搜档网
当前位置:搜档网 › 大型轴流风机各类振动原因分析及处理措施

大型轴流风机各类振动原因分析及处理措施

大型轴流风机各类振动原因分析及处理措施
大型轴流风机各类振动原因分析及处理措施

大型轴流风机各类振动原因分析及处理措施

轴流风机以其流量大、启动力矩小、对风道系统变化适应性强的优势逐步取

代离心风机成为主流。轴流风机有动叶和静叶2种调节方式。动叶可调轴流风机通过改变做功叶片的角度来改变工况,没有截流损失,效率高,还可以避免在小流量工况下出现不稳定现象,但其结构复杂,对调节装置稳定性及可靠性要求较高,对制造精度要求也较高,易出现故障,所以一般只用于送风机及一次风机。静叶可调轴流风机通过改变流通面积和入口气流导向的方式来改变工况,有截流损失,但其结构简单,调节机构故障率很低,所以一般用于工作环境恶劣的引风机。

随着轴流风机的广泛应用,与其结构特点相对应的振动问题也逐步暴露,这些问题在离心式风机上则不存在或不常见。本文通过总结各种轴流风机异常振动故障案例,对其中一些有特点的振动及其产生的原因进行汇总分析。

一、动叶调节结构导致振动

动叶可调轴流风机通过在线调节动叶开度来改变风机运行工况,这主要依赖轮毂里的液压调节控制机构来实现,各个叶片角度的调节涉及到一系列的调节部件,因而对各部件的安装、配合及部件本身的变形、磨损要求较高,液压动叶调节系统结构如图1所示。动叶调节结构对振动的影响主要分单级叶轮的部分叶片开度不同步、两级叶轮的叶片开度不同步及调节部件本身偏心3个方面。

(一)单级叶轮部分叶片开度不同步

单级叶轮部分叶片开度不同步主要是由于滑块磨损、调节杆与曲柄配合松动、叶柄导向轴承及推力轴承转动不畅引起的。这些部件均为液压缸到动叶片之间的传动配合部件,会导致部分风机叶片开度不到位,而风机叶片重量及安装半径均较大,部分风机叶片开度不一致会产生质量严重不平衡,导致风机在高转速下出现明显振动。

单级叶轮部分叶片开度不同步引起的振动主要特点如下:

1)振动频谱和普通质量均不平衡,振动故障频谱中主要为工频成分,同时部分叶片不同步会产生一定的气流脉动,使振动频谱中出现叶片通过频率及其谐波,部分部件的磨损及松动则会产生一定的非线性冲击,使振动频谱中出现工频高

次谐波成分,这在振速频谱中表现得相对明显一些,在位移频谱中几乎观察不到。

2)风机振幅不稳定,振幅变化主要发生在动叶开度调节过程中,在动叶开度稳定时振幅基本保持稳定,有时会随动叶开度变化而逐步变化。

3)刚升速至工作转速、风机动叶未开或开度较小时,风机振幅一般较小。(二)两级叶轮叶片开度不同步

对两级动叶可调轴流风机而言,还存在两级叶轮叶片开度不同步的问题。其原因主要是液压执行机构铜套磨损或者两级推力盘问连杆磨损变形。连杆主要用于同步一、二级推力盘之间的轴向位移,连杆的磨损变形会导致两级推力盘间位移不同步,从而导致两级动叶开度变化不同步。液压缸铜套的磨损、局部开裂、变形及中心轴间隙变大则会导致两级动叶的开度调节整体不到位,从而使两级动叶开度不一致。

由于单个叶轮的所有叶片开度均同步,所以并不会明显影响转子的动平衡情况,因此,其振动故障频谱中工频占比一般相对较小,主要是产生较大的叶片通过频率,在松动严重的情况下还会出现工频高次谐波成分。振幅一般在某个特定负荷(动叶开度)下存在最大值,且振幅出现波动,其中工频和叶片通过频率均出现波动变化,而在其他负荷或未带负荷时振幅则相对较小。(三)调节部件偏心

调节部件偏心主要指质量较大的调节部件的安装偏心、松动,由于质量较大,当其旋转中心与转子中心发生偏斜时,将会产生较大的质量不平衡,而由松动导致的偏心也会产生质量不平衡。对于动叶可调轴流风机而言,主要指液压缸的安装偏心及松动。如果仅是液压缸安装偏心,而紧力足够,则只会导致质量分布的改变,风机转子会出现单纯的质量不平衡故障,故障频谱主要为稳定的工频成分,每次启机定速后振动值均比较稳定,不会随负荷工况发生变化。如果是由于液压缸安装时紧力不足导致的松动,则会产生不稳定的质量不平衡,每次停机后再次启机,由于离心力的变化,液压缸的位置会发生改变,致使每次启机的振动数据均不一致,振动主要以工频为主,在转速不变时振动则比较稳定。对于此类故障,由于单次定速后振动很稳定,容易与原始质量不平衡混淆,导致无谓的反复动平衡。

二、气流脉动导致振动

气流脉动是普遍存在的气流分离与蜗流发展的产物。对于轴流风机,除去原设计及后期改造中进出口流道、挡板等通流结构设计不合理导致的流体脉动外,在运轴流风机出现流体脉动的原因如下:

1)静叶可调轴流风机叶片开度的冗余度较大,低负荷下静叶开度的变化容易导致风机工作点落入不稳定运行区域,产生流体脉动甚至喘振,引起强烈振动。

2)因焊接刚度、局部应力、腐蚀或异物进入,导致风机动叶片及导叶严重磨损甚至局部脱落,引起流体脉动。

3)因风机进口流道挡板异常、异物堵塞等原因,导致系统阻力增加,流量不足,引起流体脉动、失速甚至喘振。

现场实际测试数据显示,上述几种流体脉动引起的风机振动现象及特征相似,主要包括以下几点。

1)气流脉动多引起风机机壳、进出口管道及机壳基础振动,对轴承及转子机械振动的影响较小,起振频率主要为与转子主频无关的低频成分。

2)当动叶或静叶磨损、破裂产生气流脉动时,其气流脉动会与机械振动相耦合,此时气流脉动故障频率中会出现较大的叶片通过频率及其谐波,且轴承及转子也会出现故障频率。

3)气流脉动除引起风机振动变化外,还会引起风机电流、流量不稳,甚至大幅波动,导致并联运行的2台风机在同等风量下电流差异较大,现场有明显气流噪音。

三、支撑动刚度弱及局部共振导致振动

大容量轴流风机相比于离心风机,其自重、外形尺寸均较大,支撑连接构件也较多,因设计刚度薄弱、连接松动、局部共振所带来的振动问题也更多、更加难以判别。

(一)设计支撑动刚度较弱

大容量轴流风机重量、外形尺寸增加较多,而支撑材料往往比较薄弱。风机多采用3水泥座支撑方式,即进气箱支腿、下机壳支腿、扩散筒支腿分别支撑在3个水泥座上,每个水泥基座高度较高,横截面积不足,横向刚度较差,易引起较大的风机横向振动,尤其在风机负荷较高时,风机转子传递到基座上的作用力增大,振幅则更大。

在没有异常激振源的情况下,设计支撑结构刚度弱导致的振动主要以工频为主。支撑结构的基础、支腿、壳体振幅较接近,且由上到下均匀减小,但支撑结构整体振动较大,主要表现在水平方向,而垂直及轴向振动一般较小。一般通过动平衡或者加固支撑基础,可降低转子激振力,从而降低风机振动水平。

