搜档网
当前位置:搜档网 › 地震波反射法

地震波反射法

地震波反射法
地震波反射法

浅析地震波反射法

【摘要】以本人参与施工管理的新建渝怀铁路、宜万铁路个别典型、长大隧道为例,介绍目前在隧道施工中广泛采用的地震波反射法—tsp超前地质预报方法,希望对建设中长大隧道及地下工程施工中超前地质预报工作提供参考或有所借鉴和启发。

【关键词】地震波反射法地质超前预报隧道施工

地震波反射法—tsp超前地质预报技术是物探法的一种,它具有快速、探测距离大、与施工干扰相对小。但也存在一些较为明显缺点。主要有:需要结合多种预测预报方法,且与与地质分析资料深入结合,有一定技术难度。

1 地震波反射法—tsp超前地质预报工作原理

在隧道隧洞内,人工制造一系列有规则排列的轻微震源;震源发出的地震波遇到地层界面、节理面、特别是断层破碎带、溶洞、暗河、岩溶陷落柱、岩溶淤泥带等不良地质界面时,将产生反射波,它的传播速度、延迟时间、波形、强度和方向等均与相关界面的性质以及产状密切相关,并通过不同数据表现出来;通过设备设置的震源反射波的数据采集系统(传感器和记录仪),将这递增数据经微机处理后储存起来。然后,将数据输入带有特制软件的电脑,经过电脑进行复杂数学计算后,最后形成反射波(纵波)波形图、反映相关界面或地质体反射能量的影像图和隧道平面、剖面图,供工程技术人员解译。

2 特点

反射波法基本测试原理与波形分析

一. 反射波法基本测试原理与波形分析 1.广义波阻抗及波阻抗界面 设桩身某段为一分析单元,其桩身介质密度、弹性波波速、截面面积分别用ρ,C ,A 表示,则令 Z =ρCA (7-1) 称Z 为广义波阻抗。当桩身的几何尺寸或材料的物理性质发生变化时,则相应的ρ、C 、A 发生变化,其变化发生处称为波阻抗界面。界面上下的波阻抗比值为 2 2211121A C A C Z Z n ρρ== (7-2) 称n 为波阻抗比。 2.应力波在波阻抗界面处的反射与透射 设一维平面应力波沿桩身传播,当到达一与传播方向垂 直的某波阻抗界面(如图7-2所示)时。根据应力波理论,由连续性条件和牛顿第三定律有 V I +V R =V T (7-3) A 1(σI +σR )=A 2σT (7-4) 式中,V 、σ分别表示质点振动的速度和产生的应力,下标I 、R 、T 分别表示入射波、反射波和透射波。 由波阵面的动量守恒条件导得 σI =-ρ1C 1V I σR =ρ1C 1 V R σT =-ρ2C 2V T 代入式(7-4),得 ρ1C 1A 1(V I -V R )=ρ2C 2A 2V T (7-5) 联立式(7-3)和(7-5),求得 V R =-FV I (7-6a ) V T =nTV I (7-6b ) 式中 n n F +-=11 称为反射系数 (7-7a ) n T +=12 称为透射系数 (7-7b ) 式(7-6)是反射波法中利用反射波与入射波的速度量的相位关系进行分析的重要关系式。 3.桩身不同性况下应力波速度量的反射、透射与入射的关系 (1)桩身完好,桩底支承条件一般。此时,仅在桩底存在界面,速度波沿桩身的传播情况如图7-3所示。 因为ρ1C 1A 1>ρ2C 2A 2,所以n = Z 1/Z 2>1,代入式(7-7)得 F <0,(T 恒>0) 由式(7-6)可知,在桩底处,速度量的反射波与入射波同号,体现在V (t )时程曲线上,则为波峰相同(同向)。典型的完好桩的实测波形如图7-4。 由图7-3、图7-4分析可得激振信号从触发到返回桩顶所需的时间t 1、纵波波速C 、桩长L 三者之间的关系为 Z 1=ρ1C 1A 1 Z 2=ρ2C 2A 2 图7-2 应力波的反射与透射

超前地质预测预报方法及其内容

超前地质预测预报方法及其内容 根据地质情况、风险源及其风险等级,采用不同的超前探测方法,风别为地质调查法、物探法机超前钻探法,现将各方法采用的具体手段及操作分述下: (一)地质调查法 1、内容 地质调查法包括隧道地表补充地质调查和隧道内地质素描等;(1)地表调查 A、地层、岩性在隧道地表的出露及接触关系,特别是标志层的熟悉和确认。 B、地表岩溶发育位置、规模及其分布。 (2)洞内地质素描:包括开挖工作面地质素描和洞身地质素描。主要内容为: A、地层岩性:描述地层年代、岩性、层间结合程度、分化程度等; B、地质构造:描述皱褶、断层、节理裂隙特征、岩层产状等。断层的位置、产状、性质、破碎带的宽度、物质成分、含水情况以及与隧道的关系。节理裂隙的组数、产状、间距、充填物、延伸长度、张开度及节理特征、力学性质、分析组合特征、判断岩体完整程度。 C、岩溶:描述岩溶规模、形态、位置及所属地层和构造部位,充填物成分、形态,以及岩溶展布的空间关系。、 D、地下水分布、出路形态及围岩的透水性、水量、水压、水温、颜色、泥沙含量测定,以及地下水活动对围岩稳定的影响,必要时长期

观测。 E、水质分析,判定地下水对结构材料的侵蚀性。 F、出水点和地层岩性、地质构造、岩溶、暗河等关系分析。 G、岩溶隧道进行地表相关气象、水文观测,判断洞内涌水与地表径流、降雨的关系。并建立涌突水点地质档案。 (3)记录不同工程地质条件、水文地质条件下隧道围岩稳定性、支护方式及初期支护后的变形情况。 (4)地质调查法的相关要求及表格按《铁路隧道超前地质预测预报技术指南》附表E及附表F、《铁路隧道工程施工技术指南》附录A办理。 (二)物探法 1、方法类型 (1)地震波反射法 适应于划分地层界线、查找地质构造、探测不良地质体的厚度和范围。在软弱围岩地层和岩溶发育地区,每次预报距离采用100m,在完整的硬质岩地层每次预报采用150m。其相关技术要求按《铁路隧道超前地质预报技术指南办理》。 (2)水平声波剖面法 适应于划分地层界线、查找地质构造、探测不良地质体的厚度和范围。在软弱围岩地层和岩溶发育地区,每次预报距离采用40m,在完整的硬质岩地层每次预报采用60m。其相关技术要求按《铁路隧道超前地质预报技术指南办理》。

