搜档网
当前位置:搜档网 › 集成电路课程设计报告

集成电路课程设计报告

集成电路课程设计报告
集成电路课程设计报告

课程设计

绩:

电子与信息工程学院

电子科学系

CMOS二输入与非门的设计

一、概要

随着微电子技术的快速发展,人们生活水平不断提高,使得科学技术已融入到社会生活中每一个方面。而对于现代信息产业和信息社会的基础来讲,集成电路是改造和提升传统产业的核心技术。随着全球信息化、网络化和知识经济浪潮的到来,集成电路产业的地位越来越重要,它已成为事关国民经济、国防建设、人民生活和信息安全的基础性、战略性产业。

集成电路有两种。一种是模拟集成电路。另一种是数字集成电路。本论文讲的是数字集成电路版图设计的基本知识。然而在数字集成电路中CMOS与非门的制作是非常重要的。

二、CMOS二输入与非门的设计准备工作

1.CMOS二输入与非门的基本构成电路

使用S-Edit绘制的CMOS与非门电路如图1。

图1 基本的CMOS二输入与非门电路

2.计算相关参数

所谓与非门的等效反相器设计,实际上就是根据晶体管的串并联关系,再根据等效反相器中的相应晶体管的尺寸,直接获得与非门中各晶体管的尺寸的设计方法。具体方法是:将与非门中的VT3和VT4的串联结构等效为反相器中的NMOS 晶体管,将并联的VT 1、VT 2等效PMOS 的宽长比(W/L)n 和(W/L)p 以后,考虑到VT3和VT4是串联结构,为保持下降时间不变,VT 3和VT 4的等线电阻必须减小为一半,即他们的宽长比必须为反相器中的NMOS 的宽长比增加一倍,由此得到(W/L)VT3,VT4=2(W/L)N 。

因为考虑到二输入与非门的输入端IN A 和IN B 只要有一个为低电平,与非门输出就为高电平的实际情况,为保证在这种情况下仍能获得所需的上升时间,要求VT 1和VT 2的宽长比与反相其中的PMOS 相同,即(W/L)VT1,VT2=(W/L)P 。至此,根据得到的等效反向器的晶体管尺寸,就可以直接获得与非门中各晶体管的尺寸。

如下图所示为t PHL 和t PLH ,分别为从高到低和从低到高的传输延时,通过反相器的输入和输出电压波形如图所示。给其一个阶跃输入,并在电压值50%这一点测量传输延迟时间,为了使延迟时间的计算简单,假设反相器可以等效成一个有效的导通电阻R eff ,所驱动的负载电容是C L 。

图2 反相器尺寸确定中的简单时序模型

对于上升和下降的情况,50%的电都发生在:

L eff C R 69.0=τ

这两个Reff 的值分别定义成上拉和下拉情况的平均导通电阻。如果测量t PHL 和t PLH ,可以提取相等的导通电阻。

由于不知道确定的t PHL 和t PLH ,所以与非门中的NMOS 宽长比取L-Edit 软件中设计规则文件MOSIS/ORBIT 2.0U SCNA Design Rules 的最小宽长比及最小长度值。

3.分析电路性质 根据数字电路知识可得二输入与非门输出AB F =。使用W-Edit 对电路进行仿真后得到的结果如图4和图5所示。

图3 图4 基本的CMOS二输入与非门仿真结果(inA是inB相位提前100ns波形)可以看到,仿真结果与理论基本符合。

三、使用L-Edit绘制基本CMOS二输入与非门版图

在设计中采用Tanner Pro 软件中的L-Edit组件设计CMOS二输入与非门的版图,进而掌握L-Edit的基本功能和使用方法。

操作流程如下:进入L-Edit—>建立新文件—>环境设定—>编辑组件—>绘制多种图层形状—>设计规则检查—>修改对象—>设计规则检查—>电路转化—>电路仿真。

1.CMOS二输入与非门设计的规则与布局布线

使芯片尺寸在尽可能小的前提下,避免线条宽度的偏差和不同层版套准偏差可能带来的问题,尽可能地提高电路制备的成品率。设计的规则应考虑器件在正常工作的条件下,根据实际工艺水平(包括光刻特性、刻蚀能力、对准容差等)和成品率要求,给出的一组同一工艺层及不同工艺层之间几何尺寸的限制,主要包括线宽、间距、覆盖、露头、

凹口、面积等规则,分别给出它们的最小值,以防止掩膜图形的断裂、连接和一些不良物理效应的出现。

2.CMOS二输入与非门的版图绘制与实现

为了便于版图设计,将图1所示电路修改如下图:

图5 修改布局后的CMOS二输入与非门电路

接下来按照电路图进行版图布线,布线时应注意设计规则,完成版图如下图:

图6 完成的基本CMOS二输入与非门版图

四、总结

1)如果对版图设计的基本规则不熟悉,可以打开DRC Setup,这里列出了所有的设计规则,可学习和记忆其中的一些主要和常用的版图设计规则。

2)在进行版图设计规则检查时,应选择输出检查文件一项,版图设计中出现的所有错误,都可以在该输出文件中列出,并标明出错的原因,与哪条规则相违背,可打开规则进行对照,并在版图上进行相应的修改。

3)通过此次设计,我也认识到了自己所学知识的片面,不熟悉CMOS工艺流程等等问题。尤其是对于重要参数宽长比的问题上求解了两天半的时间未能解决,最终通过寻求指导老师的帮助才解决了问题。

4)一些保险设计比如共态导通保护电路,反向保护电路及吸收电容,负载电容等,因为并非完整的芯片设计而省略,实际制作中针对这些问题必须对核心器件进行保护。

五、参考文献:

《模拟CMOS集成电路设计》毕查德·拉扎维著,西安交通大学出版社,2003年

《CMOS模拟集成电路设计》Phillip·E·AllenS 著,电子工业出版社,2005年

《集成电路设计》王志功等编著,电子工业出版社,2011年

《数字集成电路分析与设计-深亚微米工艺》David A.Hodges等著,电子工业出版社,2005年

数字集成电路设计_笔记归纳..