(二)连接松动

轴流风机壳体下部通过支腿与水泥基座连接,左右通过一圈螺栓与进气箱、扩散筒连接,上、下半筒之间通过两排螺栓连接,轴承座固定在下半壳体上。由于轴流风机壳体连接部位较多,在长期运行中易出现紧力不足、连接松动的情况,而且部分轴流风机连接松动引起的振动会非常大,尤其是壳体共振频率与工作转速较为接近时,连接松动往往导致壳体固有频谱偏移,产生共振,振动被进一步放大。如风机壳体与左右风道壳体连接螺栓出现局部松动时,壳体振幅可以放大1倍多,而壳体松动产生共振时,甚至可以出现1个数量级的振动差别,部分大容量机组的轴流风机下支撑采用弹簧基础,长时间运行后,出现基础沉降不均,也会导致支撑动刚度明显不足,产生明显振动。

风机连接松动引起支撑动刚度弱产生的振动,一般采用现场紧固排除。此类振动以工频为主,随负荷变化有一定波动,松动接触面差异振动明显,一般应首先紧固各连接面螺栓,有滑动支腿的则紧固、垫实支腿,然后测试各接触面振动的差异,并对比其紧固前后的振动情况,以排查是否存在连接松动问题。

(三)局部共振

由于轴流风机的结构特点,其在转速频率及叶片通过频率附近的固有频率较大,很容易产生局部共振。如风机各支腿、上下壳体、支撑板、叶片等均有1到几个固有频率,有些叶片通过频率与风机常见的故障频率非常接近,很容易引起局部共振。

对于此类振动问题,现场很难大幅改变各结构固有频率,一般是在紧固各连接面,排除因连接松动导致的共振后,通过减小激振力来降低振动水平。如采用动平衡降低工频激振力,或对叶片开度一致性、叶片不均匀磨损情况等进行检查处理,减小叶片通过频率的激振力。

四、振动故障处理建议

1)在处理大容量轴流风机异常振动时,除常规的故障频率分析外,还应分析振动的变化特点,如振动随时间、负荷、开度、环境温度等的变化情况,升降速、刚定速及带负荷下的振动情况,现场连接部件差异振动、松紧螺栓振动的测试情况。

2)2次动平衡振动规律差异较大时,应去掉前期所加平衡块,测试2次启机后振动的重合性,找出其本身振动变化的原因。

3)动叶可调轴流风机液压调节结构故障的原因很多,在发现振动与叶片开度关联较大,且出现明显叶片通过频率或工频谐波时,应重点排查液压调节结构松动、磨损等缺陷。

柴油机涡轮增压器喘振的分析及排除

大连交通大学成人教育学院 毕业论文(设计) 题目柴油机涡轮增压器喘振的原因分析及排除铁道机车车辆专业 学生姓名刘杨班级 指导老师职称(务) 指导单位 教研室主任 完成日期年月日

大连交通大学成人教育学院 毕业论文(设计)评阅书 学生姓名刘杨班级 题目柴油机涡轮增压器喘振的原因分析及排除 指导老师职称(务) 指导单位 教研室主任 1.指导教师评语: 签名: 2.答辩委员会综合评语: 经毕业(论文)设计答辩委员会综合评定成绩为: 答辩委员会主任(签字): 年月日

大连交通大学成人教育学院 毕业论文(设计) 题目柴油机涡轮增压器喘振的原因分析及排除 起止日期年月日至年月日 学生姓名刘杨班级 指导老师职称(务) 指导单位 教研室主任 日期年月日

任务及要求 1.在查阅分析资料的基础上确定论文研究的主要内容及论文提纲 2.对我国铁路东风型内燃机车废气涡轮增压器喘振的原因进行分析 3.探讨影响我国铁路东风型内燃机车废气涡轮增压器喘振的具体原因及消除方法 4.提出消除东风型内燃机车废气涡轮增压器喘振的几点建议 5.论文要求内容详实、论据充分、条例清楚、结构严谨、有独立见解、有所创新,论文符合《大连交通大学成人教育学院毕业设计的要求》。

毕业设计(论文)内容 计:说明书(论文)16页表格 0 张插图 0 幅附设计图 0 张 完成日期年月日

摘要 增压是提高柴油机功率最主要、最有效的途径,随着增压压力的提高,柴油机的功率成比例提高,因此增压器一旦工作异常或发生故障对柴油机的工作性能影响很大。经调查发现,增压器故障在柴油机故障中所占比例正在逐年增大,而其中又以增压器的喘振最为常见,且危害巨大。本文即深入分析柴油机涡轮增压器的喘振故障,又对增压器的特性进行探讨,并且对增压器与柴油机的配合进行讨论,进而深入分析增压器喘振故障的理论原因,并给出一些实际情况中引起喘振的具体因素和相应的预防、排除方法。 关键词:柴油机涡轮增压器喘振分析排除

大型轴流风机各类振动原因分析及处理措施精编版

大型轴流风机各类振动原因分析及处理措施 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

大型轴流风机各类振动原因分析及处理措施 轴流风机以其流量大、启动力矩小、对风道系统变化适应性强的优势逐步取代离心风机成为主流。轴流风机有动叶和静叶2种调节方式。动叶可调轴流风机通过改变做功叶片的角度来改变工况,没有截流损失,效率高,还可以避免在小流量工况下出现不稳定现象,但其结构复杂,对调节装置稳定性及可靠性要求较高,对制造精度要求也较高,易出现故障,所以一般只用于送风机及一次风机。静叶可调轴流风机通过改变流通面积和入口气流导向的方式来改变工况,有截流损失,但其结构简单,调节机构故障率很低,所以一般用于工作环境恶劣的引风机。 随着轴流风机的广泛应用,与其结构特点相对应的振动问题也逐步暴露,这些问题在离心式风机上则不存在或不常见。本文通过总结各种轴流风机异常振动故障案例,对其中一些有特点的振动及其产生的原因进行汇总分析。 一、动叶调节结构导致振动 动叶可调轴流风机通过在线调节动叶开度来改变风机运行工况,这主要依赖轮毂里的液压调节控制机构来实现,各个叶片角度的调节涉及到一系列的调节部件,因而对各部件的安装、配合及部件本身的变形、磨损要求较高,液压动叶调节系统结构如图1所示。动叶调节结构对振动的影响主要分单级叶轮的部分叶片开度不同步、两级叶轮的叶片开度不同步及调节部件本身偏心3个方面。 (一)单级叶轮部分叶片开度不同步 单级叶轮部分叶片开度不同步主要是由于滑块磨损、调节杆与曲柄配合松动、叶柄导向轴承及推力轴承转动不畅引起的。这些部件均为液压缸到动叶片之间的传动配合部件,会导致部分风机叶片开度不到位,而风机叶片重量及安装半径均较大,部分风机叶片开度不一致会产生质量严重不平衡,导致风机在高转速下出现明显振动。 单级叶轮部分叶片开度不同步引起的振动主要特点如下: 1)振动频谱和普通质量均不平衡,振动故障频谱中主要为工频成分,同时部分叶片不同步会产生一定的气流脉动,使振动频谱中出现叶片通过频率及其谐波,部分部件的磨损及松动则会产生一定的非线性冲

