搜档网
当前位置:搜档网 › C60高性能混凝土原材料的选择及实例分析

C60高性能混凝土原材料的选择及实例分析

C60高性能混凝土原材料的选择及实例分析
C60高性能混凝土原材料的选择及实例分析

C60高性能混凝土原材料的选择及实例分析

在我国,用强度等级42.SR的硅酸盐水泥,可以配制出实际强度超过100R混凝土,因此配制C60混凝土不必强调水泥的强度等级。回转窑生产的42.SR的硅酸盐水泥或普通水泥质量稳定,强度波动小,是配制C60混凝土优先选取的原材料。

C6O混凝土广泛用于高层结构、大跨度结构、高速办路桥梁的上部结构、剪力堵等原材料选择不合理可能引起混凝土不合格、体积不稳定、外观等质量缺陷,同时使生产成本增大文章论述C6O混凝土原材料的选择,可为获得性能优良的C60C6O混凝土提供参考关键词C6O混凝土;原材料;外加剂水泥

配制C 6 O混凝土时可选52.SR的硅酸盐水泥,但应注意水泥强度等级高、水泥浆用量较少可能使水泥石强度及水泥石与集料胶结强度降低;同时水泥强度等级提高,混凝土坍落度的稳定性也受到一定影响。C60混凝土的水灰比低,为确保其流动性,所用的水泥流变性能比强度更重要。水泥的具体用量应根据水泥的品种、细度、混凝土坍落度的大小、集料的形状级配等情况而确定。特别是加有高效减水剂、引气剂等外加剂时影响更大。

一般掺优质高效减水剂的C60混凝土水泥用量不宜超过500kg/m3,超过此值增加水泥用量对强度增长的作用已不显著,水泥利用系数降低。

2细集料

21细集料的品种。

砂材质的好坏,对C60混凝土拌和物和易性的影响比粗集料大。应选取含泥量、云母、轻物质、有机质等含量少的I类或II类江砂、河砂。砂中石英颗粒含量多则坚固性较好。

2.2细集料的细度模数。

砂的细度模数宜控制在2.6以上。细度模数小于2.5时,拌制的混凝土拌和物显得太粘稠,施工中难于振捣,且由于砂细,在满足相同和易性要求时,会增大水泥用量。这样不仅增加了成本,而且影响混凝土的技术性能,如混凝土的耐久性、收缩裂缝等。砂也不宜太粗,细度模数大于3.3时,容易引起新拌混凝土在运输浇筑过程中离析及保水性差,从而影响混凝土的内在质量与外观质量。

2. 3砂率的选择。

一般认为,在满足混凝土所要求的性能范围内,砂率要尽量低,因为在水泥浆量一定的情况下,砂率在混凝土中主要影响拌和物的和易性。砂率越低,拌和物的流动性愈大。C60混凝土由于用水量较低,砂浆量要由增加砂率来补充,砂率宜适量增大,才能满足混凝土拌和物的和易性。但砂率过大,为使C60混凝土拌和物满足设计的和易性,势必使水量增加。增加水量会使混凝土强度降低。因此砂率不宜过大。同时砂率的变化应根据水泥用量、

水灰比、单位用水量、含气量以及粗集料的粒径、粒形等的不同而变化。另外应考虑砂率变化对C60混凝土抗拉强度、弹性模量、体积稳定性的影响。根据经验,综合各方面因素,C60混凝土砂率取33%一38%为宜。

3粗集料

粗集料的强度、颗粒形状、表面特征、级配、杂质的含量、吸水率对c60混凝土的强度有重要的影响。

3.1粗集料的强度

通常 C 6 0混凝土对粗集料的强度选取十分重要,高强度的集料才能配制出高强度的混凝土。粗集料的性能对高强混凝土的抗压强度及弹性模量起决定性的制约作用。如果粗集料的强度不足,其它提高混凝土强度的手段都将起不到任何作用。配制C60混凝土,除选择合格的火成岩、变质岩外,选用来源广、硬度低、易劈裂、便于开采加工的石灰岩碎石配制C60混凝土将是一种理想的粗集料。

32粗集料的吸水率

粗集料的吸水性直接影响C60混凝土和易性,因为集料在拌和过程中,可以直接吸收部分拌和用水,降低水灰比,从而使拌和物的坍落度减小。石灰石具有较大的孔隙率及吸水率,这种具有吸收水泥浆的孔隙,使水泥浆临近碎石表面形成了水灰比梯度,大大改善水泥与碎石的粘结。

3.3最大粒径

对于 C 60 混凝土,当粗集料的最大粒径超过31.smm后,由于减少用水量获得的强度提高,被较少的粘结面积及大粒径集料造成的不均匀性的不利影响所抵消,因而并没好处。在实践中也证实当水泥用量、砂率、水胶比一定时,混凝土的强度存在粗集料最大粒径效应。应根据料源情况而定,C60最大粒径不宜超过31.5mm。

3.4级配

研究表明,粗集料的级配对C60混凝土性能的影响是非常显著的。级配良好的集料具有较大的堆积密度,同时也具有较小的空隙率,在混凝土中能形成坚强的骨架。换言之,在其他条件相同时,堆积密度最大,即空隙率最小的集料,是理想的。笔者以不同粗石子(16mm 一31.smm)、细石子(smm一i6mm)拌和,以找出某种符合条件的比率。发现石子的堆积密度并不是随粗石子含量的增加而逐渐增大,也不是随之增加而简单降低;而是存在一个合适的粗、细石子比率,在这个恰当比例时,石子存在最大的堆积密度。同时,不同级配(均在国家标准的级配范围内)配制的C60混凝土强度化幅度接近10%;若提高级配中较粗成分的含量,强度也提高约8%。

4、掺和料

由于大多数混凝土的掺和料采用粉煤灰,文章以粉煤灰作为掺和料进行论述。粉煤灰对C60混凝土的作用,主要是因为粉煤灰对混凝土产生了一系列的形态效应、微集料效应、活性效应、减热效应等。为使粉煤灰达到较好的技术效益,选用粉煤灰时注意其“SO3含水率、烧失量、细度与需水量比”五大性能指标。颗粒越细,比表面积越大,需水量比越小,粉煤灰的品位越高;烧失量大,需水量比越大,粉煤灰品位就差。选用时,应尽可能选用细度大需水量比小的1、n级灰。

5:外加剂

为满足混凝土的性能及施工要求,外加剂的选择尤为重要。选用外加剂应着重从以下几个方面考虑:对水泥浆的分散效果强,能延缓混凝土的初凝时间,能提高混凝土的早期强度、增加后期强度,混凝土的坍落度损失小,与水泥的相容性,外加剂的稳定性等。通常选用高效减水剂、缓凝型高效减水剂、早强型高效减水剂。

必须考虑高效减水剂与所选水泥的相容性。高效减水剂使混凝土具有高流动性的作用机理:高效减水剂为长链分子,将自身缠绕在水泥颗粒上,并使其带上较高的负电荷,水泥颗粒相互排斥,其结果是水泥团粒良好的分散,而拌合物达到较高的工作性。但高效减水剂与水泥中的C,A相互作用,C3A是水泥最早水化的组分,其反应受水泥中加入的石膏(或其它硫酸盐,以5认计)的形态及数量限制。若水泥中能反应的可溶解硫酸盐太少,则会以高效减水剂被C3A束缚的形式进行,高效减水剂就无法改善拌合物的工作性。若硫酸根离子释放速度太慢,就称高效减水剂与所选水泥不相容。

高效减水剂同时具有增加混凝土强度和流动性的作用。但掺高效减水剂的混凝土的坍落度损失一般较快,施工时最好采用后掺法,这样可提高其减水增强效果。在温度低于10℃时,高效减少剂虽能增加流动性,但增加强度的作用大大降低。所以高效减少剂宜在春秋季使用。

缓凝型高效减水剂有利于弥补因掺高效减水剂混凝土拌和物坍落度损失大、控制早期水化、进一步减水及提高后期强度的作用。通常,掺量大时凝结时间相应增长,但掺量过多会降低早期强度,应根据施工季节来调整掺量,宜在夏季或结构复杂配筋密集的构件中使用。广东气温较高,多使用这类外加剂。

