的受到的约束的概要说明。根据煤层的厚度采用不同标准的设备和合适的装置。此外采煤机和甲板输送机,工作面的长度和特定采煤机截割方式等技术参数在本模型中根据不同的煤层厚度而改变。

根据采煤的产量,不同采煤机截割的方法可以通过一个标准化方法绘制产量图来反映不同截割方法的优劣。根据模型的特征,最优的结果( 通过改变截割方式而得到的不同的采煤产量)就能获得。

3采煤截割次序的技术说明

"为什么长壁采煤法应用的不同切割次序?"这个问题是必须回答的,在以讨论操作工序的主要规则之前,切割方法主要受到煤层的厚度和煤层硬度等因素的限制,就像煤层的物理参数和矿的地质学条件影响煤的崩落能力一样,同样也会影响长壁采煤法工作面的煤层塌方。对于不同的地质条件,不同的截割次序都会得到不同的生产效率和不同质量的工作面。煤送入甲板输送机之上正如采煤机截割,是采煤中的另外一个问题,尤其是在截齿上受到的屈服应力和疲劳应力。一个对于选择最适合的截割次序的全面分析是必要的-适合采矿替换;因为,一般性的解答是不能保证最佳的效率和产量。

对于一个采煤机截割次序的分类是通过四个主要的参数来规定的.第一,能在采矿方法之间分开,向矿井的两个方向即从头到尾。第二,根据截割次序,在到达工作面尾部, 预先在选取一个等价的线切断网,是区分截割方法的一个独立的参数。必须有一定的距离空间以改变截割次序, 因为做这些需要一定的时间。定义截割次序的另外一个方面是网状断煤的轨迹。然而传统地完整的使用, 现代的甲板输送机和液压支架系统允许使用有效率的一半网方法操作。区分截割工艺的以前那些参数就可以把不同的截割方式区分。除了部份或半开口像被用在Matla的循环截割中的那些一样的方法,切断高度分别包括柔软悬吊装置和采煤机的高度,它和煤层厚度相等。

双方向的截割次序

在图1中被描述的双方向的截割次序, 是表示工作面二点之间的特点,在一个完全的截割操作周期中, 是在两者的向前和返回期间是完成的。整个长壁采煤法每个周期的完成等价于在网状截割轨迹的一个巡回。滚筒的前端面截割煤层的顶部而滚筒的后端面截割煤层的下部,同时起到清除落煤的作用。这个切割的方法主要的缺点主要表现在截割时间和操作比较复杂。因此,趋势近几年来要增加工作面的长度以减少挖掘过程中的冲击载荷和延长截齿的寿命。

单方向的截割次序

与双方向的方法相反,在单向模型里截割采煤机截割是朝一个方向进行的。在回返行程中,地板煤是被采煤机底板它本身清理。截割运动在往返时被在工作面限制了操作运动推进的速度。截割操作在工作面的开头部位,如图1 b所示。因

为切割动作只能是一个方向循环而使截割的工作效率低,它是单向截割次序的主要缺点。此外煤流可能是相当不规则,它依赖于采煤机在截割周期中的位置。

半滚筒截割次序

半滚筒截割的主要优点是它减少采煤机在截割过程中的无效截割时间,造成高机器利用。如图 2 所显示的半滚筒截割次序处于工作面中间位置时,它与双方向截割次序具有一致性。完整的滚筒在截割结束时,藉由更快速地允许的较低速度在煤层的中间部位向两个方向操作。除了实现较高的牵引速度,在甲板输送机被的采煤机双向循环的煤流而平衡。

半开口切割次序

这种方法的优点更突出,它实际上是在二个方法中的提高和改进。如图2 b 所示煤层的上端面和中间部分在向它的后端面时被截割。在回程底部的煤与自由的面和工作面的较小比例的来切断煤层来一起截割;结果其牵引速度由于受到材料的切割能特性而限制。滚筒截割在煤层的中间部位不会产生无效的截割时间。类似的回程后门工作面必须在进入主工作面之前减小机身长度。