DFBZ方形壁式轴流风机

DFBZ-I 型方形壁式轴流风机 详细说明 机号:2.5#-6.3# 风量:600-9000m3/h 全压:40-147Pa 特点:采用内转子电机直联传动,安装方便牢固、振动小、噪声低、运行平稳,出风口装自垂百叶,可防室外自然风、雨水倒灌 应用:工矿企业、民用建筑、体育馆、畜牧业、各种娱乐场所的壁式排风 您现在的位置: 山东玻璃钢金光集团有限公司 > 供应信息 > 轴流风机 T35-11轴流风机

详细说明 T35-11型玻璃钢轴流风机,是国家机械委员会推广使用的一种高效低压通风机,该机耗电量低噪音小,并具有优良的耐腐蚀等特点。可用于工业厂房,机械制造,化工,印染,电镀,医药等行业。T35-11型轴流风机,以叶轮直径的大小为NO;2。8,NO3。15,NO3。55,NO4,NO4。5,NO5,NO5。6,NO6。3,NO7。1,NO8,NO9,NO1O,NO11。2,共十二种型号,每一种型号的叶片都为4或着6片。叶片又可装成15。20。25。30。35。等角度,因此。每一种机号由于叶片角度的大小,主轴转速快慢的不同,风机的风压,风量及所消耗的功率也不同,具体详见性能表。 机号转速R/MIN 风量M3/H 全压PA 电机型号功率KW 2.8 2900 1649 152.0 YSF-5622 0.12 2.8 2900 2167 168.6 YSF-5632 0.18 2,8 2900 2685 173.5 YSF-5632 0.18 2.8 2900 2912 186.2 YSF-5632 0.18 2.8 2900 3202 232.3 YSF-6322 0.25 2.8 1450 826 38.2 YSF-5014 0.025 2.8 1450 1086 43.1 YSF-5014 0.025 2.8 1450 1346 44.1 YSF-5014 0.025 2.8 1450 1464 48.0 YSF-5024 0.040 2.8 1450 1605 59.8 YSF-5024 0.040 3.15 2900 2339 192 YSF-6312 0.18 3.15 2900 3074 213.6 YSF-6322 0.25 3.15 2900 3810 219.5 YS-F6332 0.37 侧壁、吸顶排风? DFBZ型方形壁式轴流风机

电机振动噪音的原因及解决措施

电机振动噪音的原因及解决措施 电机振动噪音的原因及解决措施一般评估电动机的品质除了运转时之各特性外,以人之五感判断电机振动及电机振动噪音的情形较多。而电动机产生的电机振动电机振动噪音,主要有: 1、机械电机振动电机振动噪音,为转子的不平衡重量,产生相当转数的电机振动。 2、电动机轴承的转动,正常的情形产生自然音,精密小型电动机或高速电动机情形以外,几乎不会有问题。但轴承自然的电机振动与电动机构成部材料的共振,轴承的轴方向弹簧常数使转子的轴方向电机振动,润滑不良产生摩擦音等问题产生。 3、电刷滑动,具有电刷的DC电动机或整流子电动机,会产生电刷的电机振动噪音。 4、流体电机振动噪音,风扇或转子引起通风电机振动噪音对电动机很难避免,很多情形左右电动机整体的电机振动噪音,除风扇的叶片或铁心的齿引起气笛音外,也有必要注意通风上的共鸣。 5、电磁的电机振动噪音,为磁路的不平衡或不平衡磁力及气隙的电磁力波产生之电机振动噪音,又磁通密度饱和或气隙偏心引起磁的电机振动噪音。一、机械性电机振动的产生原因与对策 1、转子的不平衡电机振动 A、原因: ·制造时的残留不平衡。

·长期间运转产生尘埃的多量附着。 ·运转时热应力引起轴弯曲。 ·转子配件的热位移引起不平衡载重。 ·转子配件的离心力引起变形或偏心。 ·外力(皮带、齿轮、直结不良等)引起轴弯曲。 ·轴承的装置不良(轴的精度或锁紧)引起轴弯曲或轴承的内部变形。 B、对策: ·抑制转子不平衡量。 ·维护到容许不平衡量以内。 ·轴与铁心过度紧配的改善。 ·对热膨胀的异方性,设计改善。 ·强度设计或装配的改善。 ·轴强度设计的修正,轴联结器的种类变更以及直结对中心的修正。 ·轴承端面与轴附段部或锁紧螺帽的防止偏靠。 2、轴承之异常电机振动与电机振动噪音 A、原因: ·轴承内部的伤。 ·轴承的轴方向异常电机振动,轴方向弹簧常数与转子质量组成电机振动系统的激振。

大型轴流风机各类振动原因分析及处理措施

大型轴流风机各类振动原因分析及处理措施 轴流风机以其流量大、启动力矩小、对风道系统变化适应性强的优势逐步取 代离心风机成为主流。轴流风机有动叶和静叶2种调节方式。动叶可调轴流风机通过改变做功叶片的角度来改变工况,没有截流损失,效率高,还可以避免在小流量工况下出现不稳定现象,但其结构复杂,对调节装置稳定性及可靠性要求较高,对制造精度要求也较高,易出现故障,所以一般只用于送风机及一次风机。静叶可调轴流风机通过改变流通面积和入口气流导向的方式来改变工况,有截流损失,但其结构简单,调节机构故障率很低,所以一般用于工作环境恶劣的引风机。 随着轴流风机的广泛应用,与其结构特点相对应的振动问题也逐步暴 露,这些问题在离心式风机上则不存在或不常见。本文通过总结各种轴流风机异常振动故障案例,对其中一些有特点的振动及其产生的原因进行汇总分析。 一、动叶调节结构导致振动 动叶可调轴流风机通过在线调节动叶开度来改变风机运行工况,这主要依赖轮毂里的液压调节控制机构来实现,各个叶片角度的调节涉及到一系列的调节部件,因而对各部件的安装、配合及部件本身的变形、磨损要求较高,液压动叶调节系统结构如图1所示。动叶调节结构对振动的影响主要分单级叶轮的部分叶片开度不同步、两级叶轮的叶片开度不同步及调节部件本身偏心3个方面。 (一)单级叶轮部分叶片开度不同步 单级叶轮部分叶片开度不同步主要是由于滑块磨损、调节杆与曲柄配合松动、叶柄导向轴承及推力轴承转动不畅引起的。这些部件均为液压缸到动叶片之间的传动配合部件,会导致部分风机叶片开度不到位,而风机叶片重量及安装半径均较大,部分风机叶片开度不一致会产生质量严重不平衡,导致风机在高转速下出现明显振动。 单级叶轮部分叶片开度不同步引起的振动主要特点如下: 1)振动频谱和普通质量均不平衡,振动故障频谱中主要为工频成分,同时部分叶片不同步会产生一定的气流脉动,使振动频谱中出现叶片通过频率及其谐波,部分部件的磨损及松动则会产生一定的非线性冲击,使振动频谱中出现工频高