低应变反射波法检测细则

低应变反射波法检测 1适用范围 本细则适用于低应变反射波法检测混凝土桩的桩身完整性,判定桩身缺陷的程度及位置。其有效检测桩长范围应通过现场试验确定。 2编制依据 《建筑基桩检测技术规范》JGJ 106-2014。 3检测仪器设备 检测仪器设备主要为RS-1616K(S)基桩动测仪、力锤、力棒。 4受检桩种类及要求 4.1 受检桩种类 1、混凝土预制桩 2、混凝土灌注桩 4.2 受检桩要求 4.2.1受检桩混凝土强度至少达到设计强度的70%,且不小于15MPa。 4.2.2桩头的材质、强度、截面尺寸应与桩身基本等同。 4.2.3桩顶面应平整、密实,并与桩轴线基本垂直。 5现场检测 5.1准备工作 5.1.1收集工程桩的桩型、桩长、桩径、设计桩身混凝土强度、施工记录及地质勘察报告等有关技术资料。 5.1.2检查桩顶条件和桩头处理情况 受检桩桩顶的混凝土质量、截面尺寸应与设计条件基本相同。 灌注桩应凿去桩顶浮浆或松散、破损部分,并露出坚硬的混凝土表面;桩顶平面应平整干净无积水,必要时宜采用便携式砂轮机磨平;妨碍正常测试的桩顶外露主筋应割掉。 预应力管桩当法兰盘与桩身混凝土之间结合紧密时,可不进行处理,否则,应采用电锯将桩头锯平。 当桩头与承台或垫层相连时,应将桩头与混凝土承台或垫层断开。 5.1.3检查仪器设备,使测试系统各部分之间匹配良好。 5.2现场仪器设备配置(如下图):

5.3测量传感器的选择和安装 5.3.1传感器的选择 检测长桩的桩端反射信息或深部缺陷时,应选择低频性能好的传感器;检测短桩或桩的浅部缺陷时,应选择加速度传感器或宽频带的速度传感器。 5.3.2传感器的安装 1、传感器安装应采用化学粘结剂或石膏、黄油等粘贴,不应采用手扶式。安装时必须保证传感器与桩顶面垂直。 2、激振点和传感器安装位置应避开钢筋笼的主筋影响。 3、实心桩的激振点位置应选择在桩中心,测量传感器安装位置宜为距桩中心2/3半径处;空心桩的激振点与测量传感器安装位置宜在同一水平面上,且与桩中心连线形成的夹角宜为90度,激振点和测量传感器安装位置宜为桩壁厚的1/2处。 5.4激振操作 1、激振方向应沿桩轴线方向。 2、激振方式应通过现场敲击试验,选择合适重量的激振力锤和锤垫。宜采用小锤(窄脉冲)获取短桩或桩的上部缺陷反射信号,宜采用大锤(宽脉冲)获取长桩或桩的下部缺陷反射信号。 5.5测试参数设定 1、时域信号记录的时间段长度应在2L/c时刻后延续不少于5ms;幅频信号分析的频率范围上限不应小于2000Hz。 2、设定桩长应为桩顶测点至桩底的施工桩长,设定桩身截面积应为施工截面积。 3、桩身波速根据本地区同类桩型的测试值初步设定。一般可按下表选择: 4、采样间隔或采样频率应根据桩长、桩身波速和频域分辨率合理选择;时域信号采样点数不宜少于1024点,在保证测得完整信号的前提下,选用较高的采样频率或较小的采样时间间隔。 5、放大器增益应结合激振方式通过现场对比试验确定。 6、传感器的设定值应按计量检定结果设定。 5.6测试信号采集和筛选 1、根据桩径大小,桩心对称布置2~4个检测点;每个检测点记录的有效信号数不宜少于3个,通过叠加平均提高信噪比。 2、检查判断实测信号是否反映桩身完整性特征。 3、不同检测点及多次实测时域信号一致性较差时,应分析原因,增加检测点数量。 4、信号不应失真和产生零漂,信号幅值不应超过测量系统量程(避免信号波峰削波)。 5、每根被检测的基桩均应进行二次以上重复测试,当检测波形重复良好时方可存储记录。当重复性不好时应及时清理激振点,改善传感器安置条件或排除仪器故障后重新进行测试。对于异常波形,应在现场及时分析研究,排除可能存在的激振或接收条件不良因素的影响后重新测试。

地震反射层位的地质解释

地震反射层位的地质解释 论文提要 地震反射层的地质解释主要是依据地震剖面的反射特征,选择特征明显的标准反射波,然后结合研究区底层层位关系确定反射波代表的地质层位。这种具有明显地震特征和明确地质意义的反射层通常称为发射标准层,反射标准层选取的正确与否直觉影响到剖面对比工作和最终解释成果。 正文 一、地震剖面与地质剖面的对应关系 地震剖面是地质剖面的地震响应,在地震剖面中蕴含大量的地质信息,地震反射所涉及的地质现象,在地震剖面中都应有所反映。然而,在地震剖面中除了地质现象的响应之外,还包含着与地质现象无关的噪声,它们不具有任何地质意义。因此,在地震剖面与地质剖面之间、反射界面与地质界面,反射波形态与地下构造,反射层与底层之间有着紧密的联系,但又存在一定区别。 由于地震反射界面是波阻抗有差异的物性界面,地质上可构成误差的界面是层面、不整合面、剥蚀面、断层面、侵入体接触面、流体分界面以及任何不同岩性的分界面,均可构成地震反射面。对于此种情况,反射面与地质分界面是一致的。在某些情况下,地震反射界面与地质界面是又差异的,不一定与地层或岩性界面具有对应关系。如相邻地层由于颜色和颗粒大小变化具有层面,但没有形成明显波阻抗差异界面,不足以构成地震反射面;另外,同一岩性的地层,既无层面也无岩性界面,但由于岩层中所含流体成分的不同(例如水层与油层的分界面、水层与气层的分界面、油层与气层的分界面),而形成明显的波阻抗差异界面,足以构成地震反射面,该地震反射面不一定代表地质界面。 在一般情况下,具有明显波阻抗差异的地层层面是不整合面,不整合面具有明确的年代地层意义,因而相应地也赋予了地震反射面明确的地层年代含义。确定地震反射界面的地质年代是地震解释十分重要的基础性工作之一。 由地震垂向分辨率分析可知,在薄互层地区,地震记录上的一个反射波,并不是由单一界面产生的单波,而是几十米间隔内许多反射波叠加的结果。地震剖面上的反射界面不能严格的与某一确定的地质界面相对应,而是一组薄互层在地震剖面上的反映。特别是在陆相盆地中,主要为砂泥互层结构,垂向和横向变化大,非均一性十分明显,地震反射趋向于以一种微妙的波形变化“追踪”岩性-地层界面,随着地震分辨率的提高,地震反射的物性界面特征越来越明显,“地震反射同向轴实质上是追踪着反射系数而不是追踪砂岩”(李庆忠,1993):在分辨率较低的情况下,这种薄互层的地震反射界面往往是穿时的。 在有些地区,尽管地质界面的物性差异较大,构造形态明显,但由于界面过短或界