早强型高效减水剂一般不使用,除非在冬季或对早期强度有特殊要求。因早强型高效减水剂能加快早期强度发展,但一般会降低后期强度,在试配时要认真做好验证工作。

在选用某种新型缓凝型高效减水剂时,通常应测定该外加剂对水泥净浆的分散效果(水泥净浆的流动度),以初步获得该外加剂对所选用水泥的减水效果。然后按不同的掺入方法进行正交实验,以获得该外加剂对水泥的适应性、减水增强效果、坍落度的稳定性等结论。

这样使用起来才有可*的把握,真正取得较好的效果。

6:结语

在水泥、粗、细集料性能良好且稳定的情况下,掺和料的性能及掺量、缓凝型高效缓凝减水剂的性能及掺量是对C60混凝土性能起关键作用的因素,同时也是决定C6O混凝土性能是否良好、是否经济的决定因素。

C60混凝土应该是容易配制的。举例如下:

用P.o42.5级水泥(58Mpa)、合格砂、石、粉煤灰S1、S2、高效减水剂,试配C110塑性高强度混凝土。

一.确定混凝土设计强度:Rs28= 1.15×100= 115MPa塑性高强度混凝土

二.确定混凝土组成材料的颗粒直径及表观密度:

碎石颗粒直径05—10mm;细度模数大于2.9中砂;水泥比表面积4.3—10.6倍粉煤灰S1, S1比表面积4.3—10.3倍以上粉煤灰S2。

Px = 2750,Py = 2700,Pc= 2680,Ps1= Ps2= 1900

三. 确定配制近单位体积(接近一立方米)混凝土主要组成材料的用量:e集= 40%,A= 0.8,W/C = 0.26

X=2750×(0.8-0.4)= 1100㎏

Y=2700×(1-0.4)×0.4= 648㎏

C灰= 2680×(1-0.4)×0.4 2=257㎏

C= C胶+C灰 = 138 + 257 = 395㎏

S1= 1900×395/257(1-0.4)×0.4 3 = 112㎏

S2= 1900×395/257(1-0.4)×0.4 4 = 45㎏

W=(395+112+45)×0.26= 143..5㎏

四.混凝土拌和物体积:V砼= 0.4+0.4×6+395/2680+157/1900+0.1435

=1.014M3

混凝土空隙率:e 砼=[(143.5-0.36×157)÷1014]×100%+1%= 9.58%

五.混凝土配制强度:m = ㏒1.99.58 = 3.521

R28= 4.1466×58×(1-)=116.97 Mpa>Rs28= 115Mpa

六.确定减水剂用量:高效减水剂用量为水泥矿粉用量1.8%时,混凝土已表现出良好工作性,坍落度已经超过10CM。

七.确定混凝土拌和物理论配合比:

X:Y:C:S1:S2:W:J =1100:648:395:112:45:143.5:10

上试件28天抗压强度为112—121MPa,7d抗压强度89Mpa。

例2.用P.o32.5级水泥(42.1Mpa)、高效减水剂、合格砂石料,配制C50自密实混凝土。

一.确定混凝土设计强度:Rs28=58Mpa自密实混凝土

二.混凝土组成材料的颗粒直径及表观密度:碎石颗粒直径05—10mm;细度模数大于2.7中砂;Px = 2750,Py = 2700,Pc = 2650;

三.确定配制近单位体积混凝土主要组成材料的用量:

e集 = 50%,A = 0.8,W/C = 0.28;

X=2750×(0.8-0.5)= 825㎏

Y=2700×(1-0.5)×0.5= 675㎏

C灰= 2650×(1-0.5)×0.5 2 =331㎏

C= C胶+C灰 = 138 + 331 = 469㎏

W=469×0.28=131.3㎏

四.混凝土拌和物体积:V砼= 0.3+0.5×0.5+469/2650+0.1313=0.858m3;

混凝土空隙率:e砼=131.3/858=15.3%;

五.混凝土配制强度:m= ㏒1.915.3 = 4.24996,

R28= 4.1466×42.1×(1-)= 62.3 Mpa>Rs28 = 58Mpa

六.确定减水剂用量:当高效减水剂加到水泥用量2%时,上述配合比坍落度已经超过25CM,坍落扩展度已经达到60CM。

七.确定混凝土理论配合比:

X:Y:C:W:J =825:675:469:131.3:9.4

对以上确定混凝土拌和物配合比,又分两种情况装入试模。

1.直接将拌制的6㎏水泥量混凝土拌和物一次性加到一组15×15×15试模内,10分钟后多余混凝土从试模上流出,拆模后有可见气孔。7天强度41MPa,28天强度53 MPa。

2.将拌制6㎏水泥量混凝土拌和物分三次装入15×15×15一组试模内,每次间隔5 —10分钟。装满试模后停5 — 10分钟沿试模周边各轻击十下,拆模后无可见气孔,7d强度为48MPa,28天强度为61 — 66MPa。

从例2可以看出,对自密实混凝土,装模速度将影响混凝土中空气逸出,降低混凝土强度。因此控制自密实混凝土装模速度是自密实混凝土施工应特别重视的一个问题。

例4. 用P.o42.5级水泥(58Mpa)合格砂、石、磨细矿粉S1、S2,高效减水剂,试配C120振动碾压混凝土。

一.确定混凝土设计强度:Rs28 =1.15×120 = 138Mpa振动碾压混凝土

二.确定混凝土组成材料的颗粒直径及表观密度:

颗粒直径05—10mm碎石40%,颗粒直径20—40mm碎石60%(全部为05—10碎石亦可以);中粗砂细度模数大于2.8;水泥比表面积4.3—10.3倍磨细矿粉S1, S1比表面积4.3—10.3倍磨细矿粉S2。

Px = 2750,Py = 2700,Pc = 2680,Ps1= Ps2 = 1900;

三. 确定近单位体积混凝土主要组成材料的用量:

e集 = 30%,A = 0.88,W/C = 0.24;

X=1513,其中:20 — 40mm碎石908kg,05 — 10mm碎石605kg,

Y= 567,C灰 = 169,C = 307,S1= 56,S2= 22,W= 92.4

四. 混凝土拌和物体积:V砼 = 1.038M3;混凝土空隙率:e 砼 = 7.1965%

五.混凝土配制强度:m = ㏒1.97.1965 = 3.0748,

R28= 4.1466×58×(1 –)=138.3 Mpa>Rs28=138Mpa

六.确定减水剂用量:高效减水剂用量为1%,混凝土已经有良好工作性。

七.确定混凝土理论配合比:

X:Y:C:S1:S2:W:J=1513:567:307:56:22:92.4:4

上述强震捣立方体试件28天抗压强度应该在135—143Mpa之间。

例5. 用P.o32.5级水泥(42.1Mpa),合格砂、石料,高效减水剂,配制C25混凝土。

Rs28 = 30Mpa;碎石颗粒直径05—10mm;细度模数大于2.7中砂;

Px=2700,Py =2680,Pc =2650;e集 =35%, A= 0.80,W/C = 0.5,

X= 1215㎏,Y= 610㎏,C灰=211㎏,C = 349㎏,W=143.5㎏

V砼= 0.984 M3; e砼=18.8% ;m = 4.5709,

R28= 4.1466×42.1×(1-)= 54.3Mpa>>R28s=30Mpa

C实= 349-300×(54.3 -30)/54.3 = 215kg

高效减水剂用量为水泥用量2%,混凝土已经有良好工作性。

X:Y:C:W:J =1215:610:215:107:4.3

以上配合比28天试件抗压强度为30 —35MPa。

例4.用P.o42.5级水泥(50.1Mpa)、高效减水剂、合格砂石料、磨细矿粉(粉煤灰)、汽油配制C60塑性渗透混凝土,环境温度摄氏20OC以上,渗水率0.001厘米/秒左右。

一. 确定混凝土设计强度:Rs28=69Mpa渗透混凝土

二.混凝土组成材料的颗粒直径及表观密度:

碎石颗粒直径05—10mm;细度模数大于2.7中砂;水泥比表面积4.3—10.3倍磨细矿粉S1,S1比表面积4.3倍以上磨细矿粉S2。 Px = 2750, Py = 2700, Pc= 2680,Ps1=Ps2 = 1900,PH = 660