T35型轴流风机样本

用途 T35型轴流通风机是替代30K4型风机的新产品,T35主要是为一般工厂、仓库、办公室、住宅等场合的通风换气或加强暖气散热之用,若将机壳去掉,也可作自由风扇,亦可在较长的排气管道内间隔串联安装,以提高管道中的风压。T35型轴流风机是在国外同类产品的基础上,通过模型试验研究,确定了风机叶型,采用了圆筒型轮毂结构,同时对电机进行了改型设计,减少了流动损失,因而使风机效率出口按圆面积提高到77%,按出口环面积计算提高到89.5%,噪声比A声降低了3.6d B,又增强了叶根处的强度,避免了叶片断裂现象。 BT35型防爆轴流通风机主要是排送含有易燃、易爆但无腐蚀性之气体,电机须用防爆电机,开关须用防爆开关或远离易爆点,在易爆区域内电线不许有接头。 通过T35、BT35风机的气体应无腐蚀性及显著粉尘,其温度不得超40℃。 BFT35主要是排送易燃、易爆且有腐蚀性之气体,但温度不得超过60℃。 型式 本系列产品按叶轮直径不同共分为13种机号,依次排列为№2.8 、3.15 、3 .55 、4、4.5、5、5.6、6.3、7.1、8、9、10、11.2 等。每一种机号又可安装成15°、20°、25°、30°、35°等5 种角度。 本系列产品均采用叶轮直接装在电动机轴上的直联结构。在叶轮圆周速度不超过60m/S条件下配用三种转速:2900、1450、960r/min,面对进风口方向看叶轮为逆时针转动,进气方向在叶轮端。 风机出厂前,均经运转试验,确保运转平稳。 结构 T35、B T35风机主要由叶轮、机壳、集风器等三部分组成。 B F T35风机主要由叶轮、机壳、集风器等组成,它们均为玻璃钢制成。支架是由型材制成与风筒连接。 叶轮部—由叶片和轮毂组成,叶片均采用薄钢板制成,且按选定之安装角焊于轮毂上。 机壳部—由风筒,支架组成,均采用薄钢板及型材制成,风筒为圆筒型,与叶轮之间有一定间隙。( B T35风机风筒内圆铆接铝衬用以防爆)。 集风器部—由集风器法兰、集风器组成、集风器为圆弧流线型,可减少气流入口的损失,由薄钢板制成。 性能及选用

电机常见的振动故障原因

编号:SM-ZD-75861 电机常见的振动故障原因Organize enterprise safety management planning, guidance, inspection and decision-making, ensure the safety status, and unify the overall plan objectives 编制:____________________ 审核:____________________ 时间:____________________ 本文档下载后可任意修改

电机常见的振动故障原因 简介:该安全管理资料适用于安全管理工作中组织实施企业安全管理规划、指导、检查和决策等事项,保证生产中的人、物、环境因素处于最佳安全状态,从而使整体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 一般来讲,电机振动是由于转动部分不平衡、机械故障或电磁方面的原因引起的。 一、转动部分不平衡主要是转子、耦合器、联轴器、传动轮(制动轮)不平衡引起的。 处理方法是先找好转子平衡。如果有大型传动轮、制动轮、耦合器、联轴器,应与转子分开单独找好平衡。再有就是转动部分机械松动造成的。如:铁心支架松动,斜键、销钉失效松动,转子绑扎不紧都会造成转动部分不平衡。 二、机械部分故障主要有以下几点: 1、联动部分轴系不对中,中心线不重合,定心不正确。这种故障产生的原因主要是安装过程中,对中不良、安装不当造成的。还有一种情况,就是有的联动部分中心线在冷态时是重合一致的,但运行一段时间后由于转子支点,基础等变形,中心线又被破坏,因而产生振动。 2、与电机相联的齿轮、联轴器有毛病。这种故障主要表

通风机振动精度

机械工业部石化通用机械工业局企业标准 通风机振动精度 JB/TQ334—84 本标准适用于离心式,轴流式通风机(以下简称风机)振动的评价与测量。 1 风机的振动速度(均方根速度)应符合表1的规定。 2 风机振动速度的测量部位如下: a. 对叶轮直接装在电动机轴上的风机,应在电机定子两端轴承部位测量其垂直,水平,与轴向三个方向 (见图1)的振动速度并取其中最大读数作为度量值,当电动机带有风扇罩时则轴向振动不予测量。 图1 b. 对于双支撑轴承的风机或有两个轴承体的风机,按图2所示三个方向的要求测量原动机 c. 当两个轴承都装在同一个轴承箱内时,按图3所示三个方向的要求在轴承箱壳体轴承部 位测量其振动速度并取其中最大读数作为度量值。 d. 当被测的轴承箱在风机内部时,按b或c的要求,可预先装置振动传感器,然后引出至 风机外以指示器读数为测量依据,传感器安装的方向与测量方向的偏差不得大于±5°。 3 测振仪器应采用频率f范围为10~500Hz 其速度范围为1~10mm/s 的接触式测振仪表。 4 测振仪表须经计量部门鉴定合格后才能使用。

图3 5 被测的风机须装在大于10倍风机质量的底座或试车台上,装置的自振频率不得大于电机和风机转速的0.3倍。 6 在测试振动速度时,外部或周围环境对底座或试车台的影响,应符合下列规定:风机运 转时的振动速度与风机静止时的振动速度的差须大于3 倍以上,当差数小于此值时风机需采 用避免外界影响措施。 7 风机振动速度与振幅(位移)可按下式进行换算 V= 式中:V —振动速度mm/s S —振幅(位移)m μ ω—角速度rad/s 石化通用机械工业局1984—01—13发布1984—03—01实施

诱导风机样本-附件1

诱导风机样本-附件1 诱导风机是无风道射流诱导通风系统的一部分,它与送风风机、排风风机组成整个系统。YDF-I型诱导风机一般用于无风管诱导通风系统,有卧式和立、卧式两用两种机构形式,电机采用风机专用单相电机。YDF-II型诱导风机为柜式箱体机构,卧式安装。 基本参数

诱导风机:又称射流风机、接力风机。他通过诱导,进行空气的传递。本身得风量很小。公共实施中常用在车库的通风系统中,搅匀,清除局部空气死角。使局部空气得到改善。主要是节省空间

诱导风机是根据高速射流诱导通风理念而设计的新型风机,由多组该风机组 成的无风道诱导通风子系统可与送风风机、排风风机组成整个通风排烟系统。其工作原理是由以系统设计、适当布置的多台诱导风机喷嘴射出的定向高速气流,诱导室外的新鲜空气或经过处理的空气,在无风管的条件下将其送到所要求的区域,实现最佳的室内气流组织,以达到高效经济的通风换气效果。使用无管道射流诱导通风系统时,可省去设计,制造,安装风管及其它配套工程方面的费用,这部分费用比使用的诱导风机机级昂贵的多,而且以整个层面为通风风道,送风风机,排风风机所需要风压比使用管道时小的多,这样就可以选用大风量较低风压的风机,使所需功率降低,大幅度降低了运行成本和投资费用,当送排风机停止运转时,诱导风机仍可运转,起到局部通风换气的作用。 诱导风机内置高效率离心风机,具有明显的噪声低、体积小、重量轻、吊装方便(立式、卧式均可)、维护简单的特点,已广泛应用于地下停车场,体育馆、车间、仓库、商场、超市、娱乐场所等大型场所的通风。 YDF系列诱导风机的特点1、设计简单、灵活:系统规划简单,设计变动弹性大,容易修改,出错机会小;2、节省空间:不需要传统通风那样复杂巨大的管路,最大也不过35CM口径螺旋风管;3、安装简便:无需巨大风管,施工简单,安装方便、灵活;安装位置有针对性,使用方便;4、新型喷嘴:采用挠性喷嘴可万向调节,射流方向随意调整,简单方便,灵活机动;5、高效节能:利用物理特性诱导风量,故节省电力,运转成本低,设备体积小,安装费用降低;6、维护方便:诱导风机设有检修门和过滤网,过滤网清洗方便,风机检修、维护简便;7、换气质量高:诱导气体完全流通,不会有死角产生,降低废气浓度,避免污染积累,提高空气品质。 诱导风机:又称射流风机、接力风机。他通过诱导,进行空气的传递。本身得风量很小。公共实施中常用在车库的通风系统中,搅匀,清除局部空气死角。使局部空气得到改善。主要是节省空间 诱导风机是根据高速射流诱导通风理念而设计的新型风机,由多组该风机组 成的无风道诱导通风子系统可与送风风机、排风风机组成整个通风排烟系统。其