第三章、器件 一、超深亚微米工艺条件下MOS 管主要二阶效应: 1、速度饱和效应:主要出现在短沟道NMOS 管,PMOS 速度饱和效应不显著。主要原因是 TH G S V V -太大。在沟道电场强度不高时载流子速度正比于电场强度(μξν=) ,即载流子迁移率是常数。但在电场强度很高时载流子的速度将由于散射效应而趋于饱和,不再随电场 强度的增加而线性增加。此时近似表达式为:μξυ=(c ξξ<),c s a t μξυυ==(c ξξ≥) ,出现饱和速度时的漏源电压D SAT V 是一个常数。线性区的电流公式不变,但一旦达到DSAT V ,电流即可饱和,此时DS I 与GS V 成线性关系(不再是低压时的平方关系)。 2、Latch-up 效应:由于单阱工艺的NPNP 结构,可能会出现VDD 到VSS 的短路大电流。 正反馈机制:PNP 微正向导通,射集电流反馈入NPN 的基极,电流放大后又反馈到PNP 的基极,再次放大加剧导通。 克服的方法:1、减少阱/衬底的寄生电阻,从而减少馈入基极的电流,于是削弱了正反馈。 2、保护环。 3、短沟道效应:在沟道较长时,沟道耗尽区主要来自MOS 场效应,而当沟道较短时,漏衬结(反偏)、源衬结的耗尽区将不可忽略,即栅下的一部分区域已被耗尽,只需要一个较小的阈值电压就足以引起强反型。所以短沟时VT 随L 的减小而减小。 此外,提高漏源电压可以得到类似的效应,短沟时VT 随VDS 增加而减小,因为这增加了反偏漏衬结耗尽区的宽度。这一效应被称为漏端感应源端势垒降低。

4、漏端感应源端势垒降低(DIBL): VDS增加会使源端势垒下降,沟道长度缩短会使源端势垒下降。VDS很大时反偏漏衬结击穿,漏源穿通,将不受栅压控制。 5、亚阈值效应(弱反型导通):当电压低于阈值电压时MOS管已部分导通。不存在导电沟道时源(n+)体(p)漏(n+)三端实际上形成了一个寄生的双极性晶体管。一般希望该效应越小越好,尤其在依靠电荷在电容上存储的动态电路,因为其工作会受亚阈值漏电的严重影响。 绝缘体上硅(SOI) 6、沟长调制:长沟器件:沟道夹断饱和;短沟器件:载流子速度饱和。 7、热载流子效应:由于器件发展过程中,电压降低的幅度不及器件尺寸,导致电场强度提高,使得电子速度增加。漏端强电场一方面引起高能热电子与晶格碰撞产生电子空穴对,从而形成衬底电流,另一方面使电子隧穿到栅氧中,形成栅电流并改变阈值电压。 影响:1、使器件参数变差,引起长期的可靠性问题,可能导致器件失效。2、衬底电流会引入噪声、Latch-up、和动态节点漏电。 解决:LDD(轻掺杂漏):在漏源区和沟道间加一段电阻率较高的轻掺杂n-区。缺点是使器件跨导和IDS减小。 8、体效应:衬底偏置体效应、衬底电流感应体效应(衬底电流在衬底电阻上的压降造成衬偏电压)。 二、MOSFET器件模型 1、目的、意义:减少设计时间和制造成本。 2、要求:精确;有物理基础;可扩展性,能预测不同尺寸器件性能;高效率性,减少迭代次数和模拟时间 3、结构电阻:沟道等效电阻、寄生电阻 4、结构电容: 三、特征尺寸缩小 目的:1、尺寸更小;2、速度更快;3、功耗更低;4、成本更低、 方式: 1、恒场律(全比例缩小),理想模型,尺寸和电压按统一比例缩小。 优点:提高了集成密度 未改善:功率密度。 问题:1、电流密度增加;2、VTH小使得抗干扰能力差;3、电源电压标准改变带来不便;4、漏源耗尽层宽度不按比例缩小。 2、恒压律,目前最普遍,仅尺寸缩小,电压保持不变。 优点:1、电源电压不变;2、提高了集成密度 问题:1、电流密度、功率密度极大增加;2、功耗增加;3、沟道电场增加,将产生热载流子效应、速度饱和效应等负面效应;4、衬底浓度的增加使PN结寄生电容增加,速度下降。 3、一般化缩小,对今天最实用,尺寸和电压按不同比例缩小。 限制因素:长期使用的可靠性、载流子的极限速度、功耗。

集成电路设计实验报告

集成电路设计 实验报告 时间:2011年12月

实验一原理图设计 一、实验目的 1.学会使用Unix操作系统 2.学会使用CADENCE的SCHEMA TIC COMPOSOR软件 二:实验内容 使用schematic软件,设计出D触发器,设置好参数。 二、实验步骤 1、在桌面上点击Xstart图标 2、在User name:一栏中填入用户名,在Host:中填入IP地址,在Password:一栏中填入 用户密码,在protocol:中选择telnet类型 3、点击菜单上的Run!,即可进入该用户unix界面 4、系统中用户名为“test9”,密码为test123456 5、在命令行中(提示符后,如:test22>)键入以下命令 icfb&↙(回车键),其中& 表示后台工作,调出Cadence软件。 出现的主窗口所示: 6、建立库(library):窗口分Library和Technology File两部分。Library部分有Name和Directory 两项,分别输入要建立的Library的名称和路径。如果只建立进行SPICE模拟的线路图,Technology部分选择Don’t need a techfile选项。如果在库中要创立掩模版或其它的物理数据(即要建立除了schematic外的一些view),则须选择Compile a new techfile(建立新的techfile)或Attach to an existing techfile(使用原有的techfile)。 7、建立单元文件(cell):在Library Name中选择存放新文件的库,在Cell Name中输 入名称,然后在Tool选项中选择Composer-Schematic工具(进行SPICE模拟),在View Name中就会自动填上相应的View Name—schematic。当然在Tool工具中还有很多别的