三.确定近单位体积混凝土主要组成材料的用量:

e集= 40%,A=0.8,W/C=0.28,

X=2750×(0.8-0.4)= 1100㎏

Y=2700×(1-0.4)×0.4= 648㎏

C灰= 2680×(1-0.4)×0.4 2=257㎏

C= C胶+C灰 = 138 + 257 = 395㎏

S1= 1900×395/257(1-0.4)×0.4 3 = 112㎏

S2= 1900×395/257(1-0.4)×0.4 4 = 45㎏

W=(395+112+45)×0.26= 143.5㎏

H=5升重3.3kg

四.混凝土体积:V砼=0.4+0.24+395/2680+157/1900+ 0.1435+0.005

=1.019M3;

混凝土空隙率:e 砼=[(143.5-0.36×157+10×5)÷1019] ×100%+1%

= 14.44%

五.混凝土配制强度:m = ㏒1.914.44= 4.1598 ,

R28= 4.1466×50.1×(1-)=77.3Mpa>Rs28 = 69Mpa

六.确定混凝土减水剂用量:高效减水剂用量为水泥矿粉用量2%,混凝土已经有良好工作性。

七.确定混凝土理论配合比:X:Y:C:S1:S2:W:J:H

=1110:648:395:112:45:143.5:11:5

上混凝土试件28天抗压强度为74—79MPa,渗水率为10-3厘米/秒。

高性能混凝土的质量控制

高性能混凝土的质量控制 摘要:本文介绍了高性能混凝土原材料选择、配合比设计、计量、拌合、运输、浇筑、养护等过程的质量控制。 高性能混凝土以耐久性为前提,同时具有良好的工作性能,满足设计要求的力学性能,它有比普通混凝土更为卓越的性能和结构,主要具有以下性能:①高强; ②高的弹性模量;③在恶劣的条件下耐久性良好;④低渗透性和扩散性;⑤抗化学侵蚀能力;⑥抗冻融破坏;⑦体积稳定性一抗裂性;⑧易密实且不易离析。影响高性能混凝土性能的因素很多,主要从以下几个方面探讨混凝土的质量控制。 1、原材料选择与配合比的设计 1.1原材料的控制 1.1.1原材料技术指标必须符合国家标准、行业标准及混凝土耐久性的要求。 1.1.2混凝土拌合物组成材料尽量简单,因材料种类过多会使混凝土拌合物难以控制。 1.1.3粗骨料的选择至关重要,其级配(颗粒大小与分布)和颗粒特征(形状、孔隙率、表面特征)它会影响混凝土的用水量和皎凝材料用量,从而影响混凝土的耐久性和体积稳定性,同时决定硬化混凝土的力学性能。 1.2新拌混凝土工作性能的选择 1.2.1坍落度:根据施IT艺要求选择适宜浇筑的坍落度,高性能混凝土流动性好且不易离析,坍落度设计时不用太小,泵送混凝土一般设计坍落度为160~200ram,非泵送混凝土考虑运输坍落度可以选择100~150ram,最重要的是要保证运输和浇筑过程中混凝土不得离析。 1.2.2含气量:考虑运输、浇筑过程可能会有大约1%的含气量损失,设计时非引气混凝土含气量控制在3—4%,引气混凝土含气量控制在5~7%比较适宜,以满足混凝土的人模含气量的技术要求。 1.3对混凝土力学性能和耐久性能的考虑 1.3.1根据水胶比和强度的关系计算水胶比;同时要充分考虑施工过程中的要求,如脱模、初张拉等对混凝土强度要求,28天强度未必是最重要的,也许其它龄期的强度控制设计才是最重要的。. 1.3.2根据混凝土所处的环境类别和设计使用年限选择最大水胶比,最小胶凝材料用量;在考虑的使用年限时,耐久性如抗冻性、抗渗性甚至比强度更重要。 1.3.3初步设计的配合比要根据耐久性的要求校核混凝土总碱含量、氯离了占总的胶凝材料用量酌比例等不超过标准规定的限值。 1.4配合比的试配与确定 1.4.1根据结构部位尺寸、钢筋间距、混凝土保护层厚度、泵送管的直径等确定最大骨料尺寸;调整砂率和其它组分的用量,选择可以接受的用水量和水胶比进行试配;最后根据试配的结果选择含气量、坍落度、强度、弹性模量等满足设计要求的同时又较经济的几个配合比进行混凝土耐久性能的检测。 1.4.2试配时必须采用有代表性的胶凝材料、骨料、外加剂、水,并应考虑到不同季节混凝土性能的差异;特别是高温天气施工对混凝土的不利因素。 1.4.3充分考虑骨料吸水率对混凝~32作性能的影响,吸水率大的骨料会引起

混凝土材料的塑性参数

詞蹄輿強薦起本來蛍裂議可創掲?來歌方函峙 *Material, Name=C25 *Concrete pressionhardening 哘薦(kN/m2)本來哘延 11690、, 0 16700、,0、000808693 13239、8, 0、00233739 9841、27, 0、00386389 7674、36,0、0053464 6248、49, 0、00680245 5255、01, 0、00824305 4527、98,0、00967414 3974、73, 0、011099 3540、4,0、0125197 *Concretetensionstiffening 1797、8, 0 1780、,0、000025515 1191、06, 0、000135635 859、483, 0、000236563 684、527,0、000331898 576、455, 0、000424844 502、469,0、000516573 448、233, 0、000607596 406、519, 0、000698173 373、278, 0、000788446 131、57, 0、00355876 *Material, Name=C30 *Concrete pression hardening 14070、, 0 20100、, 0、000801898 14636、6, 0、00245591 10073、3, 0、00407992 7500、85, 0、00563756 5931、13, 0、00716179 4889、86,0、00866839 4153、49,0、0101648 3607、,0、011655 3186、09, 0、0131409 *Concrete tension stiffening 2030、1,0 2010、, 0、0000282563 1232、19, 0、00014944 849、073, 0、000257466 660、524, 0、000359008 548、371, 0、000458002 473、404, 0、000555757 419、357, 0、000652815

浅析碱集料反应对混凝土质量的影响

浅析碱集料反应对混凝土质量的影响 众所周知,混凝土是由多种原材料混合后发生一系列的化学反应而产生的一种多孔、硬度很高的固体。组成混凝土的主要成分为水泥、石子(也称粗集料、粗骨料)、砂子(也称细集料、细骨料)、水、各种外加剂等。各种原材料对混凝土的质量都会产生很大的影响,其中碱集料反应是对混凝土质量影响最大的情况之一。 一、碱集料反应概述 混凝土碱集料反应是混凝土中水泥、外加剂、掺合料和 拌和水中的可溶性碱(钾、纳)溶于混凝土孔隙中,与集料中能与碱反应的活性成分在混凝土硬化后逐渐发生的一种化学反应,反应生成物吸水膨胀,使混凝土产生内应力,导致混凝土开裂和强度降低,严重时会导致混凝土完全破坏。 二、碱集料反应的类型 依据参与碱集料反应的岩石种类及反应机理,碱集料反应可分为碱-硅反应、碱-硅酸盐反应及碱-碳酸盐反应三大类。 1、碱-硅反应 参与这种反应的有蛋白石、黑硅石、燧石、鳞石英、方 石英、玻璃质火山岩、玉髓及微晶或变质石英等。反应发生于碱与微晶氧化硅之间,其反应产物为硅胶体。这种硅胶体遇水膨胀,产生很大的膨胀压力,能引起混凝土开裂。这种膨胀压力取决于集料中活性氧化硅的最不利含量。对蛋白石来说,该含量为3%-5%,而对活性较差一些的含硅集料,该含量为20%-30%。 2、碱-硅酸盐反应 粘土质岩石及千板岩等集料与混凝土中碱性化合物的反应属于碱-硅酸盐反应。这种反应尽管引起缓慢的体积膨胀,也能导致混凝土开裂,其反应性质与碱-二氧化硅反应相似。 3、碱-碳酸盐反应 这是白云质石灰岩集料与混凝土中的碱性化合物发生的反应。这种反应最早发生于加拿大的一条混凝土路面。该路面在非常寒冷的季节发生严重龟裂。经调查发现该路面使用了白云质石灰石骨料。由此证明,碱-碳酸盐集料反应也引起体积膨胀和混凝土开裂。