振动大实例与原因分析

1倍频振动大除了动平衡还应检查什么? 750KW异步电机,3000V工频,2极,轴长2M6,轴瓦档轴颈80mm,端盖式滑动轴承,中心高500mm。 检修后空载试车,垂直4.6mm/s,水平6.5mm/s,轴向1.2mm/s,振动较大,振感很强。振动频谱1倍频4-5mm/s,2倍频1-2mm/s,断电后1倍频2倍频值一点点降下来的。 据维修技师反应3年前空载试车也是振动大到现场连上机械接手在转就好了,于是到现场安装试车,结果振动还是大。 重新拆回车间,转子在动平衡机上做了动平衡,装配时轴瓦间隙也重新复测了。再试车振动比原来还大了点,频谱和原来一样。 我问了维修人员,动平衡配重2面都加了,轴瓦间隙都在标准里面。 请问做动平衡时是在1300-1500左右做的,有无可能在3000转时平衡改变了? 除了动平衡还要检查其他什么? 可能是共振问题,这个规格的电机转子固有频率接近5ohz,本案例中应大于50hz 动平衡后单机试转仍大,是由于加重后固有频率下降更接近转频,所以振动有升无减 请注意:动平衡的速度不是工频,平衡本身可能是合格的 联合运行振动值更大,是由于连接上了被驱动设备,形成转子副,电机转子带载后固 有频率下降较多,更接近工频。所以振动愈发的大 其实就一句话:组合转子的固有频率小于原来单体的,好像这么说的,原话不记得了 据统计,有19%的设备振动来自动不平衡即一倍频,而产生动不平衡有很多原因。现场测量的许多频谱结果也多与机器的一倍频有关系,下面仅就一倍频振动增大的原因进行分析。 一、单一一倍频信号 转子不平衡振动的时域波形为正弦波,频率为转子工作频率,径向振动大。频谱图中基频有稳定的高峰,谐波能量集中于基频,其他倍频振幅较小。当振动频率小于固有频率时,基频振幅随转速增大而增大;当振动频率大于固有频率时,转速增加振幅趋于一个较小的稳定值;当振动频率接近固有频率时机器发生共振,振幅具有最大峰值。由于通常轴承水平方向的刚度小,振动幅值较大,使轴心轨迹成为椭圆形。振动强烈程度对工作转速的变化很敏感。 1.力不平衡 频谱特征为振动波形接近正弦波,轴心轨迹近似圆形;振动以径向为主,一般水平方向幅值大于垂直方向;振幅与转速平方成正比,振动频率为一倍频;相位稳定,两个轴承处相位接近,同一轴承水平方向和垂直方向的相位差接近90度。 2.偶不平衡 频谱特征为振动波形接近正弦波,轴心轨迹近似圆形;在两个轴承处均产生较大的振动,不平衡严重时,还会产生较大的轴向振动;振幅与转速平方成正比,振动频率以一倍频为主,有时也会有二、三倍频成分;振动相位稳定,两个轴承处相位相差180度。 3.动不平衡 频谱特征为振动波形接近正弦波,轴心轨迹近似圆形;振动以径向为主,振幅与转速平方成正比,频率以一倍频为主;振动相位稳定,两个轴承处相位接近。

浅析船舶涡轮增压器喘振机理及其预防措施

浅析船舶涡轮增压器喘振机理及其预防措施 发表时间:2019-07-23T12:14:57.237Z 来源:《知识-力量》2019年9月34期作者:顾卫标 [导读] 涡轮增压器是船舶增压系统的核心部件,它的可靠性是保证船舶动力装置正常安全运行的主要环节,增压器最容易出现的故障即为喘振。本文首先介绍了增压系统的工作原理,然后阐述了增压器喘振的机理。最后,分析了喘振发生的原因并提出相应的预防措施。(江苏省海洋渔业指挥部,江苏南通 226006) 摘要:涡轮增压器是船舶增压系统的核心部件,它的可靠性是保证船舶动力装置正常安全运行的主要环节,增压器最容易出现的故障即为喘振。本文首先介绍了增压系统的工作原理,然后阐述了增压器喘振的机理。最后,分析了喘振发生的原因并提出相应的预防措施。 关键词:涡轮增压器;增压;喘振;预防措施 作为当今热效率最高的动力机械,柴油机以其良好的经济性广泛应用于远洋船舶和内河船舶。为了增加功率,改善热效率,提高经济性,柴油机增压程度不断提高。增压技术使柴油机的动力性、经济性上了一个台阶,增压也成为提高柴油机功率的主要途径。船用柴油机增压器一般应用废气涡轮增压的方法,利用柴油机排出的废气能量驱动涡轮高,带动与涡轮同轴的压气机叶轮高速旋转,压气机将空气压入柴油机的气缸,增加了柴油机的充气量,可供更多的燃油完全燃烧,不仅柴油机工作过程得到改善,燃油消耗下降,经济性提高,排放也得到改善。因此,其工况的好坏直接影响柴油机的工作。 涡轮增压器工作时,当压气机的排出压力和流量减少时,其工作点落在压气机的喘振区时,压气机排出的压力忽高忽低,空气流量忽正忽负,引起机器强烈振动,并发出沉重的喘息声和吼叫声。如果增压器轴承处于良好保养的状态,这种偶尔发生的喘振是没有危害的。但是应该避免进一步喘振的发生,因为那将损坏转子,引起增压器转轴振动和整个增压器的机械颠簸,对增压器的安全运行危害极大。发生喘振的主要因素: 1.增压系统流道阻塞 增压器系统流道阻塞是引起增压器喘振的最常见的原因,增压系统的气体流动线路为:“空气滤器---压气机---中冷器---进气管---气缸---排气管---废气涡轮---废气锅炉---烟囱---大气”特别是外来杂质,如油气、粉尘等赃物进入进气管道排气管道积碳,进气管道变形等,使流道阻力增大,压气机流量减小,背压升高,特性线左移(如右图)引起喘振。此外,柴油机长期燃烧不良,涡轮喷嘴、涡轮叶片、轮盘及气封间隙两旁壁面等地方聚集大量未燃尽的碳粒的油垢,增压器停车后,油垢会冷却凝固,加大增压器运转时的机械阻力,使涡轮性能下 降,最后使增压压力下降而导致喘振。 在日常管理中,应周期性清除汽缸进气口和排气口的积碳,并经常对空气滤清器、压气机进气流道、空气冷却器、涡轮喷嘴环和叶轮等进行清洗。当增压器流道阻塞严重时,须将增压器拆开进行清洗。而在运行时对压气机和涡轮机进行清洗,既可以减少增压器的拆装次数,有可避免此类原因引起的喘振。 2.增压器和柴油机的运行失配 柴油机与增压器匹配良好是指:柴油机达到预定的增压指标,增压器在柴油机全部工作范围内能稳定低运行,既不喘振也不超速,并尽可能在高效区工作。对于设计时选配良好的柴油机和增压器,在正常情况下是不会发生喘振的。但是,由于柴油机本身的某些故障或者由于装载、顶风、污底、大风浪航行或者轮机员操作不当,都可能导致柴油机和增压器匹配不良,引起喘振。柴油机喷油系统出现故障,会使柴油机燃烧不良,引起严重的后然;柴油机的活塞环断裂或者粘着,气阀烧损气阀间隙过小,都可能导致汽缸漏气,热负荷增大,排烟温度升高。若柴油机供油量不变,因而有功功率减小,柴油机转速下降。而排烟温度升高引起废气能量增加增压器转速增高,供气量增多,从而破坏了柴油机与增压器的正常匹配关系,导致压气机处于高背压小流量状态,容易发生喘振,但此种情况下,排除了柴油机的故障,也就消除了喘振。 船舶满载、顶风航行时,主机处于高负荷、低转速状态。柴油机燃油系统供油量增加,后燃引起废气能量增加,增压器转速升高,而汽缸耗气量却因为柴油机转速降低而减少,这同样容易引起增压器与柴油机匹配不佳而出现喘振。此情况下,减小柴油机油门就可消除喘振。 3.柴油机负荷骤变 如船舶遇到大风浪,螺旋桨出水,柴油机负荷骤然减少,转速升高,各缸供油大量减少,使供给增压器的废气量减少,增压器转速下降,从而是压气机空气流量减少,达到一定程度时会发生喘振,为防止这种情况,应避免飞车现象的发生。 4.环境温度的变化 当航行在不同温度的海域或季节,增压器与柴油机的配合运行点不同;气温升高,空气密度降低使进入压气机的空气流量减小,尽管排烟温度升高,排气管冷却能力下降,涡轮获得的能量反而减少,这样增压器转速降低将进一步导致空气流量减小,从而发生增压器喘振。持续的喘振可以通过调节扫气总管顶部的阀来临时处理。 结语 增压器出现故障,不要匆忙地更换增压器,应该寻找和判断故障原因和部位,并尽可能地加以排除。这样可以避免换上增压器后同样