4 生产力计算

不同的采矿方法之间的生产力在理论上的做一个大体的比较, 因为在这情况通过在不同的之间采煤机的截割周期,总是存在很多假定和技术上的以及地质学的限制为基础。因而,不能提供精确的结果,但是它为每个截割方法的分析确实提供了生产力的高低趋势和某些参数。

该模型实用于煤层厚度在2 m 和 5 m 之间以50cm 为一个等级的被称之为厚煤层的煤矿类型,根据不同的等级选择不同的设备,可以在市场上选择最适合该等级开采的设备。除了规范仪器之外,它假设煤层是平坦的且没有波动和地质上的缺陷。在模型中,通风和顶层支持系统不对生产超出限制。 既然这一个模型的目标要实现进一步的增加生产力,该计算是基于在没有人工的操作干预的情况下一个完全自动化的系统操作的工作面。制约牵引速度的唯一因素是甲板输送机,切割电动机和牵引电动机相互独立。

通过比较四种截割次序的可变参数 (除了煤层厚度) 煤截割的能耗和长壁采煤法的工作面的长度被降低。前者在0.2 到0.43/kWh m ,后者在100 m 和 400 m 之间每间隔50 m ,因为它们受到多方面的因素影响。 在地理方面, 像举例来说墙壁崩落能力和缺陷,它限制煤层最大工作面长度达到150 m, 像在南非和英国。 因为这一个原因,如此一项详细长壁采煤发的潜在可行性分析被认识合理的。

5总结

近几年来,很多工作都是致力于长壁采煤法的最优化以增加到生产力和效率的目的。在许多情况,他们过于强调把重心集中在设备,举例来说增加甲板输送机的电动机功率和增大其尺寸。而某些积极的方面有时被在不同程度上被忽略,它们没有被提升到一个比较重要的日程。在论文中,通过选择不同的截割次序的采矿方法在生产力上所取得的成功产生深远影响。

当煤层厚度、工作面长度、煤层的性质以及相关的截割能耗改变时,四中截割模式在一个理论上可以进行相互比较。对于每种煤层和其厚度等级的限制而选择响应的设备。虽然每种截割方式不同,但通过分析该模型可以得到一般性的结论。根据模型的约束条件,半滚筒截割的产量最高;在相同的工作面长度的情况下,双方向的截割方法比单方向的截割方法生产率高。

冲压模具专业词汇中英文翻译

Counter bored hole 沉孔 Chamfer 倒斜角 Fillet 倒圆角 padding block垫块 stepping bar垫条 upper die base上模座 lower die base下模座 upper supporting blank上承板 upper padding plate blank上垫板 spare dies模具备品 spring 弹簧 bolt螺栓 document folder活页夹 file folder资料夹 to put file in order整理资料 spare tools location手工备品仓 first count初盘人 first check初盘复棹人 second count 复盘人 second check复盘复核人 equipment设备 waste materials废料 work in progress product在制品 casing = containerization装箱 quantity of physical inventory second count 复盘点数量 Quantity of customs count 会计师盘,点数量 the first page第一联 filed by accounting department for reference会计部存查 end-user/using unit(department)使用单位 Summary of year-end physical inventory bills 年终盘点截止单据汇总表 bill name单据名称 This sheet and physical inventory list will be sent to accounting department together (Those of NHK will be sent to financial department) 本表请与盘点清册一起送会计部-(NHK厂区送财会部) Application status records of year-end physical inventory List and physical inventory card 年终盘点卡与清册使用-状况明细表 blank and waste sheet NO. 空白与作废单号