经典低应变反射波法的基本原理

的1/3乃至1/5以下。以加速度计为例,如其安装谐振频率为14kh,则频率上限只能达到3-4kh。由于桩基动测对幅值的定量要求不高,可以放宽限度,但也绝不能使谐振频率接近甚至位于要求的频率范围内。然而,地震检波器的使用者却不同程度地犯了这个错误,以28hz和38hz的速度检波器为例,研究表明,当锥形杆被手按于混凝土表面,且用铁锤激发时,谐振频率在830hz左右;通过钻孔方式将锥形杆紧紧地全部插入孔中或取下锥形杆用石膏粘固在混凝土表面时,如用铁锤敲击,谐振频率多在1200hz以上,此时如用尼龙锤或铁锤垫橡皮等低频锤敲击则可完全排除安装谐振频率的影响。显而易见,正确安装方式应以后者为宜。 理论推导表明,传感器的安装谐振频率与传感器的安装刚度和传感器底座质量有关。一般可以减化理解为:安装刚度越高,基座质量越小,安装谐振频率就越高,而安装刚度与安装的松紧程度、传递杆(锥形杆)长短有关。正因如此,一般要求取消锥形杆(或全部埋入被测连续介质中),也要求传感器基座越轻越好。 对于位移型惯性传感器而言(如速度计),安装谐振频率有f1,f2两个,f1比传感器的自然谐振频率还低,在40Hz以内,一般对测试没有影响;f2即是所讲安装谐振,处理较好时应在1200Hz以上。加速度型惯性传感器也有两个安装谐振频率,但均位于高频段,引起我们关注的是第一谐振频率,处理较好时在大几千赫兹至几万赫兹变化,但是,如用弹性较好的橡皮泥安装将只有1-2kHz。 在对基桩进行低应变反射波法测试时选用速度或加速度传感器。其中速度计在低频段的幅频特性和相频特性较差,在信号采集过程中,因击振激发其安装谐振频率,而产生寄生振荡,容易采集到具有振荡的波形曲线,对浅层缺陷反应不是很明显。同速度计相比,加速度计无论是在频响特性还是输出特性方面均具有巨大优势,并且它还具有高灵敏度的优点,因此用高灵敏度加速度计测试所采集到的波形曲线,没有振荡,缺陷反应明显。所以建议在对基桩进行低应变反射波法测试时选用高灵敏度加速度计检测。 理论上讲位移计型惯性传感器包括速度计(所谓高阻尼速度计和地震检波器)的高频部分是完全满足应力波反射法测试要求的,但由于生产工艺等方面的原因,其高频部分往往受到很大的限制,有的仅几百赫兹,最高一般亦在2kHz左右会掉下来。在现场测桩时,传感器的安装刚度又会导致安装谐振的出现,进一步使传感器的可测范围变窄,那么怎样判断传感器的优劣呢? 利用牙膏、石膏、黄油、橡皮泥等粘接剂将不含锥形杆的速度计紧紧地粘贴在被正确清理干净,满足测试要求的桩头上或用冲击电锤打孔,将有锥形杆的速度计牢牢地插入孔中,确保安装方法正确后,利用小铁锤直接敲击砼表面,仪器的模拟滤波档置2.5kHz以上。对被测信号进行谱分析,如果此桩两米内没有毛病,其幅值谱最高峰(一般为传感器的安装谐振峰)频率大于1200Hz,此传感器即可满足测试要求。频率越高在以后的测试过程中浅部测试效果将越好;分析幅值谱的低频部分(固有频率以下)还可判断出低频特性的好坏。换用低频锤,如力棒、尼龙锤(桩头再垫层橡皮更好)或铁锤+汽车外胎垫测试,如无振荡或振荡很小,这类传感器将更好。如果传感器的谐振峰仅几百赫兹,用低频锤时又不能消振,那么这种传感器是满足不了测试要求的。 需要指出的是,这种测试方法与桩头强度、砼龄期、浅部缺陷以及安装紧凑程度很有关系,以预制桩桩头测试效果最好,而如果在素混凝土上测试,效果将最差,最不能说明问题。速度计是自生电动势型的,虽然价格低廉,但也应注意保护,一般的保护方法是将其输出端短路或两个传感器对接。开路贮放将减少传感器寿命,是不合适的。测桩界较流行的速度计:灵敏度大约为280mV/cm/s,固有频率:10~28Hz,阻尼系数ξ=0.6~1.0。 如果判断速度计测试效果的好坏?从传感器频响,特别是安装后的频响特性来考虑,速度计用于测桩是应当慎重的,因此从某种意义上讲,提高速度计的安装刚度,降低安装质量

