搜档网
当前位置:搜档网 › 平面向量与三角形三心

平面向量与三角形三心

平面向量与三角形三心
平面向量与三角形三心

向量与三角形内心、外心、重心、垂心知识的交汇、四心的概念介绍

(1) 重心——中线的交点:重心将中线长度

分成 2 : 1 ;

(2) 垂心一一高线的交点:高线与对应边垂直;

(3) 内心一一角平分线的交点(内切圆的圆心):角平分线上的任意点到角两边的距离相等;

(4) 外心一一中垂线的交点(外接圆的圆心) :

外心到三角形各顶点的距离相等。

二、四心与向量的结合

证法1设0(x, y), A(x i, yj B(X2, y2),C(X3, y3)

(1) OA OB 0C =0:二0是:ABC的重心.

OA OB OC = 0 二

(X i _X)+(X2 _X)+(X3 _ X) =0

(y i -y) (y2 - y) 仏- y) =o % y 2 y3

3 O是ABC的重心?

证法2:如图

OA OB OC

=OA 2OD =0

.AO =2OD

.A、O、D三点共线,且O分AD

为2:1

.O是ABC的重心

(2) OA OB = OB OC = OC OA:= O为ABC 的垂心.

证明:如图所示O是三角形ABC的垂心,BE垂直AC,AD垂直BC,

OA OB =OB OC 二OB(OA -OC) =OB CA = 0

二OB _ AC

同理OA _ BC,OC _ AB

=O为-ABC的垂心

(3)设a, b , c是三角形的三条边长,O是厶ABC的内心

▼f

aOA bOB cOC = 0 = O 为ABC 的内心.

AB AC ——-——-

证明:... AB、AC分别为AB、AC方向上的单位向

量,

AB

c

AC

+ 平分N BAC, b

X1X2X3

y

D、E是垂足.

AB AC

),令一

be a b c

be AB AC

AO

(

)

a b c c b

化简得(a b c)OA bAB eAC =0 aOA bOB cOC = 0

(4) OA=OB=OC 二 O 为占ABC 的外心。

典型例题分析

[例题]已知点G 是丁ABC 内任意一点,点M 是丁ABC 所在平面内一点?试根据下列条件

判断G 点可能通过VABC 的 _______ 心.(填“内心”或“外心”或“重心”或“垂心”).

[提出问题]

⑵ 若点D 是丁 ABC 的底边BC 上的中点,满足GDGB 二GDGC ,则点G 可能通过

VABC 的 __________.

⑶若存在常数 上,满足MG = MA + 珥一-AB — +?AC —)仏丰0),则点G 可能 AB 廉

i nB AC 隔 nC 通过VABC 的 ___________

通过VABC 的 __________ .

[思路分析]以上四个问题的解决要求不同,除了熟悉三角形的“四心”的性质 同时更要熟悉平面向量的性质,对于平面向量与三角函数的结合也要相当熟悉

形或三角形法则知,点G 是角平分线上的点,故应填内心. (2) 简单的变形后发现点G 是BC 边中垂线上的点,故应填外心. (3) 叮 ABVin B =|AC 蹩i nC/.记 ABVin B=| AC^i nC = h ,

则AG =「(AB AC)('').由平面向量的平行四边形或三角形法则知,点G 是

h

BC 边的中线上的点,故应填重心.

(4) 分析后发现,本题学生难以找到解决问题的突破口 ,

主要在于平面向量的数量

(1)若存在常数 ———A

丸,满足MG = MA +九(—?

AB AC

G 可能通过丁 ABC

AC

(4)若存在常数 AB

AC

a^s a^s

丸,满足MG = MA + k (—飞

ABVosB ACPosC

)(■ =0),则点G 可能

[解答过程](1)记 AB AB AC

?,一~

■ (ej e 2).由平面向量的平行四边

)(=0),

第3页共4页

积的充分利用?由MG =MA …(

AB AB£osB

AC AC \cosC

得 AG = ■( 一 一+ —)(丸丰 0),

AB Vos B AC \cosC (关键点)AGB^ (

一亠—T )x BC (“o ) AB^cosB AC^CosC

于是

AG BC = ■( IAB A 啤乞+ AC 乎)(+) YosB

〔ACpCosC =■( BC cos( -:-B) BC cosB)

从而AG _ BC ,点G 是高线上的点,故应填垂心.

[点评]以上四个问题处理的方法各不相同,注意到平面向量及三角形的“四

心” 的性质在解答问题时的作用?特别注意第四问两边同乘以某个表达式的技巧?

总结:

(1) OA OB OC =0 = O 是 ABC 的重心.

(2) OA OB =OB OC =OC OA := O 为 ABC 的垂心.

(3) 设a , b , c 是三角形的三条边长, O 是厶ABC 的内心

aOA bOB cOC = 0 = O 为 ABC 的内心.

(4) OA=OB=OC= O 为 AABC 的外心。 或者

若P 点为 ABC 内任意一点,若 P 点满足:

AP =&( =P 为ABC 的内心;

BP =t( BA BC

BA

BC

),0

4. AP BS°= p 为、ABC 的垂心. BP AC =0

结合运用:

例1 : O 是平面上一定点, A 、B 、C 是平面上不共线的三个点,动点 P 满

OP =OA ? '(AB ? AC), ■ 0,= ,则点P 的轨迹一定通过 ABC 的( )

A .外心

B .内心

C .重心

分析:如图所示 AABC , D 、E 分别为边BC 、AC 的 中占 I 八、、■

AB AC =2AD OP =OA AD

OP = OA AP AP =2 AD .AP // AD

.点P 的轨迹一定通过 ABC 的重心,即选C . 例2 : O 是平面上一定点,

A 、

B 、

C 是平面上不共线的三个点,动点

AB AC ——-——-

分析:;AB 、AC 分别为AB 、AC 方向上的单位向量,

|AB |AC |

平分 N BAC ,

AB AC

?点P 的轨迹一定通过 ABC 的内心,即选B . 例3 : O 是平面上一定点,

A 、

B 、

C 是平面上不共线的三个点,动点

P 满足

P 满足

OP

AB AC 、

=OA (

),‘ AB AC

A .外心

B .内心

0, V ,则点P 的轨迹一定通过

ABC 的

c .重心

D .垂心

AB AC

——h AB OP =OA + 坯 ---- +

/

"), AB co SB AC c o sC

( )

A .外心

B . 内心

」0,则点P 的轨迹一定通过 ABC 的

C .重心

D .垂心

D .垂心

.点P 的轨迹一定通过 ABC 的垂心,即选 D . 练习:

数?满足:AB ? AC 二,AP ,则?的值为(

D . 6

O ,半径为 1, OA OB 0C = 0,则 OA 0B =( C . 1

ABOC 面积之比是( )

3 A . 0

B .