《机械工程专业英语教程》课文翻译

Lesson 1 力学的基本概念 1、词汇: statics [st?tiks] 静力学;dynamics动力学;constraint约束;magnetic [m?ɡ'netik]有磁性的;external [eks't?:nl] 外面的, 外部的;meshing啮合;follower从动件;magnitude ['m?ɡnitju:d] 大小;intensity强度,应力;non-coincident [k?u'insid?nt]不重合;parallel ['p?r?lel]平行;intuitive 直观的;substance物质;proportional [pr?'p?:??n?l]比例的;resist抵抗,对抗;celestial [si'lestj?l]天空的;product乘积;particle质点;elastic [i'l?stik]弹性;deformed变形的;strain拉力;uniform全都相同的;velocity[vi'l?siti]速度;scalar['skeil?]标量;vector['vekt?]矢量;displacement代替;momentum [m?u'ment?m]动量; 2、词组 make up of由……组成;if not要不,不然;even through即使,纵然; Lesson 2 力和力的作用效果 1、词汇: machine 机器;mechanism机构;movable活动的;given 规定的,给定的,已知的;perform执行;application 施用;produce引起,导致;stress压力;applied施加的;individual单独的;muscular ['m?skjul?]]力臂;gravity[ɡr?vti]重力;stretch伸展,拉紧,延伸;tensile[tensail]拉力;tension张力,拉力;squeeze挤;compressive 有压力的,压缩的;torsional扭转的;torque转矩;twist扭,转动;molecule [m likju:l]分子的;slide滑动; 滑行;slip滑,溜;one another 互相;shear剪切;independently独立地,自立地;beam梁;compress压;revolve (使)旋转;exert [iɡ'z?:t]用力,尽力,运用,发挥,施加;principle原则, 原理,准则,规范;spin使…旋转;screw螺丝钉;thread螺纹; 2、词组 a number of 许多;deal with 涉及,处理;result from由什么引起;prevent from阻止,防止;tends to 朝某个方向;in combination结合;fly apart飞散; 3、译文: 任何机器或机构的研究表明每一种机构都是由许多可动的零件组成。这些零件从规定的运动转变到期望的运动。另一方面,这些机器完成工作。当由施力引起的运动时,机器就开始工作了。所以,力和机器的研究涉及在一个物体上的力和力的作用效果。 力是推力或者拉力。力的作用效果要么是改变物体的形状或者运动,要么阻止其他的力发生改变。每一种

机械专业术语英文翻译

陶瓷 ceramics 合成纤维 synthetic fibre 电化学腐蚀 electrochemical corrosion 车架 automotive chassis 悬架 suspension 转向器 redirector 变速器 speed changer 板料冲压 sheet metal parts 孔加工 spot facing machining 车间 workshop 工程技术人员 engineer 气动夹紧 pneuma lock 数学模型 mathematical model 画法几何 descriptive geometry 机械制图 Mechanical drawing 投影 projection 视图 view 剖视图 profile chart 标准件 standard component 零件图 part drawing 装配图 assembly drawing 尺寸标注 size marking

技术要求 technical requirements 刚度 rigidity 内力 internal force 位移 displacement 截面 section 疲劳极限 fatigue limit 断裂 fracture 塑性变形 plastic distortion 脆性材料 brittleness material 刚度准则 rigidity criterion 垫圈 washer 垫片 spacer 直齿圆柱齿轮 straight toothed spur gear 斜齿圆柱齿轮 helical-spur gear 直齿锥齿轮 straight bevel gear 运动简图 kinematic sketch 齿轮齿条 pinion and rack 蜗杆蜗轮 worm and worm gear 虚约束 passive constraint 曲柄 crank 摇杆 racker 凸轮 cams

步进电机及单片机英文文献及翻译

外文文献: Knowledge of the stepper motor What is a stepper motor: Stepper motor is a kind of electrical pulses into angular displacement of the implementing agency. Popular little lesson: When the driver receives a step pulse signal, it will drive a stepper motor to set the direction of rotation at a fixed angle (and the step angle). You can control the number of pulses to control the angular displacement, so as to achieve accurate positioning purposes; the same time you can control the pulse frequency to control the motor rotation speed and acceleration, to achieve speed control purposes. What kinds of stepper motor sub-: In three stepper motors: permanent magnet (PM), reactive (VR) and hybrid (HB) permanent magnet stepper usually two-phase, torque, and smaller, step angle of 7.5 degrees or the general 15 degrees; reaction step is generally three-phase, can achieve high torque output, step angle of 1.5 degrees is generally, but the noise and vibration are large. 80 countries in Europe and America have been eliminated; hybrid stepper is a mix of permanent magnet and reactive advantages. It consists of two phases and the five-phase: two-phase step angle of 1.8 degrees while the general five-phase step angle of 0.72 degrees generally. The most widely used Stepper Motor. What is to keep the torque (HOLDING TORQUE) How much precision stepper motor? Whether the cumulative: The general accuracy of the stepper motor step angle of 3-5%, and not cumulative.