集成电路课程设计报告

课程设计 班级: 姓名: 学号: 成绩: 电子与信息工程学院 电子科学系

CMOS二输入与非门的设计 一、概要 随着微电子技术的快速发展,人们生活水平不断提高,使得科学技术已融入到社会生活中每一个方面。而对于现代信息产业和信息社会的基础来讲,集成电路是改造和提升传统产业的核心技术。随着全球信息化、网络化和知识经济浪潮的到来,集成电路产业的地位越来越重要,它已成为事关国民经济、国防建设、人民生活和信息安全的基础性、战略性产业。 集成电路有两种。一种是模拟集成电路。另一种是数字集成电路。本论文讲的是数字集成电路版图设计的基本知识。然而在数字集成电路中CMOS与非门的制作是非常重要的。 二、CMOS二输入与非门的设计准备工作 1.CMOS二输入与非门的基本构成电路 使用S-Edit绘制的CMOS与非门电路如图1。 图1 基本的CMOS二输入与非门电路

2.计算相关参数 所谓与非门的等效反相器设计,实际上就是根据晶体管的串并联关系,再根据等效反相器中的相应晶体管的尺寸,直接获得与非门中各晶体管的尺寸的设计方法。具体方法是:将与非门中的VT3和VT4的串联结构等效为反相器中的NMOS 晶体管,将并联的VT 1、VT 2等效PMOS 的宽长比(W/L)n 和(W/L)p 以后,考虑到VT3和VT4是串联结构,为保持下降时间不变,VT 3和VT 4的等线电阻必须减小为一半,即他们的宽长比必须为反相器中的NMOS 的宽长比增加一倍,由此得到(W/L)VT3,VT4=2(W/L)N 。 因为考虑到二输入与非门的输入端IN A 和IN B 只要有一个为低电平,与非门输出就为高电平的实际情况,为保证在这种情况下仍能获得所需的上升时间,要求VT 1和VT 2的宽长比与反相其中的PMOS 相同,即(W/L)VT1,VT2=(W/L)P 。至此,根据得到的等效反向器的晶体管尺寸,就可以直接获得与非门中各晶体管的尺寸。 如下图所示为t PHL 和t PLH ,分别为从高到低和从低到高的传输延时,通过反相器的输入和输出电压波形如图所示。给其一个阶跃输入,并在电压值50%这一点测量传输延迟时间,为了使延迟时间的计算简单,假设反相器可以等效成一个有效的导通电阻R eff ,所驱动的负载电容是C L 。 图2 反相器尺寸确定中的简单时序模型 对于上升和下降的情况,50%的电都发生在: L eff C R 69.0=τ 这两个Reff 的值分别定义成上拉和下拉情况的平均导通电阻。如果测量t PHL 和t PLH ,可以提取相等的导通电阻。 由于不知道确定的t PHL 和t PLH ,所以与非门中的NMOS 宽长比取L-Edit 软件中设计规则文件MOSIS/ORBIT 2.0U SCNA Design Rules 的最小宽长比及最小长度值。 3.分析电路性质 根据数字电路知识可得二输入与非门输出AB F =。使用W-Edit 对电路进行仿真后得到的结果如图4和图5所示。

2019年集成电路设计行业分析报告

2019年集成电路设计行业分析报告 2019年12月

目录 一、行业主管部门、监管体制、主要法律法规及政策 (5) 1、行业主管部门及监管体制 (5) 2、行业主要法律法规和产业政策 (5) 二、行业整体发展情况 (7) 1、集成电路行业 (7) (1)全球集成电路行业发展情况 (8) (2)我国集成电路行业发展情况 (9) 2、集成电路设计行业 (10) (1)全球集成电路设计行业发展情况 (10) (2)我国集成电路设计行业发展情况 (12) 3、集成电路存储芯片行业 (13) (1)全球存储芯片发展情况 (14) (2)我国存储芯片发展情况 (15) 4、行业发展趋势 (16) (1)行业发展趋势概况 (16) (2)行业发展的驱动力 (17) ①汽车电子的推动 (17) ②物联网市场的推动 (19) 5、国际经济环境、行业竞争格局、行业供需情况对产品价格及成本的影响 (20) (1)国际经济温和增长,发展中国家增速较快 (20) (2)行业发展进入复苏,竞争格局保持稳定 (21) (3)行业供需周期变化,未来增长因素可期 (24) 二、行业进入壁垒 (26)

2、资金和规模壁垒 (26) 3、人才壁垒 (27) 4、客户壁垒 (27) 三、影响行业发展的因素 (28) 1、有利因素 (28) (1)国家产业政策大力扶持 (28) (2)我国集成电路产业链日趋成熟 (28) (3)市场需求的有利推动 (29) 2、不利因素 (30) (1)行业竞争激烈,国内集成电路存储设计领域基础薄弱 (30) (2)设计人才匮乏,研发投入巨大 (30) 四、行业区域性、周期性和季节性特征 (30) 1、区域性 (30) 2、周期性 (31) 3、季节性 (31) 五、行业经营模式 (31) 1、IDM (31) 2、Fabless (32) 六、行业上下游之间的关系 (32) 1、上游行业对本行业的影响 (33) 2、下游行业对本行业的影响 (34) 七、行业主要企业及竞争格局 (34)

《集成电路设计》课程设计实验报告

《集成电路设计》课程设计实验报告 (前端设计部分) 课程设计题目:数字频率计 所在专业班级:电子科 作者姓名: 作者学号: 指导老师:

目录 (一)概述 2 2 一、设计要求2 二、设计原理 3 三、参量说明3 四、设计思路3 五、主要模块的功能如下4 六、4 七、程序运行及仿真结果4 八、有关用GW48-PK2中的数码管显示数据的几点说明5(三)方案分析 7 10 11

(一)概述 在电子技术中,频率是最基本的参数之一,并且与许多电参量的测量方案、测量结果都有十分密切的关系,因此频率的测量就显得十分重要。测量频率的方法有多种,数字频率计是其中一种。数字频率计是计算机、通讯设备、音频视频等科研生产领域不可缺少的测量仪器,是一种用十进制数字显示被测信号频率的数字测量仪器。数字频率计基本功能是测量诸如方波等其它各种单位时间内变化的物理量。在进行模拟、数字电路的设计、安装、调试过程中,由于其使用十进制数显示,测量迅速,精确度高,显示直观,经常要用到频率计。 频率计的基本原理是应用一个频率稳定度高的时基脉冲,对比测量其它信号的频率。时基脉冲的周期越长,得到的频率值就越准确。通常情况下是计算每秒内待测信号的脉冲个数,此时我们称闸门时间是1秒。闸门时间也可以大于或小于1秒,闸门的时间越长,得到的频率值就越准确,但闸门的时间越长则每测一次频率的间隔就越长,闸门时间越短,测的频率值刷新就越快,但测得的频率精度就受影响。 本文内容粗略讲述了我们小组的整个设计过程及我在这个过程中的收获。讲述了数字频率计的工作原理以及各个组成部分,记述了在整个设计过程中对各个部分的设计思路、程序编写、以及对它们的调试、对调试结果的分析。 (二)设计方案 一、设计要求: ⑴设计一个数字频率计,对方波进行频率测量。 ⑵频率测量可以采用计算每秒内待测信号的脉冲个数的方法实现。

