搜档网
当前位置:搜档网 › 高中文科数学导数练习题

高中文科数学导数练习题

高中文科数学导数练习题
高中文科数学导数练习题

专题8:导数(文)

经典例题剖析

考点一:求导公式。

例1. ()f x '是3

1()213

f x x x =

++的导函数,则(1)f '-的值是 。 解析:()2'2

+=x x f ,所以()3211'=+=-f 答案:3

考点二:导数的几何意义。

例 2. 已知函数()y f x =的图象在点(1(1))M f ,处的切线方程是1

22

y x =

+,则(1)(1)f f '+= 。

解析:因为21=

k ,所以()2

1

1'=f ,由切线过点(1(1))M f ,,可得点M 的纵坐标为25,所以()2

5

1=f ,所以()()31'1=+f f 答案:3

|

例3.曲线3

2

242y x x x =--+在点(13)-,处的切线方程是 。

解析:443'2

--=x x y ,∴点(13)-,处切线的斜率为5443-=--=k ,所以设切线方程为b x y +-=5,将点(13)-,带入切线方程可得2=b ,所以,过曲线上点(13)-,处的切线方程为:025=-+y x 答案:025=-+y x

点评:以上两小题均是对导数的几何意义的考查。

考点三:导数的几何意义的应用。

例 4.已知曲线C :x x x y 232

3

+-=,直线kx y l =:,且直线l 与曲线C 相切于点

()00,y x 00≠x ,求直线l 的方程及切点坐标。

解析: 直线过原点,则()000

≠=

x x y k 。由点()00,y x 在曲线C 上,则02

030023x x x y +-=,∴

2302

00

0+-=x x x y 。又263'2+-=x x y ,∴ 在

()

00,y x 处曲线C

的切线斜率为()263'02

00+-==x x x f k ,∴

2632302

0020+-=+-x x x x ,

整理得:03200=-x x ,解得:2

3

0=x 或00=x (舍),此时,830-

=y ,4

1-=k 。所以,直线l 的方程为x y 41

-=,切点坐标是

??

?

??-83,23。 答案:直线l 的方程为x y 41-

=,切点坐标是??

? ??-83,23 点评:本小题考查导数几何意义的应用。解决此类问题时应注意“切点既在曲线上又在

切线上”这个条件的应用。函数在某点可导是相应曲线上过该点存在切线的充分条件,而不是必要条件。

考点四:函数的单调性。

.

例5.已知()132

3

+-+=x x ax x f 在R 上是减函数,求a 的取值范围。

解析:函数()x f 的导数为()163'2

-+=x ax x f 。对于R x ∈都有()0'

x f 为减函数。由()R x x ax ∈<-+01632

可得??

?<+=?<0

12360

a a ,解得3-

当3-

(1) 当3-=a 时,()983131333

23+??? ?

?

--=+-+-=x x x x x f 。

由函数3

x y =在R 上的单调性,可知当3-=a 是,函数()x f 对R x ∈为减函数。

(2) 当3->a 时,函数()x f 在R 上存在增区间。所以,当3->a 时,函数()x f 在

R 上不是单调递减函数。

综合(1)(2)(3)可知3-≤a 。

答案:3-≤a 点评:本题考查导数在函数单调性中的应用。对于高次函数单调性问题,要有求导意识。

考点五:函数的极值。

例6. 设函数32

()2338f x x ax bx c =+++在1x =及2x =时取得极值。

(1)求a 、b 的值;

(2)若对于任意的[03]x ∈,,都有2

()f x c <成立,求c 的取值范围。

解析:(1)2

()663f x x ax b '=++,因为函数()f x 在1x =及2x =取得极值,则有

(1)0f '=,(2)0f '=.即6630241230a b a b ++=??

++=?

.,解得3a =-,4b =。 (2)由(Ⅰ)可知,32()29128f x x x x c =-++,2

()618126(1)(2)f x x x x x '=-+=--。 当(01)x ∈,时,()0f x '>;当(12)x ∈,时,()0f x '<;当(23)x ∈,时,()0f x '>。所以,当1x =时,()f x 取得极大值(1)58f c =+,又(0)8f c =,(3)98f c =+。则当[]03x ∈,时,()f x 的最大值为(3)98f c =+。因为对于任意的[]03x ∈,,有2

()f x c <恒成立,

所以 2

98c c +<,解得 1c <-或9c >,因此c 的取值范围为(1)

(9)-∞-+∞,,。

答案:(1)3a =-,4b =;(2)(1)

(9)-∞-+∞,,。

点评:本题考查利用导数求函数的极值。求可导函数()x f 的极值步骤:①求导数()x f '; ②求()0'=x f 的根;③将()0'=x f 的根在数轴上标出,得出单调区间,由()x f '在各区间上取值的正负可确定并求出函数()x f 的极值。

考点六:函数的最值。

例7. 已知a 为实数,()()

()a x x x f --=42

。求导数()x f ';(2)若()01'=-f ,求()

x f 在区间[]2,2-上的最大值和最小值。

解析:(1)()a x ax x x f 442

3

+--=,∴ ()423'2

--=ax x x f 。

(2)()04231'=-+=-a f ,2

1=

∴a 。()()()14343'2

+-=--=∴x x x x x f 令()0'=x f ,即()()0143=+-x x ,解得1-=x 或3

4

=x , 则()x f 和()x f '在区间[]

2,2-

()2

91=

-f ,275034-=???

??f 。所以,()x f 在区间[]2,2-上的最大值为

275034-=??

?

??f ,最

小值为()2

9

1=

-f 。 答案:(1)()423'2

--=ax x x f ;(2)最大值为275034-=??

?

??f ,最小值为()2

91=-f 。 、

点评:本题考查可导函数最值的求法。求可导函数()x f 在区间[]b a ,上的最值,要先求出函数()x f 在区间()b a ,上的极值,然后与()a f 和()b f 进行比较,从而得出函数的最大最小值。

考点七:导数的综合性问题。

例8. 设函数3

()f x ax bx c =++(0)a ≠为奇函数,其图象在点(1,(1))f 处的切线与直线

670x y --=垂直,导函数'()f x 的最小值为12-。(1)求a ,b ,c 的值;

(2)求函数()f x 的单调递增区间,并求函数()f x 在[1,3]-上的最大值和最小值。 解析: (1)∵()f x 为奇函数,∴()()f x f x -=-,即33

ax bx c ax bx c --+=---

∴0c =,∵2

'()3f x ax b =+的最小值为12-,∴12b =-,又直线670x y --=的斜率为

1

6

,因此,'(1)36f a b =+=-,∴2a =,12b =-,0c =.