机械毕业设计英文外文翻译71车床夹具设计分析

附录A Lathe fixture design and analysis Ma Feiyue (School of Mechanical Engineering, Hefei, Anhui Hefei 230022, China) Abstract: From the start the main types of lathe fixture, fixture on the flower disc and angle iron clamp lathe was introduced, and on the basis of analysis of a lathe fixture design points. Keywords: lathe fixture; design; points Lathe for machining parts on the rotating surface, such as the outer cylinder, inner cylinder and so on. Parts in the processing, the fixture can be installed in the lathe with rotary machine with main primary uranium movement. However, in order to expand the use of lathe, the work piece can also be installed in the lathe of the pallet, tool mounted on the spindle. THE MAIN TYPES OF LATHE FIXTURE Installed on the lathe spindle on the lathe fixture

机械专业外文翻译中英文翻译

外文翻译 英文原文 Belt Conveying Systems Development of driving system Among the methods of material conveying employed,belt conveyors play a very important part in the reliable carrying of material over long distances at competitive cost.Conveyor systems have become larger and more complex and drive systems have also been going through a process of evolution and will continue to do so.Nowadays,bigger belts require more power and have brought the need for larger individual drives as well as multiple drives such as 3 drives of 750 kW for one belt(this is the case for the conveyor drives in Chengzhuang Mine).The ability to control drive acceleration torque is critical to belt conveyors’ performance.An efficient drive system should be able to provide smooth,soft starts while maintaining belt tensions within the specified safe limits.For load sharing on multiple drives.torque and speed control are also important consideratio ns in the drive system’s design. Due to the advances in conveyor drive control technology,at present many more reliable.Cost-effective and performance-driven conveyor drive systems cov ering a wide range of power are available for customers’ choices[1]. 1 Analysis on conveyor drive technologies 1.1 Direct drives Full-voltage starters.With a full-voltage starter design,the conveyor head shaft is direct-coupled to the motor through the gear drive.Direct full-voltage starters are adequate for relatively low-power, simple-profile conveyors.With direct fu11-voltage starters.no control is provided for various conveyor loads and.depending on the ratio between fu11- and no-1oad power requirements,empty starting times can be three or four times faster than full load.The maintenance-free starting system is simple,low-cost and very reliable.However, they cannot control starting torque and maximum stall torque;therefore.they are

at89c52单片机中英文资料对照外文翻译文献综述

at89c52单片机简介 中英文资料对照外文翻译文献综述 A T89C52 Single-chip microprocessor introduction Selection of Single-chip microprocessor 1. Development of Single-chip microprocessor The main component part of Single-chip microprocessor as a result of by such centralize to be living to obtain on the chip,In immediate future middle processor CPU。Storage RAM immediately﹑memoy read ROM﹑Interrupt system、Timer /'s counter along with I/O's rim electric circuit awaits the main microcomputer section,The lumping is living on the chip。Although the Single-chip microprocessor r is only a chip,Yet through makes up and the meritorous service be able to on sees,It had haveed the calculating machine system property,calling it for this reason act as Single-chip microprocessor r minisize calculating machine SCMS and abbreviate the Single-chip microprocessor。 1976Year the Inter corporation put out 8 MCS-48Set Single-chip microprocessor computer,After being living more than 20 years time in development that obtain continuously and wide-ranging application。1980Year that corporation put out high performance MCS -51Set Single-chip microprocessor。This type of Single-chip microprocessor meritorous service capacity、The addressing range wholly than early phase lift somewhat,Use also comparatively far more at the moment。1982Year that corporation put out the taller 16 Single-chip microprocessor MCS of performance once