TLT动叶可调轴流风机振动故障原因分析

TLT动叶可调轴流风机振动故障原因分析 马晟恺 (华能上海电力检修公司上海 200942) 摘要:能源是国民经济发展的基础,是关系人类生存的重要因素。随着全世界工业化、自动化的不断发展,人类对能源的需求量与日俱增。然而能源是有限的,过渡的开发和浪费能源终将危机人类自身,因此如何合理的利用能源、如何节约能源、如何提高能源的利用率,将会是人类科技进步中一个永恒的主题。对于火力发电厂中的锅炉辅机设备中,六大风机至关重要,一台风机的停运便会导致机组损失一半的发电量。所以,风机的安全稳定运行对于机组的正常发电有着决定性的作用。本文对TLT动叶可调轴流风机的振动现象、原因及处理办法进行了阐述。并致力于高效解决TLT动叶可调轴流风机进行了研究。 关键词:TLT;动叶可调;轴流风机;火力发电机组;振动。 作者简介:马晟恺(1987-),从事大型火力发电站热能装置工程技术工作。

一、概述 一台设备从设计、制造到安装、运行、维护、检修有许多环节,任何环节的偏差都会造成设备性能劣化或故障。同时,运行过程中设备处于各种各样的条件下,其内部必然会受到力、热、摩擦等多种物理、化学作用,使其性能发生变化,最终导致设备故障。 能源是国民经济发展的基础,是关系人类生存的重要因素。随着全世界工业化、自动化的不断发展,人类对能源的需求量与日俱增。然而能源是有限的,过渡的开发和浪费能源终将危机人类自身,因此如何合理的利用能源、如何节约能源、如何提高能源的利用率,将会是人类科技进步中一个永恒的主题。对于火力发电厂中的锅炉辅机设备中,六大风机至关重要,一台风机的停运便会导致机组损失一半的发电量。所以,风机的安全稳定运行对于机组的正常发电有着决定性的作用。 如今,由于国内火力发电机组向高参数、高容量发展。国内300MW、600MW、1000MW 的机组大多采用德国TLT公司技术的轴流式风机。因此,该种类型的风机是否能安全稳定运行成为了如今国内火力发电厂的新课题之一。 二、TLT动叶可调轴流风机简介 风机(AIR BLOWER)是依靠输入的机械能,提高气体压力并排送气体的机械,它是一种从动的流体机械。 我国于1979年引进德国TLT公司动叶可调轴流风机技术,适用于大型火电机组锅炉送风机、引风机、一次风机、脱硫风机以及矿井主通风机。采用的液压动叶可调,能使风机特性与使用工况在较大流量变化范围内相适应,从而能在较大区域内保持高效率,节能效果显著。有为最大到1500MW火电机组配套能力。风机性能参数可根据用户要求工况“量体裁衣”选择最佳效率设计生产。与此同时,公司还为上述产品配备了引进技术生产的大型消声器。 尤其对大型和特大型风机,液压调节能最佳地改变远行时动叶的位置,使风机特性经济地与远行工况相适应。我们把这些经验用于发展热电厂用的动叶可调的轴流式风机,尤其是在很早就已预测到锅炉装置容量的增大而需要相应的大型风机。与机械调节(在这种情况下风机不能实现高调节力调节)相比液压调节具有一系列优点:在转子一液压装置系统中,力的传送,对转子主轴承不产生反作用力:调节力不受限制;机械传动零件少,因而故障少;操纵机械的扭矩仅为30—50Nm(牛顿·米);内装的反锁装置能防止过调和保证稳定的调节;由于装有配重,即使液力控制油压力降低,风机运行也不受影响。为使液压调节机构达到最佳的运行可靠性,每一台都在专用试验台上进行运转试验。 TLT动叶可调轴流风机设计的主要特点是:结构紧凑、坚固;单级和两级风机的零部件已标准化;由于卧式风机机壳的上半部易于拆下和立式风机的机壳等部件可以移动,所以转子、主轴承箱等检修方便。整体结构的主轴承箱装在机壳内部中心法兰之间;叶轮轮壳为焊接结构,厚的内环位于较小的直径处,因此减小了离心力。 TLT风机由于其设计系列化、零部件标准化、品种规格齐全,适用范围广泛,因而可以采用积木块式设计方法,利用这些标准化的零部件,组合成技术经济指标先进,不同型号规格的风机最大限度的满足用户需要,这种设计方法如同“量体裁衣”,可取得最佳的运行经济性。 TLT动叶可调轴流风机具有噪音小、效率高等明显特点。 动叶可调轴流风机装备有液压调节系统,可以通过液压传动以及机械传动带动叶片转动,达到调整叶片开度的目的。从而实现通过动叶调整改变风机风量大小的目的。 电厂电站风机形式主要分为轴流风机和离心风机两种。 风的流向和轴是平行的就叫轴流风机,(比如消防的排烟风机)反之就是离心风机,(比如风