反射波法

三、地震反射波法 1、阐明有效波、干扰波的概念及其相对意义。 在数据采集中,埋置于地面的检波器可接收到来自于地下多种波的扰动,其中只有可用于解决所提出的地质任务的波才称为有效波,所有妨碍有效波识别和追踪的其他波称为干扰波。由此可见,在反射纵波法勘探中,一般只有反射纵波是有效波,其他波属于干扰范畴,而在瑞雷面波法勘探中,除瑞雷面波外,均为干扰波。 2、画图表示怎样用综合平面图表示观测系统。 它是目前生产中最常用的观测系统图示方法。它从分布在测线上的各激发点出发,向两侧作与测线成45角的直线坐标网,将测线上对应的接收排列投影到该45角的斜线上,并用颜色或加粗线标出对应线段。该线段在地面的投影对应覆盖的反射段。 用综合平面图表示观测系统 5、什么叫最佳接收地段?反射波的最佳接收地段应怎样选取? 在反射波法勘探中,为了有效地避开面波、声波、直达波、和折射波对有效反射波的干扰,可把接收地段选择在尽可能不受或少受各种干扰波影响的地段,这种最佳接收地段又称为最佳时窗。在反射波法勘探中,根据各种波在时空剖面上的视速度及到达时间差异选择尽可能避开面波、声波、直达波和折射波,而最大限度突出有效反射波的地段。 8、什么叫滤波?数字滤波处理的目的? 一个原始信号通过某一“装置”后变为一个新信号的过程称为滤波。目的是消除干扰波。 10、请画图说明理想滤波器在频率域的特点及其分类? 理想滤波器是有效波在其频率范围内完全无畸变地通过,干扰完全被压制掉。因此,要求其频率响应为: ???==01)()(f H f H 其它有效波频带内 这意味着其相位响应特性为零,故理想滤波器一定是零相位滤波器,一定是非物理可实现的。当然,它也隐含着在有效波频带内不要有干扰,否则无法滤掉。 理想滤波器的频率响应函数图形是一个矩形,像门一样,所以也称之为门式滤波器。 A 、理想低通滤波器 其频率响应如图(a)所示,其数学模型为: ? ??=01)(f H L c c f f f f >< 图24 理想低通滤波器的频率与脉冲响应 其中b 图横坐标应为t ,纵坐标应为)(t h L B 、理想带通滤波器 一般情况下,记录中既有高频干扰,又有低频干扰,则需要设计带通滤波器,其数学表达式为:

超前钻探法在瓦斯隧道施工中的应用

B RIDGE AND TUNNEL ENGINEERING 桥隧工 程 Western China Communications Science &Technology 西部交通科技 文章编号:1673- 4874(2012)3-0057-004超前钻探法在瓦斯隧道施工中的应用 曾晓勤,张啸,李辉忠 (四川路桥建设股份有限公司公路隧道分公司,四川 成都610200) 作者简介 曾晓勤(1963—),男,重庆人,主要从事隧道工程建设与管理工作。 摘要:文章根据成都至自贡至泸州高速公路马鞍山隧道所处的煤层瓦斯地质状 况, 利用超前钻探法对隧道围岩的掌子面和钻孔瓦斯浓度进行了测试,测试结果能有效判定前方岩层的瓦斯赋存和涌出情况。关键词:超前钻探法;煤层瓦斯;隧道施工;应用中图分类号:U458.1 文献标识码:A Applications of Advanced Drilling Method on Gas Tunnel Construction ZENG Xiao-qin ,ZHANG Xiao ,LI Hui-zhong (Sichuan Road &Bridge Group Co.,Ltd.Highway Tunnel Branch ,Chengdu ,Sichuan ,610200)Abstract :According to the geological conditions of coal seam gas where Ma ’anshan Tunnel of Chengdu-Zigong-Luzhou Expressway is situated ,the article tested the gas concentration at tunnel face and boreholes of rocks surrounding the tunnel through the advanced drilling method ,and the test results could effectively determine the gas occurrence and emission situations at front rock layers. Key Words :Advanced drilling method ;Coal seam gas ;Tunnel construction ;Applications 0前言 随着我国交通建设事业和铁路建设事业的迅速发展,城市隧道、铁路隧道和山岭隧道的建设进入了高速发展期。虽然先进的隧道瓦斯探测技术能有效减少瓦斯事故的发生, 但是由于瓦斯隧道的体地质情况复杂多变,施工过程中瓦斯及有毒有害气体的分布不明,从而引起的瓦斯工程事故数不胜数,如2011 年3月12日1时0分,贵州六盘水市盘县特区松河乡新成煤业复采单位四采 区, 发生一起瓦斯爆炸事故,当时井下有34人,15人生还,16人死亡,3人失踪;2011年10月29日下午6时多,湖南衡阳霞流冲煤矿发生瓦斯爆炸事故,事发