课程名称英文翻译

Advanced Computational Fluid Dynamics 高等计算流体力学 Advanced Mathematics 高等数学 Advanced Numerical Analysis 高等数值分析 Algorithmic Language 算法语言 Analogical Electronics 模拟电子电路 Artificial Intelligence Programming 人工智能程序设计 Audit 审计学 Automatic Control System 自动控制系统 Automatic Control Theory 自动控制理论 Auto-Measurement Technique 自动检测技术 Basis of Software Technique 软件技术基础 Calculus 微积分 Catalysis Principles 催化原理 Chemical Engineering Document Retrieval 化工文献检索 Circuitry 电子线路 College English 大学英语 College English Test (Band 4) CET-4 College English Test (Band 6) CET-6 College Physics 大学物理 Communication Fundamentals 通信原理 Comparative Economics 比较经济学 Complex Analysis 复变函数论 Computational Method 计算方法 Computer Graphics 图形学原理 computer organization 计算机组成原理 computer architecture 计算机系统结构 Computer Interface Technology 计算机接口技术 Contract Law 合同法 Cost Accounting 成本会计 Circuit Measurement Technology 电路测试技术 Database Principles 数据库原理 Design & Analysis System 系统分析与设计 Developmental Economics 发展经济学 discrete mathematics 离散数学 Digital Electronics 数字电子电路 Digital Image Processing 数字图像处理 Digital Signal Processing 数字信号处理 Econometrics 经济计量学 Economical Efficiency Analysis for Chemical Technology 化工技术经济分析Economy of Capitalism 资本主义经济 Electromagnetic Fields & Magnetic Waves 电磁场与电磁波 Electrical Engineering Practice 电工实习 Enterprise Accounting 企业会计学 Equations of Mathematical Physics 数理方程

机械专业相关词汇中英文翻译大全

机械专业相关词汇中英文翻译大全 单价unit price 工日合计Man-day total/work-day total 人工费cost of labor 材料费materials expenses 机械的mechanical 检查接线connection test 发电机generator 调相机phase regulator 周波cycle 减负荷装置 load-shedding equipment 断路器柜circuit breaker cabinet 单母线single busbar 互感器transformer 每相电流Current by Phase 封闭式插接close type socket joint 发电机控制面板generator control panel 分级卸载sorted unloading 同步控制synchronization control 调速器 speed governor 信号屏signal screen 继电器relay 高压柜high pressure cabinet 油浸电力变压器oil-immersed power transformer 空气断路器air circuit breaker 控制屏control panel 直流馈电屏direct current feed control panel 电容器electric condenser 计量盘metering panel 成套配电箱whole set of distribution box 落地式floor model 控制开关Control switches 铜芯电力电缆Copper core power cable 控制电缆actuating cable 热缩式电力电缆终端头pyrocondensation power cable terminal 钢结构支架配管steel structure bracket tubing 万用槽钢versatile U-steel 电缆托架 cable bracket 钢制托盘式桥架steel Tray-type cable support system waterproof socket 防水插座 防爆插座Explosion-proof socket 接地绞线earthing twisted pair 接地母线 earthing bus

MCS_51系列单片机中英文资料对照外文翻译文献综述

MCS-51系列单片机 中英文资料对照外文翻译文献综述 Structure and function of the MCS-51 series Structure and function of the MCS-51 series one-chip computer MCS-51 is a name of a piece of one-chip computer series which Intel Company produces. This company introduced 8 top-grade one-chip computers of MCS-51 series in 1980 after introducing 8 one-chip computers of MCS-48 series in 1976. It belong to a lot of kinds this line of one-chip computer the chips have, such as 8051, 8031, 8751, 80C51BH, 80C31BH,etc., their basic composition, basic performance and instruction system are all the same.8051 daily representatives-51 serial one-chip computers. A one-chip computer system is made up of several following parts: (1) One microprocessor of 8 (CPU). ( 2) At slice data memory RAM (128B/256B),it use not depositing not can reading /data that write, such as result not middle of operation, final result and data wanted to show, etc. (3) Procedure memory ROM/EPROM (4KB/8K B ), is used to preserve the