集成电路课程设计(CMOS二输入及门)

) 课程设计任务书 学生姓名:王伟专业班级:电子1001班 指导教师:刘金根工作单位:信息工程学院题目: 基于CMOS的二输入与门电路 初始条件: 计算机、Cadence软件、L-Edit软件 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) & 1、课程设计工作量:2周 2、技术要求: (1)学习Cadence IC软件和L-Edit软件。 (2)设计一个基于CMOS的二输入的与门电路。 (3)利用Cadence和L-Edit软件对该电路进行系统设计、电路设计和版图设计,并进行相应的设计、模拟和仿真工作。 3、查阅至少5篇参考文献。按《武汉理工大学课程设计工作规范》要求撰写设计报告书。全文用A4纸打印,图纸应符合绘图规范。 时间安排: 布置课程设计任务、选题;讲解课程设计具体实施计划与课程设计报告格式的要求;课程设计答疑事项。 | 学习Cadence IC和L-Edit软件,查阅相关资料,复习所设计内容的基本理论知识。 对二输入与门电路进行设计仿真工作,完成课设报告的撰写。 提交课程设计报告,进行答辩。 指导教师签名:年月日系主任(或责任教师)签名:年月日

目录 # 摘要 (2) 绪论…....………………………………………….………………….. ..3 一、设计要求 (4) 二、设计原理 (4) 三、设计思路 (4) 3.1、非门电路 (4) 3.2、二输入与非门电路 (6) 、二输入与门电路 (8) } 四、二输入与门电路设计 (9) 4.1、原理图设计 (9) 4.2、仿真分析 (10) 4.3、生成网络表 (13) 五、版图设计........................ (20) 、PMOS管版图设计 (20) 、NMOS管版图设计 (22) 、与门版图设计 (23)

大陆本土IC设计业SWOT分析

大陆本土IC设计业SWOT分析上海科学技术情报研究所吴磊2005-08-02 关键字:IC设计 SWOT 竞争情报浏览量:52 随着近几年半导体产业在中国大陆地区的快速发展,本土IC设计业受到日益广泛的重视。IC设计业是一个国家半导体业的关键一环,也是如今信息技术时代提升国家竞争力的重要推动力。不论政府、企业,都对这个在国内真正发展不到十年的新兴行业,表现出了热切的期盼、积极的参与以及极大的投资兴趣。十年间,大陆本土IC设计产业逐步发展,到2004年约有IC设计公司近600家,主要分布于北京、上海、深圳、江苏、浙江、西安等地。数量上来说,已经超过了美国硅谷和中国台湾地区,但是,本土IC设计公司在质的成长上还远远不够。 从全球范围看,相较于拥有几十年IC设计产业发展经验的美国和中国台湾地区,大陆本土IC设计产业成长时间太短,还只处在从初创向理性发展过渡的时期。 从产业规模看,据全球IC 设计与委外代工协会(FSA)2005年3月报告统计:2004年全球IC设计产业规模达到330亿美元,比2003年增长32%。其中,美国IC设计业产值占全球比重75%,中国台湾地区居次,占20%。相比之下,大陆本土IC设计业仅占全球份额的约2%,非常少。 从公司个体看,全球IC设计第一的高通公司(Qualcomm)2004年销售收入约268亿元(约32.24亿美元),比上年增长30.7%;全球第七、中国台湾地区第一的联发科公司(MediaTek)2004年销售收入约104亿元(约12.53亿美元),比上年增长10.5%;全球排名第44位,大陆本土第一的大唐微电子公司2003年销售收入约6.2亿元,2004年估计倍增至约13亿元。三家公司的销售收入比约为21:8:1。不得不说,大陆本土IC 设计公司的竞争力还太弱。 那么,大陆本土IC设计产业的前景如何?只能说:前景是美好的,现实是残酷的。能否利用优势(Strength)、改变劣势(Weakness)、把握机会(Opportunity)、正视威胁(Threat),实现更准确的定位和制定更有利的发展战略,是把美好前景变为眼前现实的关键所在。 一、存在优势和支持 1. 巨大市场,本土比非本土更多机会 中国大陆地区经济实力持续提高、人均消费水平不断增强以及信息化浪潮大力推动等多项积极因素的影响,大陆IC市场销售规模从2000年的945亿元快速增长到2004年的约2900亿元,年复合增长率达32.4%,而且预计这种增长速度至少还将持续到2008年。其中,2004年消费电子IC约占整个市场份额的28%,即812亿元。

CMOS模拟集成电路课程设计

电子科学与技术系 课程设计 中文题目:CMOS二输入与非门的设计 英文题目: The design of CMOS two input NAND gate 姓名:张德龙 学号: 1207010128 专业名称:电子科学与技术 指导教师:宋明歆 2015年7月4日

CMOS二输入与非门的设计 张德龙哈尔滨理工大学电子科学与技术系 [内容摘要]随着微电子技术的快速发展,人们生活水平不断提高,使得科学技术已融入到社会生活中每一个方面。而对于现代信息产业和信息社会的基础来讲,集成电路是改造和提升传统产业的核心技术。随着全球信息化、网络化和知识经济浪潮的到来,集成电路产业的地位越来越重要,它已成为事关国民经济、国防建设、人民生活和信息安全的基础性、战略性产业。 集成电路有两种。一种是模拟集成电路。另一种是数字集成电路。本次课程设计将要运用S-Edit、L-edit、以及T-spice等工具设计出CMOS二输入与非门电路并生成spice文件再画出电路版图。 [关键词]CMOS二输入与非门电路设计仿真