普通混凝土配合比设计方法及例题

普通混凝土配合比设计方法[1] 一、基本要求 1.普通混凝土要兼顾性能与经济成本,最主要的是要控制每立方米胶凝材料用量及水泥用量,走低水胶比、大掺合料用量、高砂率的设计路线; 2.普通塑性混凝土配合比设计时,主要参数参考下表 ; ②普通混凝土掺合料不宜使用多孔、含碳量、含泥量、泥块含量超标的掺合料; ③确保外加剂与水泥及掺合料相容性良好,其中重点关注缓凝剂、膨胀剂等与水泥及掺合料的相容性,相容性不良的外加剂,不得用于配制混凝土; 3 设计普通混凝土配合比时,应用excel编计算公式,计算过程中通过调整参数以符合表1给出的范围。

2 术语、符号 2.1 术语 2.1.1普通混凝土ordinary concrete 干表观密度为2000~2800kg/m3的水泥混凝土。 2.1.2 干硬性混凝土stiff concrete 拌合物坍落度小于10mm且须用维勃时间(s)表示其稠度的混凝土。 2.1.3塑性混凝土plastic concrete 拌合物坍落度为10mm~90mm的混凝土。 2.1.4流动性混凝土pasty concrete 拌合物坍落度为100mm~150mm的混凝土。 2.1.5大流动性混凝土flowing concrete 拌合物坍落度不小于160mm的混凝土。 2.1.6抗渗混凝土impermeable concrete 抗渗等级不低于P6的混凝土。 2.1.7抗冻混凝土frost-resistant concrete 抗冻等级不低于F50的混凝土。 2.1.8高强混凝土high-strength concrete 强度等级不小于C60的混凝土。 2.1.9泵送混凝土pumped concrete 可在施工现场通过压力泵及输送管道进行浇筑的混凝土。 2.1.10大体积混凝土mass concrete 体积较大的、可能由胶凝材料水化热引起的温度应力导致有害裂缝的结构混凝土。 2.1.11 胶凝材料binder 混凝土中水泥和矿物掺合料的总称。 2.1.12 胶凝材料用量binder content 混凝土中水泥用量和矿物掺合料用量之和。 2.1.13 水胶比water-binder ratio 混凝土中用水量与胶凝材料用量的质量比。 2.1.14 矿物掺合料掺量percentage of mineral admixture 矿物掺合料用量占胶凝材料用量的质量百分比。 2.1.15 外加剂掺量percentage of chemical admixture 外加剂用量相对于胶凝材料用量的质量百分比。

工程建筑混凝土原材料及配合比的检测研究

工程建筑混凝土原材料及配合比的检测研究 摘要:文章首先探讨了工程混凝土的几种原材料检测,包括水、石子、混泥土、外加剂以及掺混材料。其次开展了工程混凝土的配合比检测分析,包括工程混凝 土配合比检测的方法与混凝土强度的检测,旨在优化工程混凝土的配比。 关键词:配合比;混凝土;原材料; 1工程混凝土原材料检测探讨 1.1水质检测 在进行混凝土的拌合工作时,需要在其中加入大量的水。通常情况下,工程 施工团队用于搅拌混凝土的水来自于地下水和自来水。对于部分符合生物饮用要 求的自来水和地下水可以直接在混凝土的搅拌过程中应用,而对于首次使用的地 表水或者是地下水,则需要对水质进行检测。检测的内容包括水质的pH值、氯 化物、硫酸盐及硫化物等参数进行对比,之后所有对比参数在标准数值范围内, 方可用于混凝土搅拌中。 1.2石子检测 在混凝土原材料中,石子是混凝土成型的粗骨料,石子质量直接决定了工程 混凝土的质量。目前我国建筑工程施工制作混凝土的石子主要有两种,一种是碎 石子,一种是卵石子。前者主要是由天然岩石或者是卵石经过破碎处理、筛选分 离之后组合而成,后者主要是指天然石头。在进行混凝土原材料石子的检测时, 检测的内容主要包括级配均匀程度、粒径大小是否合适两个主要方面。 1.3砂子检测 在混凝土中,砂子是细骨料,是混凝土拌合的主要材料。要求依照混凝土的 等级、抗冻要求、抗渗能力进行针对性的砂子检测。检测期间,应该选用不同级 配区的砂子进行检验,检验的内容包括四个大方面,分别是泥块含量、砂子性能、砂含泥量以及有害物质含量方面进行严格检测。 1.4水泥检测 在混凝土的原材料中,水泥是以一种胶凝材料存在的。由于受不同水泥生产 厂家生产工艺差异化的影响,不同厂家生产的水泥在具体的混凝土搅拌过程中产 生的水化反应也不尽相同,继而导致释放的热量也存在一定程度的不同之处。应 该严格按照工程的实际需求选用适宜的水泥类型。当水泥材料的品种确定之后, 应该针对水泥的强度、体积安定性能、细度及凝结的时间展开相应指标的检测。 需要按照《水泥细度检验方法》、《水泥胶砂强度检验方法》等规范进行严格检测。 2工程混凝土配合比检测分析 2.1工程混凝土配比检测方法 当确保混凝土原材料质量时,还需要保障混凝土在配置过程中的配合比,想 要使原材料的配合比正确,得出最佳的配比,就需要针对原材料之间开展进一步 的配合比检测工作,如此才能最终满足工程的建设需求和提升施工质量。通常情 况下,进行混凝土的配比检测时,最常用的检测方法就是试块方法。将混凝土在 长为10~15cm的立方体模板中制作出试验块,通过对试验块进行相应龄期的强度 检测,以此确定工程施工过程中混凝土的配比检测。 2.2工程混凝土配合比强度检测

ABAQUS混凝土塑性损伤模型

4.5.2 混凝土和其它准脆性材料的塑性损伤模型 这部分介绍的是ABAQUS提供分析混凝土和其它准脆性材料的混凝土塑性损伤模型。ABAQUS 材料库中也包括分析混凝的其它模型如基于弥散裂纹方法的土本构模型。他们分别是在ABAQUS/Standard “An inelastic constitutive model for concrete,” Section 4.5.1, 中的弥散裂纹模型和在ABAQUS/Explicit, “A cracking model for concrete and other brittle materials,” Section 4.5.3中的脆性开裂模型。 混凝土塑性损伤模型主要是用来为分析混凝土结构在循环和动力荷载作用下的提供一个普遍分析模型。该模型也适用于其它准脆性材料如岩石、砂浆和陶瓷的分析;本节将以混凝土的力学行为来演示本模型的一些特点。在较低的围压下混凝土表现出脆性性质,主要的失效机制是拉力作用下的开裂失效和压力作用下的压碎。当围压足够大能够阻止裂纹开裂时脆性就不太明显了。这种情况下混凝土失效主要表现为微孔洞结构的聚集和坍塌,从而导致混凝土的宏观力学性质表现得像具有强化性质的延性材料那样。 本节介绍的塑性损伤模型并不能有效模拟混凝土在高围压作用下的力学行为。而只能模拟混凝土和其它脆性材料在与中等围压条件(围压通常小于单轴抗压强度的四分之一或五分之一)下不可逆损伤有关的一些特性。这些特性在宏观上表现如下: ?单拉和单压强度不同,单压强度是单拉强度的10倍甚至更多; ?受拉软化,而受压在软化前存在强化; ?在循环荷载(压)下存在刚度恢复; ?率敏感性,尤其是强度随应变率增加而有较大的提高。 概论 混凝土非粘性塑性损伤模型的基本要点介绍如下: 应变率分解 对率无关的模型附加假定应变率是可以如下分解的: 是总应变率,是应变率的弹性部分,是应变率的塑性部分。 应力应变关系 应力应变关系为下列弹性标量损伤关系: 其中是材料的初始(无损)刚度,是有损刚度,是刚度退化变量其值在0(无损)到1(完全失效)之间变化,与失效机制(开裂和压碎)相关的损伤导致了弹性刚度的退化。在标量损伤理论框架内,刚度退化是各向同性的,它可由单个标量d来描述。按照传统连续介质力学观点,有效应力可定义如下:

混凝土原材料对外加剂的影响

混凝土原材料对外加剂的影响

————————————————————————————————作者:————————————————————————————————日期:

混凝土原材料对外加剂的影响 一、 外加剂在混凝土成分中所占的比例虽然很小,但其作用却不可小视,对混凝土工作性能起到至关重要的作用,一旦混凝土工作性能不满足工地使用要求时,商混厂家首先是投诉外加剂供应商,要求外加剂厂家进行调整,就此遭遇索赔的外加剂厂家比比皆是。当然,现代外加剂技术水平通过近几年的努力已经取得飞速的进步,尤其是聚羧酸外加剂,混凝土技术的发展离不开聚羧酸外加剂的贡献。笔者就混凝土质量问题中因原材料质量的问题,对外加剂的功效影响比较大的因素进行简单的概括分析。 1 水泥 水泥质量对混凝土性能影响相当大,但是水泥厂商对混凝土公司来说一直是个迷,混合材是什么品种、掺量、是否使用助磨剂、其矿物组分如何等从未对混凝土厂商公开过,他们注重的只是强度,大多数混凝土厂商苦不堪言,深受其害,南通地区出现过“市场上十几种外加剂对一种水泥都不适应”的局面。水泥成分中对混凝土工作性能影响较大的因素为: (1)水泥中C3A含量,对混凝土的坍落度影响就很大,C3A 含量越高混凝土和损失就越大,应严格控制其含量。 (2)水泥中半水石膏或硬石膏含量对混凝土坍落度损失影响很大,含量越大损失越快。 (3)标准稠度用水量,用水量越大,外加剂掺量越大。 (4)比表面积,比表面积越大水泥越细,对外加剂的吸附量就越大,外加剂的掺量就越大。 (5)碱含量,在一定范围内随着碱含量的提高,混凝土和易性增加,但达到适量比例以后,混凝土坍落度损失会快速增加。 2 骨料

高强混凝土配合比设计方法及例题

高强(C60)混凝土配合比设计方法[1] 基本特点: 1)每立方米混凝土胶凝材料质量480±20kg; 2)水泥用量不低于42.5级,每立方米水泥质量不超过400kg; 3)砂率0.38~0.40,砂率尽量选小些,以降低粘度; 4)使用掺合料取代部分水泥,宜矿渣(10%~20%)与粉煤灰(10%~15%)复掺; 5)优先选用聚羧酸减水剂,并复配有相容性良好缓凝剂与消泡剂; 6)粗骨料粒径不应大于31.5mm,如果强度等级大于C60,其最大粒径不应大于25mm;7)粗骨料的针片状含量不宜大于5.0%; 8)粗骨料的含泥量不应大于0.5%,泥块含量不宜大于0.2%; 9)细骨料的细度模数宜大于2.6; 10)细骨料含泥量不应大于2.0%,泥块含量不应大于0.5%。

3 基本规定 3.0.1混凝土配合比设计应满足混凝土配制强度、拌合物性能、力学性能和耐久性能的设计要求。混凝土拌合物性能、力学性能和耐久性能的试验方法应分别符合现行国家标准《普通混凝土拌合物性能试验方法标准》GB/T50080、《普通混凝土力学性能试验方法标准》GB/T50081和《普通混凝土长期性能和耐久性能试验方法标准》GB/T50082的规定。3.0.2 混凝土配合比设计应采用工程实际使用的原材料,并应满足国家现行标准的有关要求;配合比设计应以干燥状态骨料为基准,细骨料含水率应小于0.5%,粗骨料含水率应小于0.2%。 3.0.3 混凝土的最大水胶比应符合《混凝土结构设计规范》GB50010的规定。 3.0.4 混凝土的最小胶凝材料用量应符合表3.0.4的规定,配制C15及其以下强度等级的混凝土,可不受表3.0.4的限制。 表3.0.4 混凝土的最小胶凝材料用量 3.0.5矿物掺合料在混凝土中的掺量应通过试验确定。钢筋混凝土中矿物掺合料最大掺量宜符合表3.0.5-1的规定;预应力钢筋混凝土中矿物掺合料最大掺量宜符合表3.0.5-2的规定。 表3.0.5-1钢筋混凝土中矿物掺合料最大掺量 注:①采用硅酸盐水泥和普通硅酸盐水泥之外的通用硅酸盐水泥时,混凝土中水泥混合材和矿物掺合料用量之和应不大于按普通硅酸盐水泥用量20%计算混合材和矿物掺合料用量之和; ②对基础大体积混凝土,粉煤灰、粒化高炉矿渣粉和复合掺合料的最大掺量可增加5%; ③复合掺合料中各组分的掺量不宜超过任一组分单掺时的最大掺量。

C60细石混凝土配合比设计书

C60细石混凝土配合比报告 一、配制要求和引用标准 1、混凝土配制强度为69.9MPa,用于桥梁铰缝浇注; 2、坍落度为:160mm ~180mm; 3、《公路工程水泥及水泥混凝土试验规程》(JTG E30-2005); 4、《普通混凝土配合比设计规程》(JGJ 55-2011); 5、《公路工程集料试验规程》(JTG E41-2005); 6、《公路桥涵施工技术规范》 7、根据业主要求,在咨询单位共同参与下,按高性能混凝土要求,设计该配合比如下。 二、原材料 1、水泥:中国长城铝业公司水泥厂P·O52.5水泥; 2、砂:信阳中砂,细度模数2.76; 3、碎石:贾峪石料厂,碎石最大粒径为20mm,采用5-20mm连续级配碎石,其中10-20mm碎石占70%,5-10mm碎石占30%; 4、水:饮用水; 5、矿渣粉:郑州顺宝水泥股份有限公司S95级矿渣粉; 6、外加剂:江苏博特新材料有限公司PCA型聚羧酸高效减水剂,减水率为28%,掺量为1.6%。 8、膨胀剂:南京捷迅建材有限公司YF-3型膨胀剂,掺量为胶凝材料的7.0%

三、计算初步配合比 1、计算混凝土配制强度值(fcu,o) 设计强度标准值fcu,k=60Mpa,保证率系数t=1.645,准差ó=6MPa fcu,o =fcu,k + 1.645×ó=60+1.645×6=69.9 (Mpa) 2、计算水胶比(W/(C+K)) W/(C+K)=aa.fce/ (fcu,o+ aa ab. fce) 式中回归系数aa 为0.46,ab为0.07,fce根据水泥强度等级选为52.5MPa,fcu,o为混凝土配制强度值69.9 Mpa。 则:W/(C+K)=0.46×52.5/(69.9+0.46×0.07×52.5)=0.34 为了保证混凝土强度,根据经验采用W/(C+K)值为0.32。 3、根据施工环境和施工条件两方面的要求,结合以往的经验选取用水量mwo为237.5kg/m3,掺加江苏博特新材料有限公司PCA型聚羧酸高效减水剂,减水率28%,掺加减水剂的混凝土用水量mwa mwa=mwo(1-β)=237.5×(1-0.28)=171kg/m3 4、计算单位胶凝材料用量(mco) mco= mwa/ (W/(C+K))=171/0.32=535kg/m3 为了能得到和易性优良、耐久性良好的、施工方便的高性能高强度混凝土,根据以往的经验,将该配合比中加入部分矿渣粉来满足这几方面的要求。决定每立方混凝土加入70kg矿渣粉,465kg水泥。 5、计算外加剂用量(Jo) 江苏博特新材料有限公司PCA型聚羧酸高效减水剂掺量为胶凝材料的1.6%

C60高性能混凝土原材料的选择

C60高性能混凝土原材料的选择 2009-10-13 13:22:44| 分类:混凝土| 标签:|字号大中小订 阅 摘要C6O混凝土广泛用于高层结构、大跨度结构、高速办路桥梁的上部结构、剪力堵等原材料选择不合理可能引起混凝土不合格、体积不穗定、外观等质蚤缺陷,同时使生产成本增大文章论述C6O混凝土原材料的选择,可为获得性能优良的C60C6O 混凝土提供参考关键词C6O混凝土;原材料;外加剂水泥 在我国,用强度等级42.SR的硅酸盐水泥,可以配制出实际强度超过100R混凝土,因此配制C60混凝土不必强调水泥的强度等级。回转窑生产的42.SR的硅酸盐水泥或普通水泥质量稳定,强度波动小,是配制C60混凝土优先选取的原材料。 配制C 6 O混凝土时可选52.SR的硅酸盐水泥,但应注意水泥强度等级高、水泥浆用量较少可能使水泥石强度及水泥石与集料胶结强度降低;同时水泥强度等级提高,混凝土坍落度的稳定性也受到一定影响。C60混凝土的水灰比低,为确保其流动性,所用的水泥流变性能比强度更重要。水泥的具体用量应根据水泥的品种、细度、混凝土坍落度的大小、集料的形状级配等情况而确定。特别是加有高效减水剂、引气剂等外加剂时影响更大。 一般掺优质高效减水剂的C60混凝土水泥用量不宜超过500kg/m3超过此值增加水泥用量对强度增长的作用已不显著,