2

0,若 OH

= OA

OB 0C ,贝U H 是 ABC 的(

—2 ——2 ——2

CA = OC

AB ,则 0 是 ABC 的()

A .外心

B .内心

C .重心

6.=ABC 的外接圆的圆心为 0,两条边上的高的交点为 则实数m = ________

1已知 ABC 三个顶点A 、B 、C 及平面内一点

P ,满足PA PB PC = 0,若实

3 ?点0在ABC 内部且满足

OA 20B 20C = 0,则

厶ABC 面积与凹四边

A .外心

B .内心

C .重心

D .垂心

5. 0是平面上一定点,

A 、

B 、

C 是平面上不共线的三个点,若

——2 ——2 ——2

OA BC 二 0B

足.

分析:如图所示 AD 垂直BC , BE 垂直AC , D 、E 是垂 AB

AB cos B AC —

+ —; -------- ) BC

AC cosC AB BC AC BC AB cosB AC cosC

ABIBC cosB

4

AC BC c osC

|AB |COS B

AC c osC

BC

C . 3

2.若 ABC 的外接圆的圆心为 C . 5

4. ABC 的外接圆的圆心为 D .垂心

H ,0H 二 m(0A OB OC),

A

7.已知非零向量 AB 与AC 满足(今 +~AC ) ? BC=O 且-AB-

|AB | |AC| |AB|

___ . 2

? 、 ^ 、 、^

A 、

B 、

C ,若 AB = AB AC AB CB BC CA ,则

L ABC 为(

A ?等腰三角形 C .直角三角形

B ?等腰直角三角形 D .既非等腰又非直角三角形

2. D 、E 两点分别是 ABC 的边BC 、CA 上的中点,且

DP PB =DP P

C=卩为ABC 的外心; EP PC = EP PA

1 一. AP =](AB AC),

3.

2 3

=卩为,ABC 的重心 1 BP =-(BA + BC),

L 3

A ?三边均不相等的三角形

B .直角三角形

C .等腰非等边三角形

D .等边三角形

练习答案: C 、D 、C 、D 、 D 、1、D 、C

AC 1

空C =1 ,则厶ABC 为

|AC|

&已知 ABC 三个顶点

平面向量与解三角形

第八单元平面向量与解三角形 (120分钟150分) 第Ⅰ卷 一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.锐角△ABC的三内角A、B、C所对边的长分别为a、b、c,若2c sin B=b,则角C的大小为 A.B.C.D. 解析:由正弦定理得2sin B==,∴sin C=,∴C=. 答案:A 2.若向量u=(3,-6),v=(4,2),w=(-12,-6),则下列结论中错误的是 A.u⊥v B.v∥w C.w=u-3v D.对任一向量,存在实数a,b,使=a u+b v 解析:因为u·v=0,所以u⊥v,显然w∥v,因为u与v不共线,所以对任意向量,存在实数a,b,使=a u+b v. 答案:C 3.在△ABC中,B=,三边长a,b,c成等差数列,且ac=6,则b的值是 A.B.C.D. 解析:因为2b=a+c,由余弦定理得b2=a2+c2-2ac cos B=(a+c)2-3ac,化简得b=. 答案:D 4.在△ABC中,AB=4,∠ABC=30°,D是边BC上的一点,且·=·,则·等于 A.—4 B.0 C.4 D.8 解析:由·=·,得·(-)=·=0,即⊥,所以||=2,∠BAD=60°,所以 ·=4×2×=4. 答案:C 5.在△ABC中,角A,B,C所对边的长分别为a,b,c,若a2+b2=2c2,则cos C的最小值为 A.B.C.D.-

解析:cos C==≥=,当且仅当a=b时等号成立. 答案:C 6.设A(a,1),B(2,b),C(4,3)为坐标平面上三点,O为坐标原点,若与在方向上的投影相同,则 a与b满足的关系式为 A.5a-4b=3 B.4a-3b=5 C.4a+5b=14 D.5a+4b=14 解析:由与在方向上的投影相同,可得·=·?(a,1)·(4,3)=(2,b)·(4,3),即4a+3=8+3b,4a-3b=5. 答案:B 7.在△ABC内,角A,B,C的对边分别是a,b,c,若b sin B+a sin A=c sin C,c2+b2-a2=bc,则B等于 A.B.C.D. 解析:因为c2+b2-a2=bc,所以cos A==,所以cos A=,A=, 因为b sin B+a sin A=c sin C,所以b2+a2=c2,所以C=,B=. 答案:A 8.已知向量a=(x-1,2),b=(4,y),其中x>1,y>0,若a∥b,则log2(x-1)+log2y等于 A.1 B.2 C.3 D.4 解析:∵a∥b,则=,∴(x-1)y=8,∴log2(x-1)+log2y=log2(x-1)y=log28=3. 答案:C 9.在△ABC中,若(a+b+c)(a+b-c)=3ab且sin C=2sin A cos B,则△ABC是 A.等腰三角形 B.等边三角形 C.等腰直角三角形 D.直角三角形 解析:因为(a+b+c)(a+b-c)=3ab,所以a2+b2-c2=ab,cos C==,所以C=,因为sin C=2sin A cos B,所 以c=2a·,得a=b,所以△ABC是等边三角形. 答案:B 10.如图,在矩形ABCD中,AB=,BC=2,点E为BC的中点,点F在边CD上,若·=,则·的值是