基于solidworks机床夹具设计外文翻译详解

2604130359 CNC Cutting Technology Review Numerical control high speed cutting technology (High Speed Machining, HSM, or High Speed Cutting, HSC), is one of the advanced manufacturing technology to improve the machining efficiency and quality, the study of related technology has become an important research direction of advanced manufacturing technology at home and abroad. China is a big manufacturing country, in the world of industry transfer to accept the front instead of back-end of the transfer, to master the core technology of advanced manufacturing, or in a new round of international industrial structure adjustment, our country manufacturing industry will further behind. Imminent research on the theory and application of advanced technology. 1, high-speed CNC machining meaning High speed cutting theory put forward by the German physicist Carl.J.Salomon in the last century and early thirty's. He concluded by a lot of experiments: in the normal range of cutting speed, cutting speed if the increase, will cause the cutting temperature rise, exacerbating the wear of cutting tool; however, when the cutting speed is increased to a certain value, as long as more than the inflection point, with the increase of the cutting speed, cutting temperature can not rise, but will decline, so as long as the cutting speed is high enough, it can be solved very well in high cutting temperature caused by tool wear is not conducive to the cutting problem, obtained good processing efficiency. With the development of manufacturing industry, this theory is gradually paid more attention to, and attracted a lot of attention, on the basis of this theory has gradually formed the field of high-speed cutting technology of NC, relatively early research on NC High-speed Machining Technology in developed countries, through the theoretical basis of the research, basic research and applied research and development application, at present applications have entered the substantive stage in some areas. The high-speed cutting processing category, generally have the following several kinds of classification methods, one is to see that cutting speed, cutting speed over conventional cutting speed is 5-10 times of high speed cutting. Also has the scholar to spindle speed as the definition of high-speed processing standards, that the spindle speed is higher than that of 8000r\/min for high speed machining. And from the machine tool spindle design point of view, with the product of DN diameter of spindle and spindle speed, if the value of DN to (5~2000) * 105mm.r\/min, is considered to be of high speed machining. In practice, different processing methods, different materials, high speed cutting speed corresponding to different. Is generally believed that the turning speed of (700~7000) m\/min, milling speed reaches m\/min (300~6000), that is in the high-speed cutting. In addition, from the practical considerations, high-speed machining concept not only contains the high speed cutting process, integration and optimization also contains the process of cutting, is a

机械专业术语英文翻译

机械专业英语词汇 陶瓷ceramics 合成纤维synthetic fibre 电化学腐蚀electrochemical corrosion 车架automotive chassis 悬架suspension 转向器redirector 变速器speed changer 板料冲压sheet metal parts 孔加工spot facing machining 车间workshop 工程技术人员engineer 气动夹紧pneuma lock 数学模型mathematical model 画法几何descriptive geometry 机械制图Mechanical drawing 投影projection 视图view 剖视图profile chart 标准件standard component 零件图part drawing 装配图assembly drawing 尺寸标注size marking 技术要求technical requirements 刚度rigidity 内力internal force 位移displacement 截面section 疲劳极限fatigue limit 断裂fracture 塑性变形plastic distortion 脆性材料brittleness material 刚度准则rigidity criterion 垫圈washer 垫片spacer 直齿圆柱齿轮straight toothed spur gear 斜齿圆柱齿轮helical-spur gear 直齿锥齿轮straight bevel gear 运动简图kinematic sketch 齿轮齿条pinion and rack 蜗杆蜗轮worm and worm gear 虚约束passive constraint 曲柄crank 摇杆racker