水泥利用系数降低。 2细集料 21细集料的品种。 砂材质的好坏,对C60混凝土拌和物和易性的影响比粗集料大。应选取含泥量、云母、轻物质、有机质等含量少的1类或n类江砂、河砂。砂中石英颗粒含量多则坚固性较好。 2.2细集料的细度模数。 砂的细度模数宜控制在2.6以上。细度模数小于2.5时,拌制的混凝土拌和物显得太粘稠,施工中难于振捣,且由于砂细,在满足相同和易性要求时,会增大水泥用量。这样不仅增加了成本,而且影响混凝土的技术性能,如混凝土的耐久性、收缩裂缝等。砂也不宜太粗,细度模数大于3.3时,容易引起新拌混凝土在运输浇筑过程中离析及保水性差,从而影响混凝土的内在 质量与外观质量。 2. 3砂率的选择。 一般认为,在满足混凝土所要求的性能范围内,砂率要尽量低,因为在水泥浆量一定的情况下,砂率在混凝土中主要影响拌和物的和易性。砂率越低,拌和物的流动性愈大。C60混凝土由于用水量较低,砂浆量要由增加砂率来补充,砂率宜适量增大,才能满足混凝土拌和物的和易性。但砂率过大,为使C60混凝土拌和物满足设计的和易性,势必使水量增加。增加水量会使混凝土强度降低。因此砂率不宜过大。同时砂率的变化应根据

混凝土塑性损伤模型1

混凝土和其它准脆性材料的塑性损伤模型 这部分介绍的是ABAQUS提供分析混凝土和其它准脆性材料的混凝土塑性损伤模型。ABAQUS 材料库中也包括分析混凝的其它模型如基于弥散裂纹方法的土本构模型。他们分别是在ABAQUS/Standard “An inelastic constitutive model for concrete,” Section 4.5.1, 中的弥散裂纹模型和在ABAQUS/Explicit, “A cracking model for concrete and other brittle materials,” Section 4.5.3中的脆性开裂模型。 混凝土塑性损伤模型主要是用来为分析混凝土结构在循环和动力荷载作用下的提供一个普遍分析模型。该模型也适用于其它准脆性材料如岩石、砂浆和陶瓷的分析;本节将以混凝土的力学行为来演示本模型的一些特点。在较低的围压下混凝土表现出脆性性质,主要的失效机制是拉力作用下的开裂失效和压力作用下的压碎。当围压足够大能够阻止裂纹开裂时脆性就不太明显了。这种情况下混凝土失效主要表现为微孔洞结构的聚集和坍塌,从而导致混凝土的宏观力学性质表现得像具有强化性质的延性材料那样。 本节介绍的塑性损伤模型并不能有效模拟混凝土在高围压作用下的力学行为。而只能模拟混凝土和其它脆性材料在与中等围压条件(围压通常小于单轴抗压强度的四分之一或五分之一)下不可逆损伤有关的一些特性。这些特性在宏观上表现如下: ?单拉和单压强度不同,单压强度是单拉强度的10倍甚至更多; ?受拉软化,而受压在软化前存在强化; ?在循环荷载(压)下存在刚度恢复; ?率敏感性,尤其是强度随应变率增加而有较大的提高。 概论 混凝土非粘性塑性损伤模型的基本要点介绍如下: 应变率分解 对率无关的模型附加假定应变率是可以如下分解的: 是总应变率,是应变率的弹性部分,是应变率的塑性部分。 应力应变关系 应力应变关系为下列弹性标量损伤关系: 其中是材料的初始(无损)刚度,是有损刚度,是刚度退化变量其值在0(无损)到1(完全失效)之间变化,与失效机制(开裂和压碎)相关的损伤导致了弹性刚度的退化。在标量损伤理论框架内,刚度退化是各向同性的,它可由单个标量d来描述。按照传统连续介质力学观点,有效应力可定义如下:

关于原材料对混凝土强度的影响的分析

关于原材料对混凝土强度的影响的分析 发表时间:2019-07-29T15:28:59.140Z 来源:《基层建设》2019年第14期作者:陈欢[导读] 摘要:混凝土的强度在一定程度上决定了建筑的强度和安全程度,越来越受到人们的关注,为了提高混凝土的强度,常围绕原材料影响因素进行改进,以提高混凝土的强度。天津欣洲万通混凝土有限公司 摘要:混凝土的强度在一定程度上决定了建筑的强度和安全程度,越来越受到人们的关注,为了提高混凝土的强度,常围绕原材料影响因素进行改进,以提高混凝土的强度。本文首先说明了混凝土的发展现状,然后详细分析了原材料对混凝土强度的影响。关键词:原材料;混凝土;强度;骨料;胶凝材料一、混凝土的发展现状 莫尼埃在 1877 为结构用的混凝土申请专利,力筋和水平横筋形成框架,表面浇筑混凝土的这种做法沿用至今;在1900年之后,相关的水灰比学说相继诞生,这是混凝土强度的最为早期的理论基础。载之后,轻集料混凝土、加气混凝土和其他类型的混凝土接连现世,同时混凝土外加剂也开始出现并投入使用。在上世纪60年代后,混凝土材料中开始有了高分子材料的加入,由此聚合物混凝土得以研制成功。 在当代,钢筋混凝土做为建筑设施的基础材料,充当着十分着重要的角色。经过近 40 年的发展,我国的混凝土行业已然形成了一条产业链。从材料设计、原材料制备、混凝土生产运输到工程服务。这为我国的基础设施建设和各类建筑工程建设做出了重要的贡献。2017年,我国混凝土与水泥制品协会官方统计商品混凝土产量 16.4 亿 m3,同比增长跌至 2.14%,我们不难看出在市场及国家政策的推动下,行业规模持续扩大,技术水平、管理水平快速提升,产业结构不断改善。 二、原材料对混凝土强度的影响的分析(一)水泥的强度等级和水灰比 水泥是混凝土最重要的原材料,其也对混凝土的强度有重大的影响,因此研究水泥的强度等级以及水灰比是十分关键的。一般来说,水泥的强度等级水平较高,才能配置出强度大的混凝土。而水泥要达到高的强度,则离不开水灰比的作用。在水泥强度固定不变的条件下,如果水灰比越大,则混凝土的强度反而越小。水泥水化需要合适的水量,如果水量控制不合理,则混凝土便不能全部吸收水分,一部分水分就会被滞留到混凝土中,一旦遭遇高温条件,就会出现水汽蒸发的问题,那么即使已经硬化了的混凝土仍有可能出现气孔,这大大降低了混凝土的强度。由此可见,如何处理水灰比和强度之间的关系是十分关键的问题,混凝土的强度只有在水灰比越小的时候才能增强。但是需要把握好水灰比的度,如果过于小,那么混凝土的振捣就会非常困难,混凝土反而容易出现更多的问题,这对强度也会造成很大影响。 (二)骨料 骨料分为粗骨料和细骨料,通常情况下,粗骨料相比细骨料对于混凝土强度影响较大,细骨料对于混凝土强度影响很小。粗骨料对于混凝土强度的影响主要在于其表面质量的好坏,对于表面粗糙的粗骨料,粘接力较大,混凝土的强度较高。一般情况下,粗骨料的强度比水泥的强度和水泥与骨料间的粘结力要高,所以粗骨料的自身强度对混凝土强度不会有大的影响,但是粗骨料如果含有大量的针片状颗粒、泥块等杂质,则对混凝土强度产生不良影响。因为当骨料较大时,骨料间粘接力较小,并且骨料间隙大,强度低。为了保证混凝土具有足够的强度,常常将粗骨料控制在 3.2cm 左右。当石质强度相等时,碎石表面粗糙,粘接力较大,因此表面粗糙的碎石比表面光滑的卵石粘结性能要好,在水灰比相同时,碎石的混凝土强度比卵石的混凝土强度高,一般高 10%左右。(三)矿物掺合料对混凝土强度的影响用粉煤灰、粉煤灰及硅灰、磨细矿渣等量替代部分水泥的情况下,混凝土 7d 龄期时抗压及弯拉强度均下降,但 28d 龄期后粉煤灰、粉煤灰及硅灰两种掺合料的混凝土抗压及弯拉强度依然下降,磨细矿渣掺合料混凝土抗压及弯拉强度比纯水泥混凝土强度高。在水胶比分别为 0.60、0.50、0.28 三种情况下,无论水胶比大小,Ⅱ级粉煤灰均不能等量取代 P?O42.5R 级水泥,应超量取代,且水胶比越大,超量系数越大;在研究的掺量范围内,S95 矿渣粉可等量取代 P?042.5R 级水泥,,且会增加混凝土强度。粉煤灰的增“强”潜力是很大的,其主要是在后期增加混凝土的强度,后劲很足;硅粉具有较大的活性,那么其主要是在前期增加混凝土的强度,而后期由于活性的降低会大大减缓增加强度的速度。如果需要提高混凝土的抗折强度和抗冲击耐磨性,那么硅粉则是最合适的外加剂。 基于此,如果混凝土对早期强度要求较大,那么可以采用粉煤灰超量取代部分水泥的做法,而则可以取代等量的部分水泥,同时对混凝土强度的增强也是有益的。 (四)外加剂对混凝土强度的影响外加剂是混凝土原材料中不可缺少的部分,外加剂的加入对混凝土的各种性能有着明显的改善作用。外加剂的种类很多,常见的有减水剂、早强剂和缓凝剂等,另外复合型的外加剂也是较为常见的。假使其他材料不改变,在加入减水剂后,混凝土的坍落度仍然能够达到同样要求,但是却能同步减少用水量,从而使得混凝土的强度得到增强。但要控制好减水剂的掺量,过犹不及,如果掺量过高,那么就增加了混凝土离析泌水的可能性,反而会使得混凝土的强度降低。早强剂的目的是控制混凝土的早期强度,起到提高早期强度的作用;如果要提高混凝土的抗冻性能,那么就要加入引气剂,但是引气剂的加入会使得混凝土的强度有不同程度的降低;膨胀剂能够起到降低混凝土收缩的目的,对混凝土强度的增强也有一定的作用;如果需要延长混凝土的凝结时间,那么就可以加入缓凝剂,会使得混凝土的运输范围得以增大,那么缓凝剂的用量需要控制好,否则就会起到降低混凝土强度的反作用。相关试验显示,在水灰比相同的条件下,对混凝土蒸养强度提高最为明显的为萘系高效减水剂,而聚羧酸高效减水剂和氨基磺酸盐高效减水剂的效果则相对要差一些;适量早强剂和膨胀剂的加入也付混凝土蒸养强度的提高有益,而缓凝剂和引气剂的加入也不利于混凝土蒸养强度的提高。 在混凝土坍落度相同的条件下,减水剂的减水率越高,那么配制出的混凝土强度就会越大。这是因为,用水量的降低使得水灰比也变小,通过上文分析可知,小的水灰比有利于混凝土强度的增大。由此可见,在流动性能相同和水灰比相同的条件下,减水剂会对混凝土强度有不同程度的影响。 (五)胶凝体系对混凝土强度的影响