三角形“四心” 与向量的完美结合(精.选)

三角形的“四心”与向量的完美结合 三角形重心、垂心、外心、内心向量形式的充要条件的向量形式 一. 知识点总结 1)O 是ABC ?的重心?=++; 若O 是ABC ?的重心,则 ABC AOB AOC BOC S 31 S S S ????= == 故0OC OB OA =++; 1()3 PG PA PB PC =++u u u r u u u r u u u r u u u r ?G 为ABC ?的重心. 2)O 是ABC ?的垂心?OA OC OC OB OB OA ?=?=?; 若O 是ABC ?(非直角三角形)的垂心, 则 C tan B tan A tan S S S AOB AOC BOC ::::=??? 故0OC C tan OB B tan OA A tan =++ 3)O 是ABC ?的外心?|OC ||OB ||OA |==(或2 2 2 ==) 若O 是ABC ?的外心 则 C 2sin :B 2sin :A 2sin AOB sin AOC sin BOC sin S S S AOB AOC BOC =∠∠∠=???:::: 故C 2sin B 2sin A 2sin =++ 4)O 是内心ABC ?的充要条件是 ( =- ?=- ?=- ? 引进单位向量,使条件变得更简洁。如果记,,的单位向量为321e ,e ,e ,则刚才O 是ABC ?内 心的充要条件可以写成 0)e e ()e e ()e e (322131=+?=+?=+? O 是ABC ?内心的充要条件也可以是0OC c OB b OA a =++ 若O 是ABC ?的内心,则 c b a S S S AOB AOC BOC ::::=??? 故 C sin B sin A sin c b a =++=++或; ||||||0AB PC BC PA CA PB P ++=?u u u r u u u r u u u r u u u r u u u r u u u r r ABC ?的内心;

讲义---平面向量与三角形四心的交汇

讲义---平面向量与三角形四心的交汇 一、四心的概念介绍 (1)重心——中线的交点:重心将中线长度分成2:1; (2)垂心——高线的交点:高线与对应边垂直; (3)内心——角平分线的交点(内切圆的圆心):角平分线上的任意点到角两边的距离相等; (4)外心——中垂线的交点(外接圆的圆心):外心到三角形各顶点的距离相等。 二、四心与向量的结合 (1)?=++O 是ABC ?的重心. 证法1:设),(),,(),,(),,(332211y x C y x B y x A y x O ?=++???=-+-+-=-+-+-0)()()(0)()()(321321y y y y y y x x x x x x ??? ????++=++=?33 321 321y y y y x x x x ?O 是ABC ?的重心. 证法2:如图 [ OC OB OA ++ 2=+= ∴2= ∴D O A 、、三点共线,且O 分AD 为2:1 ∴O 是ABC ?的重心 (2)??=?=?OA OC OC OB OB OA O 为ABC ?的垂心. 证明:如图所示O 是三角形ABC 的垂心,BE 垂直AC ,AD 垂直BC , D 、E 是垂 足.0)(=?=-??=?CA OB OC OA OB OC OB OB OA AC OB ⊥? 同理⊥,⊥ ?O 为ABC ?的垂心 : (3)设a ,b ,c 是三角形的三条边长,O 是?ABC 的内心 O c b a ?=++为ABC ?的内心. 证明:b c 、 分别为 方向上的单位向量, ∴ b c +平分BAC ∠, ( λ=∴b c +),令c b a bc ++= λ ∴ c b a bc ++= (b c +) 化简得0)(=++++AC c AB b OA c b a B C D

高考数学压轴专题(易错题)备战高考《三角函数与解三角形》专项训练及解析答案

新数学《三角函数与解三角形》高考知识点 一、选择题 1.在ABC ?中,060,10,A BC D ∠==是边AB 上的一点,2,CD CBD =?的面积为 1, 则BD 的长为( ) A .32 B .4 C .2 D .1 【答案】C 【解析】 1210sin 1sin 25 BCD BCD ???∠=∴∠= 2 2 2 2102210425 BD BD ∴=+-??? =∴=,选C 2.在ABC ?中,角,,A B C 的对边分别为,,a b c ,且ABC ?的面积25cos S C =,且 1,25a b ==,则c =( ) A .15 B .17 C .19 D .21 【答案】B 【解析】 由题意得,三角形的面积1 sin 25cos 2 S ab C C ==,所以tan 2C =, 所以5cos C = , 由余弦定理得2222cos 17c a b ab C =+-=,所以17c =,故选B. 3.如图,边长为1正方形ABCD ,射线BP 从BA 出发,绕着点B 顺时针方向旋转至 BC ,在旋转的过程中,记([0,])2 ABP x x π ∠=∈,BP 所经过的在正方形ABCD 内的区 域(阴影部分)的面积为()y f x =,则函数()f x 的图像是( )

A . B . C . D . 【答案】D 【解析】 【分析】 根据条件列()y f x =,再根据函数图象作判断. 【详解】 当0,4x π?? ∈???? 时,()112y f x tanx ==??; 当,42x ππ?? ∈ ??? 时,()11112y f x tanx ==-??; 根据正切函数图象可知选D. 【点睛】 本题考查函数解析式以及函数图象,考查基本分析识别能力,属基本题. 4.上世纪末河南出土的以鹤的尺骨(翅骨)制成的“骨笛”(图1),充分展示了我国古代高超的音律艺术及先进的数学水平,也印证了我国古代音律与历法的密切联系.图2为骨笛测量“春(秋)分”,“夏(冬)至”的示意图,图3是某骨笛的部分测量数据(骨笛的弯曲忽略不计),夏至(或冬至)日光(当日正午太阳光线)与春秋分日光(当日正午太阳光线)的夹角等于黄赤交角.