(2)3

()212f x x x =-。 2'()6126(f x x x x =-=,列表如下:

所以函数()f x 的单调增区间

是(,-∞

和)+∞,∵(1)10f -=

f =-,(3)18f =,∴()f x 在[1,3]-上的最大值是(3)18f =,最小值

是f =-

答案:(1)2a =,12b =-,0c =;(2)最大值是(3)18f =,

最小值是f =- 点评:本题考查函数的奇偶性、单调性、二次函数的最值、导数的应用等基础知识,以及推理能力和运算能力。 导数强化训练

(一) 选择题

"

1. 已知曲线24x y =的一条切线的斜率为1

2

,则切点的横坐标为( A )

A .1

B .2

C .3

D .4

2. 曲线132

3

+-=x x y 在点(1,-1)处的切线方程为 ( B )

A .43-=x y

B .23+-=x y

C .34+-=x y

D .54-=x y

3. 函数)1()1(2

-+=x x y 在1=x 处的导数等于 ( D )

A .1

B .2

C .3

D .4

4. 已知函数)(,31)(x f x x f 则处的导数为在=的解析式可能为 ( A )

A .)1(3)1()(2

-+-=x x x f

B .)1(2)(-=x x f

C .2)1(2)(-=x x f

D .1)(-=x x f

5. 函数93)(23

-++=x ax x x f ,已知)(x f 在3-=x 时取得极值,则a =( D )

;

(A )2

(B )3 (C )4 (D )5

6. 函数3

2

()31f x x x =-+是减函数的区间为( D ) (A)(2,)+∞(B)(,2)-∞(C)(,0)-∞(D)(0,2)

7. 若函数()c bx x x f ++=2

的图象的顶点在第四象限,则函数()x f '的图象是( A )

A

[

D

C

x B

A .

323

B .

163

C .12

D .9

9. 函数x x y 33

-=的极大值为m ,极小值为n ,则n m +为 ( A ) A .0

B .1

C .2

D .4

10. 三次函数()x ax x f +=3

在()+∞∞-∈,x 内是增函数,则 ( A )

A . 0>a

B .0

C .1=a

D .3

1=

a 11. 在函数x x y 83

-=的图象上,其切线的倾斜角小于4

π

的点中,坐标为整数的点的个数是

( D ) A .3

B .2

C .1

D .0

12. 函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如图所示,则函数)(x f 在开区间),(b a 内有极小值点( A )

A .1个

B .2个

C .3个

D . 4个

(二) 填空题

13. 曲线3

x y =在点()1,1处的切线与x 轴、直线2=x 所围成的三角形的面积为

__________。

14. 已知曲线314

33

y x =+,则过点(2,4)P “改为在点(2,4)P ”的切线方程是______________ 15. 已知()

()n f x 是对函数()f x 连续进行n 次求导,若65()f x x x =+,对于任意x R ∈,

都有()

()n f

x =0,则n 的最少值为 。

16. 某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储

费用为4x 万元,要使一年的总运费与总存储费用之和最小,则x = 吨.

(三) 解答题

17. 已知函数()c bx ax x x f +++=2

3

,当1-=x 时,取得极大值7;当3=x 时,取得极

小值.求这个极小值及c b a ,,的值.

18. 已知函数.93)(2

3a x x x x f +++-= (1)求)(x f 的单调减区间;

{

(2)若)(x f 在区间[-2,2].上的最大值为20,求它在该区间上的最小值.

19. 设0≠t ,点P (t ,0)是函数c bx x g ax x x f +=+=2

3)()(与的图象的一个公共点,两函数的图象在点P 处有相同的切线。 (1)用t 表示c b a ,,;

(2)若函数)()(x g x f y -=在(-1,3)上单调递减,求t 的取值范围。

20. 设函数()32()f x x bx cx x R =++∈,已知()()()g x f x f x '=-是奇函数。 (1)求b 、c 的值。

(2)求()g x 的单调区间与极值。

(

21. 用长为18 cm 的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为2:1,问该长方体的长、宽、高各为多少时,其体积最大最大体积是多少

22. 已知函数32

11()32

f x x ax bx =

++在区间[11)

-,,(13],内各有一个极值点. (1)求2

4a b -的最大值;

(1) 当2

48a b -=时,设函数()y f x =在点(1(1))A f ,处的切线为l ,若l 在点A 处穿

过函数()y f x =的图象(即动点在点A 附近沿曲线()y f x =运动,经过点A 时,从l 的一侧进入另一侧),求函数()f x 的表达式.

强化训练答案:

(四) 填空题 13.

3

8

14. 044=+-x y 15. 7 16. 20 (五) 解答题

17. 解:

()b ax x x f ++=23'2。

据题意,-1,3是方程0232

=++b ax x

的两个根,由韦达定理得

???

???

?

=?--=+-3313231b a ∴9,3-=-=b a

∴()c x x x x f +--=9323

()71=-f ,∴2=c

极小值

()25239333323-=+?-?-=f

∴极小值为-25,9,3-=-=b a ,2=c 。

18. 解:(1)

.963)(2++-='x x x f 令0)(<'x f ,解得,31>-

所以函数

)(x f 的单调递减区间为).,3(),1,(+∞--∞

`

(2)因为

,218128)2(a a f +=+-+=- ,2218128)2(a a f +=+++-=

所以

).2()2(->f f 因为在(-1,3)上0)(>'x f ,所以)(x f 在[-1,2]上单调递增,又由

)(x f 在[-2,-1]上单调递减,因此)2(f 和)1(-f 分别是)(x f 在区间[]2,2-上的最大值和最小

值.于是有2022=+a

,解得.2-=a

故.293)(23-++-=x x x x f 因此,72931)1(-=--+=-f

即函数)(x f 在区间[]2,2-上的最小值为-7.

19. 解:(1)因为函数)(x f ,)(x g 的图象都过点(t ,0),所以0)(=t f ,

即03

=+at t .因为,0≠t 所以2t a -=. .,0,0)(2ab c c bt t g ==+=所以即 又因为)(x f ,)(x g 在点(t ,0)处有相同的切线,所以).()(t g t f '='

.23,2)(,3)(22bt a t bx x g a x x f =+='+='所以

将2t a

-=代入上式得.t b = 因此.3t ab c -==故2t a -=,t b =,.3t c -=

(2)

))(3(23,)()(223223t x t x t tx x y t tx x t x x g x f y -+=--='+--=-=.

0))(3(<-+='t x t x y 时,函数)()(x g x f y -=单调递减. 由

0<'y ,若t x t t <<-

>3,0则;若.3

,0t x t t -<<<则 由题意,函数

)()(x g x f y -=在(-1,3)上单调递减,则

).3,()3,1(),3()3,1(t t t t -?--?-或所以.39.33

3≥-≤≥-≥t t t

t 或即或

又当39<<-t

时,函数)()(x g x f y -=在(-1,3)上单调递减.

所以t 的取值范围为).,3[]9,(+∞?--∞

20. 解:(1)∵

()32f x x bx cx =++,∴()232f x x bx c '=++。从而

322()()()(32)g x f x f x x bx cx x bx c '=-=++-++=32(3)(2)x b x c b x c +-+--是一

个奇函数,所以(0)0g =得0c =,由奇函数定义得3b =;

(2)由(Ⅰ)知3()6g x x x =-,从而2

()36g x x '=-,由此可知,

(,-∞和)+∞是函数()g x 是单调递增区间;

(是函数()g x 是单调递减区间;

()g x 在x =取得极大值,极大值为()g x 在x =取得极小值,极小值为-。

21. 解:设长方体的宽为x (m ),则长为x 2 (m),高为

??? ?