C60配合比

C60主塔混凝土配合比设计的技术总结 一、主塔施工概况: 菏泽丹阳立交桥是亚洲最大采用转体施工的斜拉桥,转体吨位为25000吨。主塔采用塔墩固结,墩梁间设置支座的半漂浮体系,独柱“人”字形塔,14#、15#主塔为C60混凝土,方量为2928m3,主塔高为77米,采用爬模施工,每个主塔分15次浇筑,每次采用车载泵浇筑约100m3混凝土。 二、设计依据: 1、JGJ55-2011《普通砼配合比设计规程》、JTG/TF50-2011《公路桥涵施工技术规范》、GB/T50080-2002《普通混凝土拌合物性能试验方法标准》、GB50119-2003《混凝土外加剂应用技术规范》、设计图纸等。 2、设计坍落度:160~200mm。 3、选用参数:由于砼设计强度为60Mpa,无历史统计资料,由表查得强度标准差σ取6Mpa。由于不具备试验统计资料及粗集料采用碎石,由表查得强度回归系数αa值取0.53,αb值取0.20,保证系数取1.645。 三、原材料选用: 1、水泥:菏泽市中联水泥有限公司生产的“中联”牌P.052.5水泥。 2、黄砂:采用山东平邑宝华砂场生产的中砂。 3、碎石:采用山东肥城王台石料厂生产的5~20mm连续级配碎石。掺配比例为5~10mm:10~20mm=30%:70%。 4、粉煤灰:采用山东天泽集团粉煤灰公司生产的F类I级粉煤灰。 5、矿渣粉:采用河北邯郸县诚达建材有限公司生产的S95级矿渣粉。 6、外加剂:采用潍坊晨泰建材有限公司生产的聚羧酸高性能CHT-S 型减水剂,减水率可达25~35%,建议掺量为胶凝材料的0.8~1.2%。 7、拌合用水:采用饮用水。

四、原材料试验结果汇总见下表: 五、砼试配强度计算(设计): 1、砼配制强度:f cu,0≥f cu,k+1.645σ=60+1.645×6=69.9Mpa,取σ=6 Mpa。 2、计算水胶比:W/B=(αa×f b)/(f cu,o+αa×αb×f b)=(0.53×52.5×1.10×0.90×1.00)/(69.9+0.53×0.20×52.5×1.10×0.90×1.00)=0.37(取水泥富余系数γc=1.10 r f=0.90 r s=1.00) 为了使C60砼有良好的和易性,并保证强度,故我们取水胶比W/B=0.30。 3、根据规范查出单位用水量为m wo=220kg/m3。 4、确定掺入外加剂后混凝土的单位用水量: 掺入缓凝减水剂为每立方胶凝材料用量的1.2﹪,减水率25%计算掺入外加剂后混凝土的单位用水量: m wo=220×(1-25%)=165kg/m3 5、计算水胶比为0.30时每立方的胶凝材料用量:

高性能混凝土的研究与发展现状

高性能混凝土的研究与发展现状 学生姓名: 指导教师: 专业年级: 完稿时间: XX大学

高性能混凝土的研究与发展现状 摘要 随着科学技术的进步,现代建筑不断向高层、大跨、地下、海洋方向发展。高强混凝土由于具有耐久性好、强度高、变形小等优点,能适应现代工程结构向大 跨、重载、高耸发展和承受恶劣环境条件的需要,同时还能减小构件截面、增大使用 面积、降低工程造价,因此得到了越来越广泛的应用,并取得了明显的技术经济效益。 关键词:高性能混凝土性能发展应用前景 装 订 线

目录 一高性能混凝土的发展方向 (1) 1.1轻混凝土 (1) 1.2绿色高性能混凝土 (1) 1.3超高性能混凝土 (1) 1.4智能混凝土 (1) 二高性能混凝土的性能 (1) 2.1耐久性 (1) 2.2工作性 (1) 2.3力学性能 (1) 2.4体积稳定性 (1) 2.5经济性 (2) 三高性能混凝土质量与施工控制 (2) 3.1高性能混凝土原材料及其选用 (2) 3.2配合比设计控制要点 (3) 四高强高性能混凝土的应用与施工控制 (3) 4.1高强高性能混凝土的应用 (3) 4.2高性能混凝土的施工控制 (4) 五高性能混凝土的特点 (4)

5.1高耐久性能 (4) 5.2高工作性能 (5) 5.3高稳定性能 (5) 六高性能混凝土的发展前景 (5) 参考文献 (6)