三角形四心的向量性质

三角形“四心”的向量性质及其应用 一、三角形的重心的向量表示及应用 命题一 已知A B C ,,是不共线的三点,G 是ABC △内一点,若 GA GB GC ++=0.则G 是ABC △的重心. 证明:如图1所示,因为GA GB GC ++=0, 所以 ()GA GB GC =-+. 以GB ,GC 为邻边作平行四边形BGCD , 则有GD GB GC =+, 所以GD GA =-. 又因为在平行四边形BGCD 中,BC 交GD 于点E , 所以BE EC =,GE ED =. 所以AE 是ABC △的边BC 的中线. 故G 是ABC △的重心. 点评:①解此题要联系重心的定义和向量加法的意义;②把平面几何知识和向量知识结合起来解决问题是解此类问题的常用方法. 例1 如图2所示,ABC △的重心为G O ,为坐标原点,OA =a ,=OB b , =OC c ,试用a b c ,,表示OG . 解:设AG 交BC 于点M ,则M 是BC 的中点, ?? ? ??=-=-=-GC OG c GB OG b GA OG a GC GB GA OG c b a ++=-++∴ 而03=-++∴OG c b a 图2

3 c b a OG ++= ∴ 点评:重心问题是三角形的一个重要知识点,充分利用重心性质及向量加、减运算的几何意义是解决此类题的关键. 变式:已知D E F ,,分别为ABC △的边BC AC AB ,,的中点.则 AD BE CF ++=0. 证明:如图的所示, ??? ? ? ???? -=-=-=GC CF GB BE GA AD 232323 )(23 GC GB GA CF BE AD ++-=++∴ 0=++GC GB GA AD BE CF ∴++=0.. 变式引申:如图4,平行四边形ABCD 的中心为O ,P 为该平面上任意一点, 则1 ()4 PO PA PB PC PD =+++. 证明:1()2PO PA PC =+,1()2 PO PB PD =+, 1()4 PO PA PB PC PD ∴=+++. 点评:(1)证法运用了向量加法的三角形法则,证法2运用了向量加法的平行四边形法则.(2)若P 与O 重合,则上式变为OA OB OC OD +++=0. 二、三角形的外心的向量表示及应用 命题二:已知G 是ABC △内一点,满足MC MB MA ==,则点M 为△ABC 的外心。 例2 已知G 、M 分别为不等边△ABC 的重心与外心,点A ,B 的坐标分别为A (-1,0),B (1,0),且GM ∥AB ,(1)求点C 的轨迹方程;(2)若直线l 过 图3

平面向量中的三角形四心问题

平面向量中的三角形四心问题 向量是高中数学中引入的重要概念,是解决几何问题的重要工具。本文就平面向量与三角形四心的联系做一个归纳总结。在 给出结论及证明结论的过程中,可以体现数学的对称性与推论的相互关系。 一、重心(baryce nter) 三角形重心是三角形三边中线的交点。重心到顶点的距离与重心到对边中点的距离之比为2:1。在重心确定上,有著名的帕普斯定理。 结论1 : 若G为ABC所在平面内一点,则G 是三角形的重心 证明:设BC中点为D,则2GD GA GB GC 0 GA GB GA 2GD, 这表明,G在中线AD上 同理可得G在中线BE,CF上 故G为ABC的重心

结论2: 1 —. 若P 为 ABC 所在平面内 点,贝S PG (PA PB 3 G 是ABC 的重心 PC) - 1 — 证明:PG (PA PB PC) (PG PA) (PG PB) (PG PC) 0 GA GB GC 0 G 是ABC 的重心 二、垂心(orthocenter) 三角形的三条高线的交点叫做三角形的垂心。 结论3: H 是ABC 的垂心 证明:HA HB HB HC HB ? S- HB AC 0 HB AC 同理,有 HA CB,HC AB 故H 为三角形垂心 若H 为ABC 所在平面内一点,则HA HB HB HC HC HA (HA

结论4: 2 ------ 2 ------ 2 ------ 2 -------- 2 ------ 2 若H 为 ABC 所在平面内一点,贝U HA BC HB AC HC AB H 是ABC 的垂心 2 2 2 2 HB CA 得,HA (HB HC)2 HB (HC HA)2 HB HC HC HA 同理可证得,HA HB HB HC HC HA 由结论3可知命题成立 三、外心(circumcenter) 三角形三条边的垂直平分线(中垂线)的相交点。用这个点 做圆心可以画三角形的外接圆。 结论5: 若0是ABC 所在平面内一点,则 OA OB OC 0是ABC 的外心 证明:由外心定义可知 命题成立 2 2 证明:由HA BC 结论6: 若0是ABC 所在平面内一点,则

三角函数及解三角形知识点

三角函数知识点 ????? 正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角 2、角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角. 第一象限角的集合为{} 36036090,k k k αα?<

平面向量与三角形三心

向量与三角形内心、外心、重心、垂心知识的交汇 一、四心的概念介绍 (1)重心——中线的交点:重心将中线长度分成2:1; (2)垂心——高线的交点:高线与对应边垂直; (3)内心——角平分线的交点(内切圆的圆心):角平分线上的任意点到角两边的距离相等; (4)外心——中垂线的交点(外接圆的圆心):外心到三角形各顶点的距离相等。 二、四心与向量的结合 (1)?=++0OC OB OA O 是ABC ?的重心. 证法1:设),(),,(),,(),,(332211y x C y x B y x A y x O ?=++???=-+-+-=-+-+-0)()()(0)()()(321321y y y y y y x x x x x x ??? ????++=++=?33 321 321y y y y x x x x ?O 是ABC ?的重心. 证法2:如图 OC OB OA ++ 2=+= ∴2= ∴D O A 、、三点共线,且O 分AD 为2:1 ∴O 是ABC ?的重心 (2)??=?=?OA OC OC OB OB OA O 为ABC ?的垂心. 证明:如图所示O 是三角形ABC 的垂心,BE 垂直AC ,AD 垂直BC , D 、E 是垂足. 0)(=?=-??=? AC OB ⊥? 同理BC OA ⊥,AB OC ⊥ ?O 为ABC ?的垂心 (3)设a ,b ,c 是三角形的三条边长,O 是?ABC 的内心 O c b a ?=++为ABC ?的内心. 证明:b AC c AB 、 分别为方向上的单位向量, ∴ b c +平分BAC ∠, ( λ=∴b AC c AB +),令c b a bc ++=λ B C D B C D