?

-=-=

230(m)35.44

1218<<x x x

h .

故长方体的体积为

()()()

??? ?

?

<<-=-=2306935.423

322x m x x x x x V

从而).1(18)35.4(1818)(2x x x x x x V -=--='

令()0'

=x V ,解得0=x (舍去)或1=x ,因此1=x .

"

当10<x V ;当2

3

1<

处()x V 取得极大值,并且这个极大值就是()x V 的最大值。

从而最大体积()()3

321619'm x V V

?-?==,此时长方体的长为2 m ,高为 m.

答:当长方体的长为2 m 时,宽为1 m ,高为 m 时,体积最大,最大体积为3

3m 。 22. 解:(1)因为函数

3211

()32

f x x ax bx =++在区间[11)

-,,(13],内分别有一个极值点,所以2()f x x ax b '=++0=在[11)-,,(13],

内分别有一个实根,

设两实根为12x x ,(1

2x x <),则21x x -=2104x x <-≤.于是

04<,20416a b <-≤,

且当11x =-,23x =,即2a =-,3b =-时等号成立.故24a b -的最大值是16.

(2)解法一:由

(1)1f a b '=++知()f x 在点(1(1))f ,处的切线l 的方程是

(1)(1)(1)y f f x '-=-,即21

(1)32

y a b x a =++--,

因为切线l 在点(1())A f x ,处空过()y f x =的图象,

所以21

()()[(1)]32

g x f x a b x a =

-++--在1x =两边附近的函数值异号,则

1x =不是()g x 的极值点.

而()

g x 321121

(1)3232

x ax bx a b x a =++-++++,且 22()(1)1(1)(1)g x x ax b a b x ax a x x a '=++-++=+--=-++.

若11a ≠--,则1x =和1x a =--都是()g x 的极值点.

所以11a =--,即2a =-,又由2

48a

b -=,得1b =-,故321

()3

f x x x x =--.

解法二:同解法一得21

()()[(1)]32

g x f x a b x a =-++--

2133

(1)[(1)(2)]322

a x x x a =-++-+. 因为切线l 在点(1(1))A f ,处穿过()y f x =的图象,所以()g x 在1x =两边附近的函数值异号,于是

存在12m m ,(121m m <<).

当1

1m x <<时,()0g x <,当21x m <<时,()0g x >; 或当1

1m x <<时,()0g x >,当21x m <<时,()0g x <.

设233()

1222a a h x x x ???

?=++-+ ? ??

???,则

当11m x <<时,()0h x >,当21x m <<时,()0h x >; 或当1

1m x <<时,()0h x <,当21x m <<时,()0h x <.

由(1)0h =知1x =是()h x 的一个极值点,则3(1)21102

a

h =?++=, 所以2a =-,又由2

48a

b -=,得1b =-,故321

()3

f x x x x =--.

高中数学文科导数练习题

数学导数练习(文) 一、1. 一个物体的运动方程为S=1+t+t^2其中s 的单位是米,t 的单位是秒,那么物体在3秒末的瞬时速度是( )A 7米/秒 B 6米/秒 C 5米/秒 D 8米/秒 2. 已知函数f (x )=ax 2+c ,且(1)f '=2,则a 的值为( ) A.1 B.2 C.-1 D. 0 3 ()f x 与()g x 是定义在R 上的两个可导函数,若()f x ,()g x 满足''()()f x g x =,则 ()f x 与()g x 满足( )A ()f x =2()g x B ()f x -()g x 为常数函数 C ()f x =()0g x = D ()f x +()g x 为常数函数 4. 函数3y x x =+的递增区间是( )A )1,(-∞ B )1,1(- C ),(+∞-∞ D ),1(+∞ 5.若函数f(x)在区间(a ,b )内函数的导数为正,且f(b)≤0,则函数f(x)在(a , b )内有( )A. f(x) 〉0 B.f(x)〈 0 C.f(x) = 0 D.无法确定 6.0'()f x =0是可导函数y =f(x)在点x =x 0处有极值的 ( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .非充分非必要条件 7.曲线3()2f x x x =+-在0p 处的切线平行于直线41y x =-,则0p 点的坐标为( ) A (1,0) B (2,8) C (1,0)和(1,4)-- D (2,8)和(1,4)-- 8.函数313y x x =+- 有 ( ) A.极小值-1,极大值1 B. 极小值-2,极大值3 C.极小值-1,极大值3 D. 极小值-2,极大值2 9 对于R 上可导的任意函数()f x ,若满足'(1)()0x f x -≥,则必有( ) A (0)(2)2(1)f f f +< B (0)(2)2(1)f f f +≤ C (0)(2)2(1)f f f +≥ D (0)(2)2(1)f f f +> 10.函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在 ),(b a 内的图象如图所示,则函数)(x f 在开区间),(b a 内 有极小值点( ) A. 1个 B.2个 C.3个 D.4个 二、11.函数3 2 y x x x =--的单调区间为___________________________________. 12.已知函数3 ()f x x ax =+在R 上有两个极值点,则实数a 的取值范围是 . 13.曲线x x y 43 -=在点(1,3)- 处的切线倾斜角为__________. 14. 曲线3 x y =在点()1,1处的切线与x 轴、直线2=x 所围成的三角形的面积为 __________。 15. 已知曲线3 1433 y x = + ,在点(2,4)P 的切线方程是______________ a b x y ) (x f y '=O