目录 1.概述 (1) 2.CMOS二输入与非门的设计准备工作 (1) 2-1 .CMOS二输入与非门的基本构成电路 (1) 2-2.计算相关参数 (2) 2-3.电路spice文件 (3) 2-4.分析电路性质 (3) 3、使用L-Edit绘制基本CMOS二输入与非门版图 (4) 3-1.CMOS二输入与非门设计的规则与布局布线 (4) 3-2.CMOS二输入与非门的版图绘制与实现 (5) 4、总结 (6) 5、参考文献 (6)

1.概述 本次课程设计将使用S-Edit画出CMOS二输入与非门电路的电路图,并用T-spice生成电路文件,然后经过一系列添加操作进行仿真模拟,计算相关参数、分析电路性质,在W-edit中使电路仿真图像,最后将电路图绘制电路版图进行对比并且做出总结。 2.CMOS二输入与非门的设计准备工作 2-1 .CMOS二输入与非门的基本构成电路 使用S-Edit绘制的CMOS与非门电路如图1。 图1 基本的CMOS二输入与非门电路 1

cmos模拟集成电路设计实验报告

北京邮电大学 实验报告 实验题目:cmos模拟集成电路实验 姓名:何明枢 班级:2013211207 班内序号:19 学号:2013211007 指导老师:韩可 日期:2016 年 1 月16 日星期六

目录 实验一:共源级放大器性能分析 (1) 一、实验目的 (1) 二、实验内容 (1) 三、实验结果 (1) 四、实验结果分析 (3) 实验二:差分放大器设计 (4) 一、实验目的 (4) 二、实验要求 (4) 三、实验原理 (4) 四、实验结果 (5) 五、思考题 (6) 实验三:电流源负载差分放大器设计 (7) 一、实验目的 (7) 二、实验内容 (7) 三、差分放大器的设计方法 (7) 四、实验原理 (7) 五、实验结果 (9) 六、实验分析 (10) 实验五:共源共栅电流镜设计 (11) 一、实验目的 (11) 二、实验题目及要求 (11) 三、实验内容 (11) 四、实验原理 (11) 五、实验结果 (14) 六、电路工作状态分析 (15) 实验六:两级运算放大器设计 (17) 一、实验目的 (17) 二、实验要求 (17) 三、实验内容 (17) 四、实验原理 (21) 五、实验结果 (23) 六、思考题 (24) 七、实验结果分析 (24) 实验总结与体会 (26) 一、实验中遇到的的问题 (26) 二、实验体会 (26) 三、对课程的一些建议 (27)

实验一:共源级放大器性能分析 一、实验目的 1、掌握synopsys软件启动和电路原理图(schematic)设计输入方法; 2、掌握使用synopsys电路仿真软件custom designer对原理图进行电路特性仿真; 3、输入共源级放大器电路并对其进行DC、AC分析,绘制曲线; 4、深入理解共源级放大器的工作原理以及mos管参数的改变对放大器性能的影响 二、实验内容 1、启动synopsys,建立库及Cellview文件。 2、输入共源级放大器电路图。 3、设置仿真环境。 4、仿真并查看仿真结果,绘制曲线。 三、实验结果 1、实验电路图

集成电路课程设计范例

集成电路课程设计 范例 1

集成电路课程设计 1.目的与任务 本课程设计是《集成电路分析与设计基础》的实践课程,其主要目的是使学生在熟悉集成电路制造技术、半导体器件原理和集成电路分析与设计基础上,训练综合运用已掌握的知识,利用相关软件,初步熟悉和掌握集成电路芯片系统设计→电路设计及模拟→版图设计→版图验证等正向设计方法。 2.设计题目与要求 2.1设计题目及其性能指标要求 器件名称:含两个2-4译码器的74HC139芯片 要求电路性能指标: (1)可驱动10个LSTTL电路(相当于15pF电容负载); (2)输出高电平时,|I OH|≤20μA,V OH,min=4.4V; (3)输出底电平时,|I OL|≤4mA,V OL,man=0.4V; (4)输出级充放电时间t r=t f,t pd<25ns; (5)工作电源5V,常温工作,工作频率f work=30MHz,总功耗P max=150mW。 2.2设计要求 1.独立完成设计74HC139芯片的全过程; 2.设计时使用的工艺及设计规则: MOSIS:mhp_n12;

3.根据所用的工艺,选取合理的模型库; 4.选用以lambda(λ)为单位的设计规则; 5.全手工、层次化设计版图; 6.达到指导书提出的设计指标要求。 3.设计方法与计算 3.174HC139芯片简介 74HC139是包含两个2线-4线译码器的高速CMOS数字电路集成芯片,能与TTL集成电路芯片兼容,它的管脚图如图1所示,其逻辑真值表如表1所示: 图1 74HC139芯片管脚图 表1 74HC139真值表 片选输入数据输出 C s A1 A0 Y0 Y1Y2Y3 0 0 0 0 1 1 1 0 0 1 1 0 1 0 1 0 1 1 0 1

集成电路课程设计模板及参考资 [1]...

集成电路课程设计报告 设计课题: 数字电子钟的设计 姓名: 专业: 电子信息工程 学号: 日期 20 年月日——20 年月日指导教师: 国立华侨大学信息科学与工程学院

目录 1.设计的任务与要求 (1) 2.方案论证与选择 (1) 3.单元电路的设计和元器件的选择 (5) 3.1 六进制电路的设计 (6) 3.2 十进制计数电路的设计 (6) 3.3 六十进制计数电路的设计 (6) 3.4双六十进制计数电路的设计 (7) 3.5时间计数电路的设计 (8) 3.6 校正电路的设计 (8) 3.7 时钟电路的设计 (8) 3.8 整点报时电路的设计 (9) 3.9 主要元器件的选择 (10) 4.系统电路总图及原理 (10) 5.经验体会 (10) 参考文献 (11) 附录A:系统电路原理图 (12)

数字电子钟的设计 1. 设计的任务与要求 数字钟是一种…。 此次设计数字钟就是为了了解数字钟的原理,从而学会制作数字钟。而且通过数字钟的制作进一步了解…。 1.1设计指标 1. 时间以12小时为一个周期; 2. 显示时、分、秒; 3. 具有校时功能,可以分别对时及分进行单独校时,使其校正到标准时间; 4. 计时过程具有报时功能,当时间到达整点前10秒进行蜂鸣报时; 5. 为了保证计时的稳定及准确须由晶体振荡器提供表针时间基准信号。1.2 设计要求 1. 画出电路原理图(或仿真电路图); 2. 元器件及参数选择(或开发板的考虑); 3. 编写设计报告,写出设计的全过程,附上有关资料和图纸(也可直接写在 相关章节中),有心得体会。 2. 方案论证与选择 2.1 数字钟的系统方案 数字钟实际上是…