与三角形四心相关的向量结论

与三角形“四心”相关的向量结论 濮阳市华龙区高中 张杰 随着新课程对平面几何推理与证明的引入,三角形的相关问题在高考中的比重有所增加。平面向量作为平面几何的解题工具之一,与三角形的结合就显得尤为自然,因此对三角形的相关性质的向量形式进行探讨,就显得很有必要。本文通过对一道高考模拟题的思考和探究,得到了与三角形“四心”相关的向量结论。希望在得出结论的同时,能引起一些启示。 问题:设点O 在ABC ?内部,且有03=++OC OB OA ,则BOC ?与AOC ?的面积的比值是____. 分析:∵03=++OC OB OA 设OD OB =3,则0=++OC OD OA , 则点O 为ADC ?的重心.∴ACD AOD COA DOC S S S S ????= ==31. 而 AOC COD BOC S S S ???==3131, ∴3 1:=??COA BOC S S . 探究:实际上,可以将上述结论加以推广,即可得此题的本源。 结论: 设O 点在ABC ?内部,若()+∈=++R r n m OC r OB n OA m ,,0,则r n m S S S A O B C O A B O C ::::=?? 证明: 已知O 点在ABC ?内部,且()+∈=++R r n m OC r OB n OA m ,,0 设:OF OC r OE OB n OD OA m ===,,,则点O 为△DEF 的重心, 又EOF BOC S nr S ??=1,DOF AOC S mr S ??=1,DOE AOB S mn S ??=1, ∴r n m S S S AO B CO A BO C ::::=?? 说明: 此结论说明当点O 在ABC ?内部时,点O 把ABC ?所分成的三个小三角形的面积之比等于从此点出发分别指向与三个小三角形相对应的顶点的三个向量所组成的线性关系式前面的系数之比。 应用举例:设点O 在ABC ?内部,且40OA OB OC ++= ,则ABC ?的面积与OBC ?的面积之比是: A .2:1 B .3:1 C .4:3 D .3:2 分析:由上述结论易得:1:1:4::=??AO B CO A BO C S S S ,所以2:34:6:==?O BC ABC S S ,故选D 当把这些点特定为三角形的“四心”时,我们就能得到有关三角形“四心”的一组统一的向量形式。 引申:设O 点在ABC ?内部,且角C B A ,,所对应的边分别为c b a ,, 结论1:若O 为ABC ?重心,则0=++OC OB OA 分析:重心在三角形的内部,且重心把ABC ?的面积三等分. 结论2 :O 为ABC ?内心,则0=++OC c OB b OA a 分析:内心在三角形的内部,且易证S △BOC :S △COA :S △AOB =c b a :: 结论3: O 为ABC ?的外心,则02sin 2sin 2sin =++OC C OB B OA A 分析: 易证S △BOC :S △COA :S △AOB =sin2A :sin2B :sin2C.

平面向量与三角形四心问题

平面向量基本定理与三角形四心 已知0是 ABC 内的一点, BOC, AOC, AOB 的面积分别为 S A , S B , S C ,求证: S A ?0A S B ?0B S C ?0C 0 °D 罟0B 誥0C 0D S B0D S C0D S B0D S C0D S A 0A S B0A E OA S B0A S C0A S B S C 0D S B S C S A ?0A S B ?0B S C ?0C 0 推论o 是 ABC 内的一点,且x ?0A y ?0B z ?0c 0,则 S B0C : S C0A : S A0B X : y : z 如图2延长0A 与BC 边相交于点D 则 BD DC S A BD S B0D S ABD S B0D S ACD S C0D S ACD S C0D S C S 鱼 0B 生 0C S B S C S B S C 0A oA S B S B S C S B S C 0B 二0 C

有此定理可得三角形四心向量式 O是ABC的重心 S BOC : S COA : S AOB 1:1:1 O A OB O C 0 0是 S ABC的内心 BOC : S COA :S AOB ■ a:b:c a ?OA b?oB c?oC 0 0是ABC的外心 S BOC : S COA :S AOB sin 2A:sin 2B :sin 2C sin 2A?OA sin2B ?O B sin2C ?OC 0 O是ABC的垂心 S BOC : S COA : S AOB tan A: tan B: tanC tan A?OA tan B?OB tan C ?OC 0 tanA 竺,tanB AD CD DB tan A: tanB DB: AD S BOC : S COA DB: AD S BOC : S COA tan A:tan B 同理得S COA : S AOB tan B :tanC, S BOC:S AOB tan A:tanC S BOC : S COA : S AOB tan A: tan B : tanC 奔驰定理是三角形四心向量式的完美统 证明:如图0为三角形的垂心,

三角函数及解三角形测试题(含答案)

三角函数及解三角形 一、选择题: 1.设α是锐角,223)4 tan(,+=+απ 则=αcos ( ) 2.一船向正北航行,看见正西方向有相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°,另一灯塔在船的南偏西75°,则这艘船的速度是每小时( A ) A .5海里 B .53海里 C .10海里 D .103海里 3.若函数)0(sin )(>=ωωx x f 在区间??????3,0π上单调递增,在区间??? ???2,3ππ上单调递减,则=ω( ) A .3 B .2 4.已知函数)(),0(cos sin 3)(x f y x x x f =>+=ωωω的图象与直线2=y 的两个相邻交点的距 离 等 于 , π则 ) (x f 的单调递增区间是 ( ) A.Z k k k ∈????? ?+ - ,125,12 πππ π B. Z k k k ∈????? ? ++,1211,125ππππ C. Z k k k ∈?? ??? ?+-,6,3 ππππ D.[Z k k k ∈?? ??? ? ++,32,6 ππππ 5.圆的半径为c b a ,,,4为该圆的内接三角形的三边,若,216=abc 则三角形的面积为