(完整)高考文科数学导数专题复习

高考文科数学导数专题复习 第1讲 变化率与导数、导数的计算 知 识 梳 理 1.导数的概念 (1)函数y =f (x )在x =x 0处的导数f ′(x 0)或y ′|x =x 0,即f ′(x 0)=0 lim x ?→f (x 0+Δx )-f (x 0) Δx . (2)函数f (x )的导函数f ′(x )=0 lim x ?→f (x +Δx )-f (x ) Δx 为f (x )的导函数. 2.导数的几何意义函数y =f (x )在点x 0处的导数的几何意义,就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率,过点P 的切线方程为y -y 0=f ′(x 0)(x -x 0). 3.基本初等函数的导数公式 4.导数的运算法则若f ′(x ),g ′(x )存在,则有: 考点一 导数的计算 【例1】 求下列函数的导数: (1)y =e x ln x ;(2)y =x ? ?? ??x 2+1x +1x 3; 解 (1)y ′=(e x )′ln x +e x (ln x )′=e x ln x +e x 1x =? ?? ??ln x +1x e x .(2)因为y =x 3 +1+1x 2, 所以y ′=(x 3)′+(1)′+? ?? ??1x 2′=3x 2 -2x 3. 【训练1】 (1) 已知函数f (x )的导函数为f ′(x ),且满足f (x )=2x ·f ′(1)+ln x ,则f ′(1)等于( ) A.-e B.-1 C.1 D.e 解析 由f (x )=2xf ′(1)+ln x ,得f ′(x )=2f ′(1)+1 x ,∴f ′(1)=2f ′(1)+1,则f ′(1)=-1.答案 B (2)(2015·天津卷)已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数.若f ′(1)=3,则a 的值为________. (2)f ′(x )=a ? ?? ??ln x +x ·1x =a (1+ln x ).由于f ′(1)=a (1+ln 1)=a ,又f ′(1)=3,所以a =3.答案 (2)3 考点二 导数的几何意义 命题角度一 求切线方程 【例2】 (2016·全国Ⅲ卷)已知f (x )为偶函数,当x ≤0时,f (x )=e -x -1 -x ,则曲线y =f (x )在点(1,2)处的 切线方程是________.解析 (1)设x >0,则-x <0,f (-x )=e x -1 +x .又f (x )为偶函数,f (x )=f (-x )=e x -1 +x , 所以当x >0时,f (x )=e x -1 +x .因此,当x >0时,f ′(x )=e x -1 +1,f ′(1)=e 0 +1=2.则曲线y =f (x )在点(1, 2)处的切线的斜率为f ′(1)=2,所以切线方程为y -2=2(x -1),即2x -y =0. 答案 2x -y =0 【训练2】(2017·威海质检)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为( )A.x +y -1=0 B.x -y -1=0 C.x +y +1=0 D.x -y +1=0

2020年高考文科数学《导数的综合应用》题型归纳与训练

a - a (- ),( , +∞) 单调递增, 在 (- ( 2020 年高考文科数学《导数的综合应用》题型归纳与训练 【题型归纳】 题型一 含参数的分类讨论 例1 已知函数 f ( x ) = ax 3 - 12 x ,导函数为 f '( x) , (1)求函数 f ( x ) 的单调区间; (2)若 f '(1)= -6, 求函数f ( x ) 在[—1,3]上的最大值和最小值。 【答案】略 【解析】(I ) f '( x ) = 3ax 2 - 12 = 3(ax 2 - 4) ,(下面要解不等式 3(ax 2 - 4) > 0 ,到了分类讨论的时机,分 类标准是零) 当 a ≤ 0时, f '( x ) < 0, f ( x )在(-∞, +∞) 单调递减; 当 a > 0时,当x 变化时, f '( x ), f ( x ) 的变化如下表: x (-∞, - 2 ) 2 2 2 , ) a a 2 a ( 2 a , +∞) f '( x ) + 0 — + f ( x ) 极大值 极小值 此时, f ( x )在(-∞, - 2 2 6 a 2 2 , ) 单调递减; a a (II )由 f '(1) = 3a -12 = -6, 得a = 2. 由(I )知, f ( x )在(-1, 2) 单调递减 ,在( 2 ,3)单调递增。 【易错点】搞不清分类讨论的时机,分类讨论不彻底 【思维点拨】分类讨论的难度是两个, 1)分类讨论的时机,也就是何时分类讨论,先按自然的思路推理, 由于参数的存在,到了不能一概而论的时候,自然地进入分类讨论阶段;(2)分类讨论的标准,要做到不 重复一遗漏。还要注意一点的是,最后注意将结果进行合理的整合。 题型二 已知单调性求参数取值范围问题 例 1 已知函数 f ( x) = 1 3 x 3 + x 2 + ax - 5 , 若函数在[1,+∞) 上是单调增函数,求 a 的取值范围

高考文科数学导数全国卷

导数高考题专练 1、(2012课标全国Ⅰ,文21)(本小题满分12分) 设函数f (x )= e x -ax -2 (Ⅰ)求f (x )的单调区间 (Ⅱ)若a =1,k 为整数,且当x >0时,(x -k ) f ′(x )+x +1>0,求k 的最大值 2、(2013课标全国Ⅰ,文20)(本小题满分12分) 已知函数f (x )=e x (ax +b )-x 2-4x ,曲线y =f (x )在点(0,f (0))处的切线方程为y =4x +4. (1)求a ,b 的值; (2)讨论f (x )的单调性,并求f (x )的极大值. 3、(2015课标全国Ⅰ,文21).(本小题满分12分) 设函数2()ln x f x e a x =-. (Ⅰ)讨论()f x 的导函数'()f x 零点的个数; (Ⅱ)证明:当0a >时,2 ()2ln f x a a a ≥+。 4、(2016课标全国Ⅰ,文21)(本小题满分12分) 已知函数.2)1(2)(-+-= x a e x x f x )( (I)讨论)(x f 的单调性; (II)若)(x f 有两个零点,求的取值范围. 5、((2016全国新课标二,20)(本小题满分12分) 已知函数()(1)ln (1)f x x x a x =+--. (I )当4a =时,求曲线()y f x =在()1,(1)f 处的切线方程;

(II)若当()1,x ∈+∞时,()0f x >,求a 的取值范围. 6(2016山东文科。20)(本小题满分13分) 设f (x )=x ln x –ax 2+(2a –1)x ,a ∈R . (Ⅰ)令g (x )=f'(x ),求g (x )的单调区间; (Ⅱ)已知f (x )在x =1处取得极大值.求实数a 的取值范围. 2017.(12分) 已知函数)f x =(a e 2x +(a ﹣2) e x ﹣x . (1)讨论()f x 的单调性; (2)若()f x 有两个零点,求a 的取值范围. 2018全国卷)(12分) 已知函数()1 ln f x x a x x = -+. ⑴讨论()f x 的单调性; ⑵若()f x 存在两个极值点1x ,2x ,证明: ()()1212 2f x f x a x x -<--. 导数高考题专练(答案) 1 2解:(1)f ′(x )=e x (ax +a +b )-2x -4. 由已知得f (0)=4,f ′(0)=4. 故b =4,a +b =8. 从而a =4,b =4. (2)由(1)知,f (x )=4e x (x +1)-x 2-4x ,