超声检测法检测预应力管道压浆质量

超声检测法检测预应力管道压浆质量 唐恺 (江苏省交通科学研究院股份有限公司,南京,650217) 摘要:随着中国公路建设的高速发展,预应力混凝土结构得到广泛使用,在采用该工艺施工时, 其预留孔道的灌浆质量一直是人们关心的问题。虽然近几年来超声波无损检测的理论与技术都有了很大的进展,单大量的实验研究已证明了目前有关混凝土的超声波技术的应用,大部分是停在对已有损害的识别,或是对混凝土强度的检测上,而在波纹管这种多相复合体系交织在一起的异质结构材料以及混凝土材料使用寿命的早期性能退化阶段的检测与评定方面的研究仅处于起步阶段。因此,超声检测法检测预应力管道压浆质量发仍然具有较大潜力。 关键词:预应力管道压浆预应力损失,超声检测,密实度 前言:随着中国公路建设的高速发展,预应力混凝土结构得到广泛使用,在采用该工艺施工时, 其预留预应力管道的压浆质量一直是人们关心的问题.灌浆是否饱满,将直接影响预应力构件的整体强度和耐久性。因此,人们十分关心预留预应力管道的灌浆质量。但是,在实际灌浆操作中,由于管道堵塞、压浆方法不当、灌浆材料或人为疏忽等问题,沿预应力束有时会出现灌浆不密实,甚至出现孔洞等现象,会造成水分侵入而锈蚀钢束,这都将大大降低混凝土结构构件的耐久性 与承载能力[1]。目前对预应力锚索孔的注浆饱和度控制,主要靠现场监理的旁站 来控制,判断方法是通过观察注浆过程中,浆液的出浆情况来判别该孔是否饱满及是否符合要求,具有很大的主观随意性,况且浆液在孔内的流动情况受施工操作、注浆压力等因素控制,监理人员难以判别浆液在孔内的饱满和固结情况。目前国内开始采用弹性波方法加以解决,通过弹性波的传播途径,对弹性波的振幅,频率,波幅等参数的认识来识别有无缺陷。 1 预应力管道压浆的作用 预应力管道灌浆的密室与否直接关系到桥梁的长期使用性能,对桥梁起着至关重要的作用。预应力管道灌浆技术是将水泥浆注入预留的预应力混凝土预应力管道.水泥浆充分包裹预应力筋。主要能够保护预应力钢材不外露而遭锈蚀,保证预应力混凝土结构或构件的安全寿命;使预应力钢材与混凝土良好结合,保证它们之间预应力的有效传递,使预应力钢材与混凝土共同工作:能够消除由于预应力混凝土结构或构件在反复荷载作用下,应力变化对锚具造成的疲劳破坏,从而提高了结构的可靠度和耐久性。预应力管道压浆的密室可以充分排除预应力管道内的水分和气体,保护预应力筋不锈蚀。后张法预应力梁的预留预应力管道,穿入预应力筋锚固后,仍有1/2-1/3的空隙,压浆后水泥浆与梁体形成一个密实的整体,有利于整体共同受力。密室的注浆可以减轻锚具工作负担,预应力管道压浆后,浆体对预应力筋将产生巨大的握裹力,这样减轻了锚具的负担,即便是锚具超过疲劳极限而失去作用,有水泥浆产生的握裹力作为第2道防线,也无须担心预应力筋脱锚而发生事故。由此可见预应力管道压浆对桥梁的重要性,预应 力桥梁预应力管道注浆质量是桥梁工程质量控制的重要环节[2]。预应力管道注浆 质量越来越引起建设方的重视和注意。经过查证,预制梁板和现浇梁有40%-60%的预应力管道注浆存有问题。检测预应力管道注浆质量,目前在国内、国外也有不少检测检测方法,我们引入弹性波反射法技术检测预应力管道注浆质量,为检

桩基检测的原理及方法

为确保建筑工程基桩的质量,并为工程设计及验收提供可靠的依据,根据上海市工程建设规范《建筑基桩检测技术规程》 (DGJ08-218-2003)的要求,在本市建筑工程中应用的各种混凝土预制桩、灌注桩和钢桩等工程桩,应进行单桩承载力和桩身完整性检测与判定。 上海市岩土工程检测中心具有上海市建筑业管理办公室颁发的 基桩检测(低应变、高应变)资质,并通过了上海市技术监督局的计量认证;检测人员均经过岗位培训,颁发上岗证,对个人资质有要求的检测项目,持有上海市工程检测行业协会相应的资质证书。 检测依据 1、上海市工程建设规范《建筑基桩检测技术规程》 (DGJ08-218-2003) 2、上海市工程建设规范《地基基础设计规范》(DGJ08-11-1999) 3、国家行业标准《建筑基桩检测技术规程》(JGJ106-2003) 检测内容及方法 1、单桩承载力 检测方法:静载荷试验法、高应变动测法。 2、桩身完整性 检测方法:低应变法、高应变法、超声波透射法、钻孔取芯法。

桩身完整性判定 桩身完整性类别分类原则 Ⅰ无任何不利缺陷,桩身结垢完整; Ⅱ有轻度不利缺陷,但不影响或基本不影响原设计的桩身结构承载力; Ⅲ有明显不利缺陷,影响原设计的桩身结构承载力; Ⅳ有严重不利缺陷,严重影响原设计的桩身结构承载力。 判定依据:上海市工程建设规范《建筑基桩检测技术规程》(DGJ08-218-2003) 检测机构 检测机构必须具有基桩检测的资质,并通过计量认证;检测人员应经过培训上岗,对个人资质有要求的检测项目,应持有相应的资质证书。 上海市岩土工程检测中心具有上海市建筑业管理办公室颁发的基桩检测(低应变、高应变)的资质,并通过了上海市技术监督局的计量认证;检测人员均经过岗位培训,颁发上岗证,对个人资质有要求的检测项目,持有上海市工程检测行业协会相应的资质证书。 一.基桩低应变动测 方法原理