数字集成电路设计实验报告

哈尔滨理工大学数字集成电路设计实验报告 学院:应用科学学院 专业班级:电科12 - 1班 学号:32 姓名:周龙 指导教师:刘倩 2015年5月20日

实验一、反相器版图设计 1.实验目的 1)、熟悉mos晶体管版图结构及绘制步骤; 2)、熟悉反相器版图结构及版图仿真; 2. 实验内容 1)绘制PMOS布局图; 2)绘制NMOS布局图; 3)绘制反相器布局图并仿真; 3. 实验步骤 1、绘制PMOS布局图: (1) 绘制N Well图层;(2) 绘制Active图层; (3) 绘制P Select图层; (4) 绘制Poly图层; (5) 绘制Active Contact图层;(6) 绘制Metal1图层; (7) 设计规则检查;(8) 检查错误; (9) 修改错误; (10)截面观察; 2、绘制NMOS布局图: (1) 新增NMOS组件;(2) 编辑NMOS组件;(3) 设计导览; 3、绘制反相器布局图: (1) 取代设定;(2) 编辑组件;(3) 坐标设定;(4) 复制组件;(5) 引用nmos组件;(6) 引用pmos组件;(7) 设计规则检查;(8) 新增PMOS基板节点组件;(9) 编辑PMOS基板节点组件;(10) 新增NMOS基板接触点; (11) 编辑NMOS基板节点组件;(12) 引用Basecontactp组件;(13) 引用Basecontactn 组件;(14) 连接闸极Poly;(15) 连接汲极;(16) 绘制电源线;(17) 标出Vdd 与GND节点;(18) 连接电源与接触点;(19) 加入输入端口;(20) 加入输出端口;(21) 更改组件名称;(22) 将布局图转化成T-Spice文件;(23) T-Spice 模拟; 4. 实验结果 nmos版图

集成电路课程设计

集成电路课程设计报告 课题:二输入或非门电路与版图设计 专业 电子科学与技术 学生姓名 严 佳 班 级 B 电科121 学号 1210705128 指导教师 高 直 起止日期 2015.11.16-2015.11.29

摘要 集成电路是一种微型电子器件或部件。它是采用一定的工艺,把一个电路中所需的晶体管等有源器件和电阻、电容等无源器件及布线互连在一起,制作在一小块半导体晶片上,封装在一个管壳内,执行特定电路或系统功能的微型结构。在整个集成电路设计过程中,版图设计是其中重要的一环。它是把每个原件的电路表示转换成集合表示,同时,元件间连接的线也被转换成几何连线图形。对于复杂的版图设计,一般把版图设计划分成若干个子版图进行设计,对每个子版图进行合理的规划和布图,子版图之间进行优化连线、合理布局,使其大小和功能都符合要求。 越来越多的电子电路都在使用MOS管,特别是在音响领域更是如此。MOS 管与普通晶体管相比具有输入阻抗高、噪声系数小、热稳定性好、动态范围大等优点,且它是一种压控器件,有与电子管相似的传输特性,因而在集成电路中也得到了广泛的应用。 关键词:CMOS门电路或非门集成电路

绪论 目前,集成电路经历了小规模集成、中规模集成、大规模集成和超大规模集成。单个芯片上已经可以制作包含臣大数量晶体管的、完整的数字系统。在整个集成电路设计过程中,版图设计是其中重要的一环。它是把每个原件的电路表示转换成集合表示,同时,元件间连接的线也被转换成几何连线图形。对于复杂的版图设计,一般把版图设计划分成若干个子版图进行设计,对每个子版图进行合理的规划和布图,子版图之间进行优化连线、合理布局,使其大小和功能都符合要求。版图设计有特定的规则,这些规则是集成电路制造厂家根据自己的工艺特点而制定的。不同的工艺,有不同的设计规则。设计者只有得到了厂家提供的规则以后,才能开始设计。在版图设计过程中,要进行定期的检查,避免错误的积累而导致难以修改。 1.设计要求 (1)学习Multisim软件和L-Edit软件 (2)设计一个基于CMOS的二输入或非门电路。 (3)利用Multisim和L-Edit软件对该电路进行系统设计、电路设计和版图设计,并进行相应的设计、模拟和仿真工作。 2.设计目的 (1)熟悉Multisim软件的使用。 (2)L-Edit软件的使用。 (3)培养自己综合运用所学知识、独立分析和解决实际问题的能力,培养创新意识和创新能力,并获得科学研究的基础训练,加深对集成电路版图设计的了解。 3.设计原理 能够实现B =“或非”逻辑关系的电路均称为“或非门”。二输入或 A L+ 非门有两个输入端A和B以及一个输出端L,只有当A端和B端同时为高电平时输出才为低电平,否则输出都为高电平。在一个或门的输出端连接一个非门就构成了“或非门”,如图1.1所示,逻辑符号如图1.2所示,真值表如图1.3所示。

数字集成电路知识点整理

Digital IC:数字集成电路是将元器件和连线集成于同一半导体芯片上而制成的数字逻辑电路或系统 第一章引论 1、数字IC芯片制造步骤 设计:前端设计(行为设计、体系结构设计、结构设计)、后端设计(逻辑设计、电路设计、版图设计) 制版:根据版图制作加工用的光刻版 制造:划片:将圆片切割成一个一个的管芯(划片槽) 封装:用金丝把管芯的压焊块(pad)与管壳的引脚相连 测试:测试芯片的工作情况 2、数字IC的设计方法 分层设计思想:每个层次都由下一个层次的若干个模块组成,自顶向下每个层次、每个模块分别进行建模与验证 SoC设计方法:IP模块(硬核(Hardcore)、软核(Softcore)、固核(Firmcore))与设计复用Foundry(代工)、Fabless(芯片设计)、Chipless(IP设计)“三足鼎立”——SoC发展的模式 3、数字IC的质量评价标准(重点:成本、延时、功耗,还有能量啦可靠性啦驱动能力啦之类的) NRE (Non-Recurrent Engineering) 成本 设计时间和投入,掩膜生产,样品生产 一次性成本 Recurrent 成本 工艺制造(silicon processing),封装(packaging),测试(test) 正比于产量 一阶RC网路传播延时:正比于此电路下拉电阻和负载电容所形成的时间常数 功耗:emmmm自己算 4、EDA设计流程 IP设计系统设计(SystemC)模块设计(verilog) 综合 版图设计(.ICC) 电路级设计(.v 基本不可读)综合过程中用到的文件类型(都是synopsys): 可以相互转化 .db(不可读).lib(可读) 加了功耗信息