高考文科数学专题复习导数训练题文

欢迎下载学习好资料 高考文科数学专题复习导数训练题(文)一、考点回顾导数的概念及其运算是导数应用的基础,是高考重点考查的内容。考查方式以客观题为主,主1. 要考查导数的基本公式和运算法则,以及导数的几何意义。导数的应用是高中数学中的重点内容,导数已由解决问题的工具上升到解决问题必不可少的工2.具,特别是利用导数来解决函数的单调性与最值问题是高考热点问题。选择填空题侧重于利用导不等式、解答题侧重于导数的综合应用,即与函数、数确定函数的单调性、单调区间和最值问题,数列的综合应用。3.应用导数解决实际问题,关键是建立恰当的数学模型(函数关系),如果函数在给定区间内只有一个极值点,此时函数在这点有极大(小)值,而此时不用和端点值进行比较,也可以得知这就是最大(小)值。 二、经典例题剖析 考点一:求导公式。 13f(x)?x?2x?1??ff(?1)(x)3的值是的导函数,则。例1. 是 ????2?1?2?1?f'32x??xf'解析:,所以 答案:3 点评:本题考查多项式的求导法则。 考点二:导数的几何意义。 1x?y?2(1?(1))f(x)My,f2,点则图数2. 例已知函的象程的处切线方在是 ??(1)(f1?)f。 115???fk?'1M(1,f(1))222,所的纵坐标为,所以,由切线过点,可得点M 解析:因为5???f1?????3'f1?f12以,所以3 答案: 学习好资料欢迎下载 32?3)(1,2??4x?yx?2x例3. 。在点曲线处的切线方程是 2?3)(1,4??4xy'?3x5?k?3?4?4??解析:,所以设切线方程,处切线的斜率为点?3)(1, ?3)y??5x?b(1,2b?,将点处的切线为带入切线方程可得,所以,过曲线上点5x?y?2?0方程为:5x?y?2?0答案:点评:以上两小题均是对导数的几何意义的考查。 考点三:导数的几何意义的应用。 ??23x?,y0x l:y?kx x?3x?2y?xl与曲线C且直线相切于点,,例,4.已知曲线C:直线000l的方程及切点坐标。求直线y??00k??x??0x y,x?0在曲析解:线直线过原点,C则。由点上, ??00232x?2x?3xy?x yx,y'?3x?6x?2??0在,处,。又 则00y20?x?3x?2 000000??222x?3x?2?3x?6x?22x?'6x??3xk?f?,整曲线C,的切线斜率为 0000000331y???k??x03x??2x x?00082400。所以,(舍),此时,,解得:理得:,或033??1,???y??x82l??4的方程为,切点坐标是直线。 33??1,???y??x82l??4的方程为,切点坐标是答案:直线点评:本小题考查导数

高考数学专题导数题的解题技巧

第十讲 导数题的解题技巧 【命题趋向】导数命题趋势: 综观2007年全国各套高考数学试题,我们发现对导数的考查有以下一些知识类型与特点: (1)多项式求导(结合不等式求参数取值范围),和求斜率(切线方程结合函数求最值)问题. (2)求极值, 函数单调性,应用题,与三角函数或向量结合. 分值在12---17分之间,一般为1个选择题或1个填空题,1个解答题. 【考点透视】 1.了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念. 2.熟记基本导数公式;掌握两个函数和、差、积、商的求导法则.了解复合函数的求导法则,会求某些简单函数的导数. 3.理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值. 【例题解析】 考点1 导数的概念 对概念的要求:了解导数概念的实际背景,掌握导数在一点处的定义和导数的几何意义,理解导函数的概念. 例1.(2007年北京卷)()f x '是3 1()213 f x x x = ++的导函数,则(1)f '-的值是 . [考查目的] 本题主要考查函数的导数和计算等基础知识和能力. [解答过程] ()2 2 ()2,(1)12 3.f x x f ''=+∴-=-+=Q 故填3. 例2. ( 2006年湖南卷)设函数()1 x a f x x -=-,集合M={|()0}x f x <,P='{|()0}x f x >,若M P,则实 数a 的取值范围是 ( ) A.(-∞,1) B.(0,1) C.(1,+∞) D. [1,+∞) [考查目的]本题主要考查函数的导数和集合等基础知识的应用能力.

(完整版)高三文科数学导数专题复习

高三文科数学导数专题复习 1.已知函数)(,3 ,sin )(x f x x b ax x f 时当π =+=取得极小值 33 -π . (Ⅰ)求a ,b 的值; (Ⅱ)设直线)(:),(:x F y S x g y l ==曲线. 若直线l 与曲线S 同时满足下列两个条件: (1)直线l 与曲线S 相切且至少有两个切点; (2)对任意x ∈R 都有)()(x F x g ≥. 则称直线l 为曲线S 的“上夹线”. 试证明:直线2:+=x y l 是曲线x b ax y S sin :+=的“上夹线”. 2. 设函数3 221()231,0 1.3 f x x ax a x a =- +-+<< (1)求函数)(x f 的极大值; (2)若[]1,1x a a ∈-+时,恒有()a f x a '-≤≤成立(其中()f x '是函数()f x 的导函数),试确定实数a 的取值范围. 3.如图所示,A 、B 为函数)11(32 ≤≤-=x x y 图象上两点,且AB//x 轴,点M (1,m )(m>3)是△ABC 边AC 的中点. (1)设点B 的横坐标为t ,△ABC 的面积为S ,求S 关于t 的函数关系式)(t f S =; (2)求函数)(t f S =的最大值,并求出相应的点C 的坐标.

4. 已知函数x a x x f ln )(2-=在]2,1(是增函数,x a x x g -=)(在(0,1)为减函数. (I )求)(x f 、)(x g 的表达式; (II )求证:当0>x 时,方程2)()(+=x g x f 有唯一解; (III )当1->b 时,若21 2)(x bx x f -≥在x ∈]1,0(内恒成立,求b 的取值范围 5. 已知函数3 2 ()f x x ax bx c =+++在2x =处有极值,曲线()y f x =在1x =处的切线平行于直线32y x =--,试求函数()f x 的极大值与极小值的差。 6.函数x a x x f - =2)(的定义域为]1,0((a 为实数). (1)当1-=a 时,求函数)(x f y =的值域; (2)若函数)(x f y =在定义域上是减函数,求a 的取值范围; (3)求函数)(x f y =在∈x ]1,0(上的最大值及最小值,并求出函数取最值时x 的值. 7.设x=0是函数2()()()x f x x ax b e x R =++∈的一个极值点. (Ⅰ)求a 与b 的关系式(用a 表示b ),并求)(x f 的单调区间; (Ⅱ)设]2,2[,,)1()(,0212 2-∈++-=>+ξξ问是否存在x e a a x g a ,使得|1|)()(21≤-ξξg f 成立?若存在,求a 的取值范围;若不存在,说明理由. 8. 设函数()2ln q f x px x x =- -,且()2p f e qe e =--,其中e 是自然对数的底数. (1)求p 与q 的关系;