地震反射波法在工程地质勘察中的应用

地震反射波法在工程地质勘察中的应用 发表时间:2016-09-18T17:23:49.103Z 来源:《基层建设》2015年29期作者:聂建微 [导读] 摘要:随着社会经济的迅速发展,大型工程的施工建设数量也越来越多,在进行工程项目的地质勘察过程中,地震反射波发在实际应用中越加广泛,地震反射波法在工程勘察中的应用特点及效果也是更加明显。 十四冶建设云南勘察设计有限责任公司云南昆明 650200 摘要:随着社会经济的迅速发展,大型工程的施工建设数量也越来越多,在进行工程项目的地质勘察过程中,地震反射波发在实际应用中越加广泛,地震反射波法在工程勘察中的应用特点及效果也是更加明显。下面主要探讨地震反射波法在实际工程地质勘察中的应用。 关键词:地震反射波法;工程勘查;应用 一、前言 地震反射波具有简便、客观、迅速的特点,在工程勘察中得到了广泛的推广应用。本文就对地震反射波法在工程地质的勘察中的具体应用进行简要的分析探讨,希望对相关从业者有所帮助。 二、地震反射波法的运用原理 地震反射波法的工作机制主要是建立在地震波传播过程中所触及到的不同类型的媒介岩土层的时候,将反射局部能量的特点。通常来讲,地震波在地下传播中,若是碰到地层分界及断层等出现波阻抗变更的界面情况下,都会出现反射波,经过地面接收设备来自不同界面的反射波,经过详细的研究之后,核算出地震时间的剖面。并且将其与之前工程地质信息进行比较,研究反射波场的特点,以明确地表下岩土层的分层结构及相关内容,进而实现勘察地质的目的。 三、地震反射波法在实际工程的应用分析 1、案例分析 本文就以M大桥为实例工程进行分析,其大桥主要位于在小凌河口潮间带浅滩上,南边靠近渤海辽东湾,北边连接凌水湾,大桥主要由主桥以及引桥构成,全长为640 m,主桥是2×180 m 的独塔叠合梁式斜拉桥。该大桥工程区域空间非常广阔,没有一些可见的障碍物,因为其天然水深很浅,同时受潮位变动的影响非常大,所以无法科学的进行较大面积的工程地质钻探。于是使用地震反射波法勘察工程区域内的风化岩面分布情况,预判出该区域内有没有出现断层以及溶洞等相关地质问题的可能性。按照之前的对大桥周边的地质勘察信息表明,该地区的地层分布主要分为海相沉积层,陆相沉积层以及基岩等相关的岩层分布情况。 2、在工程地质中的具体应用分析 该大桥工程地震反射波法检测系统所使用的12道接收,单边引爆6次覆盖,通常在引爆一各炮点之后,后面的炮点及接收区域是根据横排及纵列以此向前移动1个道间的距离,从该大桥的实际情况来分析,其具体的偏移距为20 m,纵向测线上的炮点间距以及道间距都是5 m。采样的时间每次都间隔为0.3 m/s,采样的距离为4 098。 四、勘察资料的研究分析 1、勘察资料的处理程序 该大桥工程采取的地震反射波法勘察的资料使用专业的陆上地震发射波数据处理软件进行研究,其主要的程序涵盖了预处理,剖面处理以及其他方面相关的处理程序。所谓的预处理主要工作就是完成记录数据的归纳,以及频谱研究,选取共偏移道集以及共中心点道集等相关方面的任务;而剖面处理主要是对共偏移道集的自动校正,速度研究,小波道间相关去噪等有关方面的工作;最后是解释处理,这其实就是对不同记录数据的频谱进行详细的比较和研究,比较纵和横剖面交点道进行校正,从钻探信息中找出对监测剖面的相关解释内容。 2、地质解释以及资料处理 原始地震记录数据在通过相关的技术处理之后,能够获取地震波反射时间的剖面图,按照时间剖面图的详细情况可以从中反应出反射波组特点,利用地区地质的相关情况以及钻孔资料可以明确不同的地质结构,以及构造的特点,其中通常都涵盖了研究地震反射波组的特点,制作地质解释剖面图以及相关的内容。具体来看, (1)、时间剖面的波组特点,在该大桥的位置覆盖层,中等风化岩层的分界区域,都可以构成非常强的反射波组,发射波组的同组轴都是相互平行,同时保持连续性的状态。通过对时间剖面的波组特点可以清晰的反应出,在基岩面以下部分具有非常显著的反射波组和相轴合并,波组间隔变化较快,反射错乱等等相关的变化,这就充分的表明基岩内部的具体结构。 (2)、制作地质解释剖面,按照地震反射波的时间剖面图能够明确反射界面的区域,然后同之前的钻孔信息进行详细的比较,进而明确反射波双程过程中的有效波速,明确大桥测线上反射界面的深度。大桥某测线地震反射波探测的地质解释剖面见下图。 (3)、数据信息处理,一般这都是通过计算机对搜集的资料进行影响,以及获取地震相关的指标参数,提升信噪比为主要目标的整个处理过程和方法。其大体涵盖了数字滤波速度研究以及校正叠加等等一些相关的内容。利用不同功能的地震处理,充分的显示出其是表明岩性和地下结构等的参数据处理和地震剖面为目标的,提升分辨率,科学反射信息以及加强信噪比,以此来更好的限制不同方面的影 响,进而取得对地质解释的水平叠加偏移的时间剖面,以及可以折射出地下地质状况信息。 3、勘察结果的分析 从本次地质反射波勘察结构及之前地质钻探信息的探测成果全面的研究,其中一般涵盖了明确岩土分层及裂隙构造等相关内容。根据地震反射的勘察结果,大桥周边地质钻孔信息资料,可按照波阻等物理的指标参数将该大桥区域内岩土层分为4层,从上至下以此划分为表面覆盖层,以中等风化岩层等相关内容。该次地震反射波探测中一共发掘了4 个小断层,以及裂隙等。利用同周边的地质钻孔资料进行比较分析可以反映出,地震反射波同相轴的变更一般都是由花岗岩不均匀风化,及中等风化岩层中含有强风化岩夹层而导致的。

隧道超前地质预报(加深炮孔法、超前钻探)施工作业指导书

超前地质预报(加深炮孔法、超前钻探)施工作业指 导书 1.适用范围 本作业指导书适用于隧道超前地质预报(加深炮孔法、超前钻探)施工。 2.作业准备 2.1施工前熟悉施工图及工程地质、水文资料,完成相关图纸的会审工作。 2.2熟悉各相关的设计文件。并组织施工人员学习和掌握施工工艺、技术要求、质量标准及检测方法等。 2.3按照要求完成三级技术交底,即项目总工程师对项目部各部室及技术人员、技术主管对作业队技术负责人、作业队技术负责人对班组长及全体作业人员的交底。 2.4检查传感器杆,连接线是否符合相关要求,根据围岩情况准备钻孔及注水机具。 3.技术要求 3.1 技术指标 3.1.1海尾隧道 海尾隧道超前预报在地质调查法的基础上,采用地质调查与勘探相结合、物探与钻探相结合、长距离与短距离相结合、地面与地下相结合、超前导洞与主洞相结合的方法进行预报,具体工作工作方法见下表。 表1 海尾隧道地质超前预报工作量表 山头寺隧道超前预报在地质调查法的基础上,采用地质调查与勘探相结合、物探与钻探相结合、长距离与短距离相结合、地面与地下相结合、超前导洞与主洞相结合的方法进行预报,具体工作工作方法见下表。 表2 山头寺隧道地质超前预报工作量表

西坝隧道超前预报在地质调查法的基础上,采用地质调查与勘探相结合、物探与钻探相结合、长距离与短距离相结合、地面与地下相结合、超前导洞与主洞相结合的方法进行预报,具体工作工作方法见下表。 表3 西坝隧道地质超前预报工作量表 3.1.4埔姜山隧道 埔姜山隧道超前预报在地质调查法的基础上,采用地质调查与勘探相结合、物探与钻探相结合、长距离与短距离相结合、地面与地下相结合、超前导洞与主洞相结合的方法进行预报,具体工作工作方法见下表。 表4 埔姜山隧道地质超前预报工作量表