( ) 2 2 C. 2 D. 22 6.已知5 4cos -=α且,,2 ? ? ? ??∈ππα则?? ? ? ? +4tan πα等于( C ) A .-17 B .-7 C .1 7 D .7 7.锐角三角形ABC 中c b a ,,,分别是三内角C B A ,,的对边设,2A B =则a b 的取值范围是( D ) A .(﹣2,2) B .(0,2) C .( ,2) D .( , ) 8.已知函数y =A sin(ωx +φ)+m (A >0,ω>0)的最大值为4,最小值为0,最小正周期为π2,直线x =π 3 是其图象的一条对称轴,则符合条件的函数解析式是(D ) A .y =4sin ? ????4x +π6 B .y =2sin ? ????2x +π3+2 C .y =2sin ? ???? 4x +π3+2 D .y =2sin ? ???? 4x +π6+2 9.函数)3 2sin(π+=x y 的图象经怎样平移后所得的图象关于点)0,12 (π - 成中心对称 ( ) A.向左平移 12π B.向左平移6π C.向右平移6π D.向右平移12 π 10.如果函数x a x y 2cos 2sin +=的图象关于直线6 π -=x 对称,那么=a ( )

讲义平面向量与三角形四心的交汇

讲义---平面向量与三角形四心的交汇 一、四心的概念介绍 (1)重心——中线的交点:重心将中线长度分成2:1; (2)垂心——高线的交点:高线与对应边垂直; (3)内心——角平分线的交点(内切圆的圆心):角平分线上的任意点到角两边的距离相等; (4)外心——中垂线的交点(外接圆的圆心):外心到三角形各顶点的距离相等。 二、四心与向量的结合 (1)?=++0OC OB OA O 是ABC ?的重心. 证法1:设),(),,(),,(),,(332211y x C y x B y x A y x O ?=++???=-+-+-=-+-+-0)()()(0)()()(321321y y y y y y x x x x x x ??? ????++=++=?33 321 321y y y y x x x x ?O 是ABC ?的重心. 证法2:如图 ++ 02=+=OD OA ∴OD AO 2= ∴D O A 、、三点共线,且O 分AD 为2:1 ∴O 是ABC ?的重心 (2)??=?=?OA OC OC OB OB OA O 为ABC ?的垂心. 证明:如图所示O 是三角形ABC 的垂心,BE 垂直AC ,AD 垂直BC , D 、E 是垂足.0)(=?=-??=?CA OB OC OA OB OC OB OB OA ⊥? 同理BC OA ⊥,AB OC ⊥ ?O 为ABC ?的垂心 (3)设a ,b ,c 是三角形的三条边长,O 是?ABC 的内心 O c b a ?=++为ABC ?的内心. 证明:b AC c AB 、 分别为 AC AB 、方向上的单位向量, ∴ b c +平分BAC ∠, ( λ=∴b c +),令c b a bc ++= λ B C D

平面向量与三角形四心问题

平面向量基本定理与三角形四心 已知O 是ABC ?内的一点,AOB AOC BOC ???,,的面积分别为A S ,B S ,C S ,求证: 0=++???OC S OB S OA S C B A 如图2延长OA 与BC 边相交于点D 则 B C COD ACD BOD ABD COD BOD ACD BD S S DC BD S S S S S S S S A =--===??????? 图1 = OD BC DC OB +BC BD OC =C B B S S S +OB +C B C S S S +OC C B A COA BOA COD BOD COA COD BOA BOD S S S S S S S S S S S OA OD +=++== = 图2 ∴ C B A S S S OD +- =OA ∴C B A S S S +- OA = C B B S S S +OB +C B C S S S +OC ∴0=++???OC S OB S OA S C B A 推论O 是ABC ?内的一点,且 0=++???OC OB OA z y x ,则 z y x S S S AOB COA BOC ::::=??? O A B C D O A B C

有此定理可得三角形四心向量式 O 是ABC ?的重心 ?1:1:1::=???AOB COA BOC S S S ?0=++OC OB OA O 是ABC ?的内心 ?c b a S S S AOB COA BOC ::::=????0=++???OC OB OA c b a O 是ABC ?的外心 ?C B A S S S AOB COA BOC 2sin :2sin :2sin ::=??? ?02sin 2sin 2sin =++???OC C OB B OA A O 是ABC ?的垂心 ?C B A S S S AOB COA BOC tan :tan :tan ::=??? ?0tan tan tan =++???OC C OB B OA A 证明:如图O 为三角形的垂心,DB CD B AD CD A == tan ,tan ?AD DB B A :tan :tan = =??COA BOC S S :AD DB : ∴B A S S COA BOC tan :tan :=?? 同理得C B S S AOB COA tan :tan :=??,C A S S AOB BOC tan :tan :=?? ∴C B A S S S AOB COA BOC tan :tan :tan ::=??? 奔驰定理是三角形四心向量式的完美统一

三角函数与解三角形 专题复习

专题一 三角函数与解三角形 一、任意角、弧度制及任意角的三角函数 1、弧度制的定义与公式: 定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角. 弧度记作rad. 公式角错误!未找到引用源。的弧度数公式 r 角度与弧度的换算 错误!未找到引用源。 ①rad 180 1 ② 错误!未找到引用源。 弧长公式 扇形面积公式 2 第一定义:设错误!未找到引用源。是任意角,它的终边与单位圆交于点P(x,y),则错误!未找到引用源。 第二定义:设错误!未找到引用源。是任意角,它的终边上的任意一点P(x,y),则错误!未找到引用源。. 考点1 三角函数定义的应用 例1 .已知角 的终边在直线043 y x 上,则 tan 4cos 5sin 5 . 变式:(1)已知角 的终边过点)30sin 6,8( m P ,且5 4 cos ,则m 的值为 . (2)在直角坐标系中,O 是原点,A (3,1),将点A 绕O 逆时针旋转90°到B 点,则B 点坐标为__________. (3)4tan 3cos 2sin 的值( ) A .小于0 B .大于0 C .等于0 D .不存在 考点2 扇形弧长、面积公式的应用 例2.已知扇形的半径为10cm,圆心角为 120,则扇形的弧长为 面积为 . 变式:已知在半径为10的圆O 中,弦AB 的长为10,则弦AB 所对的圆心角 的大小为 , 所在的扇形弧长 为 ,弧所在的弓形的面积S 为 . 二、同角三角函数的基本关系及诱导公式 1、1cos sin 2 2 cos sin tan

例1.已知 是三角形的角,且.5 cos sin (1)求 tan 的值; (2)把 2 2sin cos 1 用 tan 表示出来,并求其值. 变式:1、已知 是三角函数的角,且3 1 tan ,求 cos sin 的值. 2、已知.3 4tan (1)求 cos 2sin 5cos 4sin 的值;(2)求 cos sin 2sin 2 的值. 3.若cos α+2sin α=-5,则tan α=________.