(完整word版)单片机外文文献翻译

中文资料原文 单片机 单片机也被称为微控制器(Microcontroller Unit),常用英文字母的缩写MCU表示单片机,它最早是被用在工业控制领域。单片机由芯片内仅有CPU的专用处理器发展而来。最早的设计理念是通过将大量外围设备和CPU集成在一个芯片中,使计算机系统更小,更容易集成进复杂的而对体积要求严格的控制设备当中。INTEL的Z80是最早按照这种思想设计出的处理器,从此以后,单片机和专用处理器的发展便分道扬镳。 早期的单片机都是8位或4位的。其中最成功的是INTEL的8031,因为简单可靠而性能不错获得了很大的好评。此后在8031上发展出了MCS51系列单片机系统。基于这一系统的单片机系统直到现在还在广泛使用。随着工业控制领域要求的提高,开始出现了16位单片机,但因为性价比不理想并未得到很广泛的应用。90年代后随着消费电子产品大发展,单片机技术得到了巨大提高。随着INTEL i960系列特别是后来的ARM系列的广泛应用,32位单片机迅速取代16位单片机的高端地位,并且进入主流市场。而传统的8位单片机的性能也得到了飞速提高,处理能力比起80年代提高了数百倍。目前,高端的32位单片机主频已经超过300MHz,性能直追90年代中期的专用处理器,而普通的型号出厂价格跌落至1美元,最高端[1]的型号也只有10美元。当代单片机系统已经不再只在裸机环境下开发和使用,大量专用的嵌入式操作系统被广泛应用在全系列的单片机上。而在作为掌上电脑和手机核心处理的高端单片机甚至可以直接使用专用的Windows和Linux操作系统。 单片机比专用处理器更适合应用于嵌入式系统,因此它得到了最多的应用。事实上单片机是世界上数量最多的计算机。现代人类生活中所用的几乎每件电子和机械产品中都会集成有单片机。手机、电话、计算器、家用电器、电子玩具、掌上电脑以及鼠标等电脑配件中都配有1-2部单片机。而个人电脑中也会有为数不少的单片机在工作。汽车上一般配备40多部单片机,复杂的工业控制系统上甚至可能有数百台单片机在同时工作!单片机的数量不仅远超过PC机和其他计算的总和,甚至比人类的数量还要多。 单片机又称单片微控制器,它不是完成某一个逻辑功能的芯片,而是把一个计算机系统集成到一个芯片上。相当于一个微型的计算机,和计算机相比,单片机只缺少了I/O设备。概括的讲:一块芯片就成了一台计算机。它的体积小、质量轻、价格便宜、为学习、应用和开发提供了便利条件。同时,学习使用单片机是了解计算机原理与结构的最佳选择。

夹具设计英文文献

A review and analysis of current computer-aided fixture design approaches Iain Boyle, Yiming Rong, David C. Brown Keywords: Computer-aided fixture design Fixture design Fixture planning Fixture verification Setup planning Unit design ABSTRACT A key characteristic of the modern market place is the consumer demand for variety. To respond effectively to this demand, manufacturers need to ensure that their manufacturing practices are sufficiently flexible to allow them to achieve rapid product development. Fixturing, which involves using fixtures to secure work pieces during machining so that they can be transformed into parts that meet required design specifications, is a significant contributing factor towards achieving manufacturing flexibility. To enable flexible fixturing, considerable levels of research effort have been devoted to supporting the process of fixture design through the development of computer-aided fixture design (CAFD) tools and approaches. This paper contains a review of these research efforts. Over seventy-five CAFD tools and approaches are reviewed in terms of the fixture design phases they support and the underlying technology upon which they are based. The primary conclusion of the review is that while significant advances have been made in supporting fixture design, there are primarily two research issues that require further effort. The first of these is that current CAFD research is segmented in nature and there remains a need to provide more cohesive fixture design support. Secondly, a greater focus is required on supporting the detailed design of a fixture’s physical structure. 2010 Elsevier Ltd. All rights reserved. Contents 1. Introduction (2) 2. Fixture design (2) 3. Current CAFD approaches (4) 3.1 Setup planning (4) 3.1.1 Approaches to setup planning (4) 3.2 Fixture planning (4) 3.2.1 Approaches to defining the fixturing requirement (6) 3.2.2 Approaches to non-optimized layout planning (6) 3.2.3 Approaches to layout planning optimization (6) 3.3 Unit design (7) 3.3.1 Approaches to conceptual unit design (7)

相关主题