轴流通风机安装

(四)轴流通风机安装1、安装流程

2、风机安装工艺要求 (1)施工准备 A、编写施工方案,上报监理单位批准后实施; B、对施工人员进行技术交底,准备各种安装用机具,施工现场进行清理; (2)开箱检验 A、开箱检验时必须由业主代表、监理单位代表、供货单位代表及施工单位代表共同参与进行,开箱检验前应具备下列技术资料: a、风机的出厂合格证、质量证明书、操作使用说明书; b、供货单位提供的装箱清单。 B、风机的开箱检验应符合下列规定: a、核查随机资料是否齐全; b、检查风机表面是否锈蚀、是否有严重的碰撞痕迹和损坏现象; c、检查风机的附件、内件、零部件是否齐全完好。 d、开箱检验完毕后,对于暂不安装的零件、易损件等应设专人、专库妥善保管。 e、开箱检验完毕后及时填写开箱检验记录。 (3)基础验收 A、风机安装前由基础施工单位向安装单位进行基础验交,同时提交质量证明书、强度试验报告、测量记录等施工技术资料,并办理交接手续。 B、基础检查验收要求: a、基础外观不应有裂纹、蜂窝、孔洞及露筋等缺陷;强度达到设计要求,预埋螺栓的螺纹部分应无损坏,预留螺栓孔应清理干净; b、核实基础螺栓中心是否与设备螺栓孔距相符; c、基础尺寸及位置应严格符合设计和规范的规定,基础上应明显标出纵横中心线、标高基准线; d、基础尺寸及位置允许偏差应符合下表要求:

基础尺寸及位置允许偏差表 1)垫铁安装 安装垫铁前,应将基础表面铲好麻面,麻点深度一般不小于10mm,密度以每平方分米内有3~5点为宜。放置垫铁处(至周边50mm)应铲平,铲平部位水平度允许偏差为2mm/m。 A、垫铁布置时,以地脚螺栓两侧各放置一组为原则,并尽量靠近地脚螺栓,相邻两垫铁组的间距一般为500mm为宜; B、每组垫铁由两斜一平组成,应放置平稳,接触良好,将垫铁表面油污清理干净,层间应压紧,设备垫铁高度为30~60mm, C、风机找正,平垫铁应露出设备支座底板外缘10~20mm。斜垫铁比平垫

adams振动分析实例中文版

1.问题描述 研究太阳能板展开前和卫星或火箭分离前卫星的运行。研究其发射振动环境及其对卫星各部件的影响。 2.待解决的问题 在发射过程中,运载火箭给敏感部分航天器部件以高载荷。每个航天器部件和子系统必学设计成能够承受这些高载荷。这就会带来附加的质量,花费高、降低整体性能。 更好的选择是设计运载火箭适配器(launch vehicle adapter)结构。 这部分,将设计一个(launch vehicle adapter)的隔离mount,以在有效频率范围降低发射震动传到敏感部件的部分。关心的敏感部件在太阳能板上,对70-100HZ的输入很敏感,尤其是垂直于板方向的。 三个bushings将launch vehicle adapter和火箭连接起来。Bushing的刚度和阻尼影响70-100HZ范围传递的震动载荷。所以设计问题如下: 找到运载火箭适配器系统理想刚度和阻尼从而达到以下目的: 传到航天器的垂直加速度不被放大; 70-100HZ传递的水平加速度最小。 3.将要学习的 Step1——build:在adams中已存在的模型上添加输入通道和振动执行器来时系统振动,添加输出通道测量响应。 Step2——test:定义输入范围并运行一个振动分析来获得自由和强迫振动响应。 Step3——review:对自由振动观察模态振型和瞬态响应,对强迫振动,观察整体响应动画,传递函数。 Step4——improve:在横向添加力并检查传递加速度,改变bushing的刚度阻尼并将结果作比较。添加频域测量供后续设计研究和优化使用。

3.1需创建的东西:振动执行器、输入通道、输出通道 完全非线性模型 打开模型在install dir/vibration/examples/tutorial satellite 文件夹下可将其复制到工作木录。 加载Adams/vibration模块:Tools/ plugin Manager. 仿真卫星模型:仿真看其是否工作正常,仿真之前关掉重力,这个仿真太阳能板在太空中的位置。 关掉重力:Settings——Gravity ; 仿真:tool面板——simulation ,设置仿真时间是15s,步长为500;点击,将停在仿真后mode 返回最初的模型状态:点击,把重力打开,这时模型回到振动分析准确的发射状态。

风机震动原因分析

电站风机振动故障简易诊断 摘要:分析了风机运行中几种振动故障的原因及其基本特征,介绍了如何运用这些振动故障的基本特征对风机常见振动故障进行简易诊断,判断振动故障产生的根源。 关键词:风机;振动;诊断 风机是电站的重要辅机,风机出现故障或事故时,将引起发电机组降低出力或停运,造成发电量损失。而电站风机运行中出现最多、影响最大的就是振动,因此,当振动故障出现时,尤其是在故障预兆期内,迅速作出正确的诊断,具有重要的意义。简易诊断是根据设备的振动或其他状态信息,不用昂贵的仪器,通常运用普通的测振仪,自制的听针,通过听、看、摸、闻等方式,判断一般风机振动故障的原因。文中所述振动基于电厂离心式送风机、引风机和排粉机。 1轴承座振动 1.1转子质量不平衡引起的振动 在现场发生的风机轴承振动中,属于转子质量不平衡的振动占多数。造成转子质量不平衡的原因主要有:叶轮磨损(主要是叶片)不均匀或腐蚀;叶片表面有不均匀积灰或附着物(如铁锈);机翼中空叶片或其他部位空腔粘灰;主轴局部高温使轴弯曲;叶轮检修后未找平衡;叶轮强度不足造成叶轮开裂或局部变形;叶轮上零件松动或连接件不紧固。转子不平衡引起的振动的特征:①振动值以水平方向为最大,而轴向很小,并且轴承座承力轴承

处振动大于推力轴承处;②振幅随转数升高而增大;③振动频率与转速频率相等;④振动稳定性比较好,对负荷变化不敏感;⑤空心叶片内部粘灰或个别零件未焊牢而位移时,测量的相位角值不稳定,其振动频率为30%~50%工作转速。 1.2动静部分之间碰摩引起的振动 如集流器出口与叶轮进口碰摩、叶轮与机壳碰摩、主轴与密封装臵之间碰摩。其振动特征:振动不稳定;振动是自激振动与转速无关;摩擦严重时会发生反向涡动; 1.3滚动轴承异常引起的振动 1.3.1轴承装配不良的振动 如果轴颈或轴肩台加工不良,轴颈弯曲,轴承安装倾斜,轴承内圈装配后造成与轴心线不重合,使轴承每转一圈产生一次交变的轴向力作用,滚动轴承的固定圆螺母松动造成局部振动。其振动特征为:振动值以轴向为最大;振动频率与旋转频率相等。 1.3.2滚动轴承表面损坏的振动 滚动轴承由于制造质量差、润滑不良、异物进入、与轴承箱的间隙不合标准等,会出现磨损、锈蚀、脱皮剥落、碎裂而造成损坏后,滚珠相互撞击而产生的高频冲击振动将传给轴承座,把加速度传感器放在轴承座上,即可监测到高频冲击振动信号。这种振动稳定性很差,与负荷无关,振动的振幅在水平、垂直、轴向三个方向均有可能最大,振动的精密诊断要借助频谱分析,运用频谱分析可以准确判断轴承损坏的准确位臵和损坏程度,在此不