人教版高中数学(文科)选修导数的概念及运算教案

导数的概念及运算 【考点指津】 1.了解导数的概念,掌握函数在一点处的导数的定义和导数的几何意义. 2.熟记基本导数公式.掌握两个函数四则运算的求导法则,会求多项式的导数. 【知识在线】 1.函数y =14223++x x 的导数是 . 2.曲线y =x 4+x 2上P 处的切线的斜率为6,则点P 的坐标是 . 3.设函数f(x)= -35 x 5 - 74 x 4+8,则0 lim →?x f(x+Δx)-f(x)Δx = . 4.已知使函数y=x 3+ax 2- 43 a ,若存在0)()(,000=='∈x f x f R x 使的求常数a . 【讲练平台】 例1 函数y=(3x 2+x+1)(2x+3)的导数是 ( ) A . (6x+1)(2x+3) B . 2(6x+1) C . 2(3x 2+x+1) D . 18x+22x+5 分析 先把函数式右边展开,再用和的求导法则求导数. 解 y=(3x 2+x+1)(2x+3)=6x 3+11x 2+5x+3 ∴y'=18x 2+22x+5,故应选D 点评 要善于化归,本题函数解析式就可转化为多项式. 例2 设函数f(x)=x 3-2x 2+x+5, 若f'(x 0)=0,则x 0= . 分析 x 0是方程f'(x)=0的根,只要解方程f'(x)=0 解 f(x)=x 3-2x 2+x+5, 求f'(x)=3x 2-4x+1 由f'(x 0)=0, 得3x 2-4x+1=0 解得x 0=1或13 ∴应填写答案为1或13 点评 导数的运算法则再加上已有的导数公式(如(x n )'=n .x n -1, 其中n ∈N*)是求某些简单函数的导 数的常用工具. 例3 已知抛物线y=ax 2+bx+c 通过点(1,1),且在(2,-1)处的切线的斜率为1, 求a ,b ,c 的值. 分析 题中涉及三个未知数,而已知中有三个独立条件,故可通过解方程组来确定a ,b ,c . 解 ∵y=ax 2+bx+c 分别过(1,1)点和(2,1)点 ∴a+b+c=1 (1) 4a+2b+c=-1 (2) 又 y'=2ax+b ∴y'|x=2=4a+b=1 (3) 由(1)(2)(3)可得,a=3,b=-11,c=9. 点评 函数的导数的几何意义决定了函数的导数知识与平面解析几何中直线的知识有着密切的联系.利用导数能解决许多曲线的切线的问题,使确定曲线在某处的切线斜率变得简单易求. 【知能集成】 1.两种常见函数的导数:c'=0 (C 是常数);(x n )'= nx n - 1(n ∈N *). 导数和运算法则:若 f(x),g(x)的导数存在,则[f(x)±g(x)]' = f '(x)+g'(x), [cf(x)]' = cf '(x).(C 是常数) 2.能应用由定义求导数的三个步骤推导出常数及函数y=x n (n ∈N*)的导数公式,掌握两个函数的和与差的求导法则及常数与函数的积的求导法则,能正确运用这些求导法则及导数公式求某些简单函数的导数.

高考文科数学导数知识点总结

2014高考文科数学:导数知识点总结 (4) x x sin )(cos -='. (5) x x )(ln = ';e a x x a log )(log ='. (6) x x e e =')(; a a a x x ln )(='.(7)' ' ' ()u v u v ±=±. (8)' ' ' ()uv u v uv =+. (9)'' '2 ()(0)u u v uv v v v -= ≠. (10)2' 11x x -=?? ? ?? (11) ()x x 21' = 5.导数的应用 ①单调性:如果0)(' >x f ,则)(x f 为增函数;如果0)(' 'x f ,右侧0)(<'x f ,则)(0x f 是极大值;(“左增右减↗↘”) 如果在0x 附近的左侧0)(<'x f ,右侧0)(>'x f ,则)(0x f 是极小值.(“左减右增↘↗”) 附:求极值步骤 )(x f 定义域→)(' x f →)(' x f 零点→列表: x 范围、)(' x f 符号、)(x f 增减、)(x f 极值 ③求[]b a ,上的最值:)(x f 在()b a ,内极值与)(a f 、)(b f 比较

6. 三次函数 d cx bx ax x f +++=23)( c bx ax x f ++=23)(2 / 图象特征:(针对导函数)0,0>?>a 0,0>??有极值;)(0x f ?≤?无极值 (其中“?”针对导函数) 练习题: 一. 选择题 1. 3 2 ()32f x ax x =++,若' (1)4f -=,则a 的值等于( ) A . 319 B .316 C .313 D .3 10 2. 一个物体的运动方程为2 1t t s +-=其中s 的单位是米,t 的单位是秒,那么物体在3秒末的瞬时速度 是( ) A .7米/秒 B .6米/秒 C .5米/秒 D .8米/秒 3. 函数3 y x x =+的递增区间是( ) A .),0(+∞ B .)1,(-∞ C .),(+∞-∞ D .),1(+∞ 4. 若函数()y f x =在区间(,)a b 内可导,且0(,)x a b ∈则000 ()() lim h f x h f x h h →+-- 的值为( ) A .'0()f x B .'02()f x C .' 02()f x - D .0 5. 函数)(x f y =在一点的导数值为0是函数)(x f y =在这点取极值的( ) A .充分条件 B .必要条件 C .充要条件 D .必要非充分条件 6. 函数344 +-=x x y 在区间[]2,3-上的最小值为( ) A .72 B .36 C .12 D .0 7. 函数()3 2 3922y x x x x =---<<有( ) A .极大值5,极小值27- B .极大值5,极小值11- C .极大值5,无极小值 D .极小值27-,无极大值 8. 曲线3 ()2f x x x =+-在0p 处的切线平行于直线41y x =-,则0p 点的坐标为( ) A .(1,0) B .(2,8) C .(1,0)和(1,4)-- D .(2,8)和(1,4)-- 9. 若' 0()3f x =-,则000()(3) lim h f x h f x h h →+--=( ) A .3- B .6- C .9- D .12- 10. ()f x 与()g x 是定义R 上的可导函数,若()f x ,()g x 满足' ' ()()f x g x =,则()f x 与()g x 满足( )

高中文科数学公式大全(完美版)

高三文科数学公式及知识点 一、函数、导数 1、函数的单调性 (1)设2121],,[x x b a x x <∈、那么 ],[)(0)()(21b a x f x f x f 在?<-上是增函数; ],[)(0)()(21b a x f x f x f 在?>-上是减函数. (2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数;若0)(<'x f ,则)(x f 为减函数. 2、函数的奇偶性 对于定义域内任意的x ,都有)()(x f x f =-,则)(x f 是偶函数; 对于定义域内任意的x ,都有)()(x f x f -=-,则)(x f 是奇函数。 奇函数的图象关于原点对称,偶函数的图象关于y 轴对称。 3、函数)(x f y =在点0x 处的导数的几何意义 函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是 ))((000x x x f y y -'=-. 4、几种常见函数的导数 ①' C 0=;②1 ' )(-=n n nx x ; ③x x cos )(sin '=;④x x sin )(cos ' -=; ⑤a a a x x ln )(' =;⑥x x e e =' )(; ⑦a x x a ln 1)(log ' = ;⑧x x 1)(ln ' = 5、导数的运算法则 (1)' ' ' ()u v u v ±=±. (2)' ' ' ()uv u v uv =+. (3)'' '2 ()(0)u u v uv v v v -=≠. 6、会用导数求单调区间、极值、最值 7、求函数()y f x =的极值的方法是:解方程()0f x '=.当()00f x '=时: (1) 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; (2) 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值. 二、三角函数、三角变换、解三角形、平面向量 8、同角三角函数的基本关系式 22sin cos 1θθ+=,tan θ= θ θ cos sin . 10、和角与差角公式 sin()sin cos cos sin αβαβαβ±=±; cos()cos cos sin sin αβαβαβ±=; tan tan tan()1tan tan αβ αβαβ ±±=.