地震波反射法实施细则

地震波反射法(简称TSP)实施细则 1 检测原理 地震波反射法(TSP法)是利用地震波反射回波方法测量的原理。地震波震源采用小药量炸药激发产生,炸药激发在隧道边墙的风钻孔中,通常24个炮孔布置成一条直线。地震波的接收器也安置在孔中,一般左右洞壁各布置一个。地震波在岩石中以球面波形式传播,当地震波遇到弹性波阻抗差异界面时,例如断层、岩体破碎带、岩性变化或岩溶发育带等,一部分地震信号反射回来,一部分信号透射进入前方介质继续传播。反射的地震信号被高灵敏度的地震检波器接收,反射信号的传播时间与传播距离成正比,与传播速度成反比,因此通过测量直达波速度、反射回波的时间、波形和强度,可以达到预报隧道掌子面前方地质条件的目的。在一定间隔距离内连续采用上述方法,结合施工地质调查,可以得到隧道围岩的地质力学参数,如-动弹性模量、动剪切模量和动泊松比参数等。工作中结合相关的地质资料和施工地质工作,总结预报经验可以提高预报的准确性。 2 检测仪器简介 采用地震波反射法(TSP)技术进行预报中,使用的仪器为TGP206隧道地质超前预报系统,TGP206(Tunnel geology Prediction )由北京市水电物探研究所研制,已经经过国内著名隧道专家组评审,鉴定为具有国际先进技术水平。 TGP206隧道超前地质预报系统包括仪器主机、配件和处理软件三部分组成。下图为TGP206隧道超前地质预报系统实物照片。

图TGP206隧道超前地质预报系统 3 探测方法 采用黄油耦合,定向安置孔中三分量检波器;记录接收器孔、距离接收器最近的炮孔和隧道掌子面的里程桩号,以及各炮孔间的距离,以上数据填写在《TGP 现场数据记录表》中;爆破孔药量一般控制在50~70克,采用计时线炸断的触发方式,在孔中灌满水的条件下激发,按序依次起爆和进行数据采集。工作中对测线布置段至隧道掌子面间的隧道围岩进行地质描述,以利于资料解释。 4 测线布置 在隧道左或右壁的同一水平线上从里向外布置24个炮孔,炮孔间距2.0m,炮孔高度1.1m;与接收孔的最近距离一般为20m。下图为工作布置示意图和钻孔布置平面示意图。

低应变反射波法检测桩基完整性简介

桩基完整性检测 ----------低应变反射波法简介 一、前言 在桩基完整性动力检测诸方法中,由于低应变动力检测仪器设备轻便,成本低廉,现场检测速度快,覆盖面大,受到广大受检单位的欢迎。为了确保桩基工程的质量,我国相关部门先后编制了一系列规范规程,其中《基桩低应变动力检测规程》(JGJ/T93-95)以及《公路工程基桩动测技术规程》(JTG/T F81-01-2004)的发布实施,使基桩低应变动力检测工作更加严格规范,也为检测报告的统一编写起到规范化的作用。 二、低应变反射波法的原理 低应变反射波是基桩工程质量检测普遍使用的一种有效方法,它以检测原理清晰,测试方法简便,成果较可靠,成本低,便于对桩基工程进行普查等特点在成桩质量检测中充分发挥作用。 我国发布实施的现行动力检测规范中反射波法的适用范围中明确指出:该法可以检测桩身混凝土的结构完整性,推定缺陷类型及其桩身中的位置,也可对桩的混凝土强度等级作出估计。由此可见,它可为基桩工程的成桩质量的分类提供评判依据。 1、基本概念 将桩视为一维弹性杆件,用力锤(或力棒)在桩头施加一小冲击扰动力F(t),产生瞬时激振,激发一应力波沿桩身传播,然后利用速度检波器、速度或加速度传感器接收由初始信号和由桩身缺陷或桩底

产生的反射信号组合的时程曲线(或称为波形),最后分析者利用信号采集分析仪对所记录的带有桩身质量信息的波形进行处理和分析,并结合有关地质资料和施工记录作出对桩的完整性的判断。 2、应力波基本概念 应力波:当介质的某个地方突然受到一种扰动,这种扰动产生的变形会沿着介质由近及远传播开去,这种扰动传播的现象称为应力波。 波阻抗:将桩当作一维杆件,其直径远小于长度的杆件,当遇到桩身阻抗Z= ρ·AC(ρ:密度;C:应力波速;A:桩横截面积)。变化界面时,要产生反射和透射。弹性波在桩身内传播遇到桩身阻抗界面时是垂直入射和反射的。假定桩界面上段的阻抗为Z1,下段的阻抗为Z2,且不考虑桩周土阻力的影响。根据桩在界面上位移和速度的连续条件,力与应力和位移的关系,可推导出在桩身阻抗变化处的反射系数Rf 关系式: Rf=(Z1-Z2)/(Z1+Z2) 式中:Rf-反射系数; Z1、Z2-分别为桩身材料上、下界面的广义波阻抗; ρ、A、C-分别为桩身材料的质量密度、桩身截面积及应力波速。 根据反射系数R f 的正、负来确定桩身阻抗的变化情况:当RF>0 时,反射波与入射波同相位,表示桩身界面阻抗由大变小,如缩径、离析、断桩及桩底反射等;反之,Rf<0 时,反射波与入射波反相位,表示桩身界面阻抗由小变大,如扩径、端承桩桩底反射情况。桩截面