一高性能混凝土的发展方向 1.1轻混凝土是指表观密度小于1950kg/m3的混凝土。可分为轻集料混凝土、多孔混凝土和无砂大孔混凝土三类。 1.2绿色高性能混凝土水泥混凝土是当代最大宗的人造材料,对资源、能源的消耗和对环境的破坏十分巨大,与可持续发展的要求背道而驰。绿色高性能混凝土研究和应用较多的是粉煤灰混凝土,粉煤灰混凝土与基准混凝土相比,大大提高了新拌混凝土的工作性能,明显降低混凝土硬化阶段的水化热,提高混凝土强度特别是后期强度而且,节约水泥,减少环境污染,成为绿色高性能混凝土的代表性材料。 1.3超高性能混凝土如活性粉末混凝土,其特点是高强度,抗压强度高达300MPa,且具有高密实性,已在军事、核电站等特殊工程中成功应用。 1.4智能混凝土是在混凝土原有的组分基础上复合智能型组分,使混凝土材料具有自感知、自适应、自修复特性的多功能材料,对环境变化具有感知和控制的功能。随着损伤自诊断混凝土、温度自调节混凝土、仿生自愈合混凝土等一系列机敏混凝土的出现,为智能混凝土的研究、发展和智能混凝土结构的研究应用奠定了基础。 二高性能混凝土的性能 2.1耐久性。高效减水剂和矿物质超细粉的配合使用,能够有效的减少用水量,减少混凝土内部的空隙,能够使混凝土结构安全可靠地工作50~100年以上,是高性能混凝土应用的主要目的。 2.2工作性。坍落度是评价混凝土工作性的主要指标,HPC的坍落度控制功能好,在振捣的过程中,高性能混凝土粘性大,粗骨料的下沉速度慢,在相同振动时间内,下沉距离短,稳定性和均匀性好。同时,由于高性能混凝土的水灰比低,自由水少,且掺入超细粉,基本上无泌水,其水泥浆的粘性大,很少产生离析的现象。 2.3力学性能。由于混凝土是一种非均质材料,强度受诸多因素的影响,水灰比是影响混凝土强度的主要因素,对于普通混凝土,随着水灰比的降低,混凝土的抗压强度增大,高性能混凝土中的高效减水剂对水泥的分散能力强、减水率高,可大幅度降低混凝土单方用水量。在高性能混凝土中掺入矿物超细粉可以填充水泥颗粒之间的空隙,改善界面结构,提高混凝土的密实度,提高强度。 2.4体积稳定性。高性能混凝土具有较高的体积稳定性,即混凝土在硬化早期应具有较低的水化热,硬化后期具有较小的收缩变形。

粉煤灰参量对混凝土影响

粉煤灰是制作水泥的一种原材料,具有一定的活性。在水泥混凝土中掺一定量的粉煤灰,既可以替代一部分水泥,节约成本,又能增加和易性,减少泌水、离析现象,改善混凝土的性能。具有缓凝、减水,提高密实度和后期强度,降低水化热,抑制干裂、收缩,增强抗酸碱反应能力的作用。近年来已在国内外引起广泛的关注,并得到大量的推广应用。但是在混凝土中掺多少粉煤灰才能取得最佳效果呢?到目前为止,还没有较完善的理论体系。 八十年代以来,我国已对粉煤灰混凝土做了一定的研究、应用,并制定了一些规范。如《粉煤灰在混凝土和砂浆中应用技术规程》JGJ28-86,《粉煤灰混凝土应用技术规范》GBJ146-90等,对粉煤灰应用作了初步规定,制定了最大替代水泥量。见下表: 粉煤灰最大替代水泥量%JGJ28-86N0-01 水泥品种 砼强度等级普通水泥矿渣水泥粉煤灰级别 ≤C1515~2510~20Ⅲ级 C2010~1510Ⅰ~Ⅱ级 C25~C3015~2010~15Ⅰ~Ⅱ级 预应力砼≤15<10Ⅰ级 粉煤灰最大替代水泥限量%GBJ146-90N0-02 水泥品种 砼类别硅酸盐 水泥普通 水泥矿渣 水泥火山灰水泥 预应力砼251510 钢筋砼、高强砼、耐冻砼、蒸养砼30252015 中、低强度砼、泵送砼、大体积砼、地下砼、 水下砼50403020

碾压砼65554535 粉煤灰超量系数GBJ146-90N0-03 粉煤灰级别Ⅰ级Ⅱ级Ⅲ级 超量系数1.1~1.41.3~1.71.5~2.0 在国标GBJ146-90中规定各级粉煤灰适用范围如下: 1、Ⅰ级粉煤灰适用于跨度小于6米的预应力混凝土好钢筋混凝土。 2、Ⅱ级粉煤灰适用于钢筋混凝土和无筋混凝土。 3、Ⅲ级粉煤灰适用于无筋混凝土。 4、C30及其C30以上的无筋粉煤灰混凝土宜采用Ⅰ、Ⅱ级粉煤灰,对于预应力混凝土、钢筋混凝土,设计强度等级在C30及其C30以上的无筋混凝土所有粉煤灰,经试验论证,可采用上述规定低一级的粉煤灰。 国外的粉煤灰掺量,主要有70~120kg/m3,50~150kg/m3。欧、美等西方发达国家早已涉入这一领域的研究,我国起步较晚,有关研究不多,常直接以水泥用量的百分比以及超量部分来确定粉煤灰掺量。在南浦大桥、上钢、上海宝电等工程中大量采用,并积累了不少经验。我们经过大量试验、应用,发现粉煤灰的掺量与混凝土所用的原材料、设计强度等级、塌落度、浇筑气温等都有一定的关系。掺量在50~~130kg/m3范围对混凝土的凝结时间影响不大,早期强度降低有限。但混凝土的性能却能得到较大幅度的改善。在实际应用中,切入原材料理念,选用固定掺量法较易掌握,即预先确定粉煤灰的每m3用量的方法,欧、美国家大多采用固定掺量法。现将我们试验应用的结果总结出以下几个特点: 1、最佳掺量与塌落度的关系 在同强度等级条件下,随着塌落度增加,为了确保和易性、工作度,细集料和粉集料比例则应相应增大。我们发现最佳掺量与塌落度之间存在一定的比例关系,以C20砼为例,两者趋于线性关系,见下图: 粉煤灰N0-04 最佳130 掺量 kg/m340 20180200塌落度㎜

C60细石混凝土配合比报告

C60水泥混凝土配合比报告 一、配制要求和引用标准 1、混凝土配制强度为69.9MPa,用于桥梁铰缝浇注; 2、坍落度为:160mm ~180mm; 3、《公路工程水泥及水泥混凝土试验规程》(JTG E30-2005); 4、《普通混凝土配合比设计规程》(JGJ 55-2000); 5、《公路工程集料试验规程》(JTG E41-2005); 6、《公路桥涵施工技术规范》(JTJ 041-2000); 7、根据业主要求,在咨询单位共同参与下,按高性能混凝土要求, 设计该配合比如下。 二、原材料 1、水泥:中国长城铝业公司水泥厂P·O52.5水泥; 2、砂:信阳中砂,细度模数2.76; 3、碎石:贾峪石料厂,碎石最大粒径为20mm,采用5-20mm连 续级配碎石,其中10-20mm碎石占70%,5-10mm碎石占30%; 4、水:饮用水; 5、矿渣粉:郑州顺宝水泥股份有限公司S95级矿渣粉; 6、外加剂:江苏博特新材料有限公司PCA型聚羧酸高效减水剂, 减水率为28%,掺量为1.6%。 8、膨胀剂:南京捷迅建材有限公司YF-3型膨胀剂,掺量为胶凝材料 的7.0% 三、计算初步配合比 1、计算混凝土配制强度值(f cu,o)

设计强度标准值f cu,k=60Mpa,保证率系数t=1.645,准差ó=6MPa f cu,o =f cu,k + 1.645×ó=60+1.645×6=69.9 (Mpa) 2、计算水胶比(W/(C+K)) W/(C+K)=a a.f ce/ (f cu,o+ a a a b. f ce) 式中回归系数a a为0.46,a b为0.07,f ce根据水泥强度等级选为52.5MPa,f cu,o为混凝土配制强度值69.9 Mpa。 则:W/(C+K)=0.46×52.5/(69.9+0.46×0.07×52.5)=0.34 为了保证混凝土强度,根据经验采用W/(C+K)值为0.32。 3、根据施工环境和施工条件两方面的要求,结合以往的经验选取用水量m wo为237.5kg/m3,掺加江苏博特新材料有限公司PCA型聚羧酸高效减水剂,减水率28%,掺加减水剂的混凝土用水量m wa m wa=m wo(1-β)=237.5×(1-0.28)=171kg/m3 4、计算单位胶凝材料用量(m co) m co= m wa/ (W/(C+K))=171/0.32=535kg/m3 为了能得到和易性优良、耐久性良好的、施工方便的高性能高强度混凝土,根据以往的经验,将该配合比中加入部分矿渣粉来满足这几方面的要求。决定每立方混凝土加入70kg矿渣粉,465kg 水泥。 5、计算外加剂用量(J o) 江苏博特新材料有限公司PCA型聚羧酸高效减水剂掺量为胶凝材料的1.6% J o= m co×1.6%= 535×0.016=8.56kg/m3 6、计算膨胀剂用量(m p)

相关主题