(完整word版)高中文科数学导数练习题.doc

专题 8:导数(文) 经典例题剖析 考点一:求导公式。 例 1. f (x) 是 f (x) 1 x3 2x 1 的导函数,则 f ( 1) 的值是。 3 解析: f ' x x 2 2 ,所以 f ' 1 1 2 3 答案: 3 考点二:导数的几何意义。 例 2. 已知函数 y f ( x) 的图象在点 M (1, f (1)) 处的切线方程是 y 1 x 2 ,则2 f (1) f (1) 。 解析:因为 k 1 ,所以2 5 ,所以 f 1 5 ,所以2 2 1 f ' 1,由切线过点M (1,f (1)),可得点M的纵坐标为 2 f 1 f ' 1 3 答案: 3 例 3.曲线y x3 2x2 4x 2 在点 (1, 3) 处的切线方程是。 解析: y' 3x2 4x 4 ,点 (1, 3) 处切线的斜率为k 3 4 4 5 ,所以设切线方程为 y 5x b ,将点 (1, 3) 带入切线方程可得 b 2 ,所以,过曲线上点(1,3) 处的切线方程为:5x y 2 0 答案: 5x y 2 0 点评:以上两小题均是对导数的几何意义的考查。 考点三:导数的几何意义的应用。 例 4.已知曲线 C :y x3 3x 2 2x ,直线 l : y kx ,且直线l 与曲线C相切于点x0 , y0 x0 0 ,求直线l的方程及切点坐标。 解析:直线过原点,则 k y 0 x0 0 。由点x0, y0 在曲线 C 上,则x0

y 0 x 0 3 3x 0 2 2x 0 , y 0 x 0 2 3x 0 2。又 y' 3x 2 6x 2 , 在 x 0 x 0 , y 0 处 曲 线 C 的 切 线 斜 率 为 k f ' x 0 3x 0 2 6x 0 2 , 2 3x 0 2 2 6x 0 2 ,整理得: 2 x 0 3x 0 0 ,解得: x 0 3 0 x 0 3x 0 或 x 0 2 (舍),此时, y 0 3 , k 1 。所以,直线 l 的方程为 y 1 x ,切点坐标是 8 4 4 3 , 3 。 2 8 答案:直线 l 的方程为 y 1 x ,切点坐标是 3 , 3 4 2 8 点评:本小题考查导数几何意义的应用。解决此类问题时应注意“切点既在曲线上又在 切线上”这个条件的应用。函数在某点可导是相应曲线上过该点存在切线的充分条件,而不 是必要条件。 考点四:函数的单调性。 例 5.已知 f x ax 3 3x 2 x 1在 R 上是减函数,求 a 的取值范围。 解析:函数 f x 的导数为 f ' x 3 26 x 1 。对于 x R 都有 f ' x 0 时, f x ax 为减函数。由 3ax 2 6x 1 0 x R 可得 a 12a ,解得 a 3 。所以, 36 0 当 a 3 时,函数 f x 对 x R 为减函数。 x 1 3 x 1 3 8 。 ( 1) 当 a 3时, f x 3x 3 3x 2 3 9 由函数 y x 3 在 R 上的单调性,可知当 a 3 是,函数 f x 对 x R 为减函数。 ( 2) 当 a 3 时,函数 f x 在 R 上存在增区间。 所以, 当 a 3 时,函数 f x 在 R 上不是单调递减函数。 综合( 1)( 2)( 3)可知 a 3 。 答案: a 3

文科数学导数大题训练(有答案)

18.(14分)(2013?汕头一模)已知函数f(x) =x2﹣lnx. (1)求曲线f(x)在点(1,f(1))处的切线方程; (2)求函数f(x)的单调递减区间: (3)设函数g(x)=f(x)﹣x2+ax,a>0,若x∈(O,e]时,g(x)的最小值是3,求实数a的值.(e是为自然对数的底数) 考 点: 利用导数研究曲线上某点切线方程;利用导数研究函数的单调性;利用导数求闭区间上函数的最值.3253948 专 题: 导数的综合应用. 分 析: (1)欲求在点(1,f(1))处的切线方程,只须求出其斜率的值即可,故先利用导数求出在x=1处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决. (2)求出原函数的导函数,由导函数小于0求出自变量x在定义域内的取值范围,则原函数的单调减区间可求. (3)求导函数,分类讨论,确定函数的单调性,利用函数g(x)的最小值是3,即可求出a的值. 解 答: 解:(1)∵f(x)=x2﹣lnx ∴f′(x)=2x﹣ . ∴f'(1)=1. 又∵f(1)=1, ∴曲线y=f(x)在点(1,f(1))处的切线方程为y﹣1=x﹣1.即x﹣y=0.(2)因为函数f(x)=2x2﹣lnx的定义域为(0,+∞),

由f′(x)=2x﹣ <0,得0<x< . 所以函数f(x)=x2﹣lnx的单调递减区间是(0, ). (3)∵g(x)=ax﹣lnx,∴g′(x)= ,令g′(x)=0,得x= , ①当 ≥e时,即0<a≤ 时,g′(x)= ≤0在(0,e]上恒成立, 则g(x)在(0,e]上单调递减,g(x)min=g(e)=ae﹣1=3,a= (舍去), ②当0< <e时,即a> 时,列表如下:

高考文科数学导数真题汇编(带答案)

高考数学文科导数真题汇编答案 一、客观题组 4 5. 7.设函数()f x 在R 上可导,其导函数()f x ',且函数()f x 在2x =-处取得极小值,则函数()y xf x '=的图象可能是

8设函数f (x )= 2 x +lnx 则 ( ) A .x=12为f(x)的极大值点 B .x=1 2为f(x)的极小值点 C .x=2为 f(x)的极大值点 D .x=2为 f(x)的极小值点 9、函数y= 12 x 2 -㏑x 的单调递减区间为 (A )(-1,1] (B )(0,1] (C.)[1,+∞) (D )(0,+∞) 11(2018年高考1卷) 12(2019年高考1卷) 一、 客观题答案1B ; 2.D; 3.y=x+1; 4.A . 5.y=2x-2 6D ,7C; 8D; 9B; 10.C 11.D; 12.y=3x 二、大题组 【2011新课标】21. 已知函数ln ()1a x b f x x x = ++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=。 (1)求a 、b 的值; (2)证明:当0x >,且1x ≠时, f (x )>ln x x -1 【解析】