反射波法基本测试原理与波形分析

一. 反射波法基本测试原理与波形分析 1.广义波阻抗及波阻抗界面 设桩身某段为一分析单元,其桩身介质密度、弹性波波速、截面面积分别用ρ,C ,A 表示,则令 Z =ρCA (7-1) 称Z 为广义波阻抗。当桩身的几何尺寸或材料的物理性质发生变化时,则相应的ρ、C 、A 发生变化,其变化发生处称为波阻抗界面。界面上下的波阻抗比值为 2 2211121A C A C Z Z n ρρ== (7-2) 称n 为波阻抗比。 2.应力波在波阻抗界面处的反射与透射 设一维平面应力波沿桩身传播,当到达一与传播方向垂 直的某波阻抗界面(如图7-2所示)时。根据应力波理论,由连续性条件与牛顿第三定律有 V I +V R =V T (7-3) A 1(σI +σR )=A 2σT (7-4) 式中,V 、σ分别表示质点振动的速度与产生的应力,下标I 、R 、T 分别表示入射波、反射波与透射波。 由波阵面的动量守恒条件导得 σI =-ρ1C 1V I σR =ρ1C 1 V R σT =-ρ2C 2V T 代入式(7-4),得 ρ1C 1A 1(V I -V R )=ρ2C 2A 2V T (7-5) 联立式(7-3)与(7-5),求得 V R =-FV I (7-6a) V T =nTV I (7-6b) 式中 n n F +-= 11 称为反射系数 (7-7a) n T +=12 称为透射系数 (7-7b) 式(7-6)就是反射波法中利用反射波与入射波的速度量的相位关系进行分析的重要关系式。 3.桩身不同性况下应力波速度量的反射、透射与入射的关系 (1)桩身完好,桩底支承条件一般。此时,仅在桩底存在界面,速度波沿桩身的传播情况如图7-3所示。 因为ρ1C 1A 1>ρ2C 2A 2,所以n = Z 1/Z 2>1,代入式(7-7)得 F <0,(T 恒>0) 由式(7-6)可知,在桩底处,速度量的反射波与入射波同号,体现在V (t )时程曲线上,则为波峰相同(同向)。典型的完好桩的实测波形如图7-4。 由图7-3、图7-4分析可得激振信号从触发到返回桩顶所需的时间t 1、纵波波速C 、桩长L 三者之间的关系为 1 2t L C = (7-8) Z 1=ρ1C 1A 1 Z 2=ρ2C 2A 2 图7-2 应力波的反射与透射

TS-RD1203(A)弹性波桩底溶洞探测仪

TS-RD1203(A)弹性波孔底溶洞探测仪 应用背景: 根据《岩土工程勘察规范》等规程的要求,嵌岩灌注桩应判明桩端以下三倍桩径且不小于5m范围内无软弱夹层、断裂破碎带和洞穴分布,且在桩底应力扩散范围内应无岩体临空面。单柱单桩的大直径嵌岩桩,应视岩性检验孔底下3倍桩身直径或5m深度范围内有无土洞、溶洞、破碎带或软弱夹层等不良地质条件。 目前,工程上多采用桩底打超前钻的方法来进行桩底溶洞探测,大直径桩需要打多个钻孔。钻探的方法虽然最直接,但单个钻孔只能探明钻孔当前位置的情况,不能反应整个桩底下溶洞分布情况,容易造成遗漏溶洞;一桩多孔钻探成本高,工期长,影响整个工程进度。 TS-RD1203(A)型桩底溶洞探测仪,武汉天宸伟业物探科技有限公司研发和生产,采用弹性波反射法来高效率地探明桩底溶洞的分布情况。一个桩孔可以进行多点探测,同时记录每个测点的方位,因而可以准确地探明整个桩底的岩溶分布情况;根据弹性波在岩溶等软弱地质体表面的反射强度和时间,可以准确地探明岩溶在桩底的埋藏深度。探测时无须复杂的准备工作,探测过程由设备控制,简单快捷。 应用领域: 1.灌注桩孔底溶洞探测; 2.人工挖孔桩底部溶洞探测; 3.适用于泥浆孔或干孔等各类型桩孔底部溶洞探测。 工作原理: 孔底溶洞探测根据弹性波反射原理,探头内置大功率弹性波激发装置和多路弹性波检波器,测试时将探头下放到孔底,系统自动激发弹性波;,弹性波在往孔底岩层传播过程中,遇到溶洞、裂隙、软弱地层等结构体时反射回来,弹性波检波器接收到反射信号,即可根

据接收到的反射信号强度的变化和传播时间确定异常结构体的深度位置。通过调整探头在孔底的不同位置,进行孔底不同方位的多点探测,实现孔底探测全覆盖,可以充分有效地探测到孔底溶洞的水平分布和深度。 技术特点: 1.大功率高频声波震源自动激发,探测深度深,精度高,最大探测深度可达15米; 2.自动准确调节换能器位置,准确测定溶洞的位置; 3.自动调节激发源与接收换能器的相对高度,保证激发与接收均良好接地,不仅适用于泥浆 孔,也适用于无水耦合的干孔; 4.内置三维电子罗盘,既可记录测点的方位,又可判定探头在孔底的姿态,保证测试结果准确可靠; 5.仪器采用24位500kHz的模数转换单元,具有超强的微弱信号检测能力和检测精度; 6.主机采用DC12V供电,功耗低;内置高能锂电池,一次充电可连续工作10小时; 7.主机内软件系统为嵌入式操作系统,中文界面,美观大方,简单高效; 8.主机采用USB2.0数据接口,数据传出简单方便;主机内置8G存储器,采用FAT32数据存储格 式,可在通用Windows操作系统下通过USB2.0接口对实测数据文件直接进行复制粘贴; 9.主机外壳模具成型,防水防尘,防护等级IP67,安全美观大方; 10.分析软件具有数字滤波(高通、低通、带通)、频谱分析、相位分析、反射提取、信号相关,有助于溶洞位置的判定。 性能指标: 孔底溶洞探测仪 型号TS-RD1203(A) 显示方式:12.1寸真彩液晶显示屏, 1280×768背光可 调处理器:高性能低功耗嵌入式 双核处理器 存储器:16G TF存储卡操作系统:Linux操作系统 采样长度:512/1024/2048/4096采样率:2us/5us/10us可选时间分辨率:2us时间示值误差:≤1% AD分辨率:24位幅值非线性度:≤1% 探测深度范围:孔底以下大于3倍孔径且不 小于5m 深度探测误差:小于5cm 信号通道数:4数据接口:USB2.0接口,数据直 接拷贝 通道一致性:≤3%定点放大倍数: 1、10、100可选 操控方式:触摸屏浮点放大倍数: 256 激发方式:自动控制大功率声波震源供电模式:锂电池,连续工作大

相关主题