(完整版)平面向量与三角形四心问题

平面向量基本定理与三角形四心 已知0是 ABC 内的一点, BOC, AOC, AOB 的面积分别为 S A , S B , S C ,求证: S A ?0A S B ?0B S C ?0C 0 0D 罟0B 誥0C 0D S B0D S C0D S B0D S C0D S A 0A S B0A E OA S B0A S C0A S B S C 0D S B S C S A ?0A S B ?0B S C ?0C 0 推论o 是ABC 内的一点,且 x ?0A y ?0B z ?0c 0,则 S B0C : S C0A : S A0B X : y : z 如图2延长0A 与BC 边相交于点D 则 BD DC S A BD S B0D S ABD S B0D S ACD S C0D S ACD S C0D S C S 鱼 0B 生 0C S B S C S B S C 0A oA S B S B S C S B S C 0B 二0C

有此定理可得三角形四心向量式 O是ABC的重心 S BOC : S COA : S AOB 1:1:1 O A OB O C 0 是 S ABC的内心 BOC : S COA :S AOB ■ a:b:c a ?OA b?oB c?oC 0 0是ABC的外心 S BOC : S COA :S AOB sin 2A:sin 2B :sin 2C sin 2A?OA sin2B ?O B sin2C ?OC 0 O是ABC的垂心 S BOC : S COA : S AOB tan A: tan B: tanC tan A?OA tan B?OB tan C ?OC 0 tanA 竺,tanB AD CD DB tan A: tanB DB: AD S BOC : S COA DB: AD S BOC : S COA tan A:tan B 同理得S COA : S AOB tan B :tanC, S BOC:S AOB tan A:tanC S BOC : S COA : S AOB tan A: tan B : tanC 奔驰定理是三角形四心向量式的完美统 证明:如图0为三角形的垂心,

三角函数与解三角形知识点总结

1. 任意角的三角函数的定义:设α是任意一个角,P (,)x y 是α的终边上的任意一点(异 于原点),它与原点的距离是 0r =>,那么 sin ,cos y x r r αα= =, () tan ,0y x x α=≠ 三角函数值只与角的大小有关,而与终边上点P 的位置无关。 2.三角函数在各象限的符号: (一全二正弦,三切四余弦) + + - + - + - - - + + - sin α cos α tan α 3. 同角三角函数的基本关系式: (1)平方关系: 22221sin cos 1,1tan cos αααα+=+= (2)商数关系: sin tan cos α αα= (用于切化弦) ※平方关系一般为隐含条件,直接运用。注意“1”的代换 4.三角函数的诱导公式 诱导公式(把角写成α π±2k 形式,利用口诀:奇变偶不变,符号看象限) Ⅰ)?????=+=+=+x x k x x k x x k tan )2tan(cos )2cos(sin )2sin(πππ Ⅱ)?????-=-=--=-x x x x x x tan )tan(cos )cos(sin )sin( Ⅲ) ?????=+-=+-=+x x x x x x tan )tan(cos )cos(sin )sin(πππ Ⅳ)?????-=--=-=-x x x x x x tan )tan(cos )cos(sin )sin(πππ Ⅴ)???????=-=-ααπααπsin )2cos(cos )2sin( Ⅵ)???????-=+=+ααπααπsin )2cos(cos )2sin(

向量与三角形四心的一些结论

【一些结论】:以下皆是向量 1 若P是△ABC的重心PA+PB+PC=0 2 若P是△ABC的垂心PA?PB=PB?PC=PA?PC(内积) 3 若P是△ABC的内心aPA+bPB+cPC=0(abc是三边) 4 若P是△ABC的外心|PA|2=|PB|2=|PC|2(AP就表示AP向量|AP|就是它的模) 5 AP=λ(AB/|AB|+AC/|AC|),λ∈[0,+∞) 则直线AP经过△ABC内心 6 AP=λ(AB/|AB|cosB+AC/|AC|cosC),λ∈[0,+∞) 经过垂心 7 AP=λ(AB/|AB|sinB+AC/|AC|sinC),λ∈[0,+∞)或AP=λ(AB+AC),λ∈[0,+ ∞) 经过重心 8.若aOA=bOB+cOC,则0为∠A的旁心,∠A及∠B,C的外角平分线的交点 【以下是一些结论的有关证明】 1.O是三角形内心的充要条件是aOA向量+bOB向量+cOC向量=0向量充分性:已知aOA向量+bOB向量+cOC向量=0向量,延长CO交AB于D,根据向量加法得:OA=OD+DA,OB=OD+DB,代入已知得:a(OD+DA)+b(OD+DB) +cOC=0,因为OD与OC共线,所以可设OD=kOC,上式可化为(ka+kb+c) OC+( aDA+bDB)=0向量,向量DA与DB共线,向量OC与向量DA、DB不共线,所以只能有:ka+kb+c=0,aDA+bDB=0向量,由aDA+bDB=0向量可知:DA与DB的长度之比为b/a,所以CD为∠ACB的平分线,同理可证其它的两条也是角平分线。必要性:已知O是三角形内心,设BO与AC相交于E,CO与