CMOS数字集成电路设计_八位加法器实验报告

CMOS数字集成电路设计课程设计报告 学院:****** 专业:****** 班级:****** 姓名:Wang Ke qin 指导老师:****** 学号:****** 日期:2012-5-30

目录 一、设计要求 (1) 二、设计思路 (1) 三、电路设计与验证 (2) (一)1位全加器的电路设计与验证 (2) 1)原理图设计 (2) 2)生成符号图 (2) 3)建立测试激励源 (2) 4)测试电路 (3) 5)波形仿真 (4) (二)4位全加器的电路设计与验证 (4) 1)原理图设计 (4) 2)生成符号图 (5) 3)建立测试激励源 (5) 4)测试电路 (6) 5)波形仿真 (6) (三)8位全加器的电路设计与验证 (7) 1)原理图设计 (7) 2)生成符号图 (7) 3)测试激励源 (8) 4)测试电路 (8) 5)波形仿真 (9) 6)电路参数 (11) 四、版图设计与验证 (13) (一)1位全加器的版图设计与验证 (13) 1)1位全加器的版图设计 (13) 2)1位全加器的DRC规则验证 (14) 3)1位全加器的LVS验证 (14) 4)错误及解决办法 (14) (二)4位全加器的版图设计与验证 (15) 1)4位全加器的版图设计 (15) 2)4位全加器的DRC规则验证 (16) 3)4位全加器的LVS验证 (16) 4)错误及解决办法 (16) (三)8位全加器的版图设计与验证 (17) 1)8位全加器的版图设计 (17) 2)8位全加器的DRC规则验证 (17) 3)8位全加器的LVS验证 (18) 4)错误及解决办法 (18) 五、设计总结 (18)

集成电路课程设计(范例)

集成电路课程设计 1. 目的与任务 本课程设计是《集成电路分析与设计基础》的实践课程,其主要目的是使学生在熟悉集成电路制造技术、半导体器件原理和集成电路分析与设计基础上,训练综合运用已掌握的知识,利用相关软件,初步熟悉和掌握集成电路芯片系统设计一电路设计及模拟一版图设计一版图 验证等正向设计方法2. 设计题目与要求 2.1 设计题目及其性能指标要求 器件名称:含两个2-4译码器的74HC139芯片 要求电路性能指标: (1)可驱动10个LSTTL电路(相当于15pF电容负载); (2)输出高电平时,|l O H < 20 卩A, V O H min=4.4V; (3)输出底电平时,|l OL| < 4mA V O L ma=0.4V; (4)输出级充放电时间t r=t f , t pd V25ns; (5)工作电源5V,常温工作,工作频率f work = 30MHZ总功耗P max= 150mW。 2.2 设计要求 1. 独立完成设计74HC139芯片的全过程; 2. 设计时使用的工艺及设计规则:MOSlS:mhp_n12; 3. 根据所用的工艺,选取合理的模型库; 4. 选用以lambda(入)为单位的设计规则; 5. 全手工、层次化设计版图; 6. 达到指导书提出的设计指标要求。 3. 设计方法与计算 3.1 74HC139芯片简介 74HC139是包含两个2线-4线译码器的高速CMO数字电路集成芯片,能与TTL集

成电路芯片兼容,它的管脚图如图1所示,其逻辑真值表如表1 所示: 地址输人数据输岀 ▼[>!> Sb A Ob A)b Y (lb lb Y Zb 丫盹 加加 I I I 二 _「 选通I —I 地址输人数擔输出 图1 74HC139芯片管脚图 表1 74HC139真值表 从图1可以看出74HC139芯片是由两片独立的2—4译码器组成的,因此设计时只需分析其中一个2—4译码器即可,从真值表我们可以得出Cs为片选端,当其为0时,芯片正常工作,当其为1时,芯片封锁。A1、A0为输入端,丫0-丫3为输出端,而且是低电平有效。 2—4译码器的逻辑表达式,如下所示: 丫0 C s A A C s A A o 丫 1 C s A A o C s A A o

福州大学集成电路版图设计实验报告

福州大学物信学院 《集成电路版图设计》 实验报告 姓名:席高照 学号:111000833 系别:物理与信息工程 专业:微电子学 年级:2010 指导老师:江浩

一、实验目的 1.掌握版图设计的基本理论。 2.掌握版图设计的常用技巧。 3.掌握定制集成电路的设计方法和流程。 4.熟悉Cadence Virtuoso Layout Edit软件的应用 5.学会用Cadence软件设计版图、版图的验证以及后仿真 6.熟悉Cadence软件和版图设计流程,减少版图设计过程中出现的错误。 二、实验要求 1.根据所提供的反相器电路和CMOS放大器的电路依据版图设计的规则绘制电路的版图,同时注意CMOS查分放大器电路的对称性以及电流密度(通过该电路的电流可能会达到5mA) 2.所设计的版图要通过DRC、LVS检测 三、有关于版图设计的基础知识 首先,设计版图的基础便是电路的基本原理,以及电路的工作特性,硅加工工艺的基础、以及通用版图的设计流程,之后要根据不同的工艺对应不同的设计规则,一般来说通用的版图设计流程为①制定版图规划记住要制定可能会被遗忘的特殊要求清单②设计实现考虑特殊要求及如何布线创建组元并对其进行布局③版图验证执行基于计算机的检查和目视检查,进行校正工作④最终步骤工程核查以及版图核查版图参数提取与后仿真 完成这些之后需要特别注意的是寄生参数噪声以及布局等的影响,具体是电路而定,在下面的实验步骤中会体现到这一点。 四、实验步骤 I.反相器部分: 反相器原理图:

反相器的基本原理:CMOS反相器由PMOS和NMOS构成,当输入高电平时,NMOS导通,输出低电平,当输入低电平时,PMOS导通,输出高电平。 注意事项: (1)画成插齿形状,增大了宽长比,可以提高电路速度 (2)尽可能使版图面积最小。面积越小,速度越高,功耗越小。 (3)尽可能减少寄生电容和寄生电阻。尽可能增加接触孔的数目可以减小接触电阻。(4)尽可能减少串扰,电荷分享。做好信号隔离。 反相器的版图: 原理图电路设计: 整体版图:

模拟集成电路课程设计

模拟集成电路课程设计 设计目的: 复习、巩固模拟集成电路课程所学知识,运用EDA 软件,在一定的工艺模型基础上,完成一个基本功能单元的电路结构设计、参数手工估算和电路仿真验证,并根据仿真结果与指标间的折衷关系,对重点指标进行优化,掌握电路分析、电路设计的基本方法,加深对运放、带隙基准、稳定性、功耗等相关知识点的理解,培养分析问题、解决问题的能力。 实验安排: 同学们自由组合,2 人一个设计小组选择五道题目中的一道完成,为了避免所选题目过度集中的现象,规定每个题目的最高限额为 4 组。小组成员协调好每个人的任务,分工合作,发挥团队精神,同时注意复习课堂所学内容,必要时查阅相关文献,完成设计后对 验收与考核: 该门设计实验课程的考核将采取现场验收和设计报告相结合的方式。当小组成员完成了所选题目的设计过程,并且仿真结果达到了所要求的性能指标,可以申请现场验收,向老师演示设计步骤和仿真结果,通过验收后每小组提交一份设计报告(打印版和电子版)。其中,设计指标,电路设计要求和设计报告要求的具体内容在下面的各个题目中给出了参考。成绩的评定将根据各个小组成员在完成项目中的贡献度以及验收情况和设计报告的完成度来确定。 时间安排: 机房开放时间:2013 年10 月28 日~11 月8 日,8:30~12:00,14:00~18:00 课程设计报告提交截止日期:2012 年11 月15 日 该专题实验的总学时为48 学时(1.5 学分),请同学们安排好知识复习,理论计算与上机设计的时间,该实验以上机设计为主,在机房开放时间内保证5 天以上的上机时间,我们将实行每天上下午不定时签到制度。 工艺与模型: 采用某工艺厂提供的两层多晶、两层金属(2p2m)的0.5um CMOS 工艺,model 文件为/data/wanghy/anglog/model/s05mixdtssa01v11.scs 。绘制电路图时,器件从/data/wanghy/ anglog/st02 库中调用,采用以下器件完成设计: 1)PMOS 模型名mp,NMOS 模型名mn;2) BJT 三种模型可选:qvp5,qvp10,qvp20;3) 电阻模型rhr1k; 4)电容模型cpip。

数字ic设计实验报告

数字集成电路设计 实验报告 实验名称二输入与非门的设计 一.实验目的 a)学习掌握版图设计过程中所需要的仿真软件

b)初步熟悉使用Linux系统 二.实验设备与软件 PC机,RedHat,Candence 三.实验过程 Ⅰ电路原理图设计 1.打开虚拟机VMware Workstation,进入Linux操作系统RedHat。 2.数据准备,将相应的数据文件拷贝至工作环境下,准备开始实验。 3.创建设计库,在设计库里建立一个schematic view,命名为,然后进入电路 图的编辑界面。 4.电路设计 设计一个二输入与非门,插入元器件,选择PDK库(xxxx35dg_XxXx)中的nmos_3p3、 pmos_3p3等器件。形成如下电路图,然后check and save,如下图。 图1.二输入与非门的电路图 5.制作二输入与非门的外观symbol Design->Create Cellview -> From Cellview,在弹出的界面,按ok后出现symbol Generation options,选择端口排放顺序和外观,然后按ok出现symbol编辑界面。按照需 要编辑成想要的符号外观,如下图。保存退出。

图2.与非门外观 6.建立仿真电路图 方法和前面的“建立schemtic view”的方法一样,但在调用单元时除了调用analogL 库中的电压源、(正弦)信号源等之外,将之前完成的二输入与非门调用到电路图中,如下图。 图3.仿真电路图 然后设置激励源电压输出信号为高电平为3.5v,低电平为0的方波信号。 7.启动仿真环境 在ADE中设置仿真器、仿真数据存放路径和工艺库,设置好后选择好要检测的信号在电路中的节点,添加到输出栏中,运行仿真得到仿真结果图。

数字集成电路设计与分析

问答: Point out design objects in the figure such as :design, cell, reference, port, pin, net, then write a command to set 5 to net A Design: top Reference: ADD DFF Cell: U1 U2 Port: A B clk sum Pin: A B D Q Net: A B SIN Set_load 5 [get_nets A] why do we not choose to operate all our digital circuits at these low supply voltages? 答:1)不加区分地降低电源电压虽然对减少能耗能正面影响,但它绝对会使门的延时加大 2)一旦电源电压和本征电压(阈值电压)变得可比拟,DC特性对器件参数(如晶体管 阈值)的变化就变得越来越敏感 3)降低电源电压意味着减少信号摆幅。虽然这通常可以帮助减少系统的内部噪声(如串扰引起的噪声),但它也使设计对并不减少的外部噪声源更加敏感) 问道题: 1.CMOS静态电路中,上拉网络为什么用PMOS,下拉网络为什么用NMOS管 2.什么是亚阈值电流,当减少VT时,V GS =0时的亚阈值电流是增加还是减少? 3.什么是速度饱和效应 4.CMOS电压越低,功耗就越少?是不是数字电路电源电压越低越好,为什么? 5.如何减少门的传输延迟? P203 6.CMOS电路中有哪些类型的功耗? 7.什么是衬垫偏置效应。 8.gate-to-channel capacitance C GC,包括哪些部分 VirSim有哪几类窗口 3-6. Given the data in Table 0.1 for a short channel NMOS transistor with V DSAT = 0.6 V and k′=100 μA/V2, calculate V T0, γ, λ, 2|φf|, and W / L:

相关主题