轴流通风机管理制度示范文本

轴流通风机管理制度示范 文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

轴流通风机管理制度示范文本 使用指引:此管理制度资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 1、矿井主扇司机,必须熟练掌握主扇启动程序, 并能严格按操作规程执行,工作扎实,责任心强。 2、主扇风机的启动,停止必须报主管领导批准,并及 时通知调度、机电、通风部门。 3、主扇风机房必须装备的仪器、仪表。如“电流表、 电压表、轴承温度、电机温度、负压水柱、专用电话”, 班中每隔1小时记录1次主扇运行数据,如果“发现异常 情况,必须立即汇报调度室。 4、主扇司机要严格遵守矿制定的各项规章制度,坚守 岗位,坚持24小时值班制度,决不迟到、早退,擅自离 岗,严格执行交接班制度。 5、交接班时,接班司机必须详细了解上一班的设备运

转情况,事故隐患的处理情况,遗留问题及应注意事项如发现问题,由交接班双方负责处理并及时向矿调度室汇报。 6、主扇风机如遇突然停电,停机时,主扇司机必须将井口防爆门打开,形成自然通风,同时向矿调度室进行汇报。待送电后,必须请示调度,调度可按停风时间采取相应的措施后,再启动主扇风机,随后将防爆门逐步关闭,主扇司机要做好停送风时间及停风原因记录。 7、主扇司机每班至少检查一次主扇风机房配套设施的完好情况。如:防爆门、人行门、停风门、以及电气设备等,发现问题,要及时采取措施进行处理。 8、主扇风机要经常保持清洁卫生,严禁机房兼做其它用途。 请在此位置输入品牌名/标语/slogan Please Enter The Brand Name / Slogan / Slogan In This Position, Such As Foonsion

电机振动十大原因,查找检修得看这些具体案例

电机振动十大原因,查找检修得看这些具体案例 电机振动的原因很多,也很复杂。8极以上大极数电机不会因为电机制造质量问题引起振动。振动常见于2--6极电机,GB10068-2000,《旋转电机振动限值及测试方法》规定了在刚性基础上不同中心高电机的振动限值、测量方法及刚性基础的判定标准,依据此标准可以判断电机是否符合标准。 电动机振动的危害 电动机产生振动,会使绕组绝缘和轴承寿命缩短,影响滑动轴承的正常润滑,振动力促使绝缘缝隙扩大,使外界粉尘和水分入侵其中,造成绝缘电阻降低和泄露电流增大,甚至形成绝缘击穿等事故。另外,电动机产生振动,又容易使冷却器水管振裂,焊接点振开,同时会造成负载机械的损伤,降低工件精度,会造成所有遭到振动的机械部分的疲劳,会使地脚螺丝松动或断掉,电动机又会造成碳刷和滑环的异常磨损,甚至会出现严重刷火而烧毁集电环绝缘,电动机将产生很大噪音,这种情况一般在直流电机中也时有发生。 电动机振动的十个原因 1.转子、耦合器、联轴器、传动轮(制动轮)不平衡引起的。 2.铁心支架松动,斜键、销钉失效松动,转子绑扎不紧都会造成转动部分不平衡。 3.联动部分轴系不对中,中心线不重合,定心不正确。这种故障产生的原因主要是安装过程中,对中不良、安装不当造成的。 4.联动部分中心线在冷态时是重合一致的,但运行一段时间后由于转子支点,基础等变形,中心线又被破坏,因而产生振动。 5.与电机相联的齿轮、联轴器有故障,齿轮咬合不良,轮齿磨损严重,对轮润滑不良,联轴器歪斜、错位,齿式联轴器齿形、齿距不对、间隙过大或磨损严重,都会造成一定的振动。 6.电机本身结构的缺陷,轴颈椭圆,转轴弯曲,轴与轴瓦间间隙过大或过小,轴承座、基础板、地基的某部分乃至整个电机安装基础的刚度不够。 7.安装的问题,电机与基础板之间固定不牢,底脚螺栓松动,轴承座与基础板之间松动等。 8.轴与轴瓦间间隙过大或过小不仅可以造成振动还可使轴瓦的润滑和温度产生异常。 9.电机拖动的负载传导振动,比如说电机拖动的风机、水泵振动,引起电机振动。 10.交流电机定子接线错误、绕线型异步电动机转子绕组短路,同步电机励绕组匝间短路,同步电机励磁线圈联接错误,笼型异步电动机转子断条,转子铁心变形造成定、转子气隙不均,导致气隙磁通不平衡从而造成振动。

轴流风机振动故障分析与处理

轴流风机振动故障分析与处理 一、设备参数与结构 风机型号W12g12.5,叶轮直径D2 =1250mm,最高转速n=2550r/min,设计性能参数为:风量Q=235440m3/h,全压p=11 000Pa,进口温度t=150℃,进口密度ρ=0.763kg/m 3 ,输送介质为转炉煤气(干法除尘)。 风机结构和试验台布置见图1。该风机主要由转子和定子组成,转子包括主轴、叶轮、联轴器、固定端轴承(以下简称轴承1)和非固定端轴承(以下简称轴承2),定子包括进风箱(含进口导叶和轴承I的底座)、机壳(含后导叶和轴承II的底座)、扩压器和钢制风机底座。显然,与一般离心风机结构不同的是,轴承I的底座和轴承II的底座均未与混凝土基础直接接触。为完成运转试验过程,由增速机通过长度为3.3m的加长型空心轴将两台直流电动机串联。

二、振动特点 根据转炉各冶炼阶段(准备、预热/降罩、吹炼、补吹、出钢、清理炉口、加废钢兑铁)的不同,该风机的运行工况频繁变换。因此,不仅要满足各冶炼阶段所需性能参数以及防泄漏、防爆的要求,还要满足35~38min内低、高速频繁调速运行的要求。所以,制造厂需对其进行严格的出厂运行实验。然而,该风机在运行实验中却发生了严重的振动问题,振动数据见表1,尤其进行的所有实验转速还远达不到最高设计转速2 550r/min,显然,这个振动问题的分析和处理十分具有挑战性。

由表1可分析其振动特点如下: 1)风机振动与转速关联性强,转速越高,振动越大; 2)风机升/降速过程中,在同一转速的振动特性相同,具有重复性; 3)风机轴承I 与轴承II 振动相差不大,即振动数量级相同;在2 320r/min 以上,风机轴承I与轴承II相比,前者垂直方向振动小于后者,而水平方向振动大于后者,显示二者在垂直和水平方向的刚度存在差异; 4)增速机振动与转速关联性强,在输出轴反转2 400r/min时达到10.0mm/s,由此增加了振动问题的复杂性; 5)受电机功率限制,最高转速只有达到正转2 349r/min和反转2 400r/min,不可能实施冲转实验; 6)风机最高线速度为167m/s,但在试验中无法实施,需由次高转速判断最高转速时的振动特性。 三、振动检测分析 风机主要有动不平衡、不对中、轴承故障、转子零部件部分松动或脱落、转子转速接近临界转速、共振等八大类振动问题,但具体表现在不同的风机结构

相关主题