三角函数及解三角形知识点总结

三角函数及解三角形知识点 总结 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

1. 任意角的三角函数的定义:设α是任意一个角,P (,)x y 是α的终边上的任意 一点(异于原点),它与原点的距离是0r =>,那么 sin ,cos y x r r αα= =,()tan ,0y x x α=≠ 三角函数值只与角的大小有关,而与终边上点P 的位置无关。 2.三角函数在各象限的符号: (一全二正弦,三切四余弦) + + - + - + - - - + + - sin α cos α tan α 3. 同角三角函数的基本关系式: (1)平方关系:22221 sin cos 1,1tan cos αααα +=+= (2)商数关系:sin tan cos α αα = (用于切化弦) ※平方关系一般为隐含条件,直接运用。注意“1”的代换 4.三角函数的诱导公式 诱导公式(把角写成 απ ±2 k 形式,利用口诀:奇变偶不变,符号看象限) Ⅰ)??? ??=+=+=+x x k x x k x x k tan )2tan(cos )2cos(sin )2sin(πππ Ⅱ)?????-=-=--=-x x x x x x tan )tan(cos )cos(sin )sin( Ⅲ) ?? ???=+-=+-=+x x x x x x tan )tan(cos )cos(sin )sin(πππ Ⅳ)?????-=--=-=-x x x x x x tan )tan(cos )cos(sin )sin(πππ Ⅴ)???????=-=-ααπααπsin )2cos(cos )2sin( Ⅵ)??? ????-=+=+α απααπsin )2cos(cos )2sin(

高三数学解三角形,平面向量与三角形的综合练习

解三角形,平面向量与三角形的综合练习 一、填空题 1.若角α的终边经过点(12)P -,,则tan 2α的值为______________. 2.已知向量a 与b 的夹角为120o ,且4==a b ,那么g a b 的值为________. 3.已知向量)3,1(=,)0,2(-=,则b a +=_____________________. 4. )6cos()(π ω-=x x f 最小正周期为5π ,其中0>ω,则=ω 5.b a ρ?,的夹角为ο 120,1,3a b ==r r ,则5a b -=r r 6.若BC AC AB 2,2= =,则ABC S ?的最大值 7.设02x π?? ∈ ??? ,,则函数22sin 1sin 2x y x +=的最小值为 . 8.设向量(12)(23)==,,,a b ,若向量λ+a b 与向量(47)=--,c 共线,则=λ . 9.若向量a r ,b r 满足1 2a b ==r r ,且a r 与b r 的夹角为3 π,则a b +=r r . 10.若3 sin()25 πθ+=,则cos2θ=_________。 11.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若 ( ) C a A c b cos cos 3=-, 则=A cos 。 12已知a r 是平面内的单位向量,若向量b r 满足()0b a b -=r r r g ,则||b r 的取值范围是 。 13..在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,已知3,30,a b c ===? 则A = . 14. 关于平面向量,,a b c .有下列三个命题: ①若g g a b =a c ,则=b c .②若(1)(26)k ==-,,,a b ,∥a b ,则3k =-. ③非零向量a 和b 满足||||||==-a b a b ,则a 与+a b 的夹角为60o . 其中真命题的序号为 .(写出所有真命题的序号) 三、解答题 1.已知函数()cos(2)2sin()sin()344 f x x x x π ππ =- +-+ (Ⅰ)求函数()f x 的最小正周期和图象的对称轴方程

专题 三角函数及解三角形(解析版)

专题 三角函数及解三角形 1.【2019年高考全国Ⅰ卷理数】函数f (x )= 在[,]-ππ的图像大致为 A . B . C . D . 2.【2019年高考全国Ⅰ卷理数】关于函数()sin |||sin |f x x x =+有下述四个结论: ①f (x )是偶函数 ②f (x )在区间( 2 π,π)单调递增 ③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2 其中所有正确结论的编号是 A .①②④ B .②④ C .①④ D .①③ 3.【2019年高考全国Ⅱ卷理数】下列函数中,以2 π为周期且在区间( 4 π, 2 π)单调递增的是 A .f (x )=|cos2x | B .f (x )=|sin2x | C .f (x )=cos|x | D .f (x )=sin|x | 4.【2019年高考全国Ⅱ卷理数】已知α∈(0, 2 π),2sin2α=cos2α+1,则sin α= A . 15 B . 5 C 3 D 5 5.【2019年高考全国Ⅲ卷理数】设函数()f x =sin (5 x ωπ + )(ω>0),已知()f x 在[]0,2π有且仅有5个零点,下述四个结论: ①()f x 在(0,2π)有且仅有3个极大值点 ②()f x 在(0,2π)有且仅有2个极小值点 2 sin cos ++x x x x

③()f x 在(0, 10 π )单调递增 ④ω的取值范围是[1229 510 ,) 其中所有正确结论的编号是 A .①④ B .②③ C .①②③ D .①③④ 6.【2019年高考天津卷理数】已知函数()sin()(0,0,||)f x A x A ω?ω?=+>><π是奇函数,将()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为()g x .若()g x 的最小正周期为2π ,且4g π?? = ???38f π??= ??? A .2- B . C D .2 7.【2019年高考北京卷理数】函数f (x )=sin 22x 的最小正周期是__________. 8.【2019年高考全国Ⅱ卷理数】ABC △的内角,,A B C 的对边分别为,,a b c .若π 6,2,3 b a c B === ,则ABC △的面积为_________. 9.【2019年高考江苏卷】已知 tan 2π3tan 4αα=-??+ ?? ?,则πsin 24α? ?+ ???的值是 ▲ . 10.【2019年高考浙江卷】在ABC △中,90ABC ∠=?,4AB =,3BC =,点D 在线段AC 上,若 45BDC ∠=?,则BD =___________,cos ABD ∠=___________. 11.【2019年高考全国Ⅰ卷理数】ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,设 22(sin sin )sin sin sin B C A B C -=-. (1)求A ; (2 2b c +=,求sin C . 12.【2019年高考全国Ⅲ卷理数】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin sin 2 A C a b A +=. (1)求B ;

相关主题