(1)22 1 ( ln ) '()(1)x x b x f x x x α+-= - + 由于直线230x y +-=的斜率为1 2 - ,且过点(1,1), 故(1)1,1'(1),2f f =???=-?? 即1,1,22 b a b =???-=-?? 解得1a =,1b =。 (2)由(1)知f (x )=x x x 11ln ++,所以f (x )-ln x x -1=11-x 2 (2ln x -x 2-1 x ), 考虑函数,则2 2 222)1()1(22)(x x x x x x x h --=---=', 所以x ≠1时h ′(x )<0,而h (1)=0 故)1,0(∈x 时,h (x )>0可得,),1(+∞∈x 时,h (x )<0可得, 从而当,且时,. 【2012新课标】21. 设函数f (x ) = e x -ax -2 (1)求f (x )的单调区间 (2)若a =1,k 为整数,且当x >0时,(x -k ) f ′(x )+x +1>0,求k 的最大值 【解析】 (1) f (x )的定义域为(,)-∞+∞,()x f x e a '=-, 若0a ≤,则()0f x '>,所以()f x 在(,)-∞+∞单调递增. 若0a >,则当(,ln )x a ∈-∞时,()0f x '<;当(ln ,)x a ∈+∞时,()0f x '>,所以()f x 在(,ln )a -∞单调递减,在(ln ,)a +∞单调递增. (2)由于1a =,所以()()1()(1)1x x k f x x x k e x '-++=--++. 故当0x >时,()()10x k f x x '-++>等价于1(0) (1) x x k x x e +<+>-①. 令1()(1) x x g x x e +=+-,则221(2)()1(1)(1)x x x x x xe e e x g x e e ----'=+= --. 由(1)知,函数()2x h x e x =--在(0,)+∞单调递增,而(1)0h <,(2)0h >, 所以()h x ,在(0,)+∞存在唯一的零,故()g x '在(0,)+∞存在唯一的零点. 设此零点为a ,则(1,2)a ∈. 当(0,)x a ∈时,()0g x '<;当(,)x a ∈+∞时,()0g x '>. 所以()g x 在(0,)+∞的最小值为()g a . 又由()0g a '=,可得2a e a =+,所以()1(2,3)g a a =+∈. 由于①式等价于()k g a <,故整数k 的最大值为2 【2013新课标1】20. 已知函数f (x )=e x (ax +b )-x 2-4x ,曲线y =f (x )在点(0,f (0))处的切线方程为y =4x +4. (1)求a ,b 的值; ln ()1x f x x > -ln ()1x f x x >-0x >1x ≠ln ()1 x f x x >-

人教版高中数学(文科)选修导数的应用(一)

导数的应用(一) 【考点指津】 1.函数的导数与单调性的关系:若f'(x)>0,则f(x)为增函数;若f'(x)恒等于零,则f(x)为常数;若f(x)<0,则f(x)为减函数. 2.从函数图象出发,通过数形结合的方法直观了解可导函数的单调性与其导数的关系,熟练掌握用导数的符号判别函数增减性的方法. 【知识在线】 1. 函数y=x 2-x+1的单调递减区间是 ( ) A .(-∞,12 ) B .(12 ,+∞) C .(-∞,-12 ) D . (-12 ,+∞) 2.若函数f(x)=ax+b 上是R 上的单调函数,则a 、b 应满足 ( ) A . a>0,b>0 B .a>0,b ∈R C .a<0,b ∈R D . a ≠0,b ∈R 3.已知函数f(x)=x 2(x -3),则f(x)在R 上的单调递减区间是 ,单调递增区间为 . 4.若三次函数f(x)=x 3+kx 在(-∞,+∞)内是增函数,则实数k 的取值范围是 . 5.证明函数f(x)=x 2-4x+1在区间(-∞,2)上是减函数. 【讲练平台】 例1 函数y=x 2-13 x 3的单调递增区间为 ,单调递减区间为 . 分析 先求函数的导数f'(x),再根据f'(x)>0(或f'(x)<0)解得f(x)的递增(或递减)区间. 解 由 y=x 2-13 x 3可得y'=2x -x 2 令y'>0,即2x -x 2>0,解得02 因此,当x ∈(-∞,0)或(2,+∞)时,函数为增函数,即单调递增区间为(-∞,0)或(2,+∞). 点评 本题也可用函数单调性的定义来解,但在判断函数的单调性时,“导数法”要比“定义法”简捷得多. 例2 函数y=f(x)的导数y'>0是函数f(x)单调递增的 ( ) A .充要条件 B . 充分不必要条件 C .必要不充分条件 D . 既不充分也不必要条件 分析 借助函数的导数与单调性之间的关系,充分性即可判定.必要性可结合具体的例子来加以说明. 解 由函数的导数与单调性的关系:导数为正,函数为增;导数为负,函数为减.因此不难知道:y'>0可推出函数f(x)单调递增.但反之不然,例如对于函数y=x 3来说,它在R 上是增函数,而它在x=0处的导数等于0,因此并不能推出y'>0.故选B . 点评 应当注意函数在它的单调区间内某点处的导数可能为零,并非一定要恒大于零或恒小于零. 例3 若函数f(x)=ax 3+x , (1) 求实数a 的取值范围,使f(x)在R 上是增函数. (2) 求实数a 的取值范围,使f(x)恰好有三个单调区间. 分析 若条件(1)成立,则f'(x)>0对x ∈R 恒成立,据此可解得a 的范围;若条件(2)成立,则方程f'(x)=0应当有两个不等实根,可由判别式大于0求得a 的范围. 解 f'(x)=3ax 2+1 (1)∵f'(x)=3ax 2+1对x ∈R 恒成立,f(x)在R 上是增函数,∴当a ≥0时,f'(x)>0 (2) 令3ax 2+1=0有两个不等实根, ∴Δ=-12a>0, ∴a<0 点评 求函数的导数和解相关的不等式是研究函数单调性的常用手段和关键所在. 例4 设a >0,函数f (x )=x 3-ax 在[1,+ )上是单调函数.

20122017年高考文科数学真题汇编导数及应用老师版

学科教师辅导教案 学员姓名年级高三辅导科目数学 授课老师课时数2h 第次课授课日期及时段 2018年月日:—: 1.(2014大纲理)曲线1x y xe- =在点(1,1)处切线的斜率等于( C ) A.2e B.e C.2 D.1 2.(2014新标2理) 设曲线y=a x-ln(x+1)在点(0,0)处的切线方程为y=2x,则a= ( D ) A. 0 B. 1 C. 2 D. 3 3.(2013浙江文) 已知函数y=f(x)的图象是下列四个图象之一,且其导函数y=f′(x)的图象如右图所示, 则该函数的图象是(B) 4.(2012陕西文)设函数f(x)= 2 x +lnx 则( D ) A.x= 1 2 为f(x)的极大值点B.x= 1 2 为f(x)的极小值点 C.x=2为f(x)的极大值点D.x=2为f(x)的极小值点 5.(2014新标2文) 函数() f x在 x x =处导数存在,若 :()0 p f x=: :q x x =是() f x的极值点,则A.p是q的充分必要条件 B. p是q的充分条件,但不是q的必要条件 C. p是q的必要条件,但不是q的充分条件 D. p既不是q的充分条件,也不是q的必要条件 【答案】C 6.(2012广东理)曲线33 y x x =-+在点() 1,3处的切线方程为___________________. 【答案】2x-y+1=0 7.(2013广东理)若曲线ln y kx x =+在点(1,)k处的切线平行于x轴,则k= 【答案】-1 8.(2013广东文)若曲线2ln y ax x =-在点(1,)a处的切线平行于x轴,则a=.历年高考试题汇编(文)——导数及应